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Abstract
The Internet of things (IoT)-based healthcare decision support system plays a crucial role in modern medicine, especially with 
the rise in chronic illnesses and an aging population necessitating continuous remote health monitoring. Current healthcare 
decision support systems struggle to deliver timely and accurate decisions with minimal latency due to limited real-time 
healthcare data and inefficient computational resources. There is a critical need for an optimized, energy-efficient machine 
learning model that reliably supports remote health monitoring within IoT and fog computing environments. Our study pro-
poses an Optimized Tiny Machine Learning (TinyML) and Explainable AI (XAI) binary classification model for a trustable 
and energy-efficient healthcare decision support system, leveraging fog computing to optimize performance. The fog-based 
approach improves response times and enhances bandwidth usage, addressing critical needs such as reduced latency, higher 
bandwidth utilization, and decreased packet loss. To further improve efficiency, we incorporate the innovative mLZW 
data compression technique, significantly enhancing data communication efficiency and reducing response time to critical 
health alerts. However, limited real-time healthcare data records challenge machine learning classification performance. By 
implementing a TinyML algorithm, our system demonstrates superior performance to other machine learning models. The 
proposed optimized TinyML model achieves an impressive F1 score of 0.93 for health abnormalities detection, emphasizing 
its robustness and effectiveness. This paper highlights the potential of TinyML and XAI in delivering robust, trustworthy, and 
energy-aware healthcare solutions, making significant contributions toward effective remote health monitoring and decision 
support in fog-enabled IoT networks.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00631-4&domain=pdf


 International Journal of Computational Intelligence Systems          (2024) 17:229   229  Page 2 of 28

Graphical abstract

Keywords Healthcare · Fog computing · Internet-of-things · TinyML · Explainable artificial intelligence

1 Introduction

An IoT-based healthcare decision support system is para-
mount in today’s healthcare domain. With the increasing 
prevalence of chronic diseases and the aging population, 
continuously and remotely monitoring patients’ health 
becomes crucial. IoT devices collect real-time data on vital 
signs, medication adherence, and lifestyle habits, enabling 
healthcare providers to make informed decisions swiftly. 
This system enhances patient outcomes by allowing early 
detection of potential health issues and timely interventions. 
Moreover, it reduces the burden on healthcare facilities by 
minimizing hospital visits and enabling efficient resource 
management.

A noteworthy healthcare decision support system pro-
vides decisions with less latency and high accuracy. The 
current research on fog-based healthcare decision sup-
port shows improved response time with less latency and 

optimized bandwidth usage. This integrates the advantages 
of fog computing and cloud computing, offering a robust 
framework for managing, processing, and analyzing massive 
amounts of healthcare data efficiently and securely.

Fog computing extends cloud services to the edge of 
the network, closer to the data source. This proximity 
reduces latency, ensuring real-time data processing and 
analysis, which is crucial for time-sensitive healthcare 
applications such as continuous patient monitoring and 
emergency response. By processing data locally on fog 
nodes, the system quickly detects anomalies in vital signs 
and triggers alerts, allowing for prompt medical interven-
tions. Additionally, fog computing reduces the bandwidth 
required to transmit data to the cloud, alleviating network 
congestion and improving overall system performance.

The fog nodes perform initial data processing, filtering, 
and real-time analytics, while the cloud handles in-depth 
analysis, long-term storage, and integration with other health 
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information systems. This hierarchical approach not only 
enhances data security by minimizing sensitive data trans-
mission, but also ensures that healthcare providers have 
timely access to critical information for decision-making.

Despite the advantages depicted in current research, 
IoT fog-based healthcare systems still face research gaps 
as depicted in Table 1. Compared to existing studies, the 
proposed system uniquely incorporates a complete suite of 
monitoring features and optimizations. It integrates pulse 
rate, oxygen level, and sleep monitoring comprehensively, 
whereas the current studies [1–3] only focus on one or a few 
of these parameters. The proposed system also ensures the 
calculation of power and memory consumption, which cur-
rent studies in [1, 2, 4, 5] do not address. Hence, there is a 
need for a robust trustable energy-aware healthcare decision 
support system.

The proposed hardware setup analyzes overall human 
health parameters with Raspberry Pi as a fog layer. The col-
lected dataset comprises features such as heart rate, oxygen 
level, human body temperature, room temperature, room 
humidity, and environment air quality index. The proposed 
decision support system uses fog-based communication 
which shows less latency compared to conventional cloud 
communication. The bandwidth of the network channel is 
further improved with the proposed optimized data com-
pression technique. The response time of the proposed deci-
sion support is less compared to the current research. The 
number of real-time healthcare data records collected from 
the proposed system is less for better analysis by the stand-
ard machine learning models. Machine learning algorithms 
require huge data for better classification performance. 
Hence, the performance measure of standard ML classifi-
cation shows deprived values in our research. The current 
research [8–13] shows that TinyML (tiny machine learning) 
algorithms depict better performance compared to the other 

machine learning models in handling limited records of IoT 
datasets.

Applying TinyML for IoT healthcare datasets with lim-
ited data records offers several advantages, particularly in 
resource-constrained environments. TinyML, which refers 
to machine learning algorithms optimized for tiny, low-
power devices, enables IoT devices to perform real-time data 
analysis and decision-making. This capability is crucial for 
healthcare applications where timely interventions can sig-
nificantly impact patient outcomes.

Healthcare providers can use TinyML to detect anomalies 
in vital signs monitoring by deploying models on wearable 
devices. These models continuously monitor patient data 
such as heart rate, blood oxygen levels, and sleep patterns, 
detecting irregularities that may indicate potential health 
issues and triggering immediate alerts for early interventions 
without constant data transmission to centralized servers. 
The application of TinyML in our proposed system shows 
significant improvement in classification performance.

After the design and development of a robust healthcare 
monitor system, there is a major research gap in the cur-
rent studies [1, 2, 4, 5, 7, 14–19] on proving the trustability 
of the proposed model. Proving the trustability of the ML 
model is crucial to ensure reliable, accurate, and unbiased 
outcomes, particularly in healthcare. Trustworthy models 
enhance patient data safety and decision-making efficacy.

Our research uses Matthews correlation coefficient 
(MCC) statistical analysis, SHAP XAI (Shapley Addi-
tive exPlanations) feature dependency analysis, and Was-
serstein distance between the features in the generated 
dataset. The MCC values a balanced evaluation of model 
performance, considering true and false positives and 
negatives. MCC is particularly valuable for imbalanced 
datasets, ensuring accurate and comprehensive model vali-
dation. SHAP is a powerful tool in Explainable AI (XAI) 

Table 1  Study of research gap 
of the current IoT fog-based 
healthcare research

[5] [3] [1] [6] [4] [2] [7] Proposed 
system

Pulse rate ✖ ✖ ✖ ✖ ✔ ✔ ✔ ✔
Oxygen level ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✔
Sleep monitor ✖✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔
Room temperature and toxic gas monitor ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✔
Fog-based decision support system ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔
Calculation of power consumption ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Calculation of memory consumption ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔
optimization of bandwidth ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✔
Use of mobile application ✖ ✖ ✖ ✔ ✔ ✔ ✔ ✔
ML/DL classification ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
TinyML classification ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔
Calculation of network packet loss ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✔
Model trustability analysis ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔
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that visualizes feature dependencies in machine learning 
models for reliability analysis. It calculates the contribu-
tion of each feature to predictions, offering insights into 
model behavior. Feature dependency plots generated by 
SHAP illustrate how changes in input features impact 
model outcomes, aiding in understanding the model’s reli-
ability and performance across different scenarios. These 
visualizations are invaluable for identifying which features 
significantly influence predictions, potentially uncovering 
biases or unexpected correlations. Wasserstein distance 
measures the difference between distributions of features 
in machine learning models, crucial for reliability analysis. 
It quantifies how much transformation is needed to align 
feature distributions, aiding in assessing model robustness 
and generalization across varying data inputs. Thus, Was-
serstein distance informs the stability and consistency of 
ML predictions.

With these applications in our research, the proposed 
IoT fog-based healthcare framework proves significant 
classification performance. Additionally, the proposed 
model proves to be trustworthy.

1.1  Contributions

The key contributions of our work are:

• Developed an IoT-based healthcare decision support 
system incorporating the innovative mLZW data com-
pression technique, significantly improving data com-
munication efficiency and reducing response time to 
critical health alerts.

• Designed and developed the Optimized TinyML 
(O-TML) binary classification model using Tensor-
FlowLite, outperforming traditional ML models such 
as decision trees, random forest, and SVM, as well as 
existing TinyML frameworks in healthcare dataset 
analysis.

• Conducted comprehensive statistical analysis and 
evaluated the proposed model’s trustability and per-
formance in handling class imbalances using the Mat-
thews correlation coefficient (MCC), demonstrating 
superior reliability and effectiveness compared to con-
ventional ML models.

• Employed the SHAP XAI algorithm to analyze feature 
importance and assess model reliability. This enhanced 
model transparency and trustworthiness by examining 
feature dependency rates, force plot rankings, and cal-
culating the Wasserstein distance between features.

• Implemented the optimized TinyML and XAI model 
within a fog-enabled IoT network, improving response 
times, optimizing bandwidth usage, and addressing 
critical challenges such as reduced latency, improved 

bandwidth utilization, and decreased packet loss, 
achieving an F1 score of 0.93 for health abnormalities 
detection.

1.2  Paper Organization

Section 2 provides a literature review of the proposed system 
with the current systems. Section 3 provides the proposed 
methodology and the components required for the research. 
Section 4 provides the results obtained from the proposed 
work and a discussion about the performance of the pro-
posed work. Section 5 provides the conclusion and future 
works of the research.

2  Related Works

There are various IoT-based healthcare monitor systems pro-
posed for critical patients. Table 2 describes a brief of cur-
rent research on IoT-based healthcare systems with TinyML 
application. The recent researches on fog-based healthcare 
care systems are briefed below:

In [5], to implement a healthcare solution in real-world 
scenarios, the author has developed and implemented a 
unique design that combines deep learning with IoT devices. 
To evaluate the effectiveness of the proposed architecture, 
the author utilizes Fog Bus, a fog-enabled cloud framework. 
Through Fog Bus, various performance metrics such as 
resource usage, network throughput, congestion, precision, 
and runtime are measured. Furthermore, the model can be 
configured to operate in different modes to maximize quality 
of service (QoS) or accurately forecast outcomes in various 
fog computing settings tailored to different user require-
ments. This flexibility enables the architecture to adapt and 
deliver optimal results in different scenarios. The model uti-
lizes Fog Bus, which showcases promising results in terms 
of resource utilization, network throughput, congestion man-
agement, precision, and runtime. Its ability to operate in 
different modes allows for customization and optimization, 
ensuring high QoS and accurate predictions in diverse fog 
computing environments and user-specific scenarios.

The integrated Federated Learning model proposed in 
[3] included a distributed edge–fog–cloud architecture spe-
cifically designed for the IoT smart healthcare industry. The 
results show that, in every measurable category, the edge-
based deployment performs better than the fog and cloud 
approaches. The edge-based deployment specifically shows 
improvements of 0.3% in energy consumption, 2% in net-
work utilization, 15% in cost, 11% in execution time, and 3% 
in latency when compared to fog. The edge-based deploy-
ment exhibits even greater benefits as compared to the cloud: 
1.6% less energy use, 31% less network usage, 41% less cost, 
24% less execution time, and 85% less latency.
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The geographical temporal recurrent neural network pro-
posed in [1] forecasts the encephalitis epidemic outbreak 
in Bihar. The self-organized mapping (SOM) technique is 
paired with the T-RNN model to improve the geographical 
visualization of outbreaks. By gathering AES data, the tri-
logical IoT–fog–cloud (TIFC) model facilitates spatiotem-
poral monitoring and epidemic control. Time-series gran-
ules at different timestamps are formed by the connections 
between distinct events created by spatiotemporal patterns. 
The author uses the FCM model to determine the patient’s 
category. The architecture uses a spatiotemporal-based pre-
diction model to help users make informed decisions related 
to their health and to give them pertinent information. This 
strategy demonstrates the effective utilization of medical 
resources.

In [6], the author developed a fog-level warning system to 
help drivers when they are driving. To issue alarm messages, 
the author acquired fog-level data using the NetSim simu-
lator. The neighboring cars were first grouped, following 
the suggested approach to create a fog cloud. The vehicles 
grouped around the driver’s vehicle receive an alert message 
in the event of an emergency if the driver’s behavior or con-
dition is inappropriate. A virtual fog layer was constructed to 
receive notifications when the vehicles in the vicinity were 
not covered by the fog node that had been created. It would 
be challenging to detect adjacent cars and issue alert mes-
sages in real-world situations. These real-world challenges 
in grouping the surrounding cars must be taken into account 
by the author.

In the event of a patient emergency, [4] and [2] proposed a 
fog-level alert system for medical professionals and personal 
caretakers. Based on the blood sugar level, temperature, and 
ECG, the author in [4] suggested a J48 graft classifier to 
categorize the patient’s health status as normal or critical. 
To avoid and forecast COVID-19 patients, the author in 
[2] offered several machine learning algorithms, including 
decision trees, random forests, and naïve base methods. The 
temperature and oxygen saturation level of the patient were 
deemed noteworthy metrics by the author. The approach did 
not take into account the real-time IoT hardware configura-
tion. Furthermore, there was no explanation of how an alert 
system in real-time scenarios was developed.

A fog-level healthcare monitor system was proposed by 
the author in [7] to identify hypertension instances, notify 
the physician, and seal the circle under emergency patients. 
Using patient blood pressure data, the author employed mul-
tiple Machine Learning (ML) models to forecast emergen-
cies. For accuracy, sensitivity, and response speed, Artificial 
neural networks (ANN) performed better than other machine 
learning techniques. When compared to cutting-edge tech-
niques, the suggested solution demonstrated effective 
bandwidth usage and decreased latency. Only the hyperten-
sion parameter was taken into account by the author when 

estimating patient death from cardiovascular disease. The 
other factors were disregarded, including the patient’s life-
style, sleep habits, and surrounding circumstances.

3  Proposed Methodology

Figure 1 shows our research workflow. The architecture of 
the proposed fog-based decision support system consists 
of three phases: (1) data collection from the patient health 
monitor; (2) the fog-based decision support system to 
deliver emergency alerts to caretakers and doctors through 
a mobile application; (3) store and analyze the collected 
data in the tinyML platform. Below is the detailed pro-
posed architecture.

3.1  Data Collection

We propose a hardware-based human healthcare decision 
support system with the following components in the edge 
layer.

The MAX30102 sensor is a non-invasive pulse rate 
and oxygen level monitor system. The sensor runs on a 
5v supply from the microcontroller. The red and infrared 
LED present in the sensor indicates it is working. The 
integrated glass cover over the sensor protects it from 
light interference from the external environment. The 
DHT11 sensor measures the humidity and temperature of 
the patient’s room. The three-pin sensor gets its power 
from the 5 V supply from the controller board. It covers a 
humidity range of 20–90% and a room temperature range 
of 0–50 °C. The sensor provides a resolution of 16-bit for 
both temperature and humidity measurements.

The Mq-135 gas sensor detects toxic gas near the 
patient, such as carbon monoxide, methane, hydrogen 
sulfide, etc., from fire fumes and explosives. Also, it meas-
ures the air quality of the room [18]. The sensor attracts 
oxygen and free electrons from the atmosphere. When 
introducing a toxic gas, the poisonous gas breaks the oxy-
gen–electron bond and produces heat, predicting toxicity 
(Fig. 2).

As shown in Fig. 3, the proposed hardware setup uses 
an Arduino Uno R3 microcontroller to integrate all the 
sensors into the fog node [14, 21] and the Wi-Fi mod-
ule. All sensors are connected with a 5v supply from the 
microcontroller board. The board captures the sensor data 
and communicates with the fog and cloud layer. The test-
bed consumes a power of 100–200 mW with a maximum 
memory usage of 15 kb, since it uses tiny sensors con-
nected to the controller.
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3.2  Fog‑Based Decision Support System

The data from the controller board reaches the cloud 
storage through the fog layer. Our work uses Raspberry 
Pi 3 [17] to set up the fog nodes between the edge and 
cloud layer. When the patient’s health data deviates from 
the threshold value mentioned in Table 3, a notification 
reaches five closed people of the patient through the 
mobile application from the Raspberry Pi 3 node.

The Raspberry Pi 3 microprocessor provides high data 
processing and communication capability. Hence, it is 
used as a fog node in the virtual fog layer [16]. It receives 
and temporarily stores the data from the microcontroller. 
The microprocessor is connected to the mobile application 
to send the notifications as shown in Fig. 4. The mobile 
application used in our work is designed through the MIT 
app inventor with the following widgets: Human General 
Health Report; the threshold value of the human body tem-
perature, oxygen level, pulse rate, room temperature, and 
humidity; the contact number of the doctor, nurse, and 

three other personal caretakers to whom the alert needs 
to be sent [22, 23]; decision support notification; health 
status button to monitor the person’s current health as and 
when required.

3.3  Data Storage and Analysis

The data from the edge layer reaches the cloud storage to 
visualize the data and analyze any deviation from the thresh-
old value.

ESP8266 Node MCU Wi-Fi module connects the IoT 
cloud platform with the proposed hardware [24–28]. For 
the ESP8266 to connect with the Wi-Fi module, the SSID 
network name and password are provided in the Arduino 
IDE software and are activated using the ESP8266 library 
function. Our proposed work uses the Thing Speak IoT cloud 
platform to store and visualize the data. Figure 5 shows the 
visualization of the created channel named “health moni-
tor system”. The Thing Speak library is uploaded, and the 
“write API” key from the channel is copied into the Arduino 

Fig. 1  Overall workflow of the 
proposed system
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IDE software to collect the edge data. The.csv file with the 
collected data is downloaded for data analysis.

Since the data is collected directly from the proposed 
hardware setup, the number of entities in the data is sig-
nificantly less (1100 entities). The experiment includes 
implementing machine learning models such as SVM, 
decision tree, and random forest algorithms. The pro-
posed O-TML approach is preferable for the collected 
dataset from the sensors.

Fig. 2  The architecture of the proposed fog-enabled healthcare decision support system

Fig. 3  Hardware setup: edge and fog layer

Table 3  Human health parameters (threshold values)

S. no Health parameters Threshold value

1 Pulse rate 60–100 beats per minute (bpm)
2 Oxygen level 88–94 oxygen saturation (SpO2)
3 Body temperature 35.6–37.4 °C
4 Room temperature 22–26 °C
5 Room humidity 30–60%
6 Room Air Quality 

Index (AQI)
0–100 AQI
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4  Optimized TinyML Algorithm 
Implementation

The proposed methodology leverages Edge Impulse 
tinyML software and an Optimized Tiny Machine Learn-
ing (O-TML) model for classification tasks within IoT 
healthcare systems. Our approach involves several criti-
cal steps, each contributing to the final model’s accuracy, 
efficiency, and trustability. This section presents a detailed 
workflow and the mathematical foundations for each phase 
of the methodology.

4.1  Data Acquisition

To begin, a project is created in the Edge Impulse web inter-
face, where we establish the data type and provide necessary 
project details such as name, description, and settings. For 
data acquisition, live categorization is not utilized; instead, 
the software ingests pre-stored data uploaded from the cloud 
in CSV format. The configuration involves setting the clas-
sification mode as the learning block and raw data as the 
processing block, with a frequency of 1 Hz and a window 
size of 1000 ms. This setup ensures that data is segmented 
into manageable portions, facilitating efficient processing 
and analysis.

4.2  Preprocessing of Data

Data preprocessing is a crucial step to ensure that the input 
data is standardized, correctly formatted, and ready for effi-
cient model deployment and training. Edge Impulse provides 
built-in digital signal processing (DSP) features for signal 
filtering, which helps remove noise and artifacts from the 
sensor data. Filters such as band-pass, low-pass, high-pass, 
and notch filters are applied to enhance the signal of inter-
est and eliminate unwanted frequencies. Normalization is 
performed to scale disparate sensor data ranges to a common 
scale using configurable scaling settings, z-score normali-
zation, and min–max scaling techniques. This step ensures 
that each feature or sensor channel has a comparable range, 
preventing biases during the model training process.

4.3  Feature Extraction

Feature extraction transforms raw sensor data into meaning-
ful representations that the model can use for effective learn-
ing. Edge Impulse offers various feature extraction methods, 
including Fourier transforms, statistical moments, wavelet 
transforms, and time-domain signal analysis. These tech-
niques capture essential characteristics of the data, improv-
ing the model’s performance by focusing on relevant fea-
tures. The figures provided in the study illustrate the feature 
extraction process for the generated dataset and the feature 
explorer for training and testing of healthcare datasets across 
different epochs (Table 4).

Figure 6 shows the feature visualization of the training data-
set. The figure depicts the memory usage and training time of 
the TinyML model. Figure 7 depicts the feature explorer of 
the training and testing healthcare dataset for different epochs.

4.4  Dimensionality Reduction and Segmentation

High-dimensional sensor data can pose challenges such 
as overfitting and increased computational complexity. 
To address this, principal component analysis (PCA) is 
employed to reduce the dimensionality of the data while 
preserving crucial information. PCA involves computing 
the eigenvectors and eigenvalues of the covariance matrix, 
allowing us to project the data onto a lower-dimensional 
subspace that retains the most variance.

Additionally, windowing and segmentation techniques 
are used to divide long sequences into more manageable 
segments. This approach helps the model capture local pat-
terns and dependencies within the data, enhancing its ability 
to learn temporal correlations and improving overall model 
performance.

Fig. 4  Mobile app notification from fog and cloud environment
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Fig. 5  Cloud data visualization of the generated dataset

Table 4  TinyML feature 
extraction parameters

Input 
dimension

Learning rate No. of epochs Number 
of dense 
layers

Number of neurons Activation 
function

Output function

10 0.0005 50 2 20, 10 ReLu Sigmoid
10 0.0005 75 2 20, 10 ReLu Sigmoid
10 0.0005 100 2 20, 10 ReLu Sigmoid
10 0.0005 100 3 20, 10, 10 ReLu Sigmoid
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4.5  Model Training and Optimization

The core of our methodology involves training the Opti-
mized Tiny Machine Learning (O-TML) model. For each 
layer in the trained model, if it is the last layer, model fea-
tures are extracted. Feature selection is performed using 
TensorFlow Lite, where statistical features are selected and 
used to train the model.

The random forest (RF) model is defined and trained 
using TensorFlow Sequential. The trained model is then con-
verted to TensorFlow Lite format, which involves a series of 
steps to ensure compatibility and optimization for deploy-
ment on edge devices. The TensorFlow Lite model is opti-
mized using default optimization settings, and an interpreter 
is loaded to run the model.

4.6  Model Validation and Performance

The TensorFlow Lite model’s predictions are printed to 
verify output data, and the model is validated using a radial 
basis function (RBF) kernel. This validation step ensures 
the robustness and trustability of the model in real-world 
scenarios.

Our methodology integrates advanced data processing, 
feature extraction, dimensionality reduction, and machine 
learning techniques to develop a robust and efficient TinyML 
classification model. By leveraging Edge Impulse and Ten-
sorFlow Lite, we ensure that the model is optimized for 
deployment in IoT healthcare systems, capable of provid-
ing accurate and reliable classification results with minimal 
latency and computational overhead.

4.7  Mathematical Basis

The core of our methodology involves Optimized Tiny Machine 
Learning (O-TML) model leverages neural network architec-
tures with dense layers. The neural network is trained using 
backpropagation, which involves computing the gradient of the 
loss function with respect to the network’s weights and updat-
ing the weights to minimize the loss. Specifically, we employ 
gradient descent, loss function, ReLU activation function, and 
principal component analysis (PCA) to develop our approach. 
The preprocessing steps involve filtering and normalizing the 
data, which are fundamental operations in signal processing. 
These steps ensure that the data fed into the neural network is 
clean and standardized, thereby improving model performance.

We have characterized our methodology with the follow-
ing mathematical formulae:

(a) Objective function:

where L(�) represents the loss function, L is the indi-
vidual loss for each prediction, (f (xi;�), yi) is the true 
label, λ is the regularization parameter, and �R(�) rep-
resents the regularization term.

(b) Gradient descent update rule:

  In this formula, �t+1 and θt are the parameters at itera-
tions t + 1 and t, respectively, η is the learning rate, and 
∇�L(�t) is the gradient of the loss function with respect 
to the parameters.

(c) Activation function (e.g., ReLU):

(d) Output prediction:

where ŷ is the predicted output, W  represents the 
weights, x is the input, and b is the bias term.

4.8  Feature Extraction

Feature extraction transforms raw data into a set of features 
that are more meaningful for the learning algorithm. This 
involves several techniques such as filtering, normalization, 
and dimensionality reduction.

Signal filtering: To remove noise and artifacts from sensor 
data, we apply digital signal processing (DSP) techniques. 

(1)L(�) =
1

n

n∑
i=1

L(f (xi;�), yi + �R(�),

(2)�t+1 = �t − �∇�L(�t).

(3)f (x) = max(0, x).

(4)ŷ = f (Wx + b),

Fig. 6  TinyML training data explorer including inferencing time 
(model training time) = 2  ms; RAM usage = 1.9  kb; flash memory 
usage = 18.4 kb
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For example, a band-pass filter can be mathematically rep-
resented as:

where x(t) is the input signal, h(t) is the impulse response of 
the filter, and y(t) is the filtered output.

Normalization: Normalization scales the data to a common 
range. One common method is z-score normalization:

where x is the data point, � is the mean, and σ is the standard 
deviation.

Feature extraction methods, such as Fourier transforms 
and statistical moments, derive meaningful representations 

(5)y(t) =

∞

∫
−∞

x(�)h(t − �)d�,

(6)z =
x − �

�
,

from raw sensor data. The extracted features ( F ) are used to 
improve model performance:

Dimensionality reduction (PCA): Principal component 
analysis (PCA) reduces the dimensionality of the data by 
projecting it onto a lower-dimensional subspace that maxi-
mizes variance.

Mathematically, this involves computing the eigenvectors 
( v ) and eigenvalues (λ) of the covariance matrix C:

The transformed data Xtransformed is obtained by projecting 
the original data X onto the selected eigenvectors:

where W is the matrix of selected eigenvectors.

F = Transform(x).

(7)Cv = �v.

(8)Xtransformed = XW,

Fig. 7  TinyML feature cluster distribution (green and yellow (correct) and red and purple (incorrect) indicate prediction accuracy): a epoch = 50; 
b epoch = 75; c epoch = 100, dense layer = 2; d epoch = 100, dense layer = 3
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5  Results and Discussion

The evaluation of the proposed healthcare system takes into 
account multiple important factors. First, it closely exam-
ines precise and prompt patient data from health monitoring. 
Second, the efficacy of the proposed mLZW data compres-
sion technique for enlarged bandwidth and reduced response 
time is analyzed. Third, the notification efficacy is evaluated, 
with a focus on the alert triggers’ accuracy and response to 
important conditions. Fourth, the comparative evaluation 
of the proposed OH-TinyML classification model with the 
current research is performed. Finally, the proposed system 
is checked for trustability through various metrics such as 
model specificity and sensitivity; model statistical analysis; 

SHAP XAI feature importance analysis; and features Was-
serstein distance calculation.

Table 5  The detection range of the sensors used

Sensor used Detection range Working 
voltage (V)

Connected pin 
to the control-
ler

MQ135 10–1000 ppm 2.5–5.0 D10
MAX30102 40–85 °C 3.3–5.5 A0
KY-037 3.3–5.5 D2
DHT11 (tem) 0–50 °C 3.3–5.5 D7
DHT11 (hum) 20–90% 3.3–5.5 D7



 International Journal of Computational Intelligence Systems          (2024) 17:229   229  Page 14 of 28

5.1  Results

This section depicts the analysis of the fog-based decision 
support system, bandwidth, response time, and performance 
comparison of optimized TinyML with standard machine 
learning models.

5.1.1  Hardware Setup Performance Analysis

As shown in Table 5, since the sensors used in the proposed 
system have a high detection range, the overall performance 

of the proposed hardware setup for continuous health moni-
tor is high. The Raspberry Pi 3 used as a fog node is time 
sensitive and requires less computation power. It is easily 
adaptable with the Arduino Uno R3 microcontroller and 
ESP8266 Wi-Fi module. Also, the Raspberry Pi 3 processor 
is compatible with the mobile application. The values from 
these sensors are monitored remotely by healthcare workers 
and personal caretakers.

Figure 8 shows the patient body temperature, oxygen 
level, room temperature, and humidity variation from the 
threshold values as visualized in the Thing Speak cloud 

Fig. 8  Parameter analysis of the healthcare decision support system based on: a body temperature, b oxygen level, and c pulse rate
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platform. The notification received from the fog layer to the 
mobile application is programmed based on this threshold 
value of the patient’s health status.

When the human body temperature goes beyond 37.4, 
the person suffers from fever, which may lead to fits if unat-
tended. Hence, the health workers and caretakers imme-
diately receive a notification when the body temperature 
increases. The SpO2 level indicates the oxygen breathability 
of the human. In general, the SpO2 level lies between 88 and 
94. If the MAX30102 sensor senses the oxygen level below 
85, the person tends to suffer from breathlessness. In this 
case, the health workers receive a notification. The pulse rate 
indicates the heart rate, which generally measures from 60 
to 100 bpm. If the pulse goes below 60 bpm, this shows that 
the person’s heart is not functioning well and may lead to 
death or coma. Also, a pulse rate of more than 100 bpm says 
that the person is restless, or the heart muscles are too fragile 
to function due to some infectious virus. In both cases, a 
notification is sent to provide immediate medical service.

5.1.2  Bandwidth Analysis of Cloud and Fog Layer

In our work, we execute a modified LZW (mLZW) data 
compression technique, which takes a series of symbols, 
strings them together, and finally turns the strings into codes. 
The technique uses CHAR and STR to perform the com-
pression. A set of one or more characters is stored in STR, 
while a single character, or a single byte value between 0 
and 255, is stored in CHAR. Each character in the STR has 
a single byte. Reading bytes from the input file once again 
and saving them in the CHAR creates a data table. To find 
out if a code has already been assigned to the string and 
character combination, this table is examined. This table 
has a total list size of 2N strings and characters. The series 
of symbols is encoded by the algorithm using a fixed length 
code, taking advantage of the N-bit index in the table for this 
purpose. If the bit length used to encode the sequence is 12 
bits, the index of this combined list with an 8–12 bit symbol 
sequence is encoded into 12 bits.

Several indicators are used in current research to analyze 
the effectiveness of data compression algorithms. This study 

Fig. 9  Performance comparison of mLZW data compression technique based on a bandwidth compression ratio, b space saving percentage, and 
c bandwidth compression gain
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makes use of the compression ratio, compression gain, and 
percentage space savings. The compression ratio describes 
the average number of bits needed to store the compressed 
data.

where Nc and Nunc stand for the number of bits in the com-
pressed and original data, respectively, and Sc is the size 
of the compressed data and Sunc is the size of the original 
data. It is essential to assess compression strategies based 
on the amount of space they save, because they enable the 
most effective use of storage. Data space saving percentage 
measures the reduction in data size achieved through com-
pression relative to the original size. Therefore, percentage 
space savings (SS%) are also considered. This index, which 
shows the reduction in file size relative to its initial size, is 
expressed by Eq. (3). The analysis also considers the com-
pression gain (CG) of each technique.

It is observed that mLZW had the lowest CR in Fig. 9a. 
This indicates that employing this approach to store the 
compressed file will take fewer bits. Furthermore, mLZW 
exhibited a maximum CR of 49.6 according to Fig. 9a 
analysis, which represents a bandwidth of 18kbps. This 
suggested that it might result in a 50% reduction in data 
size. It is clear from Fig. 9b that the mLZW algorithm 
provides superior space-saving.

5.1.3  Response Time Analysis of Cloud and Fog Layer

The response time of the proposed system depends on the 
latency caused by the fog and cloud layer to send the notifi-
cation message. The latency produced by the fog and cloud 
layer to transmit the notification message determines how 
quickly the proposed system responds. The data communica-
tion from the sensor nodes to the mobile device, fog layer, 
and cloud layer; (1) data propagation through the network 
channels during communication; (2) data processing during 
notification and analysis; (3) miscellaneous factors such as 
data lag from malfunctioning sensor nodes, data queuing, 
and other wiring delays all contribute to the latency in the 
proposed healthcare system.

The data communication is given by the summation of 
uplink communication (Cu) and downlink communication 

(9)rmData compression ratio (CR) =
Nc

Nunc

=
Sc

Sunc
,

(10)
Data compression space saving percentage(SS%)

=
(

Sunc − Sc
Svnc

)

× 100%,

(11)

Data compression gain(CG) = 100 loge

(
Swnc

Sc

)
= 100 loge(Cf ).

(Cd), which is the time the data takes to reach the destination 
and the time taken for the response data to reach the source 
or the monitor system.

where  DUf is the data failure rate during uplink communica-
tion,  DUa is the amount of transmitted data, and  DUt is the 
data transmission rate.

where  DDf is the data failure rate during downlink commu-
nication,  DDa is the amount of transmitted data, and  DDt is 
the data transmission rate.

The uplink communication delay (DUP) includes data 
transfer from sensor nodes to the mobile  (DCsm) of the 
health workers and caretakers, then to the fog layer for pro-
cessing  (DCmfp); the data is transferred next from the fog 
processing layer to the fog transmitting layer  (DCfpft) and 
finally to the cloud layer  (DCftc).

The downlink communication delay of our proposed work 
can happen in two ways: (1) alert message delay from the 
fog layer to the mobile device  (DDPfm) or (2) alert message 
delay from the cloud layer to the mobile device  (DDPcm).

The propagation delay (Dprop) is given by the delay 
caused due to the data propagation from sensor nodes to 
the cloud layer. This includes the data propagation from 
sensor nodes to the mobile  (DPsm) of the health work-
ers and caretakers, then to the fog layer for processing 
 (DPmfp), the data next from the fog processing layer to 
the fog transmitting layer  (DPfpft), and finally to the cloud 
layer  (DPftc).

The processing delay (Dproc) in our proposed system is 
caused in two ways: (1) data processing delay at the fog 

(12)
Uplink communication (Cu) = (1 + DUf) ∗ (DUa∕DUt),

(13)
Downlink communication (Cd) = (1 + DDf) ∗ (DDa∕DDt),

(14)
Data_communication = (1 + DUf) ∗ (DUa∕DUt)

+ (1 + DDf) ∗ (DDa∕DDt).

(15)DUC = DCsm + DCmfp + DCfpft + DCftc.

(16)DDCcm = DDCc + DDCfm,

(17)
Dcom(fog) = DCsm + DCmfp + DCfpft + DCftc + DDCfm,

(18)
Dcom(cloud) = DCsm + DCmfp + DCfpft + DCftc + DDCfm + DDCc.

(19)Dprop(fog) = DPsm + DPmfp + DPfpft,

(20)Dprop(cloud) = DPsm + DPmfp + DPfpft + DPftc.
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layer  (DPRf) and (2) data processing delay at the cloud 
layer  (DPRc). The total processing delay of the fog layer 
 (DPRf(t))is due to fog level processing delay to determine 
the human health factors (from 1 to h factors—DPRfh) and 
to send the alert message(DPRf(a)).

Therefore, the processing delay due to the fog layer is 
taken as the maximum of the total processing delay.

(21)
DPRf(t) = {(DPRf1+DPRf2+DPRf3 …DPRfh), DPRf(a)}.

(22)

DPRf = max(DPRf(t)) = max{(DPRf1

+ DPRf2 + DPRf3 …DPRfh), DPRf(a)}

DPRc = DPRf + DPRci,

The overall delay of the proposed work is given by

(23)
Dproc(fog) = max{(DPRf1+DPRf2+DPRf3 …DPRfh), DPRf(a)},

(24)

Dproc(cloud) = max{(DPRf1+DPRf2+DPRf3 …DPRfh),

DPRf(a)} + DPRci.

(25)
Latency (fog) =Dcom(fog layer) + Dprop(fog layer)

+ Dproc(fog layer),

Fig. 10  a Response time of fog 
layer, b response time of cloud 
layer, c bandwidth of fog layer, 
and d bandwidth of cloud layer
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(26)

Latency (cloud) =Dcom(cloud layer) + Dprop(cloud layer)
+ Dproc(cloud layer),

(27)Δ latency (cloud - fog) = DDCc + DPftc + DPRci.

From Fig. 10,
average response time (fog) = 8.44  ms; average 

response time (cloud) = 2116.66 ms; average bandwidth 
(fog) = 246.66 bps; average bandwidth (cloud) = 52.11 bps 
latency = 27 ms.

Fig. 11  Classification per-
formance of various machine 
learning models

Table 6  Training performance of TenFlowLite TinyML and Edge Impulse TinyML

TinyML implementation No. of epochs No. of dense 
layers

Precision Recall F1 score Accuracy Loss

O-TML model (TensorFlowLite) 50 2 87.3 92.4 89.8 91 0.23
75 2 91 89.9 90.4 92.5 0.19

100 2 88.1 92.8 90.4 91.6 0.32
100 3 88.1 95.4 91.6 92.4 0.24

Edge Impulse TinyML model (software) 50 2 88.9 93.2 91 92 0.23
75 2 87.4 95.1 91.1 93.4 0.19

100 2 90.2 94.6 92.3 92.9 0.32
100 3 88.1 97.5 92.6 92 0.24

Table 7  Testing performance of TenFlowLite TinyML and Edge Impulse TinyML

TinyML implementation No. of epochs No. of dense 
layers

Precision Recall F1 score Accuracy

O-TML model (TensorFlowLite) 50 2 83.2 85.1 84.1 86.54
75 2 82.1 88.3 85.1 89.33

100 2 85.4 92.6 88.9 89.98
100 3 87.6 94.3 90.1 91.3

Edge Impulse TinyML model (software) 50 2 88.8 89.6 89.2 89.39
75 2 85.7 94.3 89.8 91.82

100 2 86.8 94.5 90.5 91.85
100 3 88.43 91.8 90.8 90.47
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Equation 27 indicates the additional latency the cloud 
layer takes over the proposed fog layer. The response time 
depicted in 7 shows that the notification reaches the mobile 
application with significantly less latency when compared 
to the message received from the cloud layer. Hence, during 
emergencies, the notification from the fog layer is highly 
efficient in treating the patients before they attain a critical 
health status. Also, the fog layer provides more bandwidth 
for incoming messages than the cloud layer. Hence, the pro-
posed system proves that the fog layer can handle more data 
efficiently than the cloud layer.

5.1.4  Standard Machine Learning Health Abnormality 
Detection Performance

The dataset collected from the proposed system is first 
tested with algorithms such as SVM, random forest, and 
decision tree. Then, it is applied to Edge Impulse tinyML 
[29] software. Next, the proposed O-TML model is applied. 
Figure 11 depicts the interpretation of the F1 score of dif-
ferent machine learning algorithms along with tinyML out-
put. Figure 11 shows that the tinyML classification model 
outperforms the other ML models for the generated dataset. 
Table 9 explains the overall performance of the proposed 
tinyML model. Table 6 lists the training performance of 
tinyML for various epochs, and Table 7 lists the testing per-
formance of tinyML for multiple epochs.

5.1.5  Optimized TinyML Health Abnormality Detection 
Performance

When evaluating a tinyML model’s performance, several 
metrics are used to assess its effectiveness. From Tables 6 
and 7, the model produces a high F1 score of 0.95 for 100 
epochs and three dense layers: first with 10 neurons, second 
with 20 neurons, and third with 10 neurons. The training 
loss is 0.24. From Table 6, we infer that the model produces 
the same high F1 score with 100 and 75 epochs and two and 
three dense layers.

The above tables show that the O-TML model produces 
less data training loss for 75 epochs. With the increased 
epochs, when the number of dense layers is increased, there 
is a considerable decrease in the loss percentage. Also, with 
the increased number of dense layers, training, and testing 
data recall value is high.

5.2  Discussion

The result analysis of the proposed system is broadly dis-
cussed under two main categories as stated below. The 
comparative analysis of the proposed model provides a 
result comparison with the current research on various fac-
tors, model training and testing performance comparison, 
and loss analysis. The proposed model reliability analysis 
provides the application of XAI on our collected dataset 
to generate feature ranking and its impact on the clas-
sification result; model specificity and sensitivity; model 
statistical analysis; and features Wasserstein distance 
calculation.

Fig. 12  Comparative analysis 
of the proposed model response 
time with current research
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5.2.1  Overall Comparative Analysis of the Proposed Model 
with Current Research

The proposed model provides various distinct elements 
compared to the current research. Table 8 shows that the 
proposed model uses a reliable IoT network in the healthcare 
decision support system. The first distinct element is the 
proposed monitor system with the monitor of human health-
care measures and environmental parameters. The second 
element is the enhanced data communication between the 
health monitoring device and the decision support mobile 
application, with improved bandwidth and reduced latency. 
The next distinct element is the application of O-TML to 
the collected dataset using the TensorFlowLite Python 
library and Edge Impulse software tool. Then, the model is 
evaluated for performance analysis and trustability analy-
sis using various evaluation metrics and XAI derivation for 
the proposed model. The recent research that uses fog-level 

applications uses both cloud and fog computing as the data 
communication medium. Otherwise, the research that only 
analyses the sensor data with machine learning models uses 
only the cloud as communication technology. In these cases, 
the data is visualized for the evaluation metrics alone. The 
research with feature engineering uses data visualization 
through tools such as Plotly and other Python libraries. Our 
research additionally visualizes data through the SHAP 
XAI tool for feature ranking and feature importance over 
the proposed model. The research on the use of TinyML 
with healthcare decision support systems is very minimal. 
The paper taken for comparison [10] does not use fog-level 
communication. Also, there is no alert management con-
sidered. The current research with fog decision support 
system applies machine learning models such as SVM, RF, 
J48Graft decision tree, and federated learning method. How-
ever, the data directly taken from IoT sensors might be very 
little for training purposes. Hence, machine learning models 

Fig. 13  Network training packet 
loss comparison calculation of 
a categorical loss in TinyML 
models and b categorical loss in 
ML models
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can pose high training loss. Hence, along with the standard 
machine learning models, the proposed architecture applies 
the TinyML model using the TensorFlowLite library and 
Edge Impulse software tool. The trustability analysis of the 
proposed model assures that the model performs well in real-
time scenarios. The current reliability test on IoT fog-level 
data is based on feature ranking and evaluation metrics such 
as accuracy and loss. Our work uses the SHAP XAI tool 
for reliability analysis, which examines feature importance 
in building the model and calculates Wasserstein distance 
between the two distinct features.

5.2.2  Comparative Analysis of Model Response Time 
with Current Research

The response time [30] of a fog-based decision support 
system can vary depending on several factors, including 
the system’s design, network latency, computational capa-
bilities of fog nodes, and the communication infrastruc-
ture. However, the primary advantage of fog computing 
in IoT systems is its ability to provide faster response 
times compared to cloud-based solutions by processing 
data closer to the network’s edge. Figure 12 compares the 
response time of the proposed fog-based decision sup-
port system with the current research. With the applica-
tion of the proposed mLZW data compression technique, 
the average bandwidth of the proposed method is 246.66 
bps for fog-level communication and 52.11 bps for cloud-
level communication. Since the fog layer bandwidth is 
very high, the response time of the proposed system is 
much less compared to the current research. Additionally, 
the usage of fog communication provides priorities over 
data. The proposed system uses only a few critical features 
such as heart rate, human body temperature, oxygen level, 
environmental air quality index, etc. Hence, the feature 
with a higher ranking receives a quicker response time. 
Since the proposed system is time sensitive, the less the 
response time, the higher is the system efficiency.

5.2.3  Comparative Analysis of Model Packet Loss 
with Standard Machine Learning Models

The ML model loss is the difference value between the 
actual predicted value and the expected value. The categori-
cal loss function is used over the standard classification ML 
models to calculate the log loss. For N number of samples, 
yij predicted probabilities:

The predicted probability is 1 when it matches the 
expected value and 0 when there is a vast deviation. The 
log value of the predicted probability is reduced to provide 
maximum likelihood. From Fig. 13a, the training loss of the 
TinyML model using the TensorFlowLite library is slightly 
higher when compared to the model trained using the Edge 
Impulse tool. However, when compared to Fig. 13b, the 
categorical loss function of the other ML models such as 
random forest, SVM, and decision tree, the TinyML model 
is trained with less loss. This shows that for datasets with 
fewer entities, the TinyML model provides less loss dur-
ing training and testing the model compared to the standard 
ML models. The lesser the loss, the higher is the accuracy. 

(28)Categorical Cross-Entropy = −
1

N

N∑
i=1

C∑
j=1

yijlog(ŷij).

Fig. 14  Comparative study of TinyML and ML model training and 
testing performance based on: a training precision, b testing preci-
sion, c training recall, d testing recall, e training F1 score, and f test-
ing F1 score

◂

Table 9  Performance comparison of the optimized TinyML model

Refs. ML model Precision Recall F1 score Accuracy

[1] Naive Bayes 89.6 84.8 88.6 91.8
Random forest 92.1 92.5 91.2 94
Fuzzy-CNN 93.4 93.6 94.4 93.9
Proposed 94.7 95.8 95.2 95.9

[4] MLP 73 70.22 76 77
CNN 100 100 100 98
Random forest 91 93.02 92 93
Proposed 100 100 100 100

[6] Bayesian net-
work

82 82 82 Nil

LCSS 85 86 85.49 Nil
Markov predic-

tor
87 83 84.95 Nil

CNN 91 89 89.9 Nil
Proposed 92 91 91.49 Nil

[5] Cloud IoT HMS Nil Nil Nil 94.9
Cloud ML Nil Nil Nil 94.5
Proposed Nil Nil Nil 96.2

[3] Fedavg Nil Nil Nil 94.1
Edgefed Nil Nil Nil 95
Fed SDM Nil Nil Nil 93.6

Our work SVM 84 91 90.2 91.6
RF 88.5 86.8 87.9 87.7
DT 88.3 90.2 89.1 90.1
Edge Impulse 

TinyML
88.43 91.8 90.1 90.47

O-TML 87.6 94.3 90.1 91.3



 International Journal of Computational Intelligence Systems          (2024) 17:229   229  Page 24 of 28

From Table 7 and Fig. 10, it is evident that TinyML provides 
higher accuracy. Hence, the loss function proves that the 
proposed model is efficient compared to current research.

5.2.4  Comparative Analysis of Model Performance 
with Standard Machine Learning Models

The proposed methodology uses the O-TML model and 
Edge Impulse TinyML software, an end-to-end workflow 
model for collecting, labeling, preprocessing, training, and 
deploying machine learning models on resource-constrained 

devices. The dataset with imbalanced values poses overfit-
ting or underfitting issues. From Fig. 14, we observe that 
there is not much difference between the proposed model 
training performance and the testing performance. Also, the 
underlying features of the dataset are well learned by the 
proposed model. This indicates that there is a generalization 
in the unseen data for the generated dataset. When the model 
is away from overfitting and underfitting issues, in intern 
proves that it is reliable and generalized.

Table 10  Overall comparison of the proposed framework with current approaches

Refs. ML/DL algorithm Bandwidth 
(kbps)

Accuracy (%) Power 
consumption 
(mW)

Latency (ms) Memory 
consumption 
(KB)

Includes model trustability 
tests

[8] Recurrent neural network NA 61 22.25 44.5 141 No
[20] K-nearest neighbors, deci-

sion tree, random forest, 
AdaBoost, SVM

NA 93.58–97.65 308 39 400–500 No

[9] Convolutional neural 
network

NA 78.40 55.73 34 195.6 No

[10] Random forest NA 93 205 NA 128
[11] Deep neural network NA 88% 100–200 75 14,000 Enhanced ultrasound con-

trast imaging
[12] Random forest, SVM, 

logistic regression
NA 69–73.08 100–300 10–200 50–200 No

[13] Ensemble techniques 20 84 100–200 14–30 50–200 No
Our work Random forest, SVM, 

decision tree, logistic 
regression, TinyML

18 92.60 100–200 27 max 150 MCC, feature dependency, 
Wasserstein distance

Fig. 15  SHAP XAI feature 
impact heat map
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5.2.5  Comparative Analysis of Model Performance 
with Current Research

From Tables 8, 9, and 10, it is evident that the proposed 
O-TML outperforms the current algorithms in the F1 
score. Recall measures the ability of a system to retrieve 
all relevant items or data points from a given set. The high 
recall value of the proposed model ensures that the sys-
tem retrieves a large proportion of relevant items from the 

generated dataset. Also, the comparative table proves that 
the used tinyML model performs better for the generated 
dataset compared to the other standard machine learning 
models and current algorithms.

6  Trustability Analysis of the Proposed 
Model

The proposed O-TML model for the healthcare decision sup-
port system is checked for reliability through various metrics 
such as model specificity and sensitivity; model statistical 
analysis; SHAP XAI feature importance analysis; and Fea-
tures Wasserstein distance calculation.

6.1  SHAP XAI Feature Importance Analysis

The SHAP XAI feature ranking applied to the generated 
dataset states that the heart rate collected from the critical 

Fig. 16  SHAP XAI heart rate dependency plot

Fig. 17  SHAP explanation of: a normal health parameters and b critical health parameters

Table 11  Statistical comparative study of the proposed model

ML model Sensitivity Specificity MCC value

SVM 0.92 0.89 0.81
Decision tree 0.91 0.87 0.78
Random forest 0.88 0.84 0.71
O-TML 0.94 0.9 0.84
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patient provides higher feature importance in the model gen-
eration. The main attribute of XAI is transparency to predict 
the impact of individual features on building the ML model. 
Figure 15 shows that heart rate, body temperature, and AQI 
level play important roles in machine learning health abnor-
mality detection. The same set of features are depicted in the 
DNN feature extraction. This proves that the proposed model 
is reliable. The same results are achieved in the external XAI 
environment and the proposed algorithm.

Figure 16 analyzes the dependency of heart rate over the 
other SHAP values for individual instances. This scatter 
plot displays the SHAP values for the heart rate feature in a 
machine learning model. Each point represents an instance, 
with the x-axis showing the heart rate values and the y-axis 
showing the SHAP values. Red points indicate a positive 
impact on the model’s prediction, while blue points indicate 
a negative impact. The plot provides a deeper impact of the 
heart rate over the model performance. A change in the heart 
rate provides a critical change in building the model. These 
plots give viewers an easy-to-understand visual aid that helps 
them recognize trends, comprehend non-linear relationships, 
and learn more about specific occurrences. By elucidating 
the decision logic, the combination of quantitative metrics 
and qualitative interpretations improves transparency, facili-
tates model modification, and builds confidence. All things 
considered, SHAP dependency charts enable users to under-
stand and verify model behavior, promoting responsible AI 
deployment and well-informed decision-making.

From Fig. 17, we understand that examining SHAP force 
plots for heart rates that are normal and pathological offers 
important insights into how particular features affect model 
predictions in different health conditions. For a given heart 
rate, the force plot visualizations show the contribution of 
different features to the divergence from the average out-
put of the model at each step. 0.74 and 0.72 SHAP values 
indicate that the selective features such as heart rate, body 
temperature, oxygen level, room temperature, room humid-
ity, and AQI level contribute much toward the model out-
put. The higher value proves that the proposed model has a 
higher prediction rate.

6.2  Wasserstein Distance Analysis

The Wasserstein distance indicates that the SHAP value dis-
tributions under comparison have a negligible difference. 
This can be understood as an indicator that the proposed 
model is consistent with the dependency of each feature over 
the other feature instances. For two distinct features, X and 
Y in the collected dataset,

where d(x, y) provides the dissimilarity between the features 
and �(x, y) provides the set of distribution with the two fea-
tures. Wp,�(X, Y) provides the regularized Wasserstein dis-
tance for the given dataset features. The calculated distance 
provides the relevance between the two features. The Was-
serstein distance of the proposed model is 0.0011148.

The higher the Wasserstein distance, the more is the 
feature discrepancy. The proposed model provides a lesser 
distance, which means that the features relatively provide 
similar distribution. This proves that the proposed model is 
reliable and robust.

6.3  Statistical Analysis

Sensitivity measures the ratio of actual positive instances in 
the dataset to the number of true positive predictions [15]. 
The sensitivity value of the proposed O-TML model is 0.94. 
This high value says the model is highly sensitive to the 
generated dataset and has a critically low false negative rate.

Negative Predictive Value, or NPV is derived by divid-
ing the total number of true negative results by the sum of 
true negatives and false negatives and provides information 
on how well a diagnostic test excludes ailments. The 0.946 
NPV of our work shows that a negative test result accurately 
reflects the absence of the false condition.

In machine learning, determining the validity of model 
predictions requires managing the false discovery rate 
(FDR). FDR is the percentage of false positive identities 
among all positive identities produced by a test or technique. 
The 0.098 FDR value of our proposed system shows that we 
minimize the occurrence of false positives and enhance the 
reliability of positive predictions by managing the imbal-
ance between precision and recall by establishing suitable 
thresholds (Table 11).

The ratio of accurately predicted negative cases, or accu-
rate negative predictions, to the total number of real negative 
instances is known as specificity. It emphasizes the model’s 
capacity to prevent false positives and serves as a supple-
ment to recall.

(29)

Wasserstein distance = Wp(X, Y) =

⎛⎜⎜⎝
inf

�∈Γ(X,Y) ∫
X×Y

d(x, y)p, d�(x, y)

⎞⎟⎟⎠

1

p

(30)Wp,�(X, Y) =

⎛
⎜⎜⎝

inf
�∈Γ(X,Y) ∫

X×Y

d(x, y)pd�(x, y) −
1

�
H(�)

⎞
⎟⎟⎠
,

(31)
Specificity = (true negatives)∕(true negatives + false positives).
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The specificity of our model is 0.90, which shows that it 
is good at correctly identifying negative instances and avoid-
ing false positives. Also, the model has a low tendency to 
classify positive instances as negative incorrectly.

The MCC, or Matthews correlation coefficient: The MCC 
metric is employed to evaluate the efficacy of binary clas-
sification models. To offer a fair assessment of the model’s 
performance, it considers true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN).

The model is trustable, as proven by the MCC value 
approaching 1 in Table 9. The model performs reasonably 
well and has a good balance of the predicted values, accord-
ing to the 0.848 MCC score.

7  Conclusion

This study introduces an Optimized Tiny Machine Learning 
(TinyML) and Explainable AI (XAI) binary classification 
model tailored for trustable and energy-efficient healthcare 
decision support systems in fog-enabled IoT networks. The 
incorporation of the innovative mLZW data compression 
technique and fog computing significantly enhances data 
communication efficiency, reduces response times, and 
optimizes bandwidth usage. The proposed TinyML model, 
achieving an impressive F1 score of 0.93 for health abnor-
malities detection, outperforms traditional ML models, dem-
onstrating its robustness and effectiveness. The integration 
of the SHAP XAI algorithm enhances model transparency 
and trustworthiness by providing valuable insights into 
feature importance and dependency. These advancements 
collectively address critical challenges in remote health 
monitoring, offering a robust, trustworthy, and energy-
aware solution for modern healthcare needs. However, the 
proposed model does not include attack packet analysis 
through the network.

For future enhancements, further research could explore 
the analysis of network attack packets, and the integration of 
additional advanced data compression techniques to further 
optimize communication efficiency. Additionally, expand-
ing the dataset to include more diverse and larger real-time 
healthcare records could enhance the model’s generalizabil-
ity and accuracy. Investigating the potential for incorporat-
ing edge AI capabilities alongside fog computing could pro-
vide even more rapid and localized decision support. Lastly, 
ensuring the system’s adaptability to various healthcare 
environments and its scalability to support a broad range of 
health monitoring applications will be essential for wide-
spread adoption and effectiveness.

(32)
MCC = (TP ∗ TN − FP ∗ FN)∕sqrt((TP + FP)

∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)).
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