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Abstract
Drug–target interactions is essential for advancing pharmaceuticals. Traditional drug–target interaction studies rely on labor-
intensive laboratory techniques. Still, recent advancements in computing power have elevated the importance of deep learning
methods, offering faster, more precise, and cost-effective screening and prediction. Nonetheless, general deep learning meth-
ods often yield low-confidence results due to the complex nature of drugs and proteins, bias, limited labeled data, and feature
extraction challenges. To address these challenges, a novel two-stage pre-trained framework is proposed for drug–target
interactions prediction. In the first stage, pre-trained molecule and protein models develop a comprehensive feature represen-
tation, enhancing the framework’s ability to handle drug and protein diversity. This also reduces bias, improving prediction
accuracy. In the second stage, a transformer with bilinear pooling and a fully connected layer enables predictions based on
feature vectors. Comprehensive experiments were conducted using public datasets from DrugBank and Epigenetic-regulators
datasets to evaluate the framework’s effectiveness. The results demonstrate that the proposed framework outperforms the
state-of-the-art methods regarding accuracy, area under the receiver operating characteristic curve, recall, and area under the
precision-recall curve. The code is available at: https://github.com/DHCGroup/MocFormer.
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1 Introduction

Predicting the drug–target interactions (DTIs) could be
applied in multiple fields, for example, the drug discov-
ery [1], drug repositioning [2], and the prediction of drug side
effect [3]. The critical drug discovery process is identifying
DTIs among numerous candidates [4]. Although conven-
tional measurement in vitro experimental testing can verify
DTIs, it suffers from extremely long time and monetary
costs. To reduce the wet-lab-based verification procedure’s
expensive workload, computational approaches are adopted
to efficiently filter potential DTIs from a large number of
candidates for subsequent biological experiments [5]. The
traditional in-silico computational methods could generally
be classified into three categories: ligand-based, target-
based, and chemogenomic approches [6]. The ligand-based
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approaches predict the DTIs by the similarities of the lig-
ands. They search for similar compounds verified to interact
with the particular target. Target-based methods claim that a
target with a similar 3D structure can interact with the same
drug. However, both methods rely on powerful computing
resources, running time, and accurate 3D protein structures.
With the development of machine learning and deep learn-
ing in recent years, chemogenomic methods have begun
to be widely used. These use target and ligand characters
simultaneously to make the interaction predictions. These
computational approaches rely on machine learning tech-
niques to build a prediction model to accurately estimate
undiscovered interactions based on the chemogenomic space
that incorporates drug and target information.

Recently, various deep models have shown encourag-
ing performance in DTIs predictions. Initially, researchers
usually only used manual annotation to label proteins and
small molecules with manual descriptors in limited datasets.
Then, researchers proposed a CNN-based model [7], which
utilizes multi-scale one-dimensional convolutional neural
network [8] to obtain targets features and Extended Connec-
tivity Fingerprints [9] to get compounds features. Also, the
attention mechanism is introduced into DTIs prediction [10,
11]. At the same time, with the further development of deep
learning [5, 12–15], transformer [5] and GNN [16] were
proposed, and attempts were made to encode and decode
molecules and proteins separately through transformer [17].
Encoding and decoding [17] to learn their high-dimensional
structures and input them into neural networks for itera-
tion to simulate their interactions. Meanwhile, graph neural
networks are also the usual means to study DTIs, where
one constructs its 2D structure by treating atoms as nodes
and chemical bonds as edges. The attention mechanism has
been widely used in both approaches, which is thought to
capture the key sites where its small molecules bind to pro-
teins [18]. HyperAttentionDTI’s attention mechanism can
infer the interactions of each amino acid atom pair but also
control the characteristics on the channel [19]. DrugBAN
proposed a bilinear attention network with domain adapta-
tion to explicitly learn pairwise local interactions between
drugs and targets and has a specific generalization abil-
ity. Both methods can represent local interactions to some
extent through improved attention mechanisms. In recent
years, with the development of molecule and protein lan-
guage pre-training models, people have tried to encode the
smiles andprotein sequences ofmolecules into vectors to rep-
resent their physical and chemical functions and structural
information [20–24]. These pre-trained models are trained
on an extensive unlabeled molecule and protein data set so
these vectors can better represent their physical and chemical
characteristics. DeepLPI [25] and AI-Bind [26] utilize these
pre-trained models to make the DTI predictions.

Despite these efforts, the following challenges are still
open. (1) The complex nature of drugs and proteins presents
a formidable challenge. These molecules exhibit various
structural variations, chemical interactions, and biological
functions, making them difficult to predict accurately. (2)
Inherent bias in the data can introduce significant uncertain-
ties. Biomedical datasets are often collected from specific
populations or experimental conditions, which may not fully
represent the diversity of biological systems. This bias can
result in models that perform well in particular scenarios
but struggle when applied to more diverse or real-world
situations. (3) A limited availability of labeled data poses
a substantial challenge. Supervised learning methods rely
on labeled examples for training and require substantial
quantities of accurately annotated data. In drug discovery
and protein analysis, obtaining large, high-quality labeled
datasets is expensive and time-consuming. Consequently,
models may not be sufficiently trained to handle the full
spectrum of potential inputs, leading to lower confidence in
their predictions. (4) Feature extraction remains a persistent
challenge. Identifying and selecting relevant features from
complex biological data is a non-trivial task. Inaccurate fea-
ture representation or the omission of crucial information can
significantly impact the performance of predictive models,
contributing to the uncertainty in their results.

To overcome the above issues, a two-stage framework is
proposed for accurate and rubust DTIs prediction, as shown
in Fig. 1. In the first stage, pre-trained molecule and protein
foundationmodels are applied to encode the drug and protein
sequences into comprehensive feature vectors. The advan-
tages of the pre-training are twofold. Firstly, pre-training
foundation models for molecule and protein structures pro-
vide a powerful starting point for feature representation. This
pre-trained model addresses the limitation of having a lim-
ited number of labeled protein–drug pairs when using deep
learningmethods to predictDTIs.Compared toprevious deep
learning methods which builds embeddings from a limited
number of proteins and molecules using relatively simple
methods from scratch, the approach of using transfer learning
with pre-trained models for molecule and protein represen-
tation allows training on a much larger dataset of unlabeled
molecules and proteins, thereby avoiding overfitting and
obtainingmore accurate features. In the second stage, a trans-
former with bilinear pooling and a fully connected layer
further processes the feature vector acquired from the first
stage and outputs the final prediction result. It enhances the
grasp of drug–target relationships and interaction prediction
accuracy, spanning various scales like molecule structures.

In summary, this paper presents the following contribu-
tions:

1. To the best of our knowledge, a pre-training driven trans-
former framework is proposed for the first time, termed
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Fig. 1 The overarching
workflow of the proposed
framework encompasses three
pivotal constituents: a data
representation driven by
pre-training, a transformer
influenced by pre-trained
models, and the dissemination
of results

MocFormer, to achieve drug and target interactions pre-
diction based on transfer learning.

2. The first stage obtains a comprehensive vector repre-
sentation of molecule and protein features through fine-
tuning and transfer learning. The second stage enhances
the grasp of drug–target relationships and the accuracy
of interaction prediction through transformer, bilinear
pololing and FCN.

3. Experimental results show that our method outperforms
the most recent state-of-the-art DTIs prediction methods
on two public benchmarks, demonstrating the effective-
ness of our method and its potential applicability in
clinical practice.

The structure of this paper is outlined as follows: In Sect. 3,
we provide an overview of the framework by presenting
its workflow. Section4 presents the experimental setup and
comprehensive experimental results. In Sect. 5, we summa-
rize the entire paper and give priorities for future work.

2 RelatedWorks

2.1 Experimental Methods

From an experimental perspective, analyzing drug–target
interactions is usually done using in vitro binding assays,
including surface plasmon resonance (SPR) as well as flu-
orescence resonance energy transfer (FERT). They probed
protein–ligand interactions on by detecting changes in light
intensity and energy transfer in different dyes, respectively.
This type of experimental approach is usually consuming,
low-throughput.

2.2 Computational Methods

Molecular dynamics (MD) simulation and molecular dock-
ing (Docking) are the two core computational methods used
to study DTIs. Docking is mainly used to predict the bind-
ing modes and binding energies of a drug and its protein,
and to find the optimal complex structure by evaluating the
different binding conformations. MD is used to simulate the
dynamic behavior of a drug upon binding to its target, pro-
viding detailed information about the intermolecular forces
and temporal evolution. Although these methods can already
be used for high-throughput drug or target screening, they are
also time-consuming and also rely on empirical force fields
and other parameters, which can lead to inaccuracies.

Deep learning approaches to molecular characterization
can be broadly divided into two main types: sequence-based
and molecular graph-based methods. The former typically
utilizes amino acid sequences of proteins and SMILES
representations of small molecules, with the Transformer
architecture serving as the primary framework. The latter
approach using 3Dmolecular graphs, where atoms are repre-
sented as nodes and chemical bonds as edges. This structural
information is typically processed using GNNs to derive
insights.

MolTrans [17] is a transformer-based model of DTIs that
uses the frequent consecutive sub-sequence mining mod-
ule to capture important subsequences and enhances the
characterization of these important subsequences with the
transformer module. GraphormerDTI [27], on the other
hand, primarily uses 3D maps to model drug molecules but
also uses the transformer’s multi-head attention for message
passing to capture features, while proteins use amino acid
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sequences through three successive CNN layers to extract
local features.

3 Methods

Figure 1 offers a comprehensive illustration of the frame-
work for identifying drug–target interactions (DTIs) through
the utilization of drug SMILES strings and protein amino
acid sequences. The framework is divided into two primary
stages. In the first stage, we employ pre-trained founda-
tional models to process molecule and protein data. In the
subsequent second stage, we utilize a pre-training-driven
transformer, bilinear pooling, and a fully connected layer
(FCN) to further refine the DTIs prediction. This two-stage
process is pivotal in achieving accurate and reliable predic-
tions of drug–target interactions. Four key evaluationmetrics
were considered for a comprehensive performance analysis:
Accuracy,AUC,Recall, andAreaUnder the Precision-Recall
Curve (AUPRC). The higher value of these metrics indicates
the better performance of the proposed method.

3.1 Molecule Pre-trainedModule

Uni-Mol is an advanced frameworkdesigned for 3Dmolecule
representation learning with three key components. (1)
The foundation of Uni-Mol relies on a transformer-based
backbone. This backbone effectively processes input data
consisting of individual atoms and atom pairs, integrating
the SE(3)methodology to condense the intricate 3D structure
of molecules effectively; (2) to ensure robustness and com-
prehensive learning, Uni-Mol undergoes training on a vast
dataset, encompassing an impressive 209 million molecules
and 3 million proteins. This extensive training dataset equips
the model with a broad understanding of molecule structures
and their relationships; (3) Uni-Mol’s capabilities are fur-
ther enhanced through fine-tuning various downstream tasks.
These tasks include predicting drug–target interaction sites,
distinguishing between correct and incorrect binding sites,
and predicting the corresponding 3D structures. Fine-tuning
refines the model’s abilities to make precise predictions and
contributes to its overall versatility in molecule analysis.

In the MocFormer pipeline, the grid search method was
employed to fine-tune the pre-trained model provided by
Uni-Mol on the DrugBank dataset. The pre-trained model
from the DrugBank dataset underwent fine-tuning using the
random forest regression method, and the learning rate was
selected from the range [1e−5, 1e−4, 4e−4, 1e−3]. Fur-
thermore, different batch sizes, namely [8, 16, 32], were
experimented with. To ensure robustness, the fivefold cross-
validation technique was utilized. This technique allowed
for the selection of three sets of optimal characterization
results. These optimal sets of representation vectors were

then used as input for MocFormer’s model inference, and the
final choice was determined based on the best performance.
Following the preprocess of the molecule pre-trained mod-
ule, we obtain the drug’s embeddingmatrix, which is denoted
as fD . Where f denotes the size of the embeddings for drug
strings, and we’ve set this dimension to 512.

3.2 Protein Pre-trainedModule

ESM-2 is developed based on the belief that the information
regarding structure and function can be found in amino acid
sequences, making large language models (LLMs) a handy
tool for this task. ESM-2 remains a transformer-based model
with a maximum of 15 billion parameters. It utilizes approx-
imately 138 million sequences for training and employs
an equivalent transformer to represent the protein’s three-
dimensional structure. This results in an attention pattern
corresponding to the protein’s three-dimensional structure.

In theMocFormermodel, the chosen variant of ESM-2 is a
large languagemodelwith 36 layers and 3 billion parameters.
A fine-tuning process is meticulously designed to enhance
its capabilities further and adapt it for the drug–target inter-
actions (DTIs) task. The selected method for fine-tuning is
theK-neighborhood algorithm, which is optimized using the
grid search approach. The hyperparameters being searched
include the batch size (options: 8, 16, 32), the 343,333,4
number of neighbors (options: 5, 10), the weighting strategy
(options: uniform, distance), and the algorithm type (options:
ball_tree, kd_tree, brute). The leaf size is also considered for
the algorithm (options: BallTree, KDTree). Finally, three dis-
tinct sets of vector representations are derived. These sets are
then utilized as input for the subsequentmodel in the pipeline.
The goal is to identify the set of representation vectors that
consistently delivers the best performance, ensuring that the
final model is optimized for the DTIs task. After the protein
pre-trained module processes the input, the protein’s embed-
ding matrix, denoted as fP , is obtained. Where f represents
the size of the embeddings for protein strings, and 2560 is
the embedding dimensions.

3.3 Transformer Module

In this pipeline, transformermodules utilize amulti-attention
mechanism to calculate the feature vector of molecule and
protein acquired from the first stage. Thismechanism assigns
weights to dimensions from the 512-dimensional drug vec-
tors and the 2560-dimensional protein vectors.Moreover, the
multi-head attention mechanism within the transformer fur-
ther improves this process, ensuring that the more critical
vector dimensions are focused on. The allocation of weights
facilitates MocFormer in learning the intrinsic patterns asso-
ciated with drug–target interactions. MocFormer learns and
captures the intrinsic relationships and nuances inherent in
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drug–target interactions by focusing on the most pertinent
vector dimensions.

The computation can be summarized using Eqs. 1–4. Q
represents the queries of drug (D) and protein (P), K rep-
resents the keys, and V represents the values. The weight
matrices are denoted as WQ , WK , and WV , while dk means
the dimensions of the vectors.

QD,P = fD,P × WQ (1)

KD,P = fD,P × WK (2)

VD,P = fD,P × WV (3)

Attention = softmax

(
Q × KT

√
dk

)
× V (4)

The multi-head attention is then introduced and sum-
marized using Eqs. 5–6. For each head, there are weight
matricesWQ

i ,WK
i , andWV

i . For drug (D):WQ
i ∈ R

d512×d64 ,
WK

i ∈ R
d512×d64 , andWV

i ∈ R
d512×d64 . And for protein (P):

WQ
i ∈ R d2560×d512 , WK

i ∈ R d2560×d512 , WV
i ∈ R d2560×d512 .

Additionally, a linear transformation matrix is utilized. For
drug (D): WO ∈ R

d512×d512 . And for protein (P): WO
i ∈

R d2560×d2560 .

Headi = Attention(Q × WQ
i , K × WK

i , V × WV
i ) (5)

MultiHead = Concat(Head1, . . .Head8) × WO (6)

The fully connected feed-forward network comprises two
dense layers, each followed by a ReLU activation function,
allowing for nonlinear transformations. This can be sum-
marized using Eq.7. The weight matrices W1 and W2 have
dimensions of R

f × f , and bias terms b1 and b2 are also
included.

FFND,P = max(0, x × W1 + b1)W2 + b2 (7)

3.4 Bilinear Pooling and Full Connected Layer

The bilinear pooling technique fuses features from the drug
and protein decoders. It involves bilinearly multiplying the
first two features at the same position to obtain the matrix B.
Then, sum pooling is applied to all positions in B to get the
matrix ξ . The matrix ξ is further transformed into a vector,
referred to as the bilinear vector x. Additionally,moment nor-
malization and L2 normalization operations are performed
on x to obtain the fused features Z. The bilinear pooling
method is utilized to merge the output of the drug and pro-
tein decoders. Then, the merged vector representation will
be fed into a multi-layer, fully connected layer network. The
activation function is relu, a dropout layer is added after each
layer to prevent overfitting, and a binary cross entropy is used
to output the final prediction results. The specific calculation

process can be expressed by Eqs. 8–12.

B(x, fP , fD) = fP × f TD (8)

ξ =
A∑
x

fP × f TD (9)

m = vec(ξ) (10)

y = sign(x)
√|x | (11)

y = y

||y||2 (12)

4 Experimental Results

This section presents the results obtained by applying the pro-
posed methods to the DrugBank dataset. The experimental
dataset and evaluation metrics will be explained in Sect. 4.1.
The implementation details of the experiments will be dis-
cussed in Sect. 4.2. In addition, Sect. 4.3 will present the
results of the ablation study, while Sect. 4.4 will provide a
comprehensive comparison with the current state of the art.

4.1 Dataset and EvaluationMetrics

DrugBank dataset: The experimental dataset for this study
was derived by extracting drug and target data from theDrug-
Bank database [28], as presented in Table 1. The dataset
used in this research corresponds to the data released on
January 3, 2020 (version 5.1.5). Inorganic compounds and
tiny molecule compounds (e.g., Iron [DB01592] and Zinc
[DB01593]) were manually discarded, along with drugs hav-
ing SMILES strings that could not be recognized by the
RDKit Python package [29].After this filtering process, 6655
drugs, 4294 proteins, and 17,511 positive drug–target inter-
actions (DTIs) remained in the dataset. To create a balanced
dataset with equal positive and negative samples, unlabeled
drug–protein pairs were sampled following a common prac-
tice [17, 30]. This approach allowed for the generation of
negative samples, resulting in a balanced dataset for analy-
sis.

Epigenetic-regulators dataset: This dataset is based on
protein family-specific datasets (Large-scale) [31], further
constructed by applying a strategy that only considers com-
pound similarities while distributing bioactivity data points
into train-test splits, as presented in Table 2. Compounds
in train and test splits are dissimilar (Tanimoto score < 0.5).

Table 1 Summary of the DrugBank dataset

Datasets Protein Drug Interaction Positive Negative

DrugBank 4294 6655 35,022 17,511 17,511
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Table 2 Summary of the
epigenetic-regulators dataset

Datasets Protein Drug Interaction Positive Negative

Epigenetic-regulators datasets 113 10,120 17,757 8834 8923

Therefore, similar compounds cannot participate in both train
and test splits. This strategy makes the prediction task more
challenging and realistic than random splitting. It partly pre-
vents themodel frommemorizing bioactivities over identical
or highly similar compound fingerprints shared between train
and test folds. In previous experiments of a similar nature,
researchers segregated distinct molecules into the training
and test sets. In other words, they ensured that the molecules
in the test set were not present in the training set and vice
versa.However, in our current study,wehave taken adifferent
approach by including entirely dissimilar types ofmolecules.
Specifically, molecule A is part of the test set, whilemolecule
B is found in the training set. These molecules exhibit a sub-
stantial dissimilarity, indicated by a Tanimoto score of less
than 0.5. This implies that their degree of similarity is exceed-
ingly low, akin to the difference between humans and dogs,
as opposed to mere similarity, such as that between men and
women. The score quantifies the degree of similarity. The
term “Pchem value” denotes the experimental measurement
of the interaction between the target and ligand. In this con-
text, we selected a threshold of 6. If the Pchem value exceeds
6, it indicates the presence of an interaction, and the corre-
sponding label is set to 1.

Four key metrics were considered for a comprehensive
performance analysis: accuracy, AUC, recall, and area under
the precision-recall curve (AUPRC).Accuracy assesses over-
all correctness, AUC evaluates the model’s ability to rank
positive and negative samples correctly, recall measures the
model’s effectiveness in identifying positive samples, and
AUPRC evaluates the model’s performance in classifying
imbalanced datasets.

4.2 Implementation Details

The framework used in this study is built on the PyTorch plat-
form and utilizes an NVIDIA Tesla V100S GPU. The entire
dataset was divided into training, validation, and testing sets,
with proportions of 70%, 20%, and 10%, respectively. Each
experiment employed a fivefold cross-validation approach.
The AdamW optimizer optimized the model with an ini-
tial learning rate of 0.000005 and a weight decay 0.001.
Additionally, a learning rate schedule based on ReduceROn-
Plateau was implemented. This schedule had a patience of 5,
meaning that if the model’s validation loss did not decrease
after five epochs, the learning rate would decay to 10% of
the previous rate.

Table 3 Results of ablation studies

Settings Acc (%) AUC (%) Recall (%) AUPR (%)

Baseline 76.0 82.2 75.6 84.2

Baseline + A 72.8 77.9 71.7 79.2

Baseline + B 70.1 73.7 68.9 77.9

Baseline + A + B 77.9 86.1 77.6 86.1

Baseline + A + B + C 83.4 91.2 83.2 91.0

The best results are highlighted in bold

4.3 Ablation Study

To assess the effectiveness of each component in ourmethod,
a series of ablation experiments were conducted, as pre-
sented in Table 3 and Fig. 2. These experiments progressively
enhanced the baseline network by applying the following
configurations: (1) adding only the molecule pre-trained
module (A) to the baseline. (2) Adding only the protein
pre-trained module (B) to the baseline. (3) Simultaneously
adding the molecule and protein pre-trained modules to the
baseline. (4) A transformer with bilinear pooling (C) was
incorporated after combining the molecule and protein pre-
trained modules with the baseline. Baseline: Our baseline is
established by processing the amino acid sequences of pro-
teins and the SMILES representations of small molecules
using the Word2Vec algorithm to obtain their embeddings
separately. Average pooling is then applied to represent their
interactions. The processed high-dimensional vectors are
subsequently fed through the same fully connected layer
used in the second stage of the MocFormer to produce the
predicted outcomes. Baseline + A: Baseline+A will replace
the original word2vec representation for molecule in base-
line with the pre-trained model (fine-tuned) of Uni_mol to
characterize small molecules vectorially. At the same time,
proteins are still processed using word2vec. Other settings
are the same as the baseline. Baseline + B: Baseline+B will
replace the original word2vec representation for protein in
baseline with the pre-trained model (fine-tuned) of ESM-2
to generate embeddings. At the same time, molecules are still
processed using word2vec. Other settings are the same as the
baseline. Baseline + A + B: Although Uni_mol and ESM-2
are known as powerful molecule characterization models,
using word2vec-generated vector representations as input
might cause the model to rely on topology for predictions,
thereby lacking practical biochemical meaning. This issue
influences interactions between the single-side (molecule or
protein)word2vecmodule and the pre-trainedmolecule char-
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Fig. 2 The heatmap shows that
adding conditions “A” and “B”
individually initially reduces
performance, but combining
them yields a significant positive
impact (“Baseline + A + B”).
Moreover, introducing condition
“C” ultimately allows the model
to achieve the best performance

Table 4 Results of quantitative
comparisons on DrugBank
dataset

Settings Acc (%) AUC (%) Recall (%) AUPR (%)

MolTrans (2020) [17] 78.7 85.8 76.3 85.1

HyperAttentionDTI (2021) [19] 80.7 88.7 81.9 89.5

DrugBAN (2023) [32] 81.9 88.8 82.4 89.3

AI-Bind (2023) [33] 81.7 89.4 81.8 90.1

Ours 83.3 91.1 83.0 90.8

The best results are highlighted in bold

Fig. 3 Bar chart visualization of quantitative comparisons on DrugBank dataset
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Fig. 4 Box chart visualization of quantitative comparisons on DrugBank dataset

Table 5 Results of quantitative
comparisons on
epigenetic-regulators dataset

Settings Acc (%) AUC (%) Recall (%) AUPR (%)

MolTrans (2020) [17] 55.2 63.0 16.4 58.4

HyperAttentionDTI (2021) [19] 58.9 64.5 36.6 61.0

DrugBAN (2023) [32] 54.6 53.0 13.7 53.3

AI-Bind (2023) [33] 54.7 63.5 58.4 55.0

Ours 59.6 66.1 60.9 64.5

The best results are highlighted in bold

acterization module (protein or molecule), causing them to
learn an incorrect paradigm and ultimately resulting in weak-
ened results. Therefore, better performance can be achieved
by simultaneously pre-training encoding for both molecules
and proteins. Baseline + A + B + C: Our final framework
is Baseline + A + B + C. In this framework, Uni_mol and
ESM-2 generate the embeddings, which are then input into
the MLP after passing through the transformer and bilinear
pooling layers, ultimately yielding the prediction results.

4.4 Comparison with the State-of-the-Art

To establish the superiority of our proposed method, we
conducted comprehensive comparison experiments, pitting it
against two attention-based networks (DrugBAN andHyper-
AttentionDTI), one transformer-based network (Moltrans),
and one transfer-learning-based network (AI-Bind). These
experiments were carried out using the DrugBank dataset.
The results demonstrate that our method surpasses previ-
ousmethods, achieving state-of-the-art (SOTA) performance
across multiple critical evaluation metrics, including accu-
racy, AUC, recall, and AUPR. These findings are detailed
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Fig. 5 Bar chart visualization of quantitative comparisons on epigenetic-regulators dataset

in the data presented within Table 4. For further clarity, our
method’s dominance across these metrics is visually empha-
sized in the bar graph displayed in Fig. 3. This graphical
representation vividly illustrates how our approach consis-
tently outperforms other methods in terms of their average
scores. Furthermore, the box plot presented in Fig. 4 under-
scores ourmethod’s robustness and stability across these four
key performance indicators.

To further showcase the remarkable generalization capa-
bilities of our proposed approach, we conducted supplemen-
tary experiments utilizing the epigenetic-regulators dataset.
These additional experiments’ outcomes are presented in
Table 5. The bar chart Fig. 5, similar to the experiments
conducted on the DrugBank dataset, is a compelling tes-
tament to our method’s consistently superior performance.
The data showcased herein reflects the mean performance of
each method across an array of evaluation metrics. Further-
more, the box chart Fig. 6 underscores the robust nature of
our approach. This is evidenced by the minimized fluctua-
tions in the metrics, affirming the stability and reliability of
our method. This body of evidence firmly establishes that
our method consistently demonstrates formidable predictive
capabilities, evenwhen exposed to previously unencountered
feature data, when compared against alternative methods.

5 Conclusion

This paper introduces a two-stage pre-training driven trans-
former, a novel framework for identifying drug–target Inter-
actions (DTIs). The proposed architecture effectively
addresses the challenges posed by the diversity and complex-
ity of drugs and proteins and the presence of bias in the data.
Quantitative and qualitative evaluations on the DrugBank
and Epigenetic-regulators databases demonstrate that our
framework significantly improves accuracy and robustness,
achieving state-of-the-art performance. A possible limita-
tion of our method stems from its reliance on a two-stage
processing approach. This structure divides the task into dis-
tinct phases, each requiring separate optimization. In future
work, we would like to investigate the end-to-end learning
paradigm to optimize the final objective function directly,
making it better adapt to the intricacies and complexities of
the task process.
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Fig. 6 Box chart visualization of quantitative comparisons on epigenetic-regulators dataset
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