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Abstract
Convolutional neural network (CNN) pruning is a technique used to remove redundant parameters from the network. By doing 
so, it aims to greatly reduce the computational complexity and scale of the network while still preserving its accuracy. In 
the CNN, the majority of parameters are weights that form filters. When it comes to pruning, it is more effective to focus on 
removing redundant filters rather than insignificant weights within filters. The essence of filter pruning lies in determining the 
significance or contribution of each filter. Filters that have a significant contribution are kept, while others are pruned. Current 
methods for calculating contribution in pruning often rely on weight magnitude or filter similarity. However, approaches 
based solely on assume that small weights are unimportant and ignore correlation between filters, which leads to a significant 
loss of network accuracy. Those based on filter similarity flatten filter tensors into a vector when calculating filter similarity, 
and lose the important structural information of filters, or the superposition information of the weight convolution in the 
corresponding space position. These limitations can compromise the accuracy and effectiveness of the pruning process. This 
paper proposes an adaptive CNN pruning method based on the structural similarity of filters (APSSF) by taking both the 
structural characteristics of and the correlation between filters into the consideration for pruning filters. APSSF efficiently 
calculates the distance between the filters by factoring in information from all the dimensions of filters, and clusters the filters 
according to the distance threshold determined adaptively according to the compression rate, and deletes a certain number 
of filters from each category. On the CIFAR10 and ImageNet datasets, APSSF outperforms several state-of-the-art methods. 
On the CIFAR100, APSSF reduces parameters of networks by 91.71% and 74.80% on VGG-16 and ResNet-34, respectively. 
The accuracy was decreased only by 0.03 on VGG-16, while on ResNet-34, it was increased by 0.04.
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1  Introduction

Convolutional neural networks (CNN) have remarkable 
achievements in the field of computer vision in recent 
years, especially in image recognition and classification. 
CNNs are specifically designed to handle the spatial struc-
ture of images and exploit the local correlations between 
pixels. This makes CNNs well-suited for tasks that involve 

analyzing and understanding visual data. As the scale of data 
and the structure of models continue to expand, the param-
eter count and computational complexity of CNNs show an 
exponential growth trend, bringing enormous challenges to 
model training and inference. These models typically require 
significant computational resources and datasets for training, 
and in practical applications, they often require high com-
putational performance and storage resources for inference 
and deployment. For instance, popular CNN architectures 
like VGG [1], ResNet [2], and Xception [3] have demon-
strated impressive accuracy of over 90% on large datasets. 
CNN models have achieved excellent performance in many 
computer vision tasks and have become the benchmark mod-
els for some tasks. These models have undergone extensive 
research and validation, demonstrating high reliability and 
stability, and can serve as benchmark models for compari-
son with other models. When evaluating new models or 
algorithms, using these benchmark models can provide a 
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basis for reference and comparison. The VGG and RESNET 
benchmark models are widely used in many computer vision 
tasks and have become the benchmark models for these 
tasks. Many of the current large models have been developed 
and expanded based on VGG and RESNET. For example, 
models based on RESNET, such as RESNEXT [4] and Wide 
RESNET [5], have improved performance by increasing the 
model’s width, depth, or introducing new model structures. 
These large models still adhere to some design principles of 
VGG and RESNET, and have been innovated and optimized 
based on them. However, the large number of parameters 
in these models leads to excessive memory consumption 
and computational complexity. This becomes a hurdle for 
deploying CNN on resource-constrained devices and limits 
their wide adoption. Compared to large models, using small 
models may be more suitable for specific tasks. For example, 
a small model can be used for training a medical question-
answering system to provide accurate medical knowledge 
and answers; for specific language pairs in machine transla-
tion tasks, small models can be trained. Small models can 
be customized according to the grammar structure and cul-
tural characteristics of the language to provide more accurate 
translation results; for specific domain named entity recog-
nition tasks, such as in medicine and finance, training with 
small models can improve the accuracy and recall rate of 
named entity detection. To address this challenge, model 
compression has emerged as a research focus. The aim is to 
reduce the size of the model while maintaining its accuracy, 
thus enabling deployment on resource-constrained devices. 
Achieving model compression has therefore become crucial 
in promoting the widespread utilization of CNN.

CNN are feedforward neural networks composed of 
an input layer, convolutional layers, pooling layers and 
fully-connected layers. A convolutional layer consists of a 
number of filters which extract features of images. A filter is 
a high-order tensor [6] structured with weights. CNN with 
multiple convolutional layers usually have thousands of 
filters, inevitably redundant, to get good identification and 
classification performance. Deleting redundant parameters 
or filters does not affect the model accuracy, but also 
accelerates model training [7]. It is easier to obtain high-
accuracy by training a pruned network [8] than by training 
a small model from start.

Pruning CNN involves two conf licting goals: 
minimizing the number of parameters or filters while 
maximizing model accuracy. The key to successful 
pruning lies in finding the right balance between model 
scale and accuracy. Since the majority of parameters in 
CNN are concentrated within filters, filter pruning is an 
effective approach for compressing CNN. Filter pruning 
entails selectively removing a certain number of filters 
in each convolutional layer. This approach is considered 
more effective and interpretable compared to weight 

pruning, which involves removing selected weights within 
a filter [9]. The key to filter pruning is to determine the 
contribution of a filter. There are two categories of filter 
pruning according to the discriminant rule of contribution, 
pruning based on the weight magnitude and pruning based 
on the filter similarity.

Methods that rely on weight magnitude often establish 
pruning criteria based on the weights of a filter and the 
statistics that affect the loss function. These methods remove 
filters either by assigning a score to a filter based on its 
weights, assuming that small weights are not important, or 
by measuring the contribution of a filter using the probability 
distribution of its weights. However, this assumption does 
not always align with the actual outputs of the model. 
To further investigate this assumption, we conducted an 
experiment on the VGG-16 architecture. We calculated the 
sum of filter weights and proceeded to delete the filters with 
50% smallest and largest weights based on the sum size. 
The results revealed an 8.10% decrease in model accuracy 
after removing the filters with small weights, while a 0.40% 
increase in accuracy was observed after removing the filters 
with large weights. These findings indicate that not all small 
weights can be considered unimportant, highlighting the 
limitations of solely relying on weight magnitude as the 
pruning criterion.

In addition, these methods overlook the importance of 
structural similarity among filters. The structural similarity 
refers to the discrepancy generated by the different spatial 
positions of the tensor structure of the filter to convolute 
the input data. Filters that convolve at corresponding spatial 
positions of an image tend to exhibit similarity due to the 
similarity of pixel structures in small areas. Mapping filter 
weights to scalars can lead to the loss of valuable similarity 
information. By disregarding the structural similarity 
between filters, these methods fail to fully utilize the inherent 
relationships within the model. It highlights the need for an 
approach that takes into account the structural characteristics 
of filters while effectively pruning the network to achieve 
optimal results.

Methods that are based on filter similarity are generally 
more reasonable than those relying solely on weight 
magnitude since they take into account the structural 
characteristics of filters. However, it is worth noting that 
many of these methods tend to flatten filter tensors into 
vectors when calculating filter similarity. This flattening 
process leads to the loss of crucial information related to 
the superposition of weights in the corresponding spatial 
positions during convolution. By flattening the filter 
tensors, important spatial information is disregarded, which 
can impact the accuracy and effectiveness of the pruning 
process. It is necessary to explore alternative methods that 
can preserve the structural information of filters and capture 
the full potential of their contributions in the model.
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To conclude, the disadvantages of the methods for filter 
pruning are

•	 Methods based on weight magnitude treat filters as 
independent entities, potentially overlooking the structural 
similarity between them. Mapping filter tensors into scalars 
can lead to the loss of important structural information.

•	 Methods based on filter similarity usually flatten the filter 
tensor into a vector when calculating their similarity. The 
superimposed information of weight convolution in the 
corresponding space position is not considered, and the 
structural information of the filter tensor is lost when 
calculating the similarity.

•	 Most methods determine the number of classify using a 
fixed threshold based on similarity. The fixed threshold 
needs to be determined through multiple tests, and the 
calculation is time-consuming. And the fixed threshold 
cannot obtain the optimal classification.

To address these limitations, there is a need for 
developing advanced pruning methods that consider the 
structural information of filters, preserve their superimposed 
information, and offer more flexible and efficient ways to 
determine the optimal number of filters to prune.

In view of the above problems, we exploit the structural 
characteristics of filters to differentiate filters, and propose 
an adaptive CNN pruning method based on the structural 
similarity of filters (APSSF). The core concept of APSSF 
is to leverage the structural characteristics of filters to 
differentiate and identify filters for pruning, thereby reducing 
redundant parameters while diversifying feature extraction. 
The key idea of this approach is to recognize that filters 
are interconnected entities in the feature space. Filters that 
contribute little to feature extraction are identified and pruned 
based on their similarities to other filters. By pruning these 
less -significant filters, the model can maintain its accuracy 
while reducing its complexity. To compute filter similarity 
efficiently, we reduce the dimensionality of weight tensors 
while preserving important channel structural information. 
This helps in clustering the filters in a meaningful way. During 
clustering, the number of clusters, or the distance threshold, 
is determined adaptively according to the parameters of the 
compression rate using Augmented Lagrange method.

By utilizing the structural similarities of filters and employing 
adaptive pruning techniques, APSSF aims to achieve significant 
parameter reduction while maintaining model accuracy, mak-
ing it a valuable contribution to the field of CNN pruning. The 
contributions of this paper are as follows:

•	 A CNN pruning method called APSSF is proposed to find 
similar filters based on the structural characteristics of fil-
ters. By calculating filter similarity and clustering filters 

accordingly, APSSF selects and retains a specific number 
of filters within each category.

•	 The parameter of compression rate is introduced to 
regulate the rate at which filters are pruned. The distance 
threshold used to determine the number of clusters is 
adaptively calculated using the Augmented Lagrangian 
optimization method. This ensures optimal and flexible 
pruning based on the desired compression rate.

•	 An efficient method is proposed for calculating the simi-
larity between filters based on filter tensors. The method 
compresses filter tensors to reduce their dimensions while 
maintaining important structural information. The simi-
larity between filters is then measured based on the com-
pressed tensors, ensuring the preservation of the triangular 
inequality of distance even after compression.

2 � Related Work

The process of filter pruning is as follows: (1) Training 
the original CNN: Initially, the original CNN is trained on 
the target dataset to establish a baseline performance; (2) 
Sorting filters: Filters are sorted according to some criterion, 
such as weight magnitude, filter similarity, or a combination 
of factors. This sorting process helps identify the filters that 
will potentially be pruned; (3) Retaining top-ranked filters: 
A certain number of filters, typically those ranked at the top 
of the sorted list, are selected to be retained. These filters are 
considered to have the most significant contributions to the 
model and its accuracy; (4) Fine-tuning the pruned CNN: 
Finally, the pruned CNN, which consists of the selected 
filters after the previous step, undergoes a fine-tuning 
process. This fine-tuning aims to reoptimize the model to 
achieve the same or even higher levels of accuracy as the 
original CNN.

In filter pruning, accurately determining the contribu-
tion of filters is crucial. There are two common approaches, 
weight magnitude based and filter similarity based. Weight 
magnitude-based approaches establish pruning criteria based 
on the filter weights and the impact on the loss function. 
These methods often calculate the importance of a filter 
by assuming that larger weights are more significant than 
smaller weights. The representative method is proposed by 
Li et al. [10]. It uses L1 norm, the sum of the absolute values 
of the weights of a filter, to determine the important contri-
bution of a filter. Filters with large L1 norm are retained, 
while those with small L1 norm are removed. Another 
method by He et al. [11] implements a geometric median-
based technique to identify and prune redundant filters. In 
addition, Liu et al. [12] imposes L1 regularization on the 
scaling factor in the batch normalization (BN) layer. The 
value of the BN scaling factor then approaches to zero, prun-
ing the channel of the small scaling factor.
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The loss function is not only affected by filters with large 
weights but also by those with small weights. Therefore, 
determining the contribution of a filter solely based on the 
statistics that affect the loss function is a more reasonable 
approach compared to directly calculating scores from filter 
weights. Methods such as ThiNet proposed by Luo et al. [13] 
utilize statistics computed from the next layer to remove filters 
in a layer. This approach captures the impact of filters on the 
loss function by considering their influence on subsequent 
layers. Molchanov et al. [14] utilize Taylor expansion to 
approximate the loss function and identify filters with low 
impact, which are then pruned. Building upon this work, 
Molchanov et al. [15] later improves their work using the 
first-and second-order Taylor expansions to approximate the 
contribution of the filter. It iteratively removes those filters 
with smaller scores by estimating the contribution of a filter 
to the final loss. Yang et al. [16] use energy consumption as 
its criterion to prune CNN. While these methods do not rely 
on the assumption that smaller weights are unimportant, they 
ignore the similarities among filters.

Although these methods do not rely on the assumption 
that smaller weights are unimportant, they tend to overlook 
the similarities among filters. Capturing filter similarities can 
further enhance the pruning process by taking into account 
preserving critical structural information.

The filter similarity-based approach focuses on 
differentiating filters using their spatial attributes. Recognizing 
that filters are interconnected entities in space, this approach 
aims to identify filters with minimal contribution to feature 
extraction, ultimately removing them based on similarity 
discrimination. The similarity measurement and clustering 
method vary among different methods employing this 
approach. Commonly used similarity measurements include 
Euclidean distance, cosine similarity, or normalized cross-
correlation (NCC) similarity. These measurements convert the 
three-dimensional filter into a one-dimensional vector without 
simplifying the computation. For example, Chu et al. [17] 
measure filter similarity using the Euclidean distance metric, 
resulting in a compact model with minimal accuracy loss after 
removing highly similar filters. Shao et al. [18] focuses on the 
similarity between filters or feature maps in the same layer. 
They use cosine similarity to measure the similarity between 
channels. MSVFP [9] combines filter magnitude and filter 
similarity to determine the importance of filters.

The frequently used clustering method is k-Means cluster-
ing, where the number of clusters or similarity threshold is 
typically fixed. Li et al. [19] use the k-Means +  + algorithm 
to enforce filters into a specific cluster. The filter closest to the 
center of a cluster is retained, the others are removed. A fixed 
threshold is set to determine the number of clusters. CSHE 
[18] uses k-Means to cluster filters with a fixed number of 
clusters. ICP [20] utilizes the DBSCAN clustering algorithm 

to cluster feature maps, and channel pruning is performed 
according to the number of clusters.

One common limitation of these pruning methods is that 
they flatten the filter tensors into vectors, resulting in the 
loss of weight convolution superposition information in the 
corresponding spatial positions. In addition, these methods 
rely on fixed thresholds for determining the number of 
clusters, which often require multiple tests to find the optimal 
value. To overcome these limitations, further research can 
explore methodologies that preserve the superposition 
information of weight convolution and adopt adaptive 
methods for determining the number of clusters, enhancing 
the efficiency and effectiveness of filter pruning algorithms.

Our proposed method differs from existing state-of-the-art 
approaches in two key aspects: (1) Consideration of spatial 
characteristics: Our method places particular emphasis on 
exploiting the spatial characteristics of filter tensors, paying 
close attention to the superposition properties within the 
dimensions corresponding to the channel of filters. By taking 
into account this valuable information, our method aims to 
preserve crucial structural details and improve the overall 
effectiveness of filter pruning; (2) Adaptive determination 
of clustering threshold: In contrast to previous methods 
that rely on a fixed threshold for clustering, our approach 
introduces an adaptive mechanism to determine the clustering 
threshold. This addresses the limitations associated with fixed 
thresholds, which often require extensive trial and error to 
reach optima. By adaptively determining the clustering 
threshold, our method aims to overcome such challenges and 
achieve more accurate and efficient filter pruning.

3 � Adaptive CNN Pruning

APSSF is based on structural similarity of filters to prune 
filters in CNN. The core of APSSF is to find an appropriate 
method for measuring the similarity between filters, while 
achieving adaptive filter clustering. Section 3.1 introduces 
the third-order weight tensor of filters used for computing 
filter similarity. Section 3.2 defines filter similarity and 
discusses the efficient calculation method. Section  3.3 
introduces the filter clustering method. Section 3.4 discusses 
the adaptive CNN clustering pruning.

3.1 � The Weight Tensor of Filters

CNN is a hierarchical network model that consists of 
data input, convolutional layer, pooling layer, activation 
function, fully-connected layer, and output. Filters of the 
convolutional layer produce a large number of parameters 
through convolution operations. The need to apply filters 
in image processing is due to the abundance of redundant 
and irrelevant information contained in the image. Filters, 
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also known as the convolution kernel, are used to extract 
meaningful features from the images. These filters are 
small tensors that are convolved with the input image to 
generate a feature mapping. By applying filters to images, 
we can capture important visual patterns and structures. 
These patterns can represent various characteristics of 
the image, such as edges, textures, and shapes. Filters 
help to highlight these features and suppress irrelevant 
information, making it easier for the network to learn and 
make accurate predictions.

The application of filters in CNNs reduces the 
complexity of image processing in several ways:

(1)	  Parameter sharing: In CNNs, filters are shared across 
the entire image or feature map. This parameter 
sharing significantly reduces the number of parameters 
compared to fully connected networks, where each 
neuron is connected to every input. By sharing 
parameters, CNNs can capture local patterns and 
generalize them across the entire image, leading to 
more efficient and compact models.

(2)	  Translation invariance: Filters in CNNs are designed 
to be translation invariant, meaning they can detect the 
same pattern regardless of its location in the image. 
This property allows CNNs to effectively handle 
variations in object position and scale, reducing the 
complexity of image processing.

(3)	  Hierarchical feature extraction: CNNs typically 
consist of multiple layers, with each layer learning 
increasingly complex and abstract features. The filters 
in the early layers capture low-level features like edges 
and textures, while filters in the deeper layers capture 
high-level features like object shapes and semantic 
information. This hierarchical feature extraction 
reduces the complexity of image representation and 
enables the network to learn more discriminative 
features.

Understanding the structure of filters is the first step for 
measuring filter similarity.

The filter is a third-order tensor, W = [W]n×kh×kr .kh × kr 
is 3 × 3, 5 × 5 or 7 × 7 in general, and called the receptive 
field of a filter, which is symmetric according to the central 
pixel. n is the number of channels. There are two types of 
n in CNNs.

(1)	  In input layer, n is determined by the type of the input 
image, for RGB images, n=3, and for black and white 
images, n = 1.

(2)	  n is equal to the number of filters in other layers, and 
is also the input channel of the next layer after the 
convolution output.

Many filters constitute a convolutional layer, which is rep-
resented by a fourth-order tensor, L = [L]n×kh×kr×m . m is the 
number of filters of a convolutional layer. As show in Fig. 1.

Convolution is the mathematical operation for two 
real variable functions [21]. The convolution operation is 
represented by " ∗".

In CNN terminology, the first parameter x of the 
convolution is usually called the input, and the second 
parameter w is called the filter weight. The output f (t) is 
called the feature map.

The pixels in a local area of the input image are convolved 
into each corresponding pixel in the output matrix, where the 
element of the matrix is the weight. The convolution opera-
tion is shown in Fig. 2 and Eq. (1). x , w and o represent the 
input, the filter weight and the output, respectively.

Convolution is that the filter slides on the input data from 
the upper left corner, and multiplies and sums with the 
corresponding position data to get an output value. The filter 
then moves to the right to do the same operation. And so on, 
from left to right, from top to bottom, to get the feature map 
of the filter output.

Filters act on the local area of an image to obtain the local 
features through the convolution operation. A filter containing 
n channels forms an output channel by aggregating the n 
feature maps produced by convoluting along the height and 
width directions. Each dimension of the filter tensor represents 
different information. This is the reason why computing 
a score from a tensor loses dimensional information. 
Convolution is the dot product of the tensor slice and the 
pixels of the corresponding image area. Because a filter 
slides a small step (a pixel) on an image when convoluting, 
the image pixels of two adjacent sliding windows are usually 

(1)f (t) = (x ∗ w)(t)

(2)

O12 = x12 ⋅ w11 + x13 ⋅ w12 + x14 ⋅ w13

+ x22 ⋅ w21 + x23 ⋅ w22 + x24 ⋅ w23

+ x32 ⋅ w31 + x33 ⋅ w32 + x34 ⋅ w33

Fig. 1   Structure of convolution layer
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highly similar. The filters that perform convolution operation 
on the same spatial position of the image are also high similar. 
Mapping a filter tensor to a scalar ignores the differences 
caused by different spatial positions. We introduce how to 
calculate the filter similarity in the next section.

3.2 � The Calculation of Filter Similarity

The filters in shallow convolutional layers are responsible for 
extracting basic structural features, such as texture features, 
from the input data. In contrast, filters in deeper layers of the 
model are designed to capture more abstract and semantic 
features, which are combinations of the basic structural 
features. As filters in different convolutional layers focus 
on extracting different categories of features, it becomes 
meaningful to compare the similarity of filters within each 
layer.Therefore, we compute the similarity of filters in each 
convolution layer independently and pruning layer by layer. 
By evaluating the similarity of filters at each layer, we can 
prune the network layer by layer, considering the specific 
characteristics and contributions of the filters within that 
layer. This approach ensures a more targeted and effective 
pruning process, as filters within the same layer are expected 
to have similar roles and provide redundant information.

Because the weight tensor has a large number of 
parameters, the computational complexity of filter similarity 
is O ( 2nkhkr ), where the parameters are the three dimensions 
of the weight tensor. It is necessary to find an approach to 
efficiently calculating the similarity.

The filter similarity is defined by Eq. (3). 
Definition: Filter similarity ( FS ). The similarity between 

two filters ( W,W ′ ) is

(3)FS(WW �) =
1∑

n

∑
kh

∑
kr

���[W]n×kh×kr − [W]�n×kh×kr
���

where, [W]n×kh×kr represents the weight tensor of a filter. 
n, kh, andkr are the width, height and length of the weight 
tensor, respectively. 

∑
n

∑
kh

∑
kr

���[W]n×kh×kr − [W]�n×kh×kr
��� is 

the distance of filters.
Computing the distance between two filters requires 

performing a three-layer nested loop.

[W] and [W]� have 2nkhkr states, respectively. The 
calculation complexity of the filter similarity is O

(
2nkhkr

)
 . To 

obtain an efficient pruning algorithm, we employ dimension 
reduction to reduce the computational complexity. While it 
is possible that dimension reduction may alter the similarity 
values between filters, it is important to note that our 
objective is not to preserve the absolute similarity values, 
but rather to maintain the relative similarity relationships 
between filters. The primary aim of dimension reduction 
is to identify a subset of filters that exhibit similar 
characteristics. By focusing on the similarity relationships, 
rather than the exact similarity values, we can effectively 
reduce the computational complexity while still capturing 
the important structural information within the filters.

By employing dimension reduction, we aim to retain the 
essential similarity relationships between filters, allowing 
us to efficiently execute the pruning process. This approach 
enables us to strike a balance between computational 
efficiency and effective filter pruning.

for (i = 1; i ≤ n; i + +)

for
(
j = 1; j ≤ kh; j + +

)

for
(
k = 1; k ≤ kr; k + +

)

∑
n

∑
kh

∑
kr

|||[W]n×kh×kr − [W]�n×kh×kr
|||

Fig. 2   Convolutional operation
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One way to reduce the computational complexity is to 
reduce the dimensions of the weight tensor and then calcu-
late the distance. We reduce both the height kh and width 
kr of the tensor to 1, preserving the channel n dimen-
sion. After tensor dimension reduction, the weight tensor 
becomes a vector containing the input channel informa-
tion. The method of finding the average value is used to 
compress kh × kr to 1 × 1 and reduce a convolutional layer 
L = [L]n×kh×kr×m to a two-dimensional matrix F = [F]m×n . 
The weight tensor is transformed into the weight vector 
⇀

W =
(
w1,w2,…wn

)
 after tensor dimension reduction. The 

sum of weights is

The weight of the ith filter is represented as 
⇀

Wj = (wi1,wi2,⋯ ,win) . We have

Each row of matrix F represents a filter, and each column 
represents a channel dimension of the filter. wij represents the 
value of the jth dimension of the i th filter. Filter similarity 
can be derived from the distance between the row vectors 
using Eq. (5).

⇀

Wi and 
⇀

Wj are the weights of the ith and jth filters. d(⋅) is the 
distance function, which is Manhattan distance and easy to 
calculate.

From Eqs. (5) and (6) we have

This means dimension reduction did not change 
the similarity relationship between two filters. For 
three filters Wi,Wj, andWk , if FS(WiWj) < FS(WiWk) , we 
h ave  

(
kh × kr

)
FS(WiWj) <

(
kh × kr

)
FS(WiWk) , w h i ch  i s 

(4)
∑ ⇀

W
n
=

1

k
h
× k

r

∑∑∑
[W]

n×kh×kr

F =

⎡⎢⎢⎢⎣

w11 w12 ⋯ w1n

w21 w22 ⋯ w2n

⋮ ⋮ ⋮

wm1 wm2 ⋯ wmn

⎤⎥⎥⎥⎦

(5)FS

(
⇀

Wi

⇀

Wj

)

=
1

Dij

=
1

d

(
⇀

Wi,
⇀

Wj

)

(6)
d

(
⇀

Wi,
⇀

Wj

)
=
∑||||

⇀

Wi −
⇀

Wj

|||| =
∑
n

|||win − wjn
|||

s.t.0 ≤ i ≤ m, 0 ≤ j ≤ m

(7)
FS

�
⇀

Wi

⇀

Wj

�

=
1

∑����
⇀

Wi −
⇀

Wj

����
=

1

1

kh×kr

∑∑∑���
�
Wi

�
−
�
Wj

����
=
�
kh × kr

�
FS(WiWj)

FS

(
⇀

Wi

⇀

Wj

)

< FS

(
⇀

Wi

⇀

Wk

)

 . This means that the similarity 
relationship among a set of filters is not changed. Only the 
channel dimension is left after the dimension reduction. The 
computational complexity of the similarity of m filters is 
O(m2n) , which is orders of magnitude efficient than before 
dimension reduction.

3.3 � Filter Clustering

With the efficient calculation of filter similarity, we are now 
ready to discuss filter clustering. Filter clustering involves 
partitioning the filters into different categories, where filters 
within the same category exhibit a high degree of similarity. 
The process of the clustering includes the following steps: (1) 
Initialization: each filter is initially considered as a separate 
category. The Manhattan distance between pairs of filters is 
computed, resulting in a distance matrix, D = dij ; (2) Merge 
categories: The two categories with the minimum distance are 
merged into a new category; (3) Calculate average distance: 
the average distance between the new category and the other 
categories is calculated; (4) Iteration: Steps 2 and 3 are 
repeated until the clustering ends. More details can be seen 
in Algorithm 1.

The Cnum represents the number of clusters formed 
during the filter clustering process. It indicates the total 
number of categories or clusters into which the filters 
have been partitioned based on their similarity. CP and 
Cq indicate two categories containing p and q filters, 
respectively. Gpq is the category distance and calculated by 
averaging of the filter distances across the two categories 
as described by Eq. (8).

The output of Algorithm 1 is a set of categories representing 
the clustered filters, as well as the number of clusters that 
have been formed. However, to successfully conduct filter 
clustering, it is necessary to determine either the distance 
threshold or the number of clusters required.

In our approach, we make use of the distance threshold as 
the end condition for the algorithm. The distance threshold 
can be adaptively adjusted based on the desired compression 
rate. This provides a flexible and efficient way to control the 
pruning process and achieve the desired trade-off between 
model size reduction and accuracy preservation.

Using the distance threshold, our method ensures that the 
pruning process is adaptive and can be fine-tuned accord-
ing to specific requirements. This allows for a more nuanced 
approach to filter clustering, as it adjusts the threshold based 
on the desired compression rate, leading to effective pruning 
and improved model efficiency.

(8)Gpq =
1

pq

∑
i∈Cp

∑
j∈Cq

Dij
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Algorithm 1   Filter clustering

Algorithm 1 initializes each filter as a class to create a 
distance matrix, calculates the distance between the filters, 
merges the nearest class greater than the distance thresh-
old, and updates the distance matrix iteratively until the end 
of the clustering. Algorithm 1 contains two nested loops, 
the time complexity of the first loop is O (m), and the time 
complexity of the second loop is O (m2), so the overall time 
complexity is O (m2), where m is the number of filters. In 
addition, the algorithm also includes the calculation of dis-
tances between filters and clustering operations, the time 
complexity of these operations depends on the specific dis-
tance calculation method and clustering algorithm. There-
fore, the time complexity of Algorithm 1 can be represented 
as O (m2) or high-order complexity.

For the selection of the Manhattan distance, it is a com-
monly used metric for measuring similarity in filter prun-
ing because it is a suitable method for comparing filter 
responses. The Manhattan distance is advantageous for 
measuring filter similarity because it considers the absolute 
differences between elements of two filters. This character-
istic allows it to effectively capture the structural similarity 
between filters by focusing on their respective filter weight 
values. In contrast, other distance metrics such as Euclid-
ean distance or cosine similarity may emphasize overall 

distance or angle between filters, which may not represent 
their structural similarity as effectively. Using the Manhat-
tan distance, the method can better distinguish filters with 
similar structural characteristics, facilitating more accurate 
clustering and pruning.

In Algorithm 1, the use of the Manhattan distance as 
the distance metric for merging clusters is based on the 
following characteristics and principles:

Manhattan distance is a simple and intuitive distance 
metric. It measures the distance between two vectors by 
calculating the sum of the absolute differences of their 
corresponding elements. This distance metric is easy to 
understand and compute.

Manhattan distance is suitable for handling high-
dimensional data. In convolutional neural networks, weight 
vectors are typically high-dimensional, and therefore, the 
Manhattan distance can effectively measure differences 
between different weight vectors.

Manhattan distance can provide better clustering effects 
when merging clusters.Using the Manhattan distance, similar 
weights can be clustered together, leading to better weight-
pruning effects. This is because the Manhattan distance can 
capture the absolute differences between weights, making it 
more likely for similar weights to be merged together.
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In summary, the selection of the Manhattan distance 
as the distance metric for merging clusters is based on its 
simplicity, applicability, and robustness to outliers. Using 
the Manhattan distance, better weight clustering and pruning 
effects can be achieved, thereby improving the performance 
of the adaptive clustering pruning algorithm.

3.4 � Adaptive Pruning

Adaptive CNN pruning is based on the filter clustering, 
removing the filters in the same category, and retaining only 
one of them. The number of clusters determines the size of 
the pruned network. The problem solved by CNN pruning is 
minimizing the loss and the number of clusters. We define 
the problem as an optimization over the filter distances 
that incorporates conflicting desires of minimizing the loss 
and minimizing the number of distances (clusters).In the 
context of adaptive CNN pruning, the process involves filter 
clustering, where filters belonging to the same category are 
pruned, and only one filter is retained as a representative. 
The number of clusters directly impacts the size of the 
pruned network. The key problem addressed by CNN 
pruning is to find an optimal balance between minimizing 
the loss incurred by the pruning process and minimizing the 
number of distances or clusters produced.

To tackle this problem, we define it as an optimization 
task over the filter distances, taking into account the 
conflicting objectives of loss minimization and cluster 
maximization. The goal is to find an optimal configuration 
that simultaneously reduces the network size while 
preserving accuracy.

We can solve this problem by introducing Lagrange 
multipliers and penalty terms to construct the Augmented 
Lagrangian Function. The Augmented Lagrangian Function 
is a powerful tool that can help us update parameters during 
the iteration process, leading to faster convergence to the 
optimal solution.

First, we need to understand the concepts of Lagrange 
multipliers and penalty terms. Lagrange multipliers are 
auxiliary variables used to construct the Augmented 
Lagrangian Function, and they help maintain the convexity 
of the objective function during the optimization process. 
Penalty terms are additional terms that can enforce certain 
constraint conditions in the optimization problem.

When constructing the Augmented Lagrangian Function, 
we incorporate Lagrange multipliers and penalty terms into 
the cost function, resulting in an optimization problem that 
contains more information. The solution to this optimization 
problem will help us find the optimal solution to the original 
problem.

We define the cost function for clustering as P ∶ Rn
→ R+ , 

P(d) =
∑m

i=1
p
�
di
�
 satisfies P(0) = 0 and P(d) > 0 if d ≠ 0 , 

where d is the filter distance and P(d) is the number of filter 
distances. Equation (9) shows the loss function L(d) in the 
constraint form.

We use the Augmented Lagrangian method to 
transform it into a constrained optimization problem. By 
introducing Lagrange multipliers and penalty terms, the 
Augmented Lagrangian Function, as shown in Eq. (10), 
is constructed. In the process of solving the Augmented 
Lagrangian Function, an iterative computation method is 
employed. Equations (11–16) represent the iterative process, 
describing the specific steps and update rules for using 
the Augmented Lagrangian method to solve constrained 
optimization problems. Through iterative computation, the 
optimal solution d is obtained. During the computation, λ 
is calculated using the update formula and θ is computed 
based on the updated λ. Ultimately, the relatively optimal 
filter distance d and variable θ are obtained. These optimal 
solutions will help us achieve better performance in practical 
problems.

Given a variable � , d − �=0, � ≥ 0, and satisfying 
P(�) ≤ c , we have

Equation  (10) represents the Augmented Lagrangian 
Function, where L(d) is the original loss function, λ is the 
Lagrange multiplier, and μ is the penalty parameter. The 
objective of this function is to transform the constrained 
optimization problem into an unconstrained optimization 
problem by introducing Lagrange multipliers and penalty 
terms.

The optimal d can be obtained by d
∗ = argmin

d
L(d) . �k

i
 are 

calculated by the update formula from Eqs. (11) to (13). k is 
calculated by Eq. (14). After k iterations, dk is the optimal 
solution.

(9)mindL(d) s.t.P(d) ≤ c

(10)

L(d, �, �,�) = L(d) −

m∑
i=1

�i
(
di − �i

)
+ �

m∑
i=1

(
di − �i

)2
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k
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k

)
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d
k
)
−

m∑
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i
∇
(
d
k

i
− �k

i

)

+
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(
d
k

i
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i
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(
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)
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(
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∇
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From the Eq. (14) we have

Equation  (11) represents the update of parameters d 
and θ in each iteration by computing the gradient of the 
Augmented Lagrangian Function to minimize the function.

Equation  (12) calculates the next iteration of the 
Lagrange multiplier based on the gradient of the Augmented 
Lagrangian Function and the update rule for the Lagrange 
multiplier.

Equation (13) provides the update rule for the Lagrange 
multiplier to compute the value for the next iteration.

Equations  (14) and (15) describe how the variables 
are updated in each iteration to minimize the Augmented 
Lagrangian Function. The max function in Eq. (15) ensures 
that the value of θ satisfies the constraint.

Equation  (16) defines an auxiliary function used to 
compute the update process for parameter d. Different 
calculation methods are chosen based on different 
conditions to ensure that the updated parameter d satisfies 
the constraint.

In summary, Eqs. (10–16) describe how the Augmented 
Lagrangian method updates the parameters d and θ in each 
iteration and how the Lagrange multiplier is updated to 
solve constrained optimization problems.

We use the Augmented Lagrangian optimization 
method to calculate d and � , as shown in Algorithm 2. 
d and � are the relative optimal solution. We set the 
compression rate parameter to control the filter pruning 
rate and, in the adaptive CNN pruning algorithm, obtain 
the pruned optimal solution. Algorithm 2 contains a loop, 
the number of iterations depends on the quantity of � . In 
each iteration, distance minimization calculation and some 
simple mathematical operations are required. Therefore, 
the time complexity of Algorithm 2 mainly depends on the 

(14)

(
dk, �k

)
= argmin

d,�
L�(d, �) = argmin

d,�
P(d) +

m∑
i=1

{
−�i

(
di − �i

)
+ �

(
di − �i

)2}

= argmin
d,�

P(d) + �

m∑
i=1

{(
di − �i −

�i

�

)2
}

s.t. �i ≥ 0, i = 1,⋯ ,m

(15)�k
i
= max

(
dk
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�i

�
, 0

)

(16)
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d

p(d) +
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i=1

Ψ
�
di, 𝜆i,𝜇

�

Ψ
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=

⎧
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−𝜆idi + 𝜇d2
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𝜆i

𝜇
< 0,

−
𝜆2
i

𝜇
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.

complexity of distance minimization calculation, which 
can be represented as O(k), where k is the quantity of �.

Algorithm 2   The Augmented Lagrangian method

Adaptive CNN pruning framework consists of two key 
components: setting the parameters of the compression 
rate and determining the variable distance threshold (d).

(1)	  Parameters of the Compression Rate

The compression rate serves as an evaluation metric for 
network compression. It represents the ratio of the initial 
number of filters in the network to the number of filters 
remaining after pruning. However, pruning filters based 
on a fixed compression rate alone may not result in the 
desired network performance, and determining appropriate 
thresholds can be challenging.

To address this, we introduce a parameter of the 
compression rate ( � ) to control and maintain the 
compression rate within a specified range during the 
pruning process. By adjusting � , we gain better control 
over the compression level, allowing for more fine-tuned 
and expected performance outcomes.

The parameter � plays a crucial role in the process of 
filter clustering. It is primarily used to dynamically adjust 
the distance threshold, thereby controlling the number of 
clusters. By cleverly adjusting � , we can effectively control 
the granularity and quantity of clusters, making them more 
adaptable to actual requirements. First, let us delve into 
the impact of � on the granularity and quantity of clusters. 
When � is small, it leads to more clusters. This is because 
a smaller � means that we have stricter requirements for 
similarity measurements within the dataset, and only 
data points with small distances will be assigned to the 
same cluster. As a result, the number of clusters will 
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increase, and the number of data points in each cluster 
will be relatively small. However, when � is large, it may 
result in fewer but more widespread clusters. A larger � 
means that we have looser requirements for similarity 
measurements within the dataset, and data points with 
larger distances will also be assigned to the same cluster. 
As a result, the number of clusters will decrease, but the 
number of data points in each cluster will be relatively 
large. In conclusion, by adjusting this key parameter � , we 
can make the filter clustering method adaptable to different 
application scenarios. In practical applications, choosing 
the appropriate � value is crucial because it directly affects 
the quality and effectiveness of clustering. In this way, the 
filter clustering method can provide us with more flexible 
and efficient clustering services.

By precisely adjusting � , a more accurate trade-off 
between compression rate and performance preservation can 
be achieved. A smaller � may lead to a higher compression 
ratio but could sacrifice some performance, while a larger � 
may preserve more information, aiding in maintaining the 
model’s performance. Therefore, by adjusting the value of � , 
the optimal adjustment parameter � can precisely influence 
the trade-off between compression rate and performance 
preservation according to specific application requirements 
and performance demands. The specific impacts are as 
follows:

Factors affecting the compression rate: When � is small, 
the similarity threshold is low, resulting in more filters being 
aggregated into the same category, thereby increasing the 
number of filters retained after pruning and improving the 
compression rate. Conversely, when � is large, the similarity 
threshold is high, leading to fewer filters being aggregated 
into the same category, reducing the number of filters 
retained after pruning and lowering the compression ratio.

Factors affecting performance preservation: When � 
is small, due to the retention of more filters, the model’s 
performance may be relatively better as more parameters 
and features are preserved, but it may also increase 
computational and storage overhead. Conversely, when � 
is large, due to the retention of fewer filters, the model’s 
performance may be less affected as the model’s complexity 
and storage requirements decrease, but it may also lose some 
feature information, leading to performance degradation.

Balancing compression rate and performance 
preservation: Based on specific application requirements 
and performance demands, the compression rate and 
performance preservation can be balanced by adjusting � . 
If a higher compression rate is required, a smaller � can be 
chosen to retain more filters and improve the compression 

rate. If higher performance preservation is required, a larger 
� can be chosen to preserve more feature information and 
reduce performance loss.

Therefore, by adjusting the parameter � , the trade-off 
between compression rate and performance preservation 
can be precisely influenced. Based on specific application 
requirements and performance demands, suitable values of � 
can be flexibly chosen to achieve the best compression effect 
and performance preservation results.

In general, the number of pruned filters is set to 
50–75% of the original number. The ratio of the total 
number of filters Fnum to the parameter � represents the 
range of the number of pruned filters, Fnum∕� . If � = 2 , 
Fnum∕� represents the compression rate of 50%; Fnum∕2� 
represents the compression rate of 75%. The number 
of clusters Cnum ∶ Cnum = P(d) satisfies the inequality 
Fnum∕𝛿< Cnum < Fnum∕2𝛿 . That is, Cnum is between 50% and 
75% of the number of filters, so that the number of filters 
preserved according to clusters satisfies the range of the 
compression rate.

(2)	  Determination of the Variable Distance Threshold (d)

The variable distance threshold (d) plays a crucial role 
in the filter clustering process. It determines the similarity 
threshold for merging filters into clusters. To tackle the 
challenge of selecting an optimal threshold, we employ the 
augmented Lagrangian optimization method. By iteratively 
adjusting and optimizing d, we can dynamically determine 
the appropriate number of clusters based on specific 
performance requirements.

APSSF does not use the fixed distance threshold to 
determine the number of clusters, instead, automatically 
adjusts the distance threshold during clustering according to 
the parameters of the compression rate. Let d be the distance 
threshold and determine whether the number of clusters is 
within the range of compression rate during the clustering. 
During each clustering iteration, when the number of the 
cluster is greater than Fnum∕� , the compression rate is lower 
than 50%, and the number of clusters is too large, so the d is 
increased. When the number of clusters is less than Fnum∕2� , 
the compression rate is higher than 75%, and the d should be 
reduced. The change rate for d is set to � . We use � = 0.001 
according to the experimental results. We retain the first 
filter in each class Ci according to the filter clustering results.

The adaptive determination of the variable distance 
threshold (d) is a key aspect in the adaptive clustering 
pruning algorithm, as it determines the conditions for 
merging categories. Choosing the appropriate distance 
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threshold can affect the clustering effect and the extent 
of pruning. The change of d was determined by the � , the 
following are the reasons for choosing � = 0.001 and basic 
principles:

The value of � should be small enough to merge similar 
weights. A smaller � value can ensure that only very close 
weights are merged together, thereby maintaining a higher 
clustering quality. At the same time, the value of � should 
not be too small to avoid over-merging weights, leading to 
information loss and performance degradation. A larger � 
value may lead to over-pruning, thereby affecting the mod-
el’s performance. Through experimentation and accumulated 
experience, the value of � = 0.001 has been found to pro-
vide good clustering and pruning effects in many cases. This 
value has been proven to be a reasonable choice in practice. 
It is important to note that the specific value of d may vary 
due to differences in datasets, tasks, and models. Therefore, 

choosing the appropriate value of � requires adjustment and 
optimization based on specific circumstances.

In summary, the selection of � = 0.001 is based on con-
siderations of clustering quality and pruning effects. This 
value is determined through experiment and experience, 
and can be considered a reasonable choice for the adaptive 
clustering pruning algorithm. However, adjustments and 
optimizations may be necessary to achieve the best results 
for different datasets and tasks.

Adaptive CNN pruning algorithm is shown in 
Algorithm  3. Algorithm  3 contains multiple calls to 
Algorithm 1 and Algorithm 2, so its time complexity 
depends on the number of these calls. In the worst case, 
the time complexity of Algorithm 3 may be relatively 
high, depending on factors such as the number of filters 
and clusters.

Fig. 3   The overview of the APSSF method. The APSSF method first 
performs dimensionality reduction on the filter tensor F, reducing it to 
a vector W. Then, it automatically determines the similarity distance 

based on the Augmented Lagrangian method and compression rate 
parameter, achieving adaptive clustering, and conducts pruning based 
on the clustering results
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Algorithm 3   Adaptive CNN pruning

The overview of the proposed APSSF method is pre-
sented in Fig. 3.

The APSSF pruning method achieves a high 
compression rate and reduces a large number of 
parameters. Due to the adoption of efficient similarity 
calculation and clustering methods, the time complexity of 
the APSSF algorithm is relatively low, which can improve 
training speed. For example, in the training of VGG-16 
with Epoch = 200 and batch = 128, the training time before 
pruning was 5800s, and after pruning, the training time 
decreased to 3000s, resulting in a reduction of 48.28% in 
training time.

The combination of parameterized compression rates 
and adaptive determination of the distance threshold in 
our APSSF framework facilitates effective and efficient 
filter pruning. This approach not only provides improved 
control over network compression but also ensures that the 
desired performance outcomes are achieved.

The pruned model resulting from the application of 
APSSF is referred to as the indicator model. In Sect. 4 
of the paper, we design an original model with identi-
cal depth, width, number of filters, and structure as the 
indicator model. By training both the indicator model and 
the small original models from scratch, we compare their 
performances.

Remarkably, the experimental results show that the 
indicator model significantly outperforms the small 
original models in terms of performance. This observation 
demonstrates the effectiveness and superiority of the 
APSSF-based pruning method in producing a pruned model 
that retains superior performance compared to its smaller, 
original counterparts.

These findings highlight the benefits of employing APSSF 
for filter pruning, as it not only preserves performance but 
also achieves better results compared to smaller networks 
designed from scratch. Thus, APSSF proves to be a powerful 
approach for achieving efficient network compression 
without compromising on performance.

The adaptive CNN pruning algorithm has some 
relationships and differences with existing pruning methods. 
The adaptive CNN pruning algorithm is a method that 
integrates the ideas of weight pruning and neuron pruning. 
It achieves filter pruning by clustering similar filters effects 
by merging categories with adaptive distance thresholds. 
The adaptive CNN pruning algorithm can be seen as an 
improved pruning method, as it introduces adaptability 
based on traditional pruning methods, making it better suited 
for different datasets and tasks.

The adaptive CNN pruning algorithm has certain advan-
tages in terms of computational efficiency. Using clustering 
to merge similar filters, it can reduce computational and stor-
age requirements. Compared to traditional pruning meth-
ods, the adaptive CNN pruning algorithm can complete the 
pruning process more quickly. In addition, the algorithm can 
further improve computational efficiency through parallel 
computing. Parallel computing can be used to accelerate the 
execution of the algorithm when merging categories and 
pruning filters.

The adaptive CNN pruning algorithm also has certain 
advantages in maintaining performance. By selecting 
distance thresholds reasonably, the algorithm can effectively 
prune while maintaining high model performance. This is 
because it can preserve important filters, thereby reducing 
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the impact on model performance. Furthermore, the adaptive 
CNN pruning algorithm can further improve performance 
through fine-tuning. After pruning, the model can be 
retrained using fine-tuning techniques to recover or enhance 
its performance.

4 � Experiments

This section focuses on evaluating the effectiveness of 
APSSF by introducing the evaluation indicators, datasets, 
models, and performing an analysis of the experimental 
results. First, we present the evaluation indicators that were 
used to assess the performance of the pruned model. (See 
the Sect. 4.1). These indicators could include the accuracy, 
the number of parameters and the floating-point operations. 
Next, we describe the models used in the experiments. This 
can include details about the architecture, number of layers, 
filter sizes, and other relevant specifications. The original 
model and the indicator model pruned using APSSF are 
compared in terms of their performance and efficiency (See 
the Sects. 4.2 and 4.3). Finally, we analyze the experimental 
results obtained from evaluating the indicator network 
pruned by APSSF. This analysis may involve comparing its 
performance with that of the original model and the small, 
newly designed models. (See the Sect. 4.4).

4.1 � Evaluation Indicator and Datasets

The evaluation of pruning CNN involves several indicators, 
including accuracy, the number of parameters, and the 
floating-point operations. Here is a brief explanation of each 
indicator:

(1)	  Accuracy (Acc): Acc is an important indicator to 
measure the performance of a model. Pruning inevita-
bly causes performance degradation of the model and 
reduces the accuracy. A good pruning method not only 
has little impact on accuracy, but also even can restore 
accuracy after fine-tuning.

Its calculation formula is:

SC is number of correctly classified samples, ST is total 
number of samples.

Here, the number of correctly classified samples refers 
to the quantity of samples that the model accurately classi-
fied during the prediction process, while the total number 
of samples refers to the overall number of samples in the 
dataset. Accuracy is a crucial metric for assessing the overall 
precision of a model, providing a comprehensive evaluation 
of the model’s classification ability for each category.

During the training process, Accuracy can be used 
to monitor the model’s performance. By calculating the 
Accuracy at the end of each training epoch, it is possible 
to understand the model’s classification accuracy on the 
training set and adjust the model’s parameters accordingly 
to improve performance. Furthermore, Accuracy can also 
be used to evaluate the classification accuracy of different 
models on the test set, enabling comparisons of different 
model performance.

In summary, as a comprehensive performance evaluation 
metric, Accuracy is crucial for assessing the classification 
accuracy of a model across the dataset, providing important 
information about the model’s overall performance.

(17)Acc =
SC

ST

Fig. 4   Example diagram of the input image
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(2)	  Number of Parameters (Parameter): This indicator 
quantifies the size of the model by counting the total 
number of parameters. Pruning aims to reduce the num-
ber of parameters to achieve model compression while 
maintaining performance.

Assuming the input data size is N × N , the filter size is 
F × F , the number of input data channels is Cin , and the 
number of filters is Cout , the calculation formula for the num-
ber of parameters is as follows:

Here, Cin × F × F represents the number of parameters for 
each filter, and Cout represents the number of filters.

In a convolutional layer, each filter has Cin × F × F 
parameters, and there are a total of Cout filters, thus the num-
ber of parameters is the product of these two quantities.

It is important to note that this parameter count only 
considers the parameters of the convolutional layer and does 
not take into account the parameters of other types of layers, 
such as fully connected layers.

(3)	  Floating-Point Operations (FLOPs): FLOPs measure 
the computational complexity and speed of model 
operations. Decreasing the number of FLOPs helps 
to clarify the computational efficiency and resource 
requirements of a model. We want decrease of FLOPs 
for a model would make this parameter clearer.

In CNN, FLOPs encompass the operations of 
convolutional layers, pooling layers, and fully connected 
layers. The calculation formulas are as follows:

Calculation formula for FLOPs in convolutional layers:
Assuming the size of the input feature map is H ×W  , 

the size of the convolutional kernel is K × K , the number 

(18)Number of Parameters = Cin × Cout × F × F

of input channels is Cin , and the number of output channels 
is Cout , the FLOPs calculation formula for a convolutional 
layer is:

Calculation formula for FLOPs in pooling layers:
Assuming the size of the pooling layer is P × P and the 

number of input channels is Cin , the FLOPs calculation for-
mula for a pooling layer is:

Calculation formula for FLOPs in fully connected layers:
Assuming the input feature dimension of the fully con-

nected layer is Din and the output feature dimension is Dout , 
the FLOPs calculation formula for a fully connected layer is:

By considering the FLOPs calculation formulas for 
the three types of layers mentioned above, it is possible 
to determine the total FLOPs for the entire CNN model. 
Calculating FLOPs allows for the assessment of model 
computational complexity, enabling evaluations of model 
efficiency on different hardware platforms. This is crucial 
for deploying models on resource-constrained devices or 
carrying out model optimization. The number of parameters 
and FLOPs can be used to assess model complexity, 
providing important references for model selection and 
design. The number of parameters reflects the model’s scale 
and learning capacity, while FLOPs measure the model’s 
computational cost and efficiency. Striking a reasonable 
balance between them can enhance the model’s performance 
and efficiency.

The experiments are performed using the Keras platform, 
a popular deep learning framework. Two well-known CNN 
architectures, VGG-16 and ResNet-34/50, are selected for 
evaluation. CIFAR10 [22] and CIFAR100 [23] datasets are 
used on VGG-16. ResNet-50 uses CIFAR10, CIFAR100, 
and ImageNet [24]. The CIFAR10 has 60,000 color images 
of 32 × 32 pixels with 50,000 training images and 10,000 
test images for a total of 10 classifications. CIFAR100 is 
similar to CIFAR10, which has 100 classifications, with 500 
training images and 100 test images in each classification. 
ImageNet about 1.2 million training images, 50,000 valida-
tion images, 150,000 test images and 1000 class tags. As 
show in Fig. 4.

These datasets are widely used in the research community 
and provide diverse and comprehensive evaluation scenarios 
for the pruning process. By evaluating the accuracy, 
parameter count, and FLOPs of the pruned models on these 
datasets, we can successfully demonstrate the effectiveness 
and efficiency of the APSSF pruning method.

(19)FLOPsConv = 2 × H ×W × Cin × Cout × K × K

(20)FLOPspooling = H ×W × Cin × K × K

(21)FLOPsConv = 2 × Din × Dout

Table 1   Comparison of VGG-16 on CIFAR10 pruning methods

Method Acc ± Parameter (M) Parameter ↓ 
(%)

Flops ↓ (%)

GAL 
(λ = 0.05)

 + 1.93 3.36 77.60 39.60

GAL (λ = 0.1)  + 3.18 2.67 82.20 45.20
GA  + 0.03 2.35 84.00 56.20
LWM  + 0.13 5.40 64.00 34.20
CSHE  – 0.02 2.64 82.10 69.00
ICP ( �=0.010)  – 0.40 1.94 86.83 70.66
ICP ( �=0.015)  – 0.22 0.91 93.82 79.94
ICP ( �=0.020)  + 0.31 0.54 96.33 86.20
APSSF-2  – 0.02 2.39 84.35 95.38
APSSF-4  – 0.03 1.19 92.21 97.72
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4.2 � Pruning VGG‑16

We perform the algorithm validation on VGG-16. VGG-16 
is a classic deep learning model. The structure of the VGG-
16 includes the following components:

13 convolutional layers, where each filter has a receptive 
field size of 3 × 3;

3 fully connected layers;
5 pooling layers, all using 2 × 2 maximum pooling.
It is important to note that both the convolutional lay-

ers and fully connected layers contain parameters, also 
referred to as weight layers. All of the pooling layers have 
no parameters. Experiments are performed on CIFAR10 and 
CIFAR100 datasets with input 3-channel images of 32 × 32.

By evaluating the APSSF pruning algorithm on VGG-
16, specifically on the CIFAR10 and CIFAR100 datasets, 
we can assess its effectiveness in preserving accuracy and 
reducing model parameters for the given architecture and 
datasets.

4.2.1 � Pruning VGG‑16 on CIFAR10

In our experiments, we set the parameter of compression rate 
( � ) to 2 (APSSF-2) and 4 (APSSF-4), respectively. δδ is set 
manually based on the desired level of model compression 
and performance preservation. These values were chosen 
considering the trade-off between model size reduction and 
accuracy preservation. During the experiment, when the 

Table 2   Performance of VGG-16 with � = 2 & � = 4 on CIFAR10

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_13 0.00 13.46 11.85 74.08  – 0.01 13.23 13.36 74.50
Conv_12  – 0.02 11.03 27.77 78.71  – 0.01 11.05 27.64 78.72
Conv_11  – 0.06 9.59 37.20 81.50 0.00 8.82 42.24 83.01
Conv_10  – 0.01 6.76 55.73 86.97  – 0.03 6.59 56.84 87.32
Conv_9 0.00 5.29 65.36 89.80 0.00 4.38 71.32 91.57
Conv_8 0.00 3.99 73.87 92.32  + 0.02 3.04 80.09 94.16
Conv_7  – 0.01 3.42 77.60 93.41  + 0.02 2.38 84.41 95.42
Conv_6 0.00 2.97 80.55 94.28 0.00 1.82 88.08 96.49
Conv_5  – 0.02 2.67 82.51 94.86  – 0.01 1.49 90.24 97.14
Conv_4  – 0.02 2.52 83.50 95.14  – 0.02 1.32 91.36 97.46
Conv_3  – 0.01 2.43 84.09 95.28  – 0.01 1.24 91.88 97.62
Conv_2  – 0.03 2.41 84.22 95.36  – 0.05 1.20 92.14 97.70
Conv_1  – 0.02 2.39 84.35 95.38  – 0.03 1.19 92.21 97.72

Fig. 5   The number of filters for 
APSSF-2 on the CIFAR10 in 
VGG-16
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compression rate parameter is less than 2, the compression 
rate is small, while when the compression rate parameter is 
greater than 4, the accuracy loss is large. Therefore, the two 
values of 2 and 4 were finally selected. The results obtained 
from evaluating APSSF-2 and APSSF-4 on the CIFAR10 
dataset are as follows:

APSSF-2: The accuracy achieved by APSSF-2 is 84.26% 
on CIFAR10, which is only slightly lower (0.02) than the 
accuracy of the original model. The number of parameters 
is reduced by 84.35%, resulting in a significant decrease in 
model size. The FLOPs are reduced by 95.38%, indicating a 
substantial improvement in computational efficiency.

APSSF-4: The accuracy of APSSF-4 is 83.23%, which 
is 0.03 lower than the original model. The number of 
parameters is decreased by 92.21%, indicating a significant 
reduction in model size. Moreover, the FLOPs are reduced 
by 97.72%, demonstrating a substantial improvement in 
computational efficiency.

When comparing APSSF-2 and APSSF-4, both methods 
provide considerable reductions in model parameters and 
FLOPs compared to the original model. However, APSSF-2 
achieves slightly better accuracy compared to APSSF-4, 
indicating its effectiveness in preserving model performance.

Table 1 shows a performance comparison of APSSF with 
other pruning methods, further illustrating the superior per-
formance and efficiency of APSSF.

These experimental results demonstrate that APSSF 
outperforms existing pruning methods, achieving signifi-
cant reductions in model complexity while simultaneously 
maintaining a reasonable level of accuracy on the CIFAR10 
dataset.

Based on the comparison presented in Table 1, APSSF 
is compared with other state-of-the-art pruning methods, 
including GAL [25], GA [16], LWM [10], CSHE [18], and 
ICP [20]. APSSF achieves minor loss in accuracy compared 
to the original model. The accuracy reduction for APSSF-2 
is only 0.02, and for APSSF-4, it is 0.03. Although the accu-
racy of GA, LWM, GAL are increased, the strength of the 
model pruning is less than APSSF-4, the reduction rates 
of parameters and FLOPs are also much lower than that of 
APSSF-4. APSSF outperforms other methods in terms of 
parameter and FLOPs reduction rates. APSSF-4 achieves the 
highest reduction rates, indicating its strong pruning capabil-
ity. GAL, GA, LWM, CSHE, and ICP show less pronounced 
reductions in parameters and FLOPs compared to APSSF-4.

Taken together, the comparison demonstrates that 
APSSF achieves a better balance between accuracy and 
pruning strength compared to other methods. It effectively 
preserves accuracy while achieving substantial reductions 
in parameters and FLOPs. The compression rate of FLOPs 
in APSSF surpasses that of GAL, GA, LWM, CSHE, and 
ICP, further illustrating its efficiency in model compression.

Detailed performance changes of APSSF-2 and APSSF-4 
are presented in Table 2. The tables reveal that, at differ-
ent pruning strengths, both APSSF-2 and APSSF-4 show a 
notable loss in accuracy when pruning the first and second 
convolutional layers. This suggests that these two layers have 
limited parameter redundancy, resulting in accuracy reduc-
tions without significant reductions in model size.

Based on these findings, it can be inferred that pruning 
the first and second convolutional layers may not achieve a 
favorable balance between model size and accuracy. Thus, 
it may be more effective to refrain from pruning these 

Fig. 6   The number of filters for 
APSSF-4 on the CIFAR10 in 
VGG-16
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Fig. 7   Pruning cluster tree graph of VGG-16 on the CIFAR10
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particular layers to preserve higher accuracy while still 
achieving notable model compression.

This analysis emphasizes the importance of considering 
the specific characteristics and redundancy levels within dif-
ferent layers when performing model pruning. By carefully 
evaluating the trade-off between accuracy and model size 
reduction, we can optimize the pruning process to achieve 
the desired balance and enhance the overall efficiency of 
the model. Fig. 5 and Fig. 6 visually show the number of 
filters in APSSF-2 and APSSF-4 in the form of bar charts 
respectively. Through comparative analysis, we can find that 
the number of filters in both models decreased after filter 
pruning, especially the APSSF-4, and the number of filters is 
more obvious. This change means that the model effectively 
reduces the computational complexity and the number of 
model parameters while maintaining the high performance.

“Conv_X” represents the X-th convolutional layer in 
VGG-16. Acc ± is the percentage point of the change in 
network accuracy after pruning. “Parameter ↓” refers to the 
percent of parameter reduction. "Flops ↓" refers to the per-
cent of FLOPs reduction.

Figure 7 presents the cluster tree diagram of the first to 
fifth convolutional layers (Conv_1, Conv_2, Conv_3, Conv_4) 
for both APSSF-2 and APSSF-4. In this diagram, the X-axis 
represents the index of filters, while the Y-axis represents the 
distance between the categories. The vertical lines in the tree 
graph represent the distance between different categories. A 
greater distance between these vertical lines indicates a larger 
dissimilarity between the corresponding categories. This vis-
ual representation allows for a clear observation of the cluster-
ing process throughout the different layers. By analyzing the 
cluster tree graph, the clustering process can be discerned, 

Fig. 8   Cluster tree graph of the first convolution layer in VGG-16. 
The number of clusters is 28 when pruning the first convolution layer, 
as shown in the red dashed line. Filters are divided into 28 categories. 

The first filter in each category is preserved, and the rest are removed. 
The cluster cutoff is the red dashed line

Table 3   Performance of VGG-16 with � = 2 & � = 4 on CIFAR100

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_13  – 0.02 13.43 12.30 74.22 0.01 13.33 12.95 74.41
Conv_12  – 0.01 11.58 24.38 77.78 0.00 11.11 27.45 78.67
Conv_11 0.00 9.60 37.31 81.58  – 0.02 8.89 41.95 82.95
Conv_10 0.00 7.91 48.34 92.54 0.01 6.68 56.38 87.22
Conv_9  + 0.02 6.13 59.97 88.27 0.03 4.46 70.87 91.48
Conv_8  + 0.03 4.94 67.74 90.55 0.01 3.13 79.56 94.04
Conv_7  + 0.01 4.35 71.59 91.70 0.00 2.46 83.94 95.33
Conv_6  + 0.01 3.89 74.60 92.57 0.00 1.91 87.53 96.39
Conv_5 0.00 3.59 76.56 93.15  – 0.03 1.57 89.75 97.03
Conv_4  + 0.02 3.45 77.47 93.42  – 0.05 1.41 90.79 97.35
Conv_3  – 0.01 3.38 77.93 93.57  – 0.07 1.32 91.38 97.51
Conv_2  – 0.02 3.34 78.19 93.64  – 0.04 1.28 91.64 97.60
Conv_1  + 0.01 3.32 78.32 93.67  – 0.08 1.27 91.71 97.61
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showcasing how filters are grouped based on their similar-
ity. The branches of different colors in the graph represent 
different classes. Due to the large number of filters, only the 
20 nodes of filters are shown in Fig. 7. For example, in the 
APSSF-2_Conv_1 subgraph, the X-axis represents the index 
of filters, and the values in parentheses indicate the number 
of filter nodes included. There are a total of 28 clusters, Fig. 8 
is a detailed expansion of the APSSF-2_Conv_1 subgraphs. 
Cluster 1 includes the 37th filter, cluster 2 includes the 29th 
filter, cluster 3 includes the 33rd filter, and so on. In addi-
tion, cluster 21 comprises the 1st, 3rd, 7th, 8th, 9th, 10th, 
12th, 13th, 15th, 16th, 17th, 18th, 19th, 21st, 22nd, 23rd, 27th, 
30th, 31st, 32nd, 34th, 35th, 36th, 39th, 40th, 41st, 45th, 46th, 
47th, 49th, 54th, 55th, 56th, 57th, 58th, 61st, 63rd filters, and 

so forth, with cluster 28 encompassing the 48th filter. Based 
on the clustering results, the 64 filters are divided into 28 
clusters, which represent relatively independent subsets. This 
structure helps us better understand the features and distribu-
tion of the data. By observing the filters contained in each 
cluster, we can infer which filters have similar impact pat-
terns in the feature space. For example, cluster 21 contains 
37 filters, indicating that these filters have similar features 
in a certain feature space and can be classified into the same 
category or label. This helps us discover the correlations and 
interactions between data features. Based on the clustering 
results, we choose to retain the first filter in each cluster and 
prune the rest. The number of filters is reduced from 64 to 28 
in 1st convolutional layer.

Fig. 9   The number of filters for 
APSSF-2 on the CIFAR100 in 
VGG-16

Fig. 10   The number of filters 
for APSSF-4 on the CIFAR100 
in VGG-16
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In Fig. 8, the cluster tree graph of the first convolutional 
layer (Conv_1) in VGG-16 is shown. The graph reveals that 
when the clustering distance is set at 0.25 (indicated by the 
blue dashed line), the number of clusters is 5. This informa-
tion can serve as a manual reference for setting the fixed 
distance threshold and the number of clusters. However, in 
the process of filter pruning, it can be challenging to manu-
ally determine the appropriate distance threshold and the 
number of clusters. If there are too many cluster categories, 
the pruning strength may be weakened. On the other hand, 
having too few cluster categories may result in excessive 
pruning and loss of accuracy. To address this challenge, 
finding a suitable number of clusters dynamically based 
on the model’s parameters becomes essential. An adaptive 
approach can alleviate the need for manually setting thresh-
olds and conducting multiple tests, as it allows for automatic 
adjustment based on the desired compression rate.

Figure 8 also illustrates the pruning process of the first 
convolutional layer. The graph depicts that when pruning 
this layer, a total of 28 clusters are formed (as indicated 
by the red dashed line). Each category corresponds to a 
particular group of filters. Among these clusters, one filter 
from each category is preserved, while the remaining fil-
ters are removed. By dynamically determining the thresh-
old for cluster formation, the adaptive approach helps to 
optimize the pruning process and achieve a better balance 
between model size reduction and preserving accuracy.

Adaptive methods improve overall efficiency in model 
pruning in several aspects:

Reduction of computational complexity: Adaptive 
methods effectively reduce computational complexity by 
introducing techniques such as dimension reduction and 
dynamically adjusting distance thresholds. This makes 
computing similarity and clustering more efficient, thereby 
accelerating the model pruning process.

Flexibility and control: Adaptive methods allow param-
eters such as compression rate and distance threshold to 
be dynamically adjusted according to specific needs and 
performance requirements. This flexibility and controlla-
bility make the pruning process more intelligent, enabling 
adjustments based on specific situations and ultimately 
improving overall efficiency.

Preservation of relative similarity relationships: While 
reducing computational complexity, adaptive methods are 
still able to preserve important structural information and 
relative similarity relationships. This means that during 
the pruning process, although some absolute similarity 
values may be lost, the relative similarity relationships are 

Table 4   Performance of ResNet-34 with � = 2 on CIFAR10

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_35 0.00 18.90 11.32 72.12 0.00 17.75 16.71 75.51
Conv_33 0.00 16.49 22.63 75.74 0.00 14.20 33.37 79.64
Conv_30 0.00 14.71 30.98 80.45 0.00 11.53 45.90 82.85
Conv_28 0.00 14.11 33.79 85.54 0.00 10.64 50.08 87.43
Conv_26 0.00 13.52 36.56 88.36 0.00 9.75 54.25 92.46
Conv_24 0.00 12.91 39.42 91.53 0.00 8.85 58.47 95.04
Conv_22 0.00 12.31 42.24 92.71 0.00 7.95 62.70 96.43
Conv_20  + 0.01 11.71 45.05 93.87  + 0.01 7.05 66.92 97.59
Conv_17  + 0.01 11.26 47.17 94.25  + 0.01 6.38 70.06 98.23
Conv_15  + 0.02 11.11 47.87 95.32  + 0.01 6.16 71.10 98.35
Conv_13  + 0.02 10.95 48.62 95.57  + 0.02 5.93 72.18 98.58
Conv_11  + 0.02 10.80 49.32 95.66  + 0.02 5.71 73.21 98.61
Conv_8  + 0.02 10.69 49.84 95.71  + 0.02 5.54 74.01 98.70
Conv_6  + 0.03 10.65 50.03 95.75  + 0.03 5.48 74.29 98.75
Conv_4  + 0.04 10.61 50.22 95.80  + 0.04 5.43 74.52 98.80
Conv_2  + 0.04 10.58 50.36 95.84  + 0.04 5.37 74.80 98.88

Table 5   Comparison of ResNet-34 on CIFAR10 pruning methods

Method Acc ± Parameter (M) Parameter ↓ 
(%)

Flops ↓ (%)

GAL (λ = 0.5)  + 0.05 4.60 78.46 65.40
GAL (λ = 0.8)  + 0.08 5.85 72.60 45.20
GA  – 0.04 4.64 75.54 51.46
LWM  – 0.02 9.74 54.36 32.36
APSSF-2  + 0.04 10.58 50.36 95.84
APSSF-4  + 0.04 5.37 74.80 98.88
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maintained, effectively reducing the computational burden 
and improving overall efficiency.

In conclusion, adaptive methods effectively improve the 
overall efficiency of the model pruning process by reduc-
ing computational complexity, providing flexibility and 
control, preserving relative similarity relationships, and 
dynamically adjusting the clustering process, making the 
pruning process more intelligent, efficient, and effective.

4.2.2 � Pruning VGG‑16 on CIFAR100

A fixed compress rate does not apply for all convolutional 
layers. Because most architectures of CNN are designed for 

specific datasets, and the ability of extract the features of the 
convolution layers is not necessarily suitable for CIFAR10, 
CIFAR100, and other datasets. The static pruning strategy 
is suboptimal because each category requires only a few 
channels. A good pruning strategy should produce differ-
ent compression rates for each layer. APSSF sets a range of 
the compression rate within which the number of clusters 
is adaptively determined. The compression rate varies for 
each convolution layer after pruning. Tables 3 are the prun-
ing of VGG-16 on CIFAR100, respectively. Table 3 are the 
experimental results on CIFAR100. The results show that 
if the value of � is large, pruning those shallow convolu-
tional layers has a more significant impact on the accuracy. 

Fig. 11   The number of filters 
for APSSF-4 on the CIFAR10 
in RESNET-34

Fig. 12   The number of filters 
for APSSF-2 on the CIFAR10 
in RESNET-34
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Fig. 9 and Fig. 10 respectively compare the number of fil-
ters in each layer before and after VGG-16 pruning on the 
cifar100 dataset.

4.3 � Pruning ResNet

The VGG-16 is standard convolutional structures. The 
ResNet-34 increased the residual block compared to 
VGG-16, and it has more parameters and higher accuracy. 
In the research, only the standard convolutional layers in 
ResNet-34 were pruned, while the structure of the resid-
ual blocks remained unchanged. For the ResNet-34 on the 
CIFAR dataset, preprocessing includes the following steps:

Data type conversion: The loaded training and testing 
data is converted to the float32 type. This is because in deep 
learning models, 32-bit floating-point numbers are com-
monly used to represent data.

Label processing: One-hot encoding is applied to the 
labels of the training and testing sets. We convert category 
labels into the one-hot encoding format.

These preprocessing steps ensure the consistency of 
data format and compliance with the requirements of deep 
learning models, enabling subsequent model training and 
evaluation.

The learning rate (lr) is set to 0.0001, which is an essential 
hyperparameter controlling the step size of model parameter 
updates. A smaller lr typically means slower convergence 
speed, but it may lead to better results. The echop was set 
to 500. The lr decay is set to 1e-6, indicating that the lr 
decays exponentially at each update step. Momentum is set 
to 0.9, serving as a method to accelerate SGD and aiding in 

finding the optimal solution more quickly in the parameter 
space. Nesterov momentum is set to True, indicating the use 
of Nesterov momentum, which is an improved momentum 
method that converges to the optimal solution more quickly. 
The choice of these parameters is usually based on empirical 
observations and experimental results, and can be adjusted 
based on the specific problem and dataset.

4.3.1 � Pruning ResNet‑34 on CIFAR10

As demonstrated in Table 4, we conducted experiments by 
setting � to 2 (APSSF-2) and 4 (APSSF-4). The accuracy 
of the pruned network (APSSF-2) is increased by 0.04 
on CIFAR10. The number of parameters is reduced from 
17.75M to 5.37 M, reduced by 50.36%, and FLOPs is 
also reduced by 95.84%. Moreover, in our experiments, 
the accuracy of the APSSF-4 also increased by 0.04 on 
the CIFAR10. The number of parameters was reduced to 
5.37M, indicating a significant reduction of 74.80%. In 
addition, the FLOPs decreased by an impressive 98.88%

Comparing our method with others, such as GAL, GA 
[16], and LWM [10], as shown in Table 5, it is worth not-
ing that the FLOPs achieved by APSSF outperformed the 
other algorithms. Specifically, the FLOPs of APSSF-4 
showed a remarkable decrease of 98.88%, exhibiting a 
superiority of 33.48% over GAL (λ = 0.5) and a significant 
improvement of 47.42% over LWM. However, it is impor-
tant to consider that although the APSSF method showed 
slightly lower accuracy compared to GAL, its outstanding 
reduction in FLOPs highlights its competitiveness.

Table 6   Performance of ResNet-34 with � = 2 & � = 4 on CIFAR100

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_35 0.00 18.99 11.09 74.64  – 0.01 17.80 16.66 75.61
Conv_33  – 0.01 16.62 22.18 78.68  – 0.01 14.24 33.33 78.77
Conv_30  – 0.01 14.84 30.52 82.58  – 0.01 11.58 45.78 81.93
Conv_28  – 0.01 14.24 33.33 92.76  – 0.02 10.69 49.95 85.32
Conv_26  – 0.01 13.63 36.18 93.27  – 0.02 9.80 54.12 92.58
Conv_24  – 0.02 13.02 39.04 93.55  – 0.03 8.90 58.33 95.04
Conv_22  – 0.03 12.42 41.85 93.70  – 0.04 8.01 62.50 96.53
Conv_20  – 0.02 11.82 44.66 93.57  – 0.03 7.12 66.66 96.76
Conv_17  – 0.01 11.37 46.76 93.67  – 0.03 6.46 69.75 97.43
Conv_15  – 0.01 11.22 47.47 93.89  – 0.02 6.23 70.83 97.67
Conv_13  – 0.01 11.07 48.17 94.27  – 0.02 6.01 71.86 97.87
Conv_11 0.00 10.92 48.87 94.64  – 0.01 5.78 72.94 98.21
Conv_8 0.00 10.85 49.20 94.77 0.00 5.61 73.73 98.52
Conv_6  + 0.01 10.81 49.39 94.83 0.01 5.56 73.97 98.58
Conv_4  + 0.02 10.77 49.57 94.95 0.01 5.50 74.25 98.62
Conv_2  + 0.03 10.73 51.45 94.97 0.02 5.44 74.53 98.68
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Figures 11 and 12 show the number of filters before and 
after pruning for each layer when the � is set to 4 (APSSF-4) 
and 2 (APSSF-2). The horizontal axis represents the convo-
lutional layers, and the vertical axis represents the number of 
filters. The blue bars in the graph represent the number of fil-
ters before pruning, while the orange bars represent the num-
ber of filters after pruning. It is clear to see the changes in 
the number of filters for each layer before and after pruning.

In this case, the APSSF method adopts an adaptive strat-
egy to determine the number of clusters, and the pruning 
quantity of each layer automatically seeks a suitable value 
within the compression rate range. This is different from 
setting a fixed pruning ratio threshold because it allows 
each layer to determine the pruning quantity based on its 
own characteristics and data distribution, rather than simply 
applying a fixed compression rate. This adaptive pruning 
method can better adapt to the characteristics of different 
layers, thereby maintaining the performance and effective-
ness of the model after pruning. By automatically finding 
the appropriate pruning quantity, the APSSF method can 
achieve more efficient model pruning while maintaining 
model performance. This adaptability helps to improve 
the efficiency and accuracy of model pruning, making the 
pruned model more compact and efficient.

4.3.2 � Pruning ResNet‑34 on CIFAR100

In addition to the experiments conducted on the CIFAR10, 
we also evaluated our proposed method by setting � to 2 
(APSSF-2) and 4 (APSSF-4) on the CIFAR100. The results 
revealed that the accuracy of the APSSF-4 increased by 
0.02. Concurrently, the number of parameters decreased 
from 17.80 million to 5.44 million, representing a reduc-
tion of 74.53%. Furthermore, the FLOPs also underwent a 
significant decrease of 98.68%.

To provide a comprehensive comparison, the results of 
the experiments on the CIFAR100 are displayed in Table 6. 
These additional findings further validate the effectiveness 
of our proposed method in achieving higher accuracy and 
substantial reductions in the number of parameters and 
FLOPs.

In ResNet-34, the selection of pruning standard 
convolutional layers can have a significant impact on the 
overall model architecture and performance. Below, we 
will detail how this selection affects the model architecture 
and performance, and discuss how dimensionality 
reduction techniques can enhance overall efficiency.

Architecture impact: Pruning standard convolutional 
layers leads to changes in the modelk architecture. 
Through pruning, some of the convolutional layer filters 
are pruned, thereby reducing the model’s parameter and 
computational load. The pruned model architecture may 
become sparser, meaning that many positions in the output 
feature maps of certain convolutional layers are zero. This 
sparsity can offer computational and storage advantages 
as calculations for zero-value positions can be skipped.

Performance impact: The selection of pruning standard 
convolutional layers can impact model performance. Pruning 
may result in a decrease in model accuracy as some impor-
tant filters are pruned. Therefore, careful selection of the 
convolutional layers to prune is necessary during the prun-
ing process to maintain model performance. To mitigate the 
impact of pruning on performance, fine-tuning techniques 
can be employed to retrain the pruned model. Fine-tuning 
can aid in restoring or improving performance by adjusting 
filters through further training on the pruned model.

Table 7   Comparison of ResNet-50 on ImageNet pruning methods

Method Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

GAL
(λ = 0.5)

 + 0.04 21.20 78.46 43.03

GAL
(λ = 1)

 + 0.06 14.67 72.60 61.37

FPGM  – 0.01 – – 53.50
SSR-GR  – 0.01 – – 55.10
HRel  – 0.03 9.10 64.40 66.42
LFPC  – 0.02 – – 60.80
ThinNet  – 0.06 8.66 66.07 71.27
CSHE  – 0.05 13.08 48.70 65.10
ASFRP  – 0.15 – – 41.80
APSSF-2  + 0.36 11.69 54.26 84.64
APSSF-4  + 0.45 5.16 79.80 86.58

Table 8   Performance of 
indicator network

Model � = 2 � = 4

Acc (%) Parameter (M) FLOPs Acc (%) Parameter (M) FLOPs

Pruned VGG-16 84.26 2.39 1.19 × 107 83.23 1.19 0.59 × 107

Same_StructureNet 82.75 2.39 4.41 × 107 79.68 1.19 2.01 × 107

Same_LayerNet 83.43 2.68 4.55 × 107 76.86 1.18 2.00 × 107

Same_ParameterNet 10.00 2.39 4.43 × 107 10.00 1.18 2.00 × 107

Same_FilterNet 86.62 7.43 12.61 × 107 82.52 9.96 16.92 × 107
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Computational complexity: The computational complex-
ity of pruning standard convolutional layers depends on the 
extent of pruning and the resulting model architecture. Prun-
ing can reduce computational load as the pruned filters no 
longer participate in calculations. However, pruning also 
introduces sparsity, which may require additional computa-
tions to handle sparse matrix multiplication. Dimensional-
ity reduction techniques can enhance overall efficiency. For 
instance, dimensionality reduction techniques for convolu-
tional layers (e.g., 1 × 1 convolutions) can reduce the num-
ber of channels in feature maps, thereby decreasing com-
putational load and storage requirements. Dimensionality 
reduction techniques can be applied before or after pruning 
to further enhance overall efficiency.

In conclusion, the selection of pruning standard convolu-
tional layers can impact the architecture and performance of 
ResNet-34. Pruning can reduce computational and param-
eter load but may also lead to performance degradation. By 
carefully selecting the convolutional layers to prune and 
employing fine-tuning techniques, pruning can be achieved 
while maintaining performance. Dimensionality reduction 
techniques can further enhance overall efficiency by reduc-
ing computational complexity and storage requirements.

4.3.3 � Pruning ResNet‑50 on ImageNet

The evaluation of APSSF was conducted on the ImageNet 
dataset using the ResNet-50 architecture. During the training 
process, a batch size of 32 was employed, and the network 
was trained for 300 epochs with a lr of 0.001. The cross-
entropy loss function was adopted to calculate the loss. In 
the pruning process, we specifically selected two standard 
convolutional layers in each residual block for pruning.

When training the ResNet-50 model on the ImageNet 
dataset, data preprocessing and initialization steps are 
performed.

Preprocessing:
Image resizing: Images in the ImageNet dataset come in 

various sizes and need to be resized to a uniform size of 
224 × 224 for input into the ResNet-50 model.

Mean rormalization: Mean normalization is applied to 
each channel of the images, which involves subtracting the 
mean of each channel to bring the data mean closer to 0. 
This helps accelerate the model’s convergence process.

Standardization: Each channel of the images undergoes 
standardization, where the value of each channel is divided 
by its standard deviation, aiming to bring the data’s standard 
deviation close to 1.

Initialization:
When training the ResNet-50 model, pre-trained weights 

are used as initialization parameters. These weights are 
obtained from training on the ImageNet dataset and can 

aid the model in converging faster and achieving better 
performance.

The results demonstrated that the parameters of the 
APSSF-4 achieved a reduction of 79.80%, while the FLOPs 
experienced a significant drop of 86.58%. These outcomes 
indicate that our pruning method outperforms other tech-
niques, such as GAL, FPGM [11], SSR-GR [26], ThiNet 
[13], HRel [27], LFPC [28], CSHE, and ASFRP[29], as 
displayed in Table 7. As can be seen from the Table 7, the 
APSSF method has great advantages in improving the accu-
racy and speed (FLOPs).

The APSSF method is compared with other methods on 
the ResNet-50 image dataset in the following aspects:

Accuracy improvement: According to the provided data, 
the accuracy improvement of the APSSF-2 method on the 
ResNet-50 image dataset is + 0.36, while the accuracy 
improvement of the APSSF-4 method is + 0.45. These two 
values are significantly higher than those of other meth-
ods, indicating that the APSSF method can maintain a high 
level of accuracy after pruning, and even achieve significant 
improvement.

Reduction in the number of parameters: The reduction 
in the number of parameters for the APSSF-2 method is 
54.26%, while for the APSSF-4 method, it is 79.80%. These 
two values are also significantly higher than those of other 
methods, indicating that the APSSF method can achieve 
a substantial reduction in the number of parameters after 
pruning.

Reduction in FLOPs: The reduction in floating-point 
operations for the APSSF-2 method is 84.64%, while for 
the APSSF-4 method, it is 86.58%. Similarly, these two 
values are significantly higher than those of other methods, 
indicating that the APSSF method can achieve a substantial 
reduction in floating-point operations after pruning.

Based on these numerical comparisons, we can conclude 
that the APSSF method outperforms other methods on the 
ResNet-50 image dataset, primarily in terms of accuracy 
improvement, reduction in the number of parameters, and 
reduction in floating-point operations. These numerical 
comparisons clearly demonstrate that the APSSF method 
can comprehensively consider multiple performance indi-
cators during the pruning process and achieve a substantial 
reduction in parameters and computational workload while 
maintaining efficient performance.

4.4 � The Performance of Indicator Network

APSSF has the ability to generate subnets of varying sizes 
and accuracies. To evaluate whether these subnets possess 
a performance advantage over directly building models with 
the same structure, we conducted experiments to compare 
the performance of indicator networks with that of mod-
els having similar structures. In these experiments, we 
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constructed four CNNs from scratch: Same_StructureNet, 
Same_LayerNet, Same_ParameterNet, and Same_FilterNet. 
The performance of these models is presented in Table 8. We 
build the model based on the structure of the pruned VGG-
16, using the CIFAR10 dataset with a training epoch set to 
300, a batch size of 128, and a lr of 0.01.

•	 Same_StructureNet

This model is built with the same structure as the pruned 
VGG-16. It is trained from scratch and the same parameter 
settings employed during the pruning process.

•	 Same_LayerNet

The number of layers in this model is the same as the 
pruned VGG-16, but the filters are equally distributed across 
each layer.

•	 Same_ParameterNet

This model has the same total number of parameters as 
the pruned VGG-16. It consists of four convolutional layers, 
with the first and second layers having 64 filters each, the 
third layer having 128 filters, and the fourth layer having 
142 filters.

•	 Same_FilterNet

A network with the same total number of filters as the 
pruned VGG-16. Same_FilterNet has nine convolutional 
layers. Each of the first three layers has 64 filters, layers 4 
and 5 have 128 filters each, layers 6, 7 and 8 have 256 filters 
each, and layer 9 has 512 filters.

The results presented in Table 8 indicate that the accu-
racy and FLOPs of Same_StructureNet, Same_LayerNet, 
and Same_ParameterNet are lower than those of the pruned 
VGG-16. Although the accuracy of Same_FilterNet reaches 
82.52%, which is only 0.68% lower compared to the pruned 
VGG-16, both the number of parameters and FLOPs are 
considerably higher than those of the pruned VGG-16. 
This observation suggests that redundancy in parameters is 
necessary in the initial stages of model training. Training a 
small-scale model from scratch leads to significantly lower 
overall performance compared to pruning a larger model that 
already exhibits high accuracy.

Large-scale models typically achieve high accuracy and 
satisfactory performance. However, using APSSF, it is feasi-
ble to obtain small-scale models with similar levels of accu-
racy. This illustrates the effectiveness of the APSSF method 

in producing small-scale models that possess the same level 
of performance as large-scale models.

5 � Conclusions

Pruning is widely acknowledged as an effective technique 
for compressing CNN. This paper introduces the APSSF 
pruning method, which offers several notable advantages, 
including a high compression rate, minimal accuracy loss, 
efficient computational speed, and straightforward imple-
mentation. The experimental results on CIFAR10/100 and 
ImageNet datasets demonstrate that APSSF achieves state-
of-the-art performance. Through systematic experimentation 
and analysis on these three benchmark datasets, we observed 
that deep convolutional layers in CNN often contain a sig-
nificant amount of redundant parameters. By selectively 
removing these redundant parameters, the pruned model 
can even outperform the original model. Moving forward, 
our future research will focus on exploring more efficient 
pruning methods to further optimize the performance of 
compressed models.
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