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Abstract
Traditional security detection methods face challenges in identifying zero-day attacks in critical infrastructures (CIs) inte-
grated with the industrial internet of things (IIoT). These attacks exploit unknown vulnerabilities and are difficult to detect 
due to their connection to physical systems. The integration of legacy ICS networks with modern computing and networking 
technologies has significantly expanded the attack surface, making these systems more susceptible to cyber-attacks. Despite 
existing security measures, attackers continually find ways to breach these operating networks. Anomaly detection systems 
are critical in protecting these CIs from current cyber threats. This study investigates the effectiveness of unsupervised 
anomaly detection models in detecting operational anomalies that could lead to cyber-attacks, thereby disrupting and nega-
tively impacting quality of life. We preprocess the data with a focus on cybersecurity and chose the SWAT dataset because 
it accurately represents the types of attack vectors that critical infrastructures commonly encounter. We evaluated the perfor-
mance of isolation forest (IF), local outlier factor (LOF), one-class SVM (OCSVM), and Autoencoder algorithms—trained 
exclusively on normal data—in enhancing cybersecurity within IIoT environments. Our comprehensive analysis includes 
an assessment of each model’s detection capabilities. The findings highlight the VAE-LSTM model’s potential to identify 
cyber-attacks within seconds in a high-frequency dataset, suggesting near real-time detection capability. The final model 
combines the reconstruction ability of the variational autoencoder (VAE) with regularization using the Kullback–Leibler 
divergence, reflecting the non-Gaussian nature of industrial system data. Our model successfully detected 23 out of 26 attack 
scenarios in the SWAT dataset, demonstrating its effectiveness in improving the security of IIoT-based CIs.
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1  Introduction

The cybersecurity of critical infrastructures (CIs) is a 
national security concern [1]. The exponential growth of 
cyberattacks targeting these infrastructures, not only for 
political but also for economic motives [2], has highlighted 
the need for new and innovative measures to protect the 
adequate functioning of vital systems, such as communica-
tions, hydroelectric, or transportation systems [3]. Zero-day 
attacks are the most difficult to detect, manage, and respond 
to; these attacks can take advantage of weaknesses that are 
not yet known or can mimic normal operational function-
ing. Both scenarios constitute challenges for cybersecurity 
systems. Traditional intrusion detection systems (IDS) such 
as signature-based, and misuse-based systems rely on known 
attack patterns and predefined rules to detect threats; thus, 
are not effective against zero-day attacks [4]. Moreover, 
security measures learned from information technology 
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(IT) infrastructures may not fully meet the security needs of 
CIs. Contrary to the typical emphasis on data confidentiality 
in general IT, in industrial control systems (ICS), the para-
mount importance lies in ensuring real-time availability and 
integrity for the smooth operation of industrial plants [5].

Over the last few decades, CIs have become intercon-
nected through new technologies that increase their effec-
tiveness, reduce operational costs, and enhance management 
capabilities [6]. Thus, isolating operational technology is 
an obsolete security measure that does not work for current 
architectures [5]. The separation between IT systems and 
operational technology (OT) systems has become blurred, 
making the attack surface bigger [7]. Additionally, the inten-
tions of attackers targeting CIs could have a physical impact 
[8]; for instance, changing the state of one of the many actu-
ators could negatively affect the production of a hydroelec-
tric plant. Therefore, there are specific kind of threats against 
CIs, which must be tackle using adequate measures [9].

Research in the field of ICS has intensified due to the 
growing concern surrounding the security of CIs [10]. This 
complex network of systems includes components such as 
Supervisory Control and Data Acquisition (SCADA) sys-
tems, Programmable Logic Controllers (PLCs), Remote I/O 
(RIO) units, sensors, and actuators [11]. Many successful 
attacks have occurred since the classical Stuxnet attack, 
which targeted Iran’s nuclear program. Specifically, it tar-
geted SCADA systems used to control and monitor industrial 
processes, such as those found in nuclear facilities and power 
plants [12]. The attack aimed to manipulate the programma-
ble logic controllers (PLCs) within these systems to sabotage 
the machinery they controlled, all without raising suspicions 
or triggering alarms. These threats have evolved reaching the 
current state in which even national cybersecurity organi-
zations such as: the UK’s National Cyber Security Centre 
(NCSC), in their NCSC Annual Review 2023, warned about 
the significant cyber threats faced by the nation’s CI [13].

An anomaly is a value or outcome that deviates from 
the expected or normal value [4]. From the cybersecurity 
perspective, anomalies serve as crucial early indicators of 
potential cyber-attacks. These deviations, whether evident 
as unusual patterns in network traffic, physical devices, 
irregularities in system logs, or atypical user behavior, often 
signify the presence of malicious activity within a system. 
Moreover, anomalies offer invaluable insights into the tac-
tics and techniques employed by adversaries, empowering 
security teams to proactively enhance their defense strate-
gies [14].

Given that normal operational behavior constitutes the 
baseline knowledge for CI operators, any departure from this 
norm warrants scrutiny as it may indicate a potential cyber-
attack. Building upon this understanding, the present study 
poses the following research question: How effective are 
machine learning-based anomaly detection models, trained 

solely on high-frequency normal data representing physical 
systems, in improving the capacity of detecting zero-day 
attacks targeting CIs?

The key contributions of this work to the field of cyber-
security for critical infrastructures are outlined as follows:

•	 A preprocessing method was devised to extract mean-
ingful information from industrial devices (sensors and 
actuators) and address data science challenges such as 
different distributions in training and testing sets, as well 
as a high number of categorical variables. These charac-
teristics are particularly prevalent in data from industrial 
physical devices.

•	 The modeling and evaluation of six different unsuper-
vised algorithms (IF, LOF, One-Class SVM, and various 
autoencoders) were conducted to identify which model 
achieves better results in detecting anomalous data in 
operating systems, based on learning the normal opera-
tional behavior. This approach enhances the possibility 
of identifying zero-day attacks.

•	 A generative deep learning model has been proposed to 
identify anomalous behavior in operational infrastruc-
tures, with a particular focus on detecting anomalies 
linked to cyber-attacks targeting physical devices. The 
experimental evaluation demonstrates the viability of our 
model in detecting 23 out of 26 cyber-attacks selected 
from the SWAT dataset, with better generalization com-
pared to existing methods and using smaller sequence 
windows of 10 s.

The rest of the work is organized into the following sec-
tions: Sect. 2, presents the methodology used to develop 
this research; Sect. 3, explains some of the most notable 
works that have been developed in the research area; Sect. 4, 
details the series of experiments conducted to test unsuper-
vised algorithms for detecting anomalies; Sect. 5, presents 
the results of the tested algorithms and analyzes their detec-
tion capacity; finally, Sect. 6, concludes the work and the 
discusses future directions.

2 � Methodology

The design science research methodology (DSRM) was 
selected to systematically resolve the research question of 
this work. This methodology offers a structured framework 
for researchers to construct and assess artifacts, with the goal 
of producing actionable insights that benefit both theoretical 
understanding and practical application in addressing real-
world challenges [15]. Details of the methodology are in 
Fig. 1. The process begins with problem identification and 
motivation, followed by the analysis and comparison of the 
obtained results.
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The DSRM is highly beneficial for cybersecurity research, 
primarily due to its structured yet flexible framework that 
emphasizes practical and theoretical contributions simulta-
neously. In the realm of cybersecurity, where the landscape 
of threats continuously evolves, DSRM’s problem-centric 
approach ensures that research efforts are directly aligned 
with current and emerging security challenges. This meth-
odology encourages the creation and iterative refinement of 
artifacts such as models, methods, and tools, which are cru-
cial for detecting and responding to cyber threats. Moreover, 
DSRM mandates rigorous evaluation of these artifacts, a 
process vital for assessing their effectiveness in real-world 
scenarios. This not only enhances the practical applications 
of research outcomes but also contributes to the theoretical 
foundations of cybersecurity, ensuring that developments are 
both innovative and applicable.

3 � Background and Related Work

In [5], the authors developed a CNN-based method for 
detecting cyberattacks in Industrial Control Systems (ICS). 
They solely utilized sensor data to train the model and 
excluded certain sensors, namely AIT201, AIT203, and 
PIT502, due to discrepancies between the training and test 
data. The elimination of features with different distributions 
in the training and test sets is a common preprocessing step 
in data preparation. Nevertheless, the observed behavior of 
these sensors suggests that some devices did not stabilize 
after experiencing a cyber-attack, indicating that the systems 
did not return to normal behavior post-attack. This type of 
behavior can be identified by anomaly detection systems 
and warrants a deeper analysis. Furthermore, using a CNN 

for univariate auto-regression of signals has limitations, as 
it cannot capture the interdependencies between physical 
devices. Attacks targeting multiple processes or devices that 
were excluded from the training set may be more challenging 
to detect. Although the results are promising and indicate a 
positive detection of attacks, it should be noted that these 
detections did not always correlate with a physical impact. In 
[7], the authors eliminated 11 features to build their model. 
However, from a cybersecurity perspective, any feature rep-
resenting a physical device—whether a sensor or actuator—
can potentially serve as an attack surface and thus should not 
be excluded from the training set. Consequently, attacks tar-
geting devices excluded from the modeling process, such as 
attack number 24, were not detected by the authors’ method.

Another artificial neural network approach is explained 
in [3]: a One-Class Neural Network for Anomaly Detec-
tion in Water Treatment Systems. The authors demonstrated 
superior recall values in 15 out of the 36 attack scenarios. 
However, 16 attack scenarios had a recall value of zero, and 
six had values under 0.08. Consequently, the model failed to 
correctly identify many of the positive instances represent-
ing cyberattacks. Moreover, no noise reduction was applied 
to the dataset, and noise in real-world scenarios is inevitable 
and needs to be mitigated to achieve good anomaly detection 
performance. The authors also introduced a regularization 
term, but the range of hyperparameters was manually speci-
fied and tuned. This approach can introduce bias and limit 
the model’s potential for optimization.

In [8], the authors propose a causality-inspired unsuper-
vised learning approach for detecting cyberattacks in water 
treatment plants. The proposed method utilizes causal infer-
ence to create a resilient anomaly score in two stages. Ini-
tially, minimal domain knowledge through causal models 

Fig. 1   DRSM methodology
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assists in pinpointing crucial interdependencies within the 
system, while univariate models aid in independently learn-
ing the typical behavior of the system’s components. How-
ever, in the univariate scenario, it is impossible to capture 
any temporal connections among the physical devices, nor 
dependencies or relationships, let alone uncover any under-
lying causality within the data. Therefore, the model could 
have an incomplete understanding of system behavior. 
A different approach can be observed in [16], where the 
authors developed an intrusion detection technique for ICS 
that relies on an enhanced version of comparative learn-
ing, specifically SimCLR. Initially, an unlabeled dataset was 
utilized to train a feature extraction network within the Sim-
CLR framework. Subsequently, a linear classification layer 
is appended to this trained network model. Finally, a small 
subset of labeled data is employed to supervise the training 
process and fine-tune the model parameters.

In scenarios where critical systems are distributed across 
various locations, federated learning (FL) emerges as a com-
putational framework for decentralized machine learning. 
It enables disparate entities to collaborate on training a sin-
gular global model without the need to share raw data. This 
approach ensures the confidentiality of sensitive informa-
tion within critical systems. As is shown in [17], FL models 
are trained locally on the devices, and only their parameters 
are sent to the central server. The data were split vertically 
by technological processes in the SWAT dataset. However, 
FL can indirectly uncover some level of interdependencies 
between data sources due to the nature of the collaborative 
training process.

A Lightweight Long Short-Term Memory Variational 
Auto-Encoder was implemented in [18], and the authors 
reported detecting 82% of anomalies present in the SWAT 
dataset. They applied the K–S test to verify the similarity 
between the probability distributions of the training and 
testing data. As a result, the authors eliminated 15 fea-
tures—AIT201, AIT202, AIT203, P201, AIT401, AIT402, 
AIT501, AIT502, AIT503, AIT504, FIT504, PIT501, 
PIT502, PIT503—even those targeted in some attack sce-
narios, such as attack scenario number 38 with AIT401 
and AIT502. Thus, if the model detects anomalies during 
the time when an attack scenario was launched, it is done 
through dependencies among other physical devices. How-
ever, to bridge the gap between academic research and mod-
els that can be implemented in real-world scenarios, it is 
necessary to demonstrate the generalization capabilities of 
machine learning models. This would entail retaining the 
features that represent the normal system behavior. A similar 
case is depicted in [11], where an LSTM neural network was 
modeled, and 22 features representing sensors or actuators 
were excluded from the process due to having zero variance, 
a K–S test result higher than 0.25, or mismatched distribu-
tions between training and testing data. In the latter case, the 

authors detected 23 out of 28 cyberattacks after excluding 
those attacks that did not have a physical impact or were 
unsuccessful. Furthermore, they utilized a window of 120 s 
to construct new features using Fourier Transformation. As a 
result, the model would detect an attack at least two minutes 
after it began. Another approach that implemented an LSTM 
auto-encoder for detecting anomalies in industrial control 
systems (ICS) is proposed in [9]. In this work, the authors 
also introduced a statistical feature extraction method for 
both industrial network data and external networks, yielding 
promising results in attack detection through network traffic 
data. However, the performance of the deep auto-encoder-
based long short-term memory (LSTM) model is heavily 
dependent on the quality of the input features derived from 
raw network traffic data. Our proposal differentiates itself by 
utilizing data typical of cyber-physical systems (CPS), such 
as sensor and actuator data. Consequently, our preprocessing 
includes considerations specific to these data types, such as 
signal frequency, to better capture the nuances and charac-
teristics of the CPS environment. Additionally, comparisons 
are not straightforward, as a model may perform exception-
ally well on one dataset and poorly on another. Therefore, 
enhancing the model’s generalization capacity is essential 
for achieving robust performance across diverse datasets.

An unsupervised dual variational generative adversarial 
model named MST-DVGAN is proposed in [19]. Their 
model identifies anomalies that lie either close to normal 
samples in distribution or near the latent dimension man-
ifold of the normal data cluster in the embedding space. 
They designed a contrastive module and incorporated two 
augmented losses to increase the reconstruction error gaps 
between abnormal and normal data by applying the con-
trastive constraint on the embedded space. Additionally, the 
authors utilized an LSTM-based variational inference net-
work with a window of 30 s and applied PCA to extract the 
principal components resolutions. Particularly, in the SWAT 
dataset, the authors report achieving an F1 score of 79.87, 
a recall of 66.93, a precision of 99.0, and an accuracy of 
94.84.

4 � Experiments

The overview of the suggested approach is shown in Fig. 2. 
For the anomaly detection process, first, the dataset was 
selected and downloaded from the official source. Next, pre-
processing steps were applied to the SWAT dataset. Then, 
LOF, IF, OCSVM, and Autoencoder algorithms were used 
to create anomaly detection models, with all training per-
formed using normal data. Finally, the capacity to detect 
anomalies was analyzed using data that contains both nor-
mal and anomalous data. Each of these fundamental steps is 
presented in the following subsections.
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4.1 � Datasets

Analysis and evaluations were conducted on a total of 
ten (10) datasets. The evaluated datasets were as follows: 
NGIDS-DS [20], TON IoT [21], MQTT-IOT-IDS [22], 
X-IIoTID [23], Edge-IIoTset [24], NF-UQ-NIDS-v2 [25], 
MedBIoT [26], SWAT [27], WADI,1 HAI Security Data-
set [28]. The SWAT dataset was selected due to the follow-
ing reasons: (1) it was collected from a scaled real CIs—a 
hydroelectric plant; (2) its infrastructure is industrial, includ-
ing sensors and actuators; (3) it is well documented; (4) it 
contains both normal data and data from cyber-attacks; and 
(5) the tactics, techniques, and procedures (TTPs) used to 
attack the hydroelectric plant are a suitable representation 
of cyberattacks targeting CIs with zero-day vulnerabilities.

The SWAT is a dataset collected from a water treatment 
plant developed by the Singapore University of Technol-
ogy and Design (SUTD). This represents a contemporary 
six-stage water treatment process, referred to as P1 through 
P6, mirroring an actual treatment facility. This setup encom-
passes stages such as raw water supply, chemical dosing, 
ultrafiltration, dichlorination, reverse osmosis, and backwash 
processes [9]. Generally, the attack surfaces are sensors and 
actuators, and the attack durations vary from a few minutes 
to hours. The stabilization time of the hydroelectric plant 
after a cyberattack also varies depending on the attack’s 
intent, ranging from a shorter duration if the attack aims to 
alter flow rates to a longer duration if it intends to disrupt the 

plant’s production. Additionally, the processes are intercon-
nected, and depending on the preceding steps; for instance, 
the attack on one sensor could impact the entire process or 
subsequent processes. Therefore, a multivariate approach is 
necessary to consider the correlations among the devices.

The SWAT dataset includes network traffic information 
and sensor data (51 sensors, actuators, and PLC control 
devices, among others). In its initial version, data was col-
lected over an 11-day period, with 7 days of normal opera-
tion and 4 days of attack scenarios. These attack scenarios, 
totaling 41, were designed to simulate a variety of cyber-
physical attacks on the water treatment plant. The list of 
attacks is in Table 1. However, five attacks (attacks number 
5, 9, 12, 15, and 18) had no physical impact. Attack num-
ber 4, targeting a motorized valve named MV-504, could 
not be analyzed as information about this valve was not 
included in the official dataset. Moreover, specific attacks, 
such as attacks numbered 24 and 34, had either no or mini-
mal impact on system performance. Additionally, attacks 
numbered 13, 14, and 29 were unsuccessful. Finally, cyber-
attacks 6, 19, 20, and 38 targeted unused chemical sensors. 
Although these attacks were expected to impact other sen-
sors, various malfunctions prevented this from occurring, 
thereby hindering the detection of these cyberattacks. Thus, 
there are a total of 26 attacks to be detected.

4.2 � Pre‑processing

The A2 version of SWAT is a high-frequency time-series 
dataset containing 51 features 25 sensors and 26 actuators. 
It comprises 449,919 samples collected during 4 days of 

Fig. 2   Overview of ML modeling

1  https://​itrust.​sutd.​edu.​sg/​itrust-​labs_​datas​ets/.

https://itrust.sutd.edu.sg/itrust-labs_datasets/
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Table 1   Cyberattacks on SWAT dataset

Attack 
num-
ber

Attack point Attack Additional information

1 MV-101 Open MV-101
2 P-102 Turn on P-102
3 LIT-101 Increase LIT-101 by 1 mm every second
4 MV-504 Open MV-504 Information about this valve was not 

included in the official dataset
5 No physical impact attack
6 AIT-202 Set value of AIT-202 as 6 Malfunctions prevented sensors impact
7 LIT-301 Water level increased above HH
8 DPIT-301 Set value of DPIT as > 40 kpa
9 No Physical Impact Attack
10 FIT-401 Set value of FIT-401 as < 0.7
11 FIT-401 Set value of FIT-401 as 0
12 No Physical Impact Attack
13 MV-304 Close MV-304 Unsuccessful cyberattack
14 Mv-303 Do not let MV-303 open Unsuccessful cyberattack
15 No physical impact attack
16 LIT-301 Decrease water level by 1 mm each second
17 MV-303 Do not let MV-303 open
18 No physical impact attack
19 AIT-504 Set value of AIT-504 to 16 uS/cm Malfunctions prevented sensors impact
20 AIT-504 Set value of AIT-504 to 255 uS/cm Malfunctions prevented sensors impact
21 MV-101, LIT-101 Keep MV-101 on continuously; Value of LIT-101 set as 700 mm
22 UV-401, AIT-502, P-501 Stop UV-401; Value of AIT502 set as 150; Force P-501 to remain 

on
23 P-602, DIT-301, MV-302 Value of DPIT-301 set to > 0.4 bar; Keep MV-302 open; Keep 

P-602 closed
24 P-203, P-205 Turn of P-203 and P-205 No impact on system
25 LIT-401, P-401 Set value of LIT-401 as 1000; P402 is kept on
26 P-101, LIT-301 P-101 is turned on continuously; Set value of LIT-301 as 801 mm
27 P-302, LIT-401 Keep P-302 on continuously; Value of LIT401 set as 600 mm till 

1:26:01
28 P-302 Close P-302
29 P-201, P-203, P-205 Turn on P-201; Turn on P-203; Turn on P-205 Unsuccessful cyberattack
30 LIT-101, P-101, MV-201 Turn P-101 on continuously; Turn MV-101 on continuously; 

Set value of LIT-101 as 700 mm; P-102 started itself because 
LIT301 level became low

31 LIT-401 Set LIT-401 to less than L
32 LIT-301 Set LIT-301 to above HH
33 LIT-101 Set LIT-101 to above H
34 P-101 Turn P-101 off No impact on system
35 P-101; P-102 Turn P-101 off; Keep P-102 off
36 LIT-101 Set LIT-101 to less than LL
37 P-501, FIT-502 Close P-501; Set value of FIT-502 to 1.29 at 11:18:36
38 AIT-402, AIT-502 Set value of AIT402 as 260; Set value of AIT502 to 260 Malfunctions prevented sensors impact
39 FIT-401, AIT-502 Set value of FIT-401 as 0.5; Set value of AIT-502 as 140 mV
40 FIT-401 Set value of FIT-401 as 0
41 LIT-301 Decrease value by 0.5 mm per second



International Journal of Computational Intelligence Systems          (2024) 17:236 	 Page 7 of 18    236 

attacks and 495,000 samples representing normal plant 
operation. According to the official documentation, the 
first six hours of traffic were excluded because it is the time 
required for the hydroelectric plant to reach a stabilization 
point. According to the analysis, AIT201, AIT203, P301, 
AIT401, AIT402, AIT501, AIT502, AIT503, PIT502 need 
a longer period of stabilization, then additional 98,200 sam-
ples were eliminated.

Although a common practice is to eliminate features with 
zero or low variance in the training set, this work chooses to 
retain them. From a cybersecurity perspective, all features 
can potentially become attack surfaces. Therefore, the sys-
tem should learn their normal behavior, even if it remains 
constant. Most of the sensor data exhibit non-Gaussian dis-
tributions, and there are differences in distribution between 
the train and test sets for some features. Particularly, sensor 
AIT201 shows the most pronounced disparities in distribu-
tion. Additionally, StandardScaler() was applied to 
the numerical variables.

In ICS datasets, features often exhibit correlations, 
reflecting the interconnected nature of the system’s compo-
nents. For instance, when a sensor indicates that a specific 
water tank has reached its capacity, it is common for the 
pump regulating the tank’s input to cease operation or for the 
pump governing the tank’s output to activate. Such correla-
tions are not only typical but also beneficial in the context 
of anomaly detection, as they help establish the system’s 
normal behavior patterns. Thus, no features were excluded 
from the modeling process because of correlation analysis.

Two different sets were created: first, the original features 
underwent preprocessing, and second, the numerical fea-
tures -25 sensors- were analyzed, and seasonal features were 
identified using autocorrelation. These seasonal features 
served as the basis for creating: (1) Rolling Window Statis-
tics Features (RWSF)—mean, median, standard deviation, 
maximum and minimum values—for smoothed representa-
tion of the data and noise reduction, and (2) Time-shifted 
Features (TF) to capture temporal dependencies and trends 
in time-series data. The second dataset comprises a total of 
115 features, with 51 being the original features, 40 being 
RWSF extracted with windows of 120 s, and 15 being TF 
using lags of 10, 20, and 30 s.

4.3 � Anomaly Detection Using Unsupervised 
Algorithms

The training procedures were developed on a server with 
the following configuration: Intel(R) Xeon(R) Silver 4310 
CPU @ 2.10 GHz; operation system: Ubuntu 22.04.3 LTS 
and NVIDIA-SMI 525.147.05; Driver Version: 525.147.05 
and CUDA Version: 12.0. The LOF, IF, and OCSVM mod-
els were trained using scikit-learn 1.3.0, with Optuna 3.6.0 
employed for hyperparameter optimization. For deep neural 

networks, TensorFlow 2.11.0 and Keras 2.11.0 were utilized, 
in conjunction with Python 3.10.12.

The following algorithms were used to model anomaly 
detectors: LOF, IF, OCSVM, and Autoencoders. All of 
them were trained only with normal data representing the 
operational behavior of the hydroelectric plant. They were 
then tested on the dataset containing 41 attacks, with the 
list of attacks shown in Table 1. In the case of the Autoen-
coders, different versions were modeled, including Vanilla 
Autoencoder, Variational Autoencoder (VAE) with dense 
layers, and Variational Autoencoder with Long Short-Term 
Memory (LSTM) layers. For all models, hyperparameter 
search was implemented. The details of the implementation 
are shown in Table 2.

LOF operates under the assumption that anomalies are 
likely to be situated in regions of lower density compared to 
their neighbors. Trained specifically for anomaly detection, 
the LOF algorithm computes a score for each data point 
based on its local density compared to that of its neighbors. 
Instances with substantially lower local densities relative to 
their neighbors are assigned higher anomaly scores, indicat-
ing a higher likelihood of being anomalous. Because, ground 
truth labels are not used, the contamination parameter and 
predict method cannot be applied. Therefore, involves ana-
lyzing the distribution of anomaly scores, which are shown 
in Fig. 3.

The IF algorithm diverges from traditional techniques, 
which typically rely on profiling normal instances based 
on distance or density metrics. Instead, IF focuses on the 
direct isolation of anomalies, exploiting the principle that 
anomalies are both few and exhibit distinct characteristics 
compared to normal instances. The algorithm constructs a 
series of isolation trees by randomly selecting a feature and 
a corresponding split value within the feature’s range for 
each tree. This process results in anomalous instances being 
isolated at shorter path lengths from the root of the tree, 
facilitating a quicker and more efficient detection. Conse-
quently, when an unseen instance is presented for anomaly 
detection, its path length to reach a leaf node within the 
isolation tree is measured and normalized. Instances with 
shorter path lengths are considered anomalies, indicative of 
being significantly different from most normal data points.

The Anomaly Score Distribution from IF model, shown 
in Fig. 4, enables the assessment of the range and pattern 
of abnormality in the data. Various thresholds were tested 
to gain insights into the algorithm’s behavior and achieve a 
balance between False Positives and False Negatives. In this 
context, instances with the most negative anomaly scores 
indicate a higher likelihood of being anomalous.

OCSVM is specifically designed for scenarios where only 
normal data is available for training, this algorithm endeav-
ors to identify a hyperplane that encapsulates the normal 
data instances within a high-dimensional feature space 
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Table 2   Hyperparameter search

No Model Hyperparameters search Selected model

1 LOF (Novelty = True) trial.suggest_int(‘n_neighbors’, 5, 20)
trial.suggest_float(‘contamination’, 0.01, 0.1)
trial.suggest_int(‘leaf_size’, 10, 50)
trial.suggest_categorical(‘metric’, [‘euclidean’, 

‘manhattan’])
trial.suggest_categorical(‘algorithm’, [‘auto’, ‘ball_

tree’, ‘kd_tree’, ‘brute’])
trial.suggest_float(‘p’, 1.0, 2.5)

LocalOutlierFactor(algorithm = ‘ball_tree’, leaf_
size = 11, metric = ‘manhattan’, n_neighbors = 378, 
novelty = True, p = 1.3931390899550997)

Features: 51

2 IF n_estimators = trial.suggest_int(‘n_estimators’, 200, 
1000)

max_samples = trial.suggest_float(‘max_samples’, 
0.1, 1.0)

contamination = "auto"
random_state = 42

Best Hyperparameters: {‘n_estimators’: 662, ‘max_
samples’: 0.7345955924722449}

Features: 51

3 OCSVM (SVDD) trial.suggest_float(‘nu’, 0.01, 0.5)
trial.suggest_categorical(‘kernel’, [‘linear’, ‘rbf’, 

‘poly’, ‘sigmoid’])
if kernel in [‘rbf’, ‘poly’, ‘sigmoid’]:
gamma = trial.suggest_categorical(‘gamma’, 

[‘scale’, ‘auto’])
else:
gamma = ‘auto’
trial.suggest_int(‘degree’, 2, 5)
trial.suggest_float(‘coef0’, 0.0, 1.0)

Best Hyperparameters: {‘nu’: 0.3965959621077191, 
‘kernel’: ‘linear’}

Features: 51

4 VANILLA AUTOENCODER Default search space size: 4
layer2 (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 

640, ‘max_value’: 1024, ‘step’: 32, ‘sampling’: 
‘linear’}

layer1 (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 256, 

‘max_value’: 640, ‘step’: 16, ‘sampling’: ‘linear’}
learning_rate (Float)
{‘default’: 1e-05, ‘conditions’: [], ‘min_value’: 

1e-05, ‘max_value’: 0.001, ‘step’: None, ‘sam-
pling’: ‘log’}

activation (Choice)
{‘default’: ‘tanh’, ‘conditions’: [], ‘values’: [‘tanh’, 

‘selu’, ‘elu’, ‘relu’, ‘LeakyReLU’], 'ordered’: 
False}

Hyperparameters:
layer2: 768
layer1: 640
learning_rate: 1e-05
activation: elu
Score: 0.004791472130206856
Batch Size: 256
Features: 51

5 VAE Search space summary
Default search space size: 4
intermediate_dim (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 

640, ‘max_value’: 1024, ‘step’: 32, ‘sampling’: 
‘linear’}

latent_dim (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 256, 

‘max_value’: 640, ‘step’: 16, ‘sampling’: ‘linear’}
learning_rate (Float)
{‘default’: 1e-05, ‘conditions’: [], ‘min_value’: 

1e−05, ‘max_value’: 0.001, ‘step’: None, ‘sam-
pling’: ‘log’}

activation (Choice)
{‘default’: ‘tanh’, ‘conditions’: [], ‘values’: [‘tanh’, 

‘selu’, ‘elu’, ‘relu’, ‘LeakyReLU’], ‘ordered’: 
False}

Hyperparameters:
intermediate_dim: 832
latent_dim: 640
learning_rate: 5.163978446960434e-05
activation: elu
Score: 0.02933853982703518
Batch Size: 256
Features: 51
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while maximizing the margin and minimizing the risk of 
incorporating anomalies. Through this optimization pro-
cess, OCSVM learns a decision boundary that effectively 
separates normal data from potential outliers. This decision 

boundary, often referred to as the support or hyperplane. 
OCSVM accomplishes this by formulating a convex opti-
mization problem that seeks to minimize the volume of the 
region containing the normal data points while simultane-
ously maximizing the margin. While the predict method 
can classify instances as either normal (inlier) or abnormal 
(outlier) based on the learned representation of normal data 
during training, anomalies may not be accurately classified 
since the model was not explicitly trained on them. There-
fore, various thresholds were tested over the anomaly scores 
obtained from the decision function method—as shown in 
Fig. 5—to classify the data as normal or anomalous. In this 
case, instances with more negative anomaly scores indicate 
a higher likelihood of being classified as anomalies.

In the case of autoencoder algorithms, different versions 
were tested. First, the vanilla autoencoder, a basic neural 
network architecture, is utilized in anomaly detection for its 
ability to learn meaningful representations of input data and 
reconstruct it accurately. During training on normal data, 
the autoencoder learns to minimize reconstruction errors. 
Anomalies, deviating from the learned data distribution, 
often result in higher reconstruction errors, making them 
detectable. Second, Variational Autoencoder (VAE) stands 

Table 2   (continued)

No Model Hyperparameters search Selected model

6 VAE-LSTM Search space summary
Default search space size: 3
lstm_units (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 256, 

‘max_value’: 512, ‘step’: 32, ‘sampling’: ‘linear’}
latent_dim (Int)
{‘default’: None, ‘conditions’: [], ‘min_value’: 128, 

‘max_value’: 256, ‘step’: 32, ‘sampling’: ‘linear’}
activation (Choice)
{‘default’: ‘tanh’, ‘conditions’: [], ‘values’: [‘tanh’, 

‘selu’, ‘elu’, ‘relu’, ‘LeakyReLU’], ‘ordered’: 
False}

Hyperparameters:
lstm_units: 512
latent_dim: 256
activation: tanh
Score: 0.06326609241827592
Batch Size: 1024
Features: 115

Fig. 3   Anomaly score distribution from LOF model

Fig. 4   Anomaly score distribution from IF model

Fig. 5   Anomaly score distribution from OCSVM model
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out for its distinctive probabilistic modeling approach and 
capability to capture intricate data distributions. Trained 
on a dataset primarily comprising normal instances, the 
VAE learns to encode input data into a lower-dimensional 
latent space, characterizing essential features of the data. 
Anomalies, which deviate markedly from the learned data 
distribution, often exhibit higher reconstruction errors and 
increased uncertainty in the latent space. Leveraging these 
characteristics, VAE effectively identifies anomalies by 
detecting instances with elevated reconstruction errors and 
uncertainty levels.

Variational autoencoders (VAEs) provide significant 
advantages for anomaly detection within the secure water 
treatment (SWAT) dataset, leveraging a sophisticated proba-
bilistic framework. Unlike vanilla autoencoders that learn 
deterministic functions for reconstruction, VAEs model 
input data as distributions over an encoded latent space. 
This probabilistic approach is particularly beneficial in 
handling the inherent uncertainty and variability in the 
SWAT dataset, which comprises complex, high-dimensional 
time-series data capturing various operational and cyber-
physical attack scenarios in a water treatment system. Cru-
cially, VAEs implement an anomaly detection mechanism 
based on the total loss, which combines reconstruction 
loss and the Kullback–Leibler (KL) divergence, using the 
formula:total_loss = 0.5 × reconstruction_
loss + 0.5 × KL_losstotal_loss = 0.5 × recon-
struction_loss + 0.5 × KL_loss. This method not 
only aids in preventing overfitting to "normal" data but also 
enhances their capability to generalize across different types 
of data. By evaluating both the fidelity of the reconstruction 
and the statistical distance from the learned distribution of 
"normal" data (KL divergence), VAEs can more accurately 
flag anomalies as data points that deviate significantly from 
the model’s expectations.

Finally, VAE with Long Short-Term Memory (LSTM) 
layers, blends the strengths of VAE’s probabilistic modeling 
and LSTM’s sequence modeling capabilities. This architec-
ture is tailored to capture both temporal dependencies and 
complex data distributions. By integrating LSTM layers into 
the VAE framework, the model gains the ability to encode 
and decode sequential data while simultaneously learning 
a probabilistic representation of the data distribution in the 
latent space. During training, the VAE-LSTM model learns 
to reconstruct input sequences faithfully while also modeling 
the uncertainty inherent in the data. Anomalies, character-
ized by deviations from the learned sequential patterns and 
data distribution, manifest as sequences with elevated recon-
struction errors and increased uncertainty.

The integration of Variational Autoencoders (VAEs) 
with Long Short-Term Memory (LSTM) recurrent neural 
networks, as exemplified by VAE-LSTM models, presents a 
compelling avenue for interpretability in time series analysis 

within the realm of cybersecurity research. By harnessing 
the latent space representation capabilities of VAEs and the 
sequential learning process of LSTMs, VAE-LSTM models 
offer a nuanced understanding of temporal patterns encoded 
within cybersecurity-related time series data. This interpret-
ability stems from the ability to analyze the learned latent 
space, which encapsulates the underlying structure of the 
data, as well as the generative properties of the model, facili-
tating insights into the generation of new sequences based on 
learned patterns. Additionally, the inherent interpretability 
of LSTM states further elucidates the model’s decision-mak-
ing process, shedding light on the temporal dependencies 
captured during training. These attributes position VAE-
LSTM models as valuable tools for cybersecurity research-
ers seeking to unravel the intricacies of time series data and 
glean meaningful insights to enhance threat detection and 
response strategies.

5 � Results

In the context of unsupervised anomaly detection for cyber-
security in CIs, the evaluation process is challenging due to 
the absence of labeled data. The evaluation relies on model’s 
performance based on its ability to capture anomalies within 
the data distribution. However, when the distribution of data 
in CI environments is not normal, it adds complexity to the 
task of anomaly detection. This is particularly evident in 
the case of data originating from IIoT systems, such as the 
SWAT dataset shown in Fig. 6. Specifically, it pertains to a 
sensor—LIT101—responsible for measuring the raw water 
tank level. In such cases, unsupervised anomaly detection 
models may struggle to accurately capture and distinguish 
between normal and anomalous behavior. Some unsuper-
vised anomaly detection algorithms are more robust to 

Fig. 6   Non-normal data distribution from LIT101
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deviations from normality than others. For instance, IF and 
LOF can handle non-normal data distributions effectively.

In ICS, preserving the temporal order in the dataset is 
crucial. Consequently, the value of certain features should 
reflect the evolution over time of other features. For instance, 
at a given instant t, the state of the water tank output valve 
being open may depend on the fact that, during the preced-
ing instant t − 1, the water tank input valve was opened, 
and the water tank was being filled [29]. While LOF, IF, 
and OCSVM have shown promise in capturing temporal 
dynamics for anomaly detection, Vanilla Autoencoder and 
Variational Autoencoder (VAE) may not offer the same level 
of fidelity in representing the evolving nature of features 
over time. Autoencoders, although proficient in dimension-
ality reduction and feature learning, inherently lack mecha-
nisms to account for temporal dependencies. Conversely, the 
integration of VAE with long short-term memory (LSTM) 
recurrent neural networks, as in VAE-LSTM, holds promise 
for capturing both temporal dynamics and latent representa-
tions in time series data.

The approach of this work is to evaluate the model’s abil-
ity to distinguish between normal and anomalous instances 
based on statistical properties or deviations from expected 
behavior. This involves analyzing the model’s output scores 
or anomaly scores and setting appropriate thresholds to 
separate normal from anomalous instances. Following the 
separation, the multivariate time series is analyzed to assess 
the models’ outcomes. Finally, to gain a better understand-
ing of the results, a label was created based on the threshold 
and compared with the original label. However, the original 
labeling may not be entirely accurate, as it was based solely 
on the start and end times of attacks, without considering 
several important factors. First, it is possible for an attack to 
begin without immediately impacting the plant’s operations; 
some attacks may take hours before their effects become 
apparent. Second, the impact of an attack may persist even 
after the attack itself has ceased. Third, the time required 
for the plant to return to normal operation behavior can vary 
depending on the severity of the attack’s effects.

To assure that models detecting was accurate the time-
series and attack times were analyzed based on what models 
identified as an attack. Finally, with the aim of have some 
comparation with other models the labels created from 
models results and original labels were used to calculate the 
following metrics Recall, Precision, AUC, False Positives, 
False Negatives, True Positives and True Negatives [3].

5.1 � Isolation Forest Anomaly Detection Model

The isolation forest (IF) model was trained using the fol-
lowing hyperparameters obtained from the hyperparameter 
search: ‘n_estimators’: 662, ‘max_samples’: 
0.7345955924722449. IF was the fastest model for 

training (59.8 s) and testing (15.2 s). With this model, 19 out 
of 26 attacks were detected. However, 15 attack scenarios 
were partially detected, ranging from some points to almost 
none, as indicated in Table 3. For instance, in attack scenario 
number 8, the sensor DPIT301, responsible for controlling 
the backwash process, was altered. Consequently, the back-
wash process initiated multiple times, causing interruptions 
in normal operations and changes in tank levels 301 and 
401. As shown in Fig. 7, the upper time series represents 
the original label, with red color indicating anomalies. In 
the lower time series, red color represents points marked as 
anomalies by the IF model. 

5.2 � Local Outlier Factor (LOF) Model

In this study, the LOF algorithm with novelty detection 
enabled (novelty = True) was employed. Its goal is to dis-
tinguish between ‘normal’ data points—those similar to the 
training data—and novel, potentially anomalous data points 
that deviate significantly from the training distribution. The 
best model got have the following parameters: algo-
rithm = ‘ball_tree’, leaf_size = 11, met-
ric = ‘manhattan’, n_neighbors = 378, nov-
elty = True, p = 1.39. This model identified 8 attack 
scenarios out of the 26 presents in the SWAT dataset, with 
only attack scenario number 41 being partially detected, as 
showed in Table 3. 

5.3 � OneClass SVM Model

The OCSVM modelling used the hyperparameter search 
as is showed in Table 2. The Best Hyperparameters were: 
‘nu’: 0.3965959621077191, ‘kernel’: 
‘linear’. In this case, a linear kernel works by implic-
itly mapping the input data into a higher-dimensional fea-
ture space where a linear separation boundary is sought to 
encapsulate the normal data points while minimizing the 
influence of outliers or anomalies. In the higher-dimensional 
feature space, the data points may exhibit linear separabil-
ity, even if they were not linearly separable in the original 
feature space. A total of 16 attacks out of 26 were detected 
using the OCSVM model; however, 12 of them were par-
tially identified. This model was the only one to partially 
detect attack scenarios numbers 1, 16, and 21. As illustrated 
in Fig. 8, the number of points marked in red, representing 
points identified as anomalous from attack scenario number 
16, is quite low. 

5.4 � Vanilla Autoencoder

The application of vanilla autoencoders for anomaly detec-
tion in the SWAT dataset presents significant challenges due 
to the dataset’s specific characteristics. The SWAT dataset 
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consists of high-dimensional time-series data that captures 
the dynamic interactions of various components in a water 
treatment system; this includes both normal operations 
and cyber-physical attack scenarios. Vanilla autoencoders, 
which learn a deterministic function for reconstruction, are 
designed to minimize reconstruction error based on ‘nor-
mal’ operational data but tend to reconstruct anomalies 

Table 3   Attacks detected by 
unsupervised models

*Attack partially detected
**Only some points of the scenary where identified as anomalies

No Scenary IF LOF OCSVM VAN
AE

VAE VAE LSTM

1 1 X**
2 2 X** X**
3 3 X X**
4 7 X X*
5 8 X* X X** X*
6 10 X** X X* X X X
7 11 X* X X X X X
8 16 X**
9 17 X** X** X**
10 21
11 22 X X X X X* X
12 23 X* X* X*
13 25 X* X** X
14 26 X* X** X **
15 27 X*
16 28 X X X* X X X
17 30 X ** X*
18 31 X* X*
19 32 X ** X* X** X
20 33 X* X** X
21 35 X* X* X*
22 36 X* X* X* X
23 37 X X X X X
24 39 X* X X X X
25 40 X X X* X X X
26 41 X** X* X* X* X*

Fig. 7   Attack scenario number 8 with IF model (sensor LIT 301)

Fig. 8   Attack scenario number 16 with OCSVM model

Fig. 9   Reconstruction capacity of Vanilla Autoencoder
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too accurately, as shown in Fig. 9. This model achieves a 
reconstruction loss of 0.0047, calculated using the Mean 
Absolute Error. However, this over-generalization leads to 
a critical failure in detecting anomalies, as the reconstruc-
tion error—a pivotal metric in flagging deviations—remains 
minimal for both normal and abnormal data inputs. Fur-
thermore, vanilla autoencoders fail to capture the crucial 
temporal dynamics and interdependencies of the sensor and 
actuator readings inherent in the dataset. Consequently, this 
model detects 10 cyberattacks present in the SWAT dataset, 
with 3 of them detected partially.

5.5 � Variational Autoencoder (VAE)

The VAE model without LSTM layers had better metrics 
compared to the Vanilla Autoencoder Model. VAE had 
higher numbers of True Positives and True Negatives, 
and lower results in False Negatives and False Positives. 
The Recall is also higher, which is the preferred scenario 
in cybersecurity for CI, as illustrated in Table 4. These 
improved results allowed for better detection of cyberattacks, 
with a total of 13 scenarios out of 26 being identified. How-
ever, for scenarios number 8, 32, and 33, only a few points 
were effectively identified.

VAE without the integration of LSTM does not inherently 
contemplate the temporal dynamics of time-series data, as 
they process each input independently of the others. Water 
treatment processes are inherently sequential and continu-
ous, with the state of the system at any given time depend-
ent on its previous states. Therefore, to improve the attack 
detection capability of the VAE model, LSTM layers were 
incorporated into the model. These layers can capture these 
temporal dependencies, essential for modeling and under-
standing process behaviors over time. As explained in the 
following section.

5.5.1 � VAE‑LSTM Model

Previous experiments demonstrated the need for incorpo-
rate temporal dependencies over time to enhance detection 
capacity of the model. Therefore, various feature engineer-
ing techniques were implemented to reinforce the context 
of timeseries. The best results got when applied these tech-
niques over the features that demonstrated to have seasonal-
ity in their behavior like FIT101, LIT101, FIT201, DPIT301, 
FIT301, LIT301, AIT401, FIT601. Particularly, lagged fea-
tures, which represent values from previous time steps can 
enable the model to capture temporal dependencies more 
effectively. This enhancement is crucial for understanding 
sequential data, where current states are often directly influ-
enced by previous events. Additionally, windowed statistics 
such as moving averages provide aggregated information 
over specified intervals, offering insights into trends and 
variability within the data stream. These statistics serve to 
smooth out noise—frequently present in sensor data—and 
reduce data variability, which helps the model in focusing 
on significant changes rather than normal fluctuations. Con-
sequently, the VAE-LSTM model shown in Fig. 10—was 
trained over 115 features, they also improve the quality of 
the latent representations learned by the VAE, thereby facili-
tating a more precise reconstruction of normal states and a 
more distinct delineation of anomalies. The high-level pro-
cedure is explained in the following pseudo-code:

Table 4   Evaluation of unsupervised models

Test shape: 442,543

Model AUC​ True positives True negatives False positives False negatives Precision Recall F1 score

IF 0.82 36,287 369,406 21,244 15,606 0.63 0.69 0.66
LOF 0.83 35,401 381,796 8854 16,492 0.79 0.68 0.73
OCSVM 0.72 27,136 360,255 30,395 24,757 0.47 0.52 0.49
VAN-AUC​ 0.82 35,804 368,923 21,727 16,089 0.62 0.68 0.65
VAE 0.82 35,912 369,031 21,619 15,981 0.62 0.69 0.65
VAE-LSTM (115) 0.87 40,490 373,566 17,034 11,403 0.70 0.78 0.74

Fig. 10   VAE-LSTM Architecture
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Step 1: Preprocessing
- Create two different sets from the original 
data:

 1. Original Features Preprocessing:

  - Standardize or normalize the original fea-
tures as required

 2. Numerical Features Analysis:
  - Identify seasonal features using autocor-
relation for the 25 sensor numerical fea-
tures

  - Create Rolling Window Statistics Features 
(RWSF) to smooth data and reduce noise by 
calculating mean, median, standard devia-
tion, maximum, and minimum values with a 
window of 120 s

  - Create Time-shifted Features (TF) to cap-
ture temporal dependencies by applying lags 
of 10, 20, and 30 s

- Combine the preprocessed features:

 - 51 original features

 - 40 RWSF features

 - 15 TF features
- The resulting dataset comprises a total of 
115 features

Step 2: Define the Encoder
- Create an input layer for the time series 
data

- Add multiple LSTM layers to learn temporal 
dependencies

- Create dense layers to represent the latent 
space

- Define a sampling function to generate the 
latent variable from the mean and log vari-
ance

Step 3: Define the Decoder
- Create an input layer for the latent vari-
able

- Use a repeat vector to match the number of 
timesteps

- Add multiple LSTM layers to reconstruct the 
sequences

- Create an output layer to produce the recon-
structed sequences

Step 4: Define the VAE Loss
- Calculate the reconstruction loss between 
the input and the output

- Calculate the KL divergence loss using the 
mean and log variance of the latent space

- Combine the reconstruction loss and the KL 
divergence loss to get the total VAE loss

Step 5: Compile the VAE-LSTM Model
- Define the VAE model using the encoder and 
decoder

- Add the VAE loss to the model
- Compile the model with an appropriate opti-
mizer

Step 6: Train the VAE-LSTM Model

- Train the model using the training data

- Validate the model using the validation data

Step 7: Perform Anomaly Detection
- Use the trained model to get reconstructed 
data from the validation data

- Calculate the reconstruction error by com-
paring the original and reconstructed data

- Set a threshold for anomaly detection based 
on the reconstruction error

- Detect anomalies by comparing the recon-
struction error to the threshold

A hyperparameter search using Bayesian Optimization 
allows us to select the best parameters for the feature engi-
neering dataset to train the model. See Table 2. The dis-
tribution of Mean Absolute Error (MAE) values obtained 
during the training of a VAE-LSTM model indicates that 
the model was able to reconstruct most of the training data 
with a small error. Moreover, the peak of the histogram, 
illustrated in Fig. 11 and slightly above 0. This suggests that 
the most frequent reconstruction error across the dataset is 
low, implying that the model performs well on most of the 
training data. Understanding that anomalies are present only 
in the test set, the histogram for the MAE, shown in Fig. 12, 
displays a bimodal distribution with peaks near zero and 
around 8. This pattern suggests that the model consistently 
yields low MAE values for normal data but also identifies 
anomalies as instances with significantly higher MAE val-
ues. The distinct peak around 8 is indicative of the model 
encountering anomalies that it has not seen during the train-
ing phase, which it fails to reconstruct accurately, result-
ing in higher MAE scores. The spread of errors toward the 
higher end of the scale confirms the presence of anomalies 
within the test data.

This model significantly enhances the capability to 
detect cyberattacks, successfully identifying 23 out of 26 
attack scenarios. It also improves the consistency of detec-
tion, with only 4 scenarios being partially detected—spe-
cifically, attacks number 2, 3, 17, and 26. Additionally, the 
VAE-LSTM model has identified the post-attack effects in 
numerous scenarios. This reflects the actual behavior of 
cyber-physical plants, which require a stabilization period 
after experiencing a cyberattack. The amount of time needed 
for stabilization varies with the impact of the attack, as 
observed in scenarios 11, 23, 25, 28, 32, and 39. It can also 
be concluded that some anomalies may be related to the 
destabilization of the water-treatment plant due to preceding 
cyberattacks, rather than being attributable to the current 
scenario. This conclusion is supported by scenarios such 
as number 6, which, according to SWAT developers, had 
an impact that became apparent two hours post-attack—a 
period during which additional attacks were launched.

The reconstruction capacity of the VAE-LSTM model, as 
demonstrated by the comparison of the original and recon-
structed sequences in Fig. 13 (original in blue and recon-
structed in red), elucidates both its strengths and limitations. 
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The model proficiently captures the overall cyclic patterns 
and temporal dependencies inherent in the sensor readings, 
signifying its robust capability to learn and replicate normal 
operational behavior. This proficiency is particularly advan-
tageous for detecting significant deviations or anomalies, as 
the model encounters difficulty in accurately reconstructing 
data that diverges from the learned patterns. However, the 
observed discrepancies in the amplitude and sharpness of 
peaks and troughs between the original and reconstructed 
sequences underscore its limitations in capturing precise 
details and managing high variability. Notably, while an 
excessively precise reconstruction might appear beneficial, 
it could lead to overfitting to the noise and minor fluctuations 
present in the training data, thereby diminishing its general-
izability and effectiveness in identifying genuine anomalies. 
Moreover, the model may struggle to detect subtle anomalies 
that closely resemble normal patterns, which are inherently 

more challenging to distinguish. Consequently, the model’s 
current balance between capturing general patterns and 
avoiding overfitting to noise is crucial for effective anomaly 
detection.

Table 5 provides a comprehensive comparative analy-
sis of the computational efficiency and effectiveness of the 
tested models. Among these, the VAE-LSTM-115 model 
demonstrates a remarkable balance between training and 
testing times, with a training duration of 21 min 51 s and 
a testing duration of 4 min 14 s. This model’s performance 
underscores its suitability for applications requiring moder-
ate computational resources while maintaining high efficacy 
in anomaly detection. Although models such as Isolation 
Forest (IF) exhibit faster training (1 min) and testing (15.4 s) 
times, their detection accuracy is insufficient for the com-
plexities of industrial applications. Conversely, the OCSVM 
model, despite its extensive computational costs—training 
for 1 h 41 min 25 s and testing for 41 min 21 s—fails to offer 
practical utility for near real-time deployment. The autoen-
coder models, particularly the VAE-LSTM-115, provide a 
compelling case for their adoption in industrial settings due 
to their efficient training and testing times combined with 
robust anomaly detection capabilities. Therefore, the VAE-
LSTM-115 model emerges as the optimal choice among the 
evaluated models, balancing computational efficiency with 
high detection accuracy, which is essential for industrial 
applications.

Finally, making comparisons with other studies is chal-
lenging because, to the best of our knowledge, there are 
no other works using the SWAT dataset that prioritize the 
cybersecurity perspective and real-world requirements for 
developing their models. Comparing models trained on dif-
ferent datasets is not accurate because a model can perform 
significantly well with one dataset but may not yield similar 
results with another. Additionally, our unsupervised anomaly 
detection approach does not allow the use of labels for train-
ing, and the label information obtained from SWAT develop-
ers is inaccurate; the labeling was based on the time in which 
developers started the attack until the time they stopped the 
attack. Nevertheless, the time when the physical sensor was 

Fig. 11   MAE on training set

Fig. 12   MAE on test set

Fig. 13   Reconstruction capacity of VAE-LSTM
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affected is different. For instance, in attack scenario number 
6, the real impact on physical systems was two hours after 
the official start time, causing an additional cascading effect 
over other attack scenarios that were launched at that time. 
Therefore, studies like [5] report a positive detection of an 
attack in a window of time in which no physical device was 
disrupted. Additionally, most of the studies that used the 
SWAT dataset, such as [16, 17], and [18] do not consider 
the post-attack effects that could be longer depending on 
the impact of the cyber-attack. In the SWAT dataset, there 
are different timeframes among the scenarios, ranging from 
less than a minute between scenarios 19 and 20 to several 
hours. Thus, evaluating the results based on measures like 
F1-score, recall, or precision may not be entirely accurate 
because these metrics depend on the accuracy of the labels 
used. It is important to highlight that this work utilized only 
physical data (sensors and actuators) to build and test our 
model, aiming to detect attacks that have a physical impact 
on CIs.

Thus, we decided to analyze the results based on a deep 
interpretation of what our model considered an anomaly, 
allowing us to identify 23 out of 26 scenarios. However, to 
get a glimpse of the model’s behavior, we developed our 
own labels based on the results and compared them to the 
original ones. This process allows us to calculate the follow-
ing metrics, as illustrated in Table 4.

6 � Conclusions and Future Work

This study highlights the effectiveness of machine learn-
ing-based anomaly detection models, trained exclusively on 
high-frequency normal data, in enhancing the detection of 

zero-day attacks targeting Critical Infrastructures (CIs). Var-
ious algorithms were tested on the same preprocessed data-
set. However, LOF, IF, and OCSVM struggled to capture the 
complex, non-linear relationships and interdependencies of 
data extracted from Cyber-Physical Systems (CPS). These 
models were not effective in handling the high-dimensional, 
temporal data and the interactions between various sensors 
and actuators. In contrast, the VAE-LSTM model demon-
strated the ability to capture temporal dependencies and 
adapt to non-stationary data, yielding better results. The 
VAE-LSTM model was trained using 10-step sequences, lev-
eraging data from the preceding 120 s to identify anomalies. 
While this approach does not provide real-time detection, it 
offers a feasible timeframe for identifying attacks that impact 
physical systems.

The research prioritizes cybersecurity considerations 
over traditional data science practices, aiming to develop a 
model with strong generalization capabilities and practical 
applicability. To ensure comprehensive coverage of potential 
attack surfaces in physical systems, all available features 
were used for training. This included categorical features, 
those with low variance, differing distributions between 
training and test datasets, and highly correlated features like 
P501 and UV401, which have a 99.99% correlation. Such 
correlations are logical in Industrial Control Systems (ICS), 
where sensor and actuator functionalities are often interde-
pendent. Eliminating one of these features is not feasible 
because both can become attack surfaces. This study also 
addressed challenges such as the post-attack effect, which 
anomaly detection systems are likely to identify. However, 
this is less concerning in the context of CI cybersecurity, 
where human intervention is essential.

Table 5   Computational efficiency of tested models

Model Training time Testing time

LOF (Novelty = True) CPU times: user 20 min 15 s, sys: 4.64 s, total: 20 min 
19 s

Wall time: 20 min 19 s

CPU times: user 33 min 24 s, sys: 4.2 s, total: 33 min 
28 s

Wall time: 33 min 28 s
IF CPU times: user 59.8 s, sys: 384 ms, total: 1 min

Wall time: 1 min
CPU times: user 15.2 s, sys: 141 ms, total: 15.4 s
Wall time: 15.4 s

OCSVM (SVDD) CPU times: user 1 h 41 min 12 s, sys: 13.3 s, total: 1 h 
41 min 25 s

Wall time: 1 h 41 min 25 s

CPU times: user 41 min 21 s, sys: 212 ms, total: 41 min 
21 s

Wall time: 41 min 21 s
VANILLA AUTOENCODER CPU times: user 21 min 4 s, sys: 44.3 s, total: 21 min 

48 s
Wall time: 19 min 37 s

CPU times: user 24.5 s, sys: 1.2 s, total: 25.7 s
Wall time: 21.6 s

VAE CPU times: user 31 min 40 s, sys: 1 min 22 s, total: 
33 min 3 s

Wall time: 32 min 33 s

CPU times: user 43.3 s, sys: 2.42 s, total: 45.7 s
Wall time: 45.6 s

VAE-LSTM-115 CPU times: user 21 min 21 s, sys: 30.3 s, total: 21 min 
51 s

Wall time: 16 min 36 s

CPU times: user 4 min 10 s, sys: 3.8 s, total: 4 min 14 s
Wall time: 3 min 52 s
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While the results demonstrate the promise of this 
approach, relying solely on anomaly detection based on 
physical system data is not sufficient. To gain a more 
holistic view of security, it is crucial to incorporate net-
work information. This will be a focus of future research. 
Upcoming work will involve integrating network traffic 
information with physical data to develop multimodal 
approaches that can detect anomalies from different 
sources. Combining data from different sources allows 
for the extraction of complementary features and the cap-
ture of intricate dependencies between modalities. For 
instance, sensor data can highlight anomalies in physi-
cal operations, such as unauthorized access or tampering, 
whereas network traffic data can reveal digital threats like 
distributed denial-of-service (DDoS) attacks, malware 
communications, or data exfiltration attempts. This inte-
gration is critical as it provides a comprehensive view of 
both physical and digital activities, greatly improving the 
detection of complex cyber threats that might not be iden-
tified if each type of data were examined separately.

Additionally, it is essential to develop models that 
enhance the sensitivity for detecting subtle anomalies, as 
current attack vectors are increasingly designed to closely 
mimic normal behavior to evade detection.
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