
Vol.:(0123456789)

International Journal of Computational Intelligence Systems (2024) 17:129
https://doi.org/10.1007/s44196-024-00518-4

RESEARCH ARTICLE

APSSF: Adaptive CNN Pruning Based on Structural Similarity of Filters

Lili Geng1,2 · Baoning Niu1

Received: 25 October 2023 / Accepted: 7 May 2024
© The Author(s) 2024

Abstract
Convolutional neural network (CNN) pruning is a technique used to remove redundant parameters from the network. By doing
so, it aims to greatly reduce the computational complexity and scale of the network while still preserving its accuracy. In
the CNN, the majority of parameters are weights that form filters. When it comes to pruning, it is more effective to focus on
removing redundant filters rather than insignificant weights within filters. The essence of filter pruning lies in determining the
significance or contribution of each filter. Filters that have a significant contribution are kept, while others are pruned. Current
methods for calculating contribution in pruning often rely on weight magnitude or filter similarity. However, approaches
based solely on assume that small weights are unimportant and ignore correlation between filters, which leads to a significant
loss of network accuracy. Those based on filter similarity flatten filter tensors into a vector when calculating filter similarity,
and lose the important structural information of filters, or the superposition information of the weight convolution in the
corresponding space position. These limitations can compromise the accuracy and effectiveness of the pruning process. This
paper proposes an adaptive CNN pruning method based on the structural similarity of filters (APSSF) by taking both the
structural characteristics of and the correlation between filters into the consideration for pruning filters. APSSF efficiently
calculates the distance between the filters by factoring in information from all the dimensions of filters, and clusters the filters
according to the distance threshold determined adaptively according to the compression rate, and deletes a certain number
of filters from each category. On the CIFAR10 and ImageNet datasets, APSSF outperforms several state-of-the-art methods.
On the CIFAR100, APSSF reduces parameters of networks by 91.71% and 74.80% on VGG-16 and ResNet-34, respectively.
The accuracy was decreased only by 0.03 on VGG-16, while on ResNet-34, it was increased by 0.04.

Keywords Convolutional neural networks · Filter pruning · Clustering · Similarity

1 Introduction

Convolutional neural networks (CNN) have remarkable
achievements in the field of computer vision in recent
years, especially in image recognition and classification.
CNNs are specifically designed to handle the spatial struc-
ture of images and exploit the local correlations between
pixels. This makes CNNs well-suited for tasks that involve

analyzing and understanding visual data. As the scale of data
and the structure of models continue to expand, the param-
eter count and computational complexity of CNNs show an
exponential growth trend, bringing enormous challenges to
model training and inference. These models typically require
significant computational resources and datasets for training,
and in practical applications, they often require high com-
putational performance and storage resources for inference
and deployment. For instance, popular CNN architectures
like VGG [1], ResNet [2], and Xception [3] have demon-
strated impressive accuracy of over 90% on large datasets.
CNN models have achieved excellent performance in many
computer vision tasks and have become the benchmark mod-
els for some tasks. These models have undergone extensive
research and validation, demonstrating high reliability and
stability, and can serve as benchmark models for compari-
son with other models. When evaluating new models or
algorithms, using these benchmark models can provide a

 * Baoning Niu
 niubaoning@tyut.edu.cn

 Lili Geng
 genglili0049@link.tyut.edu.cn

1 College of Computer Science and Technology (College
of Data Science), Taiyuan University of Technology, Yuci,
Shanxi, People’s Republic of China

2 Experimental Center, Shanxi University of Finance
and Economics, Taiyuan, Shanxi, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00518-4&domain=pdf
http://orcid.org/0000-0002-7924-3384

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 2 of 27

basis for reference and comparison. The VGG and RESNET
benchmark models are widely used in many computer vision
tasks and have become the benchmark models for these
tasks. Many of the current large models have been developed
and expanded based on VGG and RESNET. For example,
models based on RESNET, such as RESNEXT [4] and Wide
RESNET [5], have improved performance by increasing the
model’s width, depth, or introducing new model structures.
These large models still adhere to some design principles of
VGG and RESNET, and have been innovated and optimized
based on them. However, the large number of parameters
in these models leads to excessive memory consumption
and computational complexity. This becomes a hurdle for
deploying CNN on resource-constrained devices and limits
their wide adoption. Compared to large models, using small
models may be more suitable for specific tasks. For example,
a small model can be used for training a medical question-
answering system to provide accurate medical knowledge
and answers; for specific language pairs in machine transla-
tion tasks, small models can be trained. Small models can
be customized according to the grammar structure and cul-
tural characteristics of the language to provide more accurate
translation results; for specific domain named entity recog-
nition tasks, such as in medicine and finance, training with
small models can improve the accuracy and recall rate of
named entity detection. To address this challenge, model
compression has emerged as a research focus. The aim is to
reduce the size of the model while maintaining its accuracy,
thus enabling deployment on resource-constrained devices.
Achieving model compression has therefore become crucial
in promoting the widespread utilization of CNN.

CNN are feedforward neural networks composed of
an input layer, convolutional layers, pooling layers and
fully-connected layers. A convolutional layer consists of a
number of filters which extract features of images. A filter is
a high-order tensor [6] structured with weights. CNN with
multiple convolutional layers usually have thousands of
filters, inevitably redundant, to get good identification and
classification performance. Deleting redundant parameters
or filters does not affect the model accuracy, but also
accelerates model training [7]. It is easier to obtain high-
accuracy by training a pruned network [8] than by training
a small model from start.

Pruning CNN involves two conf licting goals:
minimizing the number of parameters or filters while
maximizing model accuracy. The key to successful
pruning lies in finding the right balance between model
scale and accuracy. Since the majority of parameters in
CNN are concentrated within filters, filter pruning is an
effective approach for compressing CNN. Filter pruning
entails selectively removing a certain number of filters
in each convolutional layer. This approach is considered
more effective and interpretable compared to weight

pruning, which involves removing selected weights within
a filter [9]. The key to filter pruning is to determine the
contribution of a filter. There are two categories of filter
pruning according to the discriminant rule of contribution,
pruning based on the weight magnitude and pruning based
on the filter similarity.

Methods that rely on weight magnitude often establish
pruning criteria based on the weights of a filter and the
statistics that affect the loss function. These methods remove
filters either by assigning a score to a filter based on its
weights, assuming that small weights are not important, or
by measuring the contribution of a filter using the probability
distribution of its weights. However, this assumption does
not always align with the actual outputs of the model.
To further investigate this assumption, we conducted an
experiment on the VGG-16 architecture. We calculated the
sum of filter weights and proceeded to delete the filters with
50% smallest and largest weights based on the sum size.
The results revealed an 8.10% decrease in model accuracy
after removing the filters with small weights, while a 0.40%
increase in accuracy was observed after removing the filters
with large weights. These findings indicate that not all small
weights can be considered unimportant, highlighting the
limitations of solely relying on weight magnitude as the
pruning criterion.

In addition, these methods overlook the importance of
structural similarity among filters. The structural similarity
refers to the discrepancy generated by the different spatial
positions of the tensor structure of the filter to convolute
the input data. Filters that convolve at corresponding spatial
positions of an image tend to exhibit similarity due to the
similarity of pixel structures in small areas. Mapping filter
weights to scalars can lead to the loss of valuable similarity
information. By disregarding the structural similarity
between filters, these methods fail to fully utilize the inherent
relationships within the model. It highlights the need for an
approach that takes into account the structural characteristics
of filters while effectively pruning the network to achieve
optimal results.

Methods that are based on filter similarity are generally
more reasonable than those relying solely on weight
magnitude since they take into account the structural
characteristics of filters. However, it is worth noting that
many of these methods tend to flatten filter tensors into
vectors when calculating filter similarity. This flattening
process leads to the loss of crucial information related to
the superposition of weights in the corresponding spatial
positions during convolution. By flattening the filter
tensors, important spatial information is disregarded, which
can impact the accuracy and effectiveness of the pruning
process. It is necessary to explore alternative methods that
can preserve the structural information of filters and capture
the full potential of their contributions in the model.

International Journal of Computational Intelligence Systems (2024) 17:129 Page 3 of 27 129

To conclude, the disadvantages of the methods for filter
pruning are

• Methods based on weight magnitude treat filters as
independent entities, potentially overlooking the structural
similarity between them. Mapping filter tensors into scalars
can lead to the loss of important structural information.

• Methods based on filter similarity usually flatten the filter
tensor into a vector when calculating their similarity. The
superimposed information of weight convolution in the
corresponding space position is not considered, and the
structural information of the filter tensor is lost when
calculating the similarity.

• Most methods determine the number of classify using a
fixed threshold based on similarity. The fixed threshold
needs to be determined through multiple tests, and the
calculation is time-consuming. And the fixed threshold
cannot obtain the optimal classification.

To address these limitations, there is a need for
developing advanced pruning methods that consider the
structural information of filters, preserve their superimposed
information, and offer more flexible and efficient ways to
determine the optimal number of filters to prune.

In view of the above problems, we exploit the structural
characteristics of filters to differentiate filters, and propose
an adaptive CNN pruning method based on the structural
similarity of filters (APSSF). The core concept of APSSF
is to leverage the structural characteristics of filters to
differentiate and identify filters for pruning, thereby reducing
redundant parameters while diversifying feature extraction.
The key idea of this approach is to recognize that filters
are interconnected entities in the feature space. Filters that
contribute little to feature extraction are identified and pruned
based on their similarities to other filters. By pruning these
less -significant filters, the model can maintain its accuracy
while reducing its complexity. To compute filter similarity
efficiently, we reduce the dimensionality of weight tensors
while preserving important channel structural information.
This helps in clustering the filters in a meaningful way. During
clustering, the number of clusters, or the distance threshold,
is determined adaptively according to the parameters of the
compression rate using Augmented Lagrange method.

By utilizing the structural similarities of filters and employing
adaptive pruning techniques, APSSF aims to achieve significant
parameter reduction while maintaining model accuracy, mak-
ing it a valuable contribution to the field of CNN pruning. The
contributions of this paper are as follows:

• A CNN pruning method called APSSF is proposed to find
similar filters based on the structural characteristics of fil-
ters. By calculating filter similarity and clustering filters

accordingly, APSSF selects and retains a specific number
of filters within each category.

• The parameter of compression rate is introduced to
regulate the rate at which filters are pruned. The distance
threshold used to determine the number of clusters is
adaptively calculated using the Augmented Lagrangian
optimization method. This ensures optimal and flexible
pruning based on the desired compression rate.

• An efficient method is proposed for calculating the simi-
larity between filters based on filter tensors. The method
compresses filter tensors to reduce their dimensions while
maintaining important structural information. The simi-
larity between filters is then measured based on the com-
pressed tensors, ensuring the preservation of the triangular
inequality of distance even after compression.

2 Related Work

The process of filter pruning is as follows: (1) Training
the original CNN: Initially, the original CNN is trained on
the target dataset to establish a baseline performance; (2)
Sorting filters: Filters are sorted according to some criterion,
such as weight magnitude, filter similarity, or a combination
of factors. This sorting process helps identify the filters that
will potentially be pruned; (3) Retaining top-ranked filters:
A certain number of filters, typically those ranked at the top
of the sorted list, are selected to be retained. These filters are
considered to have the most significant contributions to the
model and its accuracy; (4) Fine-tuning the pruned CNN:
Finally, the pruned CNN, which consists of the selected
filters after the previous step, undergoes a fine-tuning
process. This fine-tuning aims to reoptimize the model to
achieve the same or even higher levels of accuracy as the
original CNN.

In filter pruning, accurately determining the contribu-
tion of filters is crucial. There are two common approaches,
weight magnitude based and filter similarity based. Weight
magnitude-based approaches establish pruning criteria based
on the filter weights and the impact on the loss function.
These methods often calculate the importance of a filter
by assuming that larger weights are more significant than
smaller weights. The representative method is proposed by
Li et al. [10]. It uses L1 norm, the sum of the absolute values
of the weights of a filter, to determine the important contri-
bution of a filter. Filters with large L1 norm are retained,
while those with small L1 norm are removed. Another
method by He et al. [11] implements a geometric median-
based technique to identify and prune redundant filters. In
addition, Liu et al. [12] imposes L1 regularization on the
scaling factor in the batch normalization (BN) layer. The
value of the BN scaling factor then approaches to zero, prun-
ing the channel of the small scaling factor.

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 4 of 27

The loss function is not only affected by filters with large
weights but also by those with small weights. Therefore,
determining the contribution of a filter solely based on the
statistics that affect the loss function is a more reasonable
approach compared to directly calculating scores from filter
weights. Methods such as ThiNet proposed by Luo et al. [13]
utilize statistics computed from the next layer to remove filters
in a layer. This approach captures the impact of filters on the
loss function by considering their influence on subsequent
layers. Molchanov et al. [14] utilize Taylor expansion to
approximate the loss function and identify filters with low
impact, which are then pruned. Building upon this work,
Molchanov et al. [15] later improves their work using the
first-and second-order Taylor expansions to approximate the
contribution of the filter. It iteratively removes those filters
with smaller scores by estimating the contribution of a filter
to the final loss. Yang et al. [16] use energy consumption as
its criterion to prune CNN. While these methods do not rely
on the assumption that smaller weights are unimportant, they
ignore the similarities among filters.

Although these methods do not rely on the assumption
that smaller weights are unimportant, they tend to overlook
the similarities among filters. Capturing filter similarities can
further enhance the pruning process by taking into account
preserving critical structural information.

The filter similarity-based approach focuses on
differentiating filters using their spatial attributes. Recognizing
that filters are interconnected entities in space, this approach
aims to identify filters with minimal contribution to feature
extraction, ultimately removing them based on similarity
discrimination. The similarity measurement and clustering
method vary among different methods employing this
approach. Commonly used similarity measurements include
Euclidean distance, cosine similarity, or normalized cross-
correlation (NCC) similarity. These measurements convert the
three-dimensional filter into a one-dimensional vector without
simplifying the computation. For example, Chu et al. [17]
measure filter similarity using the Euclidean distance metric,
resulting in a compact model with minimal accuracy loss after
removing highly similar filters. Shao et al. [18] focuses on the
similarity between filters or feature maps in the same layer.
They use cosine similarity to measure the similarity between
channels. MSVFP [9] combines filter magnitude and filter
similarity to determine the importance of filters.

The frequently used clustering method is k-Means cluster-
ing, where the number of clusters or similarity threshold is
typically fixed. Li et al. [19] use the k-Means + + algorithm
to enforce filters into a specific cluster. The filter closest to the
center of a cluster is retained, the others are removed. A fixed
threshold is set to determine the number of clusters. CSHE
[18] uses k-Means to cluster filters with a fixed number of
clusters. ICP [20] utilizes the DBSCAN clustering algorithm

to cluster feature maps, and channel pruning is performed
according to the number of clusters.

One common limitation of these pruning methods is that
they flatten the filter tensors into vectors, resulting in the
loss of weight convolution superposition information in the
corresponding spatial positions. In addition, these methods
rely on fixed thresholds for determining the number of
clusters, which often require multiple tests to find the optimal
value. To overcome these limitations, further research can
explore methodologies that preserve the superposition
information of weight convolution and adopt adaptive
methods for determining the number of clusters, enhancing
the efficiency and effectiveness of filter pruning algorithms.

Our proposed method differs from existing state-of-the-art
approaches in two key aspects: (1) Consideration of spatial
characteristics: Our method places particular emphasis on
exploiting the spatial characteristics of filter tensors, paying
close attention to the superposition properties within the
dimensions corresponding to the channel of filters. By taking
into account this valuable information, our method aims to
preserve crucial structural details and improve the overall
effectiveness of filter pruning; (2) Adaptive determination
of clustering threshold: In contrast to previous methods
that rely on a fixed threshold for clustering, our approach
introduces an adaptive mechanism to determine the clustering
threshold. This addresses the limitations associated with fixed
thresholds, which often require extensive trial and error to
reach optima. By adaptively determining the clustering
threshold, our method aims to overcome such challenges and
achieve more accurate and efficient filter pruning.

3 Adaptive CNN Pruning

APSSF is based on structural similarity of filters to prune
filters in CNN. The core of APSSF is to find an appropriate
method for measuring the similarity between filters, while
achieving adaptive filter clustering. Section 3.1 introduces
the third-order weight tensor of filters used for computing
filter similarity. Section 3.2 defines filter similarity and
discusses the efficient calculation method. Section 3.3
introduces the filter clustering method. Section 3.4 discusses
the adaptive CNN clustering pruning.

3.1 The Weight Tensor of Filters

CNN is a hierarchical network model that consists of
data input, convolutional layer, pooling layer, activation
function, fully-connected layer, and output. Filters of the
convolutional layer produce a large number of parameters
through convolution operations. The need to apply filters
in image processing is due to the abundance of redundant
and irrelevant information contained in the image. Filters,

International Journal of Computational Intelligence Systems (2024) 17:129 Page 5 of 27 129

also known as the convolution kernel, are used to extract
meaningful features from the images. These filters are
small tensors that are convolved with the input image to
generate a feature mapping. By applying filters to images,
we can capture important visual patterns and structures.
These patterns can represent various characteristics of
the image, such as edges, textures, and shapes. Filters
help to highlight these features and suppress irrelevant
information, making it easier for the network to learn and
make accurate predictions.

The application of filters in CNNs reduces the
complexity of image processing in several ways:

(1) Parameter sharing: In CNNs, filters are shared across
the entire image or feature map. This parameter
sharing significantly reduces the number of parameters
compared to fully connected networks, where each
neuron is connected to every input. By sharing
parameters, CNNs can capture local patterns and
generalize them across the entire image, leading to
more efficient and compact models.

(2) Translation invariance: Filters in CNNs are designed
to be translation invariant, meaning they can detect the
same pattern regardless of its location in the image.
This property allows CNNs to effectively handle
variations in object position and scale, reducing the
complexity of image processing.

(3) Hierarchical feature extraction: CNNs typically
consist of multiple layers, with each layer learning
increasingly complex and abstract features. The filters
in the early layers capture low-level features like edges
and textures, while filters in the deeper layers capture
high-level features like object shapes and semantic
information. This hierarchical feature extraction
reduces the complexity of image representation and
enables the network to learn more discriminative
features.

Understanding the structure of filters is the first step for
measuring filter similarity.

The filter is a third-order tensor, W = [W]n×kh×kr .kh × kr
is 3 × 3, 5 × 5 or 7 × 7 in general, and called the receptive
field of a filter, which is symmetric according to the central
pixel. n is the number of channels. There are two types of
n in CNNs.

(1) In input layer, n is determined by the type of the input
image, for RGB images, n=3, and for black and white
images, n = 1.

(2) n is equal to the number of filters in other layers, and
is also the input channel of the next layer after the
convolution output.

Many filters constitute a convolutional layer, which is rep-
resented by a fourth-order tensor, L = [L]n×kh×kr×m . m is the
number of filters of a convolutional layer. As show in Fig. 1.

Convolution is the mathematical operation for two
real variable functions [21]. The convolution operation is
represented by " ∗".

In CNN terminology, the first parameter x of the
convolution is usually called the input, and the second
parameter w is called the filter weight. The output f (t) is
called the feature map.

The pixels in a local area of the input image are convolved
into each corresponding pixel in the output matrix, where the
element of the matrix is the weight. The convolution opera-
tion is shown in Fig. 2 and Eq. (1). x , w and o represent the
input, the filter weight and the output, respectively.

Convolution is that the filter slides on the input data from
the upper left corner, and multiplies and sums with the
corresponding position data to get an output value. The filter
then moves to the right to do the same operation. And so on,
from left to right, from top to bottom, to get the feature map
of the filter output.

Filters act on the local area of an image to obtain the local
features through the convolution operation. A filter containing
n channels forms an output channel by aggregating the n
feature maps produced by convoluting along the height and
width directions. Each dimension of the filter tensor represents
different information. This is the reason why computing
a score from a tensor loses dimensional information.
Convolution is the dot product of the tensor slice and the
pixels of the corresponding image area. Because a filter
slides a small step (a pixel) on an image when convoluting,
the image pixels of two adjacent sliding windows are usually

(1)f (t) = (x ∗ w)(t)

(2)

O12 = x12 ⋅ w11 + x13 ⋅ w12 + x14 ⋅ w13

+ x22 ⋅ w21 + x23 ⋅ w22 + x24 ⋅ w23

+ x32 ⋅ w31 + x33 ⋅ w32 + x34 ⋅ w33

Fig. 1 Structure of convolution layer

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 6 of 27

highly similar. The filters that perform convolution operation
on the same spatial position of the image are also high similar.
Mapping a filter tensor to a scalar ignores the differences
caused by different spatial positions. We introduce how to
calculate the filter similarity in the next section.

3.2 The Calculation of Filter Similarity

The filters in shallow convolutional layers are responsible for
extracting basic structural features, such as texture features,
from the input data. In contrast, filters in deeper layers of the
model are designed to capture more abstract and semantic
features, which are combinations of the basic structural
features. As filters in different convolutional layers focus
on extracting different categories of features, it becomes
meaningful to compare the similarity of filters within each
layer.Therefore, we compute the similarity of filters in each
convolution layer independently and pruning layer by layer.
By evaluating the similarity of filters at each layer, we can
prune the network layer by layer, considering the specific
characteristics and contributions of the filters within that
layer. This approach ensures a more targeted and effective
pruning process, as filters within the same layer are expected
to have similar roles and provide redundant information.

Because the weight tensor has a large number of
parameters, the computational complexity of filter similarity
is O (2nkhkr), where the parameters are the three dimensions
of the weight tensor. It is necessary to find an approach to
efficiently calculating the similarity.

The filter similarity is defined by Eq. (3).
Definition: Filter similarity (FS). The similarity between

two filters (W,W ′) is

(3)FS(WW �) =
1∑

n

∑
kh

∑
kr

���[W]n×kh×kr − [W]�n×kh×kr
���

where, [W]n×kh×kr represents the weight tensor of a filter.
n, kh, andkr are the width, height and length of the weight
tensor, respectively.

∑
n

∑
kh

∑
kr

���[W]n×kh×kr − [W]�n×kh×kr
��� is

the distance of filters.
Computing the distance between two filters requires

performing a three-layer nested loop.

[W] and [W]� have 2nkhkr states, respectively. The
calculation complexity of the filter similarity is O

(
2nkhkr

)
 . To

obtain an efficient pruning algorithm, we employ dimension
reduction to reduce the computational complexity. While it
is possible that dimension reduction may alter the similarity
values between filters, it is important to note that our
objective is not to preserve the absolute similarity values,
but rather to maintain the relative similarity relationships
between filters. The primary aim of dimension reduction
is to identify a subset of filters that exhibit similar
characteristics. By focusing on the similarity relationships,
rather than the exact similarity values, we can effectively
reduce the computational complexity while still capturing
the important structural information within the filters.

By employing dimension reduction, we aim to retain the
essential similarity relationships between filters, allowing
us to efficiently execute the pruning process. This approach
enables us to strike a balance between computational
efficiency and effective filter pruning.

for (i = 1; i ≤ n; i + +)

for
(
j = 1; j ≤ kh; j + +

)

for
(
k = 1; k ≤ kr; k + +

)

∑
n

∑
kh

∑
kr

|||[W]n×kh×kr − [W]�n×kh×kr
|||

Fig. 2 Convolutional operation

International Journal of Computational Intelligence Systems (2024) 17:129 Page 7 of 27 129

One way to reduce the computational complexity is to
reduce the dimensions of the weight tensor and then calcu-
late the distance. We reduce both the height kh and width
kr of the tensor to 1, preserving the channel n dimen-
sion. After tensor dimension reduction, the weight tensor
becomes a vector containing the input channel informa-
tion. The method of finding the average value is used to
compress kh × kr to 1 × 1 and reduce a convolutional layer
L = [L]n×kh×kr×m to a two-dimensional matrix F = [F]m×n .
The weight tensor is transformed into the weight vector
⇀

W =
(
w1,w2,…wn

)
 after tensor dimension reduction. The

sum of weights is

The weight of the ith filter is represented as
⇀

Wj = (wi1,wi2,⋯ ,win) . We have

Each row of matrix F represents a filter, and each column
represents a channel dimension of the filter. wij represents the
value of the jth dimension of the i th filter. Filter similarity
can be derived from the distance between the row vectors
using Eq. (5).

⇀

Wi and
⇀

Wj are the weights of the ith and jth filters. d(⋅) is the
distance function, which is Manhattan distance and easy to
calculate.

From Eqs. (5) and (6) we have

This means dimension reduction did not change
the similarity relationship between two filters. For
three filters Wi,Wj, andWk , if FS(WiWj) < FS(WiWk) , we
h ave

(
kh × kr

)
FS(WiWj) <

(
kh × kr

)
FS(WiWk) , w h i ch i s

(4)
∑ ⇀

W
n
=

1

k
h
× k

r

∑∑∑
[W]

n×kh×kr

F =

⎡⎢⎢⎢⎣

w11 w12 ⋯ w1n

w21 w22 ⋯ w2n

⋮ ⋮ ⋮

wm1 wm2 ⋯ wmn

⎤⎥⎥⎥⎦

(5)FS

(
⇀

Wi

⇀

Wj

)

=
1

Dij

=
1

d

(
⇀

Wi,
⇀

Wj

)

(6)
d

(
⇀

Wi,
⇀

Wj

)
=
∑||||

⇀

Wi −
⇀

Wj

|||| =
∑
n

|||win − wjn
|||

s.t.0 ≤ i ≤ m, 0 ≤ j ≤ m

(7)
FS

�
⇀

Wi

⇀

Wj

�

=
1

∑����
⇀

Wi −
⇀

Wj

����
=

1

1

kh×kr

∑∑∑���
�
Wi

�
−
�
Wj

����
=
�
kh × kr

�
FS(WiWj)

FS

(
⇀

Wi

⇀

Wj

)

< FS

(
⇀

Wi

⇀

Wk

)

 . This means that the similarity
relationship among a set of filters is not changed. Only the
channel dimension is left after the dimension reduction. The
computational complexity of the similarity of m filters is
O(m2n) , which is orders of magnitude efficient than before
dimension reduction.

3.3 Filter Clustering

With the efficient calculation of filter similarity, we are now
ready to discuss filter clustering. Filter clustering involves
partitioning the filters into different categories, where filters
within the same category exhibit a high degree of similarity.
The process of the clustering includes the following steps: (1)
Initialization: each filter is initially considered as a separate
category. The Manhattan distance between pairs of filters is
computed, resulting in a distance matrix, D = dij ; (2) Merge
categories: The two categories with the minimum distance are
merged into a new category; (3) Calculate average distance:
the average distance between the new category and the other
categories is calculated; (4) Iteration: Steps 2 and 3 are
repeated until the clustering ends. More details can be seen
in Algorithm 1.

The Cnum represents the number of clusters formed
during the filter clustering process. It indicates the total
number of categories or clusters into which the filters
have been partitioned based on their similarity. CP and
Cq indicate two categories containing p and q filters,
respectively. Gpq is the category distance and calculated by
averaging of the filter distances across the two categories
as described by Eq. (8).

The output of Algorithm 1 is a set of categories representing
the clustered filters, as well as the number of clusters that
have been formed. However, to successfully conduct filter
clustering, it is necessary to determine either the distance
threshold or the number of clusters required.

In our approach, we make use of the distance threshold as
the end condition for the algorithm. The distance threshold
can be adaptively adjusted based on the desired compression
rate. This provides a flexible and efficient way to control the
pruning process and achieve the desired trade-off between
model size reduction and accuracy preservation.

Using the distance threshold, our method ensures that the
pruning process is adaptive and can be fine-tuned accord-
ing to specific requirements. This allows for a more nuanced
approach to filter clustering, as it adjusts the threshold based
on the desired compression rate, leading to effective pruning
and improved model efficiency.

(8)Gpq =
1

pq

∑
i∈Cp

∑
j∈Cq

Dij

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 8 of 27

Algorithm 1 Filter clustering

Algorithm 1 initializes each filter as a class to create a
distance matrix, calculates the distance between the filters,
merges the nearest class greater than the distance thresh-
old, and updates the distance matrix iteratively until the end
of the clustering. Algorithm 1 contains two nested loops,
the time complexity of the first loop is O (m), and the time
complexity of the second loop is O (m2), so the overall time
complexity is O (m2), where m is the number of filters. In
addition, the algorithm also includes the calculation of dis-
tances between filters and clustering operations, the time
complexity of these operations depends on the specific dis-
tance calculation method and clustering algorithm. There-
fore, the time complexity of Algorithm 1 can be represented
as O (m2) or high-order complexity.

For the selection of the Manhattan distance, it is a com-
monly used metric for measuring similarity in filter prun-
ing because it is a suitable method for comparing filter
responses. The Manhattan distance is advantageous for
measuring filter similarity because it considers the absolute
differences between elements of two filters. This character-
istic allows it to effectively capture the structural similarity
between filters by focusing on their respective filter weight
values. In contrast, other distance metrics such as Euclid-
ean distance or cosine similarity may emphasize overall

distance or angle between filters, which may not represent
their structural similarity as effectively. Using the Manhat-
tan distance, the method can better distinguish filters with
similar structural characteristics, facilitating more accurate
clustering and pruning.

In Algorithm 1, the use of the Manhattan distance as
the distance metric for merging clusters is based on the
following characteristics and principles:

Manhattan distance is a simple and intuitive distance
metric. It measures the distance between two vectors by
calculating the sum of the absolute differences of their
corresponding elements. This distance metric is easy to
understand and compute.

Manhattan distance is suitable for handling high-
dimensional data. In convolutional neural networks, weight
vectors are typically high-dimensional, and therefore, the
Manhattan distance can effectively measure differences
between different weight vectors.

Manhattan distance can provide better clustering effects
when merging clusters.Using the Manhattan distance, similar
weights can be clustered together, leading to better weight-
pruning effects. This is because the Manhattan distance can
capture the absolute differences between weights, making it
more likely for similar weights to be merged together.

International Journal of Computational Intelligence Systems (2024) 17:129 Page 9 of 27 129

In summary, the selection of the Manhattan distance
as the distance metric for merging clusters is based on its
simplicity, applicability, and robustness to outliers. Using
the Manhattan distance, better weight clustering and pruning
effects can be achieved, thereby improving the performance
of the adaptive clustering pruning algorithm.

3.4 Adaptive Pruning

Adaptive CNN pruning is based on the filter clustering,
removing the filters in the same category, and retaining only
one of them. The number of clusters determines the size of
the pruned network. The problem solved by CNN pruning is
minimizing the loss and the number of clusters. We define
the problem as an optimization over the filter distances
that incorporates conflicting desires of minimizing the loss
and minimizing the number of distances (clusters).In the
context of adaptive CNN pruning, the process involves filter
clustering, where filters belonging to the same category are
pruned, and only one filter is retained as a representative.
The number of clusters directly impacts the size of the
pruned network. The key problem addressed by CNN
pruning is to find an optimal balance between minimizing
the loss incurred by the pruning process and minimizing the
number of distances or clusters produced.

To tackle this problem, we define it as an optimization
task over the filter distances, taking into account the
conflicting objectives of loss minimization and cluster
maximization. The goal is to find an optimal configuration
that simultaneously reduces the network size while
preserving accuracy.

We can solve this problem by introducing Lagrange
multipliers and penalty terms to construct the Augmented
Lagrangian Function. The Augmented Lagrangian Function
is a powerful tool that can help us update parameters during
the iteration process, leading to faster convergence to the
optimal solution.

First, we need to understand the concepts of Lagrange
multipliers and penalty terms. Lagrange multipliers are
auxiliary variables used to construct the Augmented
Lagrangian Function, and they help maintain the convexity
of the objective function during the optimization process.
Penalty terms are additional terms that can enforce certain
constraint conditions in the optimization problem.

When constructing the Augmented Lagrangian Function,
we incorporate Lagrange multipliers and penalty terms into
the cost function, resulting in an optimization problem that
contains more information. The solution to this optimization
problem will help us find the optimal solution to the original
problem.

We define the cost function for clustering as P ∶ Rn
→ R+ ,

P(d) =
∑m

i=1
p
�
di
�
 satisfies P(0) = 0 and P(d) > 0 if d ≠ 0 ,

where d is the filter distance and P(d) is the number of filter
distances. Equation (9) shows the loss function L(d) in the
constraint form.

We use the Augmented Lagrangian method to
transform it into a constrained optimization problem. By
introducing Lagrange multipliers and penalty terms, the
Augmented Lagrangian Function, as shown in Eq. (10),
is constructed. In the process of solving the Augmented
Lagrangian Function, an iterative computation method is
employed. Equations (11–16) represent the iterative process,
describing the specific steps and update rules for using
the Augmented Lagrangian method to solve constrained
optimization problems. Through iterative computation, the
optimal solution d is obtained. During the computation, λ
is calculated using the update formula and θ is computed
based on the updated λ. Ultimately, the relatively optimal
filter distance d and variable θ are obtained. These optimal
solutions will help us achieve better performance in practical
problems.

Given a variable � , d − �=0, � ≥ 0, and satisfying
P(�) ≤ c , we have

Equation (10) represents the Augmented Lagrangian
Function, where L(d) is the original loss function, λ is the
Lagrange multiplier, and μ is the penalty parameter. The
objective of this function is to transform the constrained
optimization problem into an unconstrained optimization
problem by introducing Lagrange multipliers and penalty
terms.

The optimal d can be obtained by d
∗ = argmin

d
L(d) . �k

i
 are

calculated by the update formula from Eqs. (11) to (13). k is
calculated by Eq. (14). After k iterations, dk is the optimal
solution.

(9)mindL(d) s.t.P(d) ≤ c

(10)

L(d, �, �,�) = L(d) −

m∑
i=1

�i
(
di − �i

)
+ �

m∑
i=1

(
di − �i

)2

(11)

∇
d
L
(
d
k
, �k, �k,�

k

)
=∇P

(
d
k
)
−

m∑
i=1

�k
i
∇
(
d
k

i
− �k

i

)

+

m∑
i=1

(
d
k

i
− �k

i

)2
= 0

(12)∇P
(
dk
)
−

m∑
i=1

(
�k
i
− 2�k

m∑
i=1

dk
i

)
∇

m∑
i=1

(
dk
i
− �k

i

)
= 0

(13)�k+1
i

∶= �k
i
− 2�k

m∑
i=1

dk
i
, i = 1,⋯ ,m

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 10 of 27

From the Eq. (14) we have

Equation (11) represents the update of parameters d
and θ in each iteration by computing the gradient of the
Augmented Lagrangian Function to minimize the function.

Equation (12) calculates the next iteration of the
Lagrange multiplier based on the gradient of the Augmented
Lagrangian Function and the update rule for the Lagrange
multiplier.

Equation (13) provides the update rule for the Lagrange
multiplier to compute the value for the next iteration.

Equations (14) and (15) describe how the variables
are updated in each iteration to minimize the Augmented
Lagrangian Function. The max function in Eq. (15) ensures
that the value of θ satisfies the constraint.

Equation (16) defines an auxiliary function used to
compute the update process for parameter d. Different
calculation methods are chosen based on different
conditions to ensure that the updated parameter d satisfies
the constraint.

In summary, Eqs. (10–16) describe how the Augmented
Lagrangian method updates the parameters d and θ in each
iteration and how the Lagrange multiplier is updated to
solve constrained optimization problems.

We use the Augmented Lagrangian optimization
method to calculate d and � , as shown in Algorithm 2.
d and � are the relative optimal solution. We set the
compression rate parameter to control the filter pruning
rate and, in the adaptive CNN pruning algorithm, obtain
the pruned optimal solution. Algorithm 2 contains a loop,
the number of iterations depends on the quantity of � . In
each iteration, distance minimization calculation and some
simple mathematical operations are required. Therefore,
the time complexity of Algorithm 2 mainly depends on the

(14)

(
dk, �k

)
= argmin

d,�
L�(d, �) = argmin

d,�
P(d) +

m∑
i=1

{
−�i

(
di − �i

)
+ �

(
di − �i

)2}

= argmin
d,�

P(d) + �

m∑
i=1

{(
di − �i −

�i

�

)2
}

s.t. �i ≥ 0, i = 1,⋯ ,m

(15)�k
i
= max

(
dk
i
−

�i

�
, 0

)

(16)

dk = argmin
d

p(d) +

m�
i=1

Ψ
�
di, 𝜆i,𝜇

�

Ψ
�
di, 𝜆i,𝜇

�
=

⎧
⎪⎨⎪⎩

−𝜆idi + 𝜇d2
i
if di −

𝜆i

𝜇
< 0,

−
𝜆2
i

𝜇
otherwise

.

complexity of distance minimization calculation, which
can be represented as O(k), where k is the quantity of �.

Algorithm 2 The Augmented Lagrangian method

Adaptive CNN pruning framework consists of two key
components: setting the parameters of the compression
rate and determining the variable distance threshold (d).

(1) Parameters of the Compression Rate

The compression rate serves as an evaluation metric for
network compression. It represents the ratio of the initial
number of filters in the network to the number of filters
remaining after pruning. However, pruning filters based
on a fixed compression rate alone may not result in the
desired network performance, and determining appropriate
thresholds can be challenging.

To address this, we introduce a parameter of the
compression rate (�) to control and maintain the
compression rate within a specified range during the
pruning process. By adjusting � , we gain better control
over the compression level, allowing for more fine-tuned
and expected performance outcomes.

The parameter � plays a crucial role in the process of
filter clustering. It is primarily used to dynamically adjust
the distance threshold, thereby controlling the number of
clusters. By cleverly adjusting � , we can effectively control
the granularity and quantity of clusters, making them more
adaptable to actual requirements. First, let us delve into
the impact of � on the granularity and quantity of clusters.
When � is small, it leads to more clusters. This is because
a smaller � means that we have stricter requirements for
similarity measurements within the dataset, and only
data points with small distances will be assigned to the
same cluster. As a result, the number of clusters will

International Journal of Computational Intelligence Systems (2024) 17:129 Page 11 of 27 129

increase, and the number of data points in each cluster
will be relatively small. However, when � is large, it may
result in fewer but more widespread clusters. A larger �
means that we have looser requirements for similarity
measurements within the dataset, and data points with
larger distances will also be assigned to the same cluster.
As a result, the number of clusters will decrease, but the
number of data points in each cluster will be relatively
large. In conclusion, by adjusting this key parameter � , we
can make the filter clustering method adaptable to different
application scenarios. In practical applications, choosing
the appropriate � value is crucial because it directly affects
the quality and effectiveness of clustering. In this way, the
filter clustering method can provide us with more flexible
and efficient clustering services.

By precisely adjusting � , a more accurate trade-off
between compression rate and performance preservation can
be achieved. A smaller � may lead to a higher compression
ratio but could sacrifice some performance, while a larger �
may preserve more information, aiding in maintaining the
model’s performance. Therefore, by adjusting the value of � ,
the optimal adjustment parameter � can precisely influence
the trade-off between compression rate and performance
preservation according to specific application requirements
and performance demands. The specific impacts are as
follows:

Factors affecting the compression rate: When � is small,
the similarity threshold is low, resulting in more filters being
aggregated into the same category, thereby increasing the
number of filters retained after pruning and improving the
compression rate. Conversely, when � is large, the similarity
threshold is high, leading to fewer filters being aggregated
into the same category, reducing the number of filters
retained after pruning and lowering the compression ratio.

Factors affecting performance preservation: When �
is small, due to the retention of more filters, the model’s
performance may be relatively better as more parameters
and features are preserved, but it may also increase
computational and storage overhead. Conversely, when �
is large, due to the retention of fewer filters, the model’s
performance may be less affected as the model’s complexity
and storage requirements decrease, but it may also lose some
feature information, leading to performance degradation.

Balancing compression rate and performance
preservation: Based on specific application requirements
and performance demands, the compression rate and
performance preservation can be balanced by adjusting � .
If a higher compression rate is required, a smaller � can be
chosen to retain more filters and improve the compression

rate. If higher performance preservation is required, a larger
� can be chosen to preserve more feature information and
reduce performance loss.

Therefore, by adjusting the parameter � , the trade-off
between compression rate and performance preservation
can be precisely influenced. Based on specific application
requirements and performance demands, suitable values of �
can be flexibly chosen to achieve the best compression effect
and performance preservation results.

In general, the number of pruned filters is set to
50–75% of the original number. The ratio of the total
number of filters Fnum to the parameter � represents the
range of the number of pruned filters, Fnum∕� . If � = 2 ,
Fnum∕� represents the compression rate of 50%; Fnum∕2�
represents the compression rate of 75%. The number
of clusters Cnum ∶ Cnum = P(d) satisfies the inequality
Fnum∕𝛿< Cnum < Fnum∕2𝛿 . That is, Cnum is between 50% and
75% of the number of filters, so that the number of filters
preserved according to clusters satisfies the range of the
compression rate.

(2) Determination of the Variable Distance Threshold (d)

The variable distance threshold (d) plays a crucial role
in the filter clustering process. It determines the similarity
threshold for merging filters into clusters. To tackle the
challenge of selecting an optimal threshold, we employ the
augmented Lagrangian optimization method. By iteratively
adjusting and optimizing d, we can dynamically determine
the appropriate number of clusters based on specific
performance requirements.

APSSF does not use the fixed distance threshold to
determine the number of clusters, instead, automatically
adjusts the distance threshold during clustering according to
the parameters of the compression rate. Let d be the distance
threshold and determine whether the number of clusters is
within the range of compression rate during the clustering.
During each clustering iteration, when the number of the
cluster is greater than Fnum∕� , the compression rate is lower
than 50%, and the number of clusters is too large, so the d is
increased. When the number of clusters is less than Fnum∕2� ,
the compression rate is higher than 75%, and the d should be
reduced. The change rate for d is set to � . We use � = 0.001
according to the experimental results. We retain the first
filter in each class Ci according to the filter clustering results.

The adaptive determination of the variable distance
threshold (d) is a key aspect in the adaptive clustering
pruning algorithm, as it determines the conditions for
merging categories. Choosing the appropriate distance

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 12 of 27

threshold can affect the clustering effect and the extent
of pruning. The change of d was determined by the � , the
following are the reasons for choosing � = 0.001 and basic
principles:

The value of � should be small enough to merge similar
weights. A smaller � value can ensure that only very close
weights are merged together, thereby maintaining a higher
clustering quality. At the same time, the value of � should
not be too small to avoid over-merging weights, leading to
information loss and performance degradation. A larger �
value may lead to over-pruning, thereby affecting the mod-
el’s performance. Through experimentation and accumulated
experience, the value of � = 0.001 has been found to pro-
vide good clustering and pruning effects in many cases. This
value has been proven to be a reasonable choice in practice.
It is important to note that the specific value of d may vary
due to differences in datasets, tasks, and models. Therefore,

choosing the appropriate value of � requires adjustment and
optimization based on specific circumstances.

In summary, the selection of � = 0.001 is based on con-
siderations of clustering quality and pruning effects. This
value is determined through experiment and experience,
and can be considered a reasonable choice for the adaptive
clustering pruning algorithm. However, adjustments and
optimizations may be necessary to achieve the best results
for different datasets and tasks.

Adaptive CNN pruning algorithm is shown in
Algorithm 3. Algorithm 3 contains multiple calls to
Algorithm 1 and Algorithm 2, so its time complexity
depends on the number of these calls. In the worst case,
the time complexity of Algorithm 3 may be relatively
high, depending on factors such as the number of filters
and clusters.

Fig. 3 The overview of the APSSF method. The APSSF method first
performs dimensionality reduction on the filter tensor F, reducing it to
a vector W. Then, it automatically determines the similarity distance

based on the Augmented Lagrangian method and compression rate
parameter, achieving adaptive clustering, and conducts pruning based
on the clustering results

International Journal of Computational Intelligence Systems (2024) 17:129 Page 13 of 27 129

Algorithm 3 Adaptive CNN pruning

The overview of the proposed APSSF method is pre-
sented in Fig. 3.

The APSSF pruning method achieves a high
compression rate and reduces a large number of
parameters. Due to the adoption of efficient similarity
calculation and clustering methods, the time complexity of
the APSSF algorithm is relatively low, which can improve
training speed. For example, in the training of VGG-16
with Epoch = 200 and batch = 128, the training time before
pruning was 5800s, and after pruning, the training time
decreased to 3000s, resulting in a reduction of 48.28% in
training time.

The combination of parameterized compression rates
and adaptive determination of the distance threshold in
our APSSF framework facilitates effective and efficient
filter pruning. This approach not only provides improved
control over network compression but also ensures that the
desired performance outcomes are achieved.

The pruned model resulting from the application of
APSSF is referred to as the indicator model. In Sect. 4
of the paper, we design an original model with identi-
cal depth, width, number of filters, and structure as the
indicator model. By training both the indicator model and
the small original models from scratch, we compare their
performances.

Remarkably, the experimental results show that the
indicator model significantly outperforms the small
original models in terms of performance. This observation
demonstrates the effectiveness and superiority of the
APSSF-based pruning method in producing a pruned model
that retains superior performance compared to its smaller,
original counterparts.

These findings highlight the benefits of employing APSSF
for filter pruning, as it not only preserves performance but
also achieves better results compared to smaller networks
designed from scratch. Thus, APSSF proves to be a powerful
approach for achieving efficient network compression
without compromising on performance.

The adaptive CNN pruning algorithm has some
relationships and differences with existing pruning methods.
The adaptive CNN pruning algorithm is a method that
integrates the ideas of weight pruning and neuron pruning.
It achieves filter pruning by clustering similar filters effects
by merging categories with adaptive distance thresholds.
The adaptive CNN pruning algorithm can be seen as an
improved pruning method, as it introduces adaptability
based on traditional pruning methods, making it better suited
for different datasets and tasks.

The adaptive CNN pruning algorithm has certain advan-
tages in terms of computational efficiency. Using clustering
to merge similar filters, it can reduce computational and stor-
age requirements. Compared to traditional pruning meth-
ods, the adaptive CNN pruning algorithm can complete the
pruning process more quickly. In addition, the algorithm can
further improve computational efficiency through parallel
computing. Parallel computing can be used to accelerate the
execution of the algorithm when merging categories and
pruning filters.

The adaptive CNN pruning algorithm also has certain
advantages in maintaining performance. By selecting
distance thresholds reasonably, the algorithm can effectively
prune while maintaining high model performance. This is
because it can preserve important filters, thereby reducing

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 14 of 27

the impact on model performance. Furthermore, the adaptive
CNN pruning algorithm can further improve performance
through fine-tuning. After pruning, the model can be
retrained using fine-tuning techniques to recover or enhance
its performance.

4 Experiments

This section focuses on evaluating the effectiveness of
APSSF by introducing the evaluation indicators, datasets,
models, and performing an analysis of the experimental
results. First, we present the evaluation indicators that were
used to assess the performance of the pruned model. (See
the Sect. 4.1). These indicators could include the accuracy,
the number of parameters and the floating-point operations.
Next, we describe the models used in the experiments. This
can include details about the architecture, number of layers,
filter sizes, and other relevant specifications. The original
model and the indicator model pruned using APSSF are
compared in terms of their performance and efficiency (See
the Sects. 4.2 and 4.3). Finally, we analyze the experimental
results obtained from evaluating the indicator network
pruned by APSSF. This analysis may involve comparing its
performance with that of the original model and the small,
newly designed models. (See the Sect. 4.4).

4.1 Evaluation Indicator and Datasets

The evaluation of pruning CNN involves several indicators,
including accuracy, the number of parameters, and the
floating-point operations. Here is a brief explanation of each
indicator:

(1) Accuracy (Acc): Acc is an important indicator to
measure the performance of a model. Pruning inevita-
bly causes performance degradation of the model and
reduces the accuracy. A good pruning method not only
has little impact on accuracy, but also even can restore
accuracy after fine-tuning.

Its calculation formula is:

SC is number of correctly classified samples, ST is total
number of samples.

Here, the number of correctly classified samples refers
to the quantity of samples that the model accurately classi-
fied during the prediction process, while the total number
of samples refers to the overall number of samples in the
dataset. Accuracy is a crucial metric for assessing the overall
precision of a model, providing a comprehensive evaluation
of the model’s classification ability for each category.

During the training process, Accuracy can be used
to monitor the model’s performance. By calculating the
Accuracy at the end of each training epoch, it is possible
to understand the model’s classification accuracy on the
training set and adjust the model’s parameters accordingly
to improve performance. Furthermore, Accuracy can also
be used to evaluate the classification accuracy of different
models on the test set, enabling comparisons of different
model performance.

In summary, as a comprehensive performance evaluation
metric, Accuracy is crucial for assessing the classification
accuracy of a model across the dataset, providing important
information about the model’s overall performance.

(17)Acc =
SC

ST

Fig. 4 Example diagram of the input image

International Journal of Computational Intelligence Systems (2024) 17:129 Page 15 of 27 129

(2) Number of Parameters (Parameter): This indicator
quantifies the size of the model by counting the total
number of parameters. Pruning aims to reduce the num-
ber of parameters to achieve model compression while
maintaining performance.

Assuming the input data size is N × N , the filter size is
F × F , the number of input data channels is Cin , and the
number of filters is Cout , the calculation formula for the num-
ber of parameters is as follows:

Here, Cin × F × F represents the number of parameters for
each filter, and Cout represents the number of filters.

In a convolutional layer, each filter has Cin × F × F
parameters, and there are a total of Cout filters, thus the num-
ber of parameters is the product of these two quantities.

It is important to note that this parameter count only
considers the parameters of the convolutional layer and does
not take into account the parameters of other types of layers,
such as fully connected layers.

(3) Floating-Point Operations (FLOPs): FLOPs measure
the computational complexity and speed of model
operations. Decreasing the number of FLOPs helps
to clarify the computational efficiency and resource
requirements of a model. We want decrease of FLOPs
for a model would make this parameter clearer.

In CNN, FLOPs encompass the operations of
convolutional layers, pooling layers, and fully connected
layers. The calculation formulas are as follows:

Calculation formula for FLOPs in convolutional layers:
Assuming the size of the input feature map is H ×W ,

the size of the convolutional kernel is K × K , the number

(18)Number of Parameters = Cin × Cout × F × F

of input channels is Cin , and the number of output channels
is Cout , the FLOPs calculation formula for a convolutional
layer is:

Calculation formula for FLOPs in pooling layers:
Assuming the size of the pooling layer is P × P and the

number of input channels is Cin , the FLOPs calculation for-
mula for a pooling layer is:

Calculation formula for FLOPs in fully connected layers:
Assuming the input feature dimension of the fully con-

nected layer is Din and the output feature dimension is Dout ,
the FLOPs calculation formula for a fully connected layer is:

By considering the FLOPs calculation formulas for
the three types of layers mentioned above, it is possible
to determine the total FLOPs for the entire CNN model.
Calculating FLOPs allows for the assessment of model
computational complexity, enabling evaluations of model
efficiency on different hardware platforms. This is crucial
for deploying models on resource-constrained devices or
carrying out model optimization. The number of parameters
and FLOPs can be used to assess model complexity,
providing important references for model selection and
design. The number of parameters reflects the model’s scale
and learning capacity, while FLOPs measure the model’s
computational cost and efficiency. Striking a reasonable
balance between them can enhance the model’s performance
and efficiency.

The experiments are performed using the Keras platform,
a popular deep learning framework. Two well-known CNN
architectures, VGG-16 and ResNet-34/50, are selected for
evaluation. CIFAR10 [22] and CIFAR100 [23] datasets are
used on VGG-16. ResNet-50 uses CIFAR10, CIFAR100,
and ImageNet [24]. The CIFAR10 has 60,000 color images
of 32 × 32 pixels with 50,000 training images and 10,000
test images for a total of 10 classifications. CIFAR100 is
similar to CIFAR10, which has 100 classifications, with 500
training images and 100 test images in each classification.
ImageNet about 1.2 million training images, 50,000 valida-
tion images, 150,000 test images and 1000 class tags. As
show in Fig. 4.

These datasets are widely used in the research community
and provide diverse and comprehensive evaluation scenarios
for the pruning process. By evaluating the accuracy,
parameter count, and FLOPs of the pruned models on these
datasets, we can successfully demonstrate the effectiveness
and efficiency of the APSSF pruning method.

(19)FLOPsConv = 2 × H ×W × Cin × Cout × K × K

(20)FLOPspooling = H ×W × Cin × K × K

(21)FLOPsConv = 2 × Din × Dout

Table 1 Comparison of VGG-16 on CIFAR10 pruning methods

Method Acc ± Parameter (M) Parameter ↓
(%)

Flops ↓ (%)

GAL
(λ = 0.05)

 + 1.93 3.36 77.60 39.60

GAL (λ = 0.1) + 3.18 2.67 82.20 45.20
GA + 0.03 2.35 84.00 56.20
LWM + 0.13 5.40 64.00 34.20
CSHE – 0.02 2.64 82.10 69.00
ICP (�=0.010) – 0.40 1.94 86.83 70.66
ICP (�=0.015) – 0.22 0.91 93.82 79.94
ICP (�=0.020) + 0.31 0.54 96.33 86.20
APSSF-2 – 0.02 2.39 84.35 95.38
APSSF-4 – 0.03 1.19 92.21 97.72

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 16 of 27

4.2 Pruning VGG‑16

We perform the algorithm validation on VGG-16. VGG-16
is a classic deep learning model. The structure of the VGG-
16 includes the following components:

13 convolutional layers, where each filter has a receptive
field size of 3 × 3;

3 fully connected layers;
5 pooling layers, all using 2 × 2 maximum pooling.
It is important to note that both the convolutional lay-

ers and fully connected layers contain parameters, also
referred to as weight layers. All of the pooling layers have
no parameters. Experiments are performed on CIFAR10 and
CIFAR100 datasets with input 3-channel images of 32 × 32.

By evaluating the APSSF pruning algorithm on VGG-
16, specifically on the CIFAR10 and CIFAR100 datasets,
we can assess its effectiveness in preserving accuracy and
reducing model parameters for the given architecture and
datasets.

4.2.1 Pruning VGG‑16 on CIFAR10

In our experiments, we set the parameter of compression rate
(�) to 2 (APSSF-2) and 4 (APSSF-4), respectively. δδ is set
manually based on the desired level of model compression
and performance preservation. These values were chosen
considering the trade-off between model size reduction and
accuracy preservation. During the experiment, when the

Table 2 Performance of VGG-16 with � = 2 & � = 4 on CIFAR10

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_13 0.00 13.46 11.85 74.08 – 0.01 13.23 13.36 74.50
Conv_12 – 0.02 11.03 27.77 78.71 – 0.01 11.05 27.64 78.72
Conv_11 – 0.06 9.59 37.20 81.50 0.00 8.82 42.24 83.01
Conv_10 – 0.01 6.76 55.73 86.97 – 0.03 6.59 56.84 87.32
Conv_9 0.00 5.29 65.36 89.80 0.00 4.38 71.32 91.57
Conv_8 0.00 3.99 73.87 92.32 + 0.02 3.04 80.09 94.16
Conv_7 – 0.01 3.42 77.60 93.41 + 0.02 2.38 84.41 95.42
Conv_6 0.00 2.97 80.55 94.28 0.00 1.82 88.08 96.49
Conv_5 – 0.02 2.67 82.51 94.86 – 0.01 1.49 90.24 97.14
Conv_4 – 0.02 2.52 83.50 95.14 – 0.02 1.32 91.36 97.46
Conv_3 – 0.01 2.43 84.09 95.28 – 0.01 1.24 91.88 97.62
Conv_2 – 0.03 2.41 84.22 95.36 – 0.05 1.20 92.14 97.70
Conv_1 – 0.02 2.39 84.35 95.38 – 0.03 1.19 92.21 97.72

Fig. 5 The number of filters for
APSSF-2 on the CIFAR10 in
VGG-16

International Journal of Computational Intelligence Systems (2024) 17:129 Page 17 of 27 129

compression rate parameter is less than 2, the compression
rate is small, while when the compression rate parameter is
greater than 4, the accuracy loss is large. Therefore, the two
values of 2 and 4 were finally selected. The results obtained
from evaluating APSSF-2 and APSSF-4 on the CIFAR10
dataset are as follows:

APSSF-2: The accuracy achieved by APSSF-2 is 84.26%
on CIFAR10, which is only slightly lower (0.02) than the
accuracy of the original model. The number of parameters
is reduced by 84.35%, resulting in a significant decrease in
model size. The FLOPs are reduced by 95.38%, indicating a
substantial improvement in computational efficiency.

APSSF-4: The accuracy of APSSF-4 is 83.23%, which
is 0.03 lower than the original model. The number of
parameters is decreased by 92.21%, indicating a significant
reduction in model size. Moreover, the FLOPs are reduced
by 97.72%, demonstrating a substantial improvement in
computational efficiency.

When comparing APSSF-2 and APSSF-4, both methods
provide considerable reductions in model parameters and
FLOPs compared to the original model. However, APSSF-2
achieves slightly better accuracy compared to APSSF-4,
indicating its effectiveness in preserving model performance.

Table 1 shows a performance comparison of APSSF with
other pruning methods, further illustrating the superior per-
formance and efficiency of APSSF.

These experimental results demonstrate that APSSF
outperforms existing pruning methods, achieving signifi-
cant reductions in model complexity while simultaneously
maintaining a reasonable level of accuracy on the CIFAR10
dataset.

Based on the comparison presented in Table 1, APSSF
is compared with other state-of-the-art pruning methods,
including GAL [25], GA [16], LWM [10], CSHE [18], and
ICP [20]. APSSF achieves minor loss in accuracy compared
to the original model. The accuracy reduction for APSSF-2
is only 0.02, and for APSSF-4, it is 0.03. Although the accu-
racy of GA, LWM, GAL are increased, the strength of the
model pruning is less than APSSF-4, the reduction rates
of parameters and FLOPs are also much lower than that of
APSSF-4. APSSF outperforms other methods in terms of
parameter and FLOPs reduction rates. APSSF-4 achieves the
highest reduction rates, indicating its strong pruning capabil-
ity. GAL, GA, LWM, CSHE, and ICP show less pronounced
reductions in parameters and FLOPs compared to APSSF-4.

Taken together, the comparison demonstrates that
APSSF achieves a better balance between accuracy and
pruning strength compared to other methods. It effectively
preserves accuracy while achieving substantial reductions
in parameters and FLOPs. The compression rate of FLOPs
in APSSF surpasses that of GAL, GA, LWM, CSHE, and
ICP, further illustrating its efficiency in model compression.

Detailed performance changes of APSSF-2 and APSSF-4
are presented in Table 2. The tables reveal that, at differ-
ent pruning strengths, both APSSF-2 and APSSF-4 show a
notable loss in accuracy when pruning the first and second
convolutional layers. This suggests that these two layers have
limited parameter redundancy, resulting in accuracy reduc-
tions without significant reductions in model size.

Based on these findings, it can be inferred that pruning
the first and second convolutional layers may not achieve a
favorable balance between model size and accuracy. Thus,
it may be more effective to refrain from pruning these

Fig. 6 The number of filters for
APSSF-4 on the CIFAR10 in
VGG-16

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 18 of 27

Fig. 7 Pruning cluster tree graph of VGG-16 on the CIFAR10

International Journal of Computational Intelligence Systems (2024) 17:129 Page 19 of 27 129

particular layers to preserve higher accuracy while still
achieving notable model compression.

This analysis emphasizes the importance of considering
the specific characteristics and redundancy levels within dif-
ferent layers when performing model pruning. By carefully
evaluating the trade-off between accuracy and model size
reduction, we can optimize the pruning process to achieve
the desired balance and enhance the overall efficiency of
the model. Fig. 5 and Fig. 6 visually show the number of
filters in APSSF-2 and APSSF-4 in the form of bar charts
respectively. Through comparative analysis, we can find that
the number of filters in both models decreased after filter
pruning, especially the APSSF-4, and the number of filters is
more obvious. This change means that the model effectively
reduces the computational complexity and the number of
model parameters while maintaining the high performance.

“Conv_X” represents the X-th convolutional layer in
VGG-16. Acc ± is the percentage point of the change in
network accuracy after pruning. “Parameter ↓” refers to the
percent of parameter reduction. "Flops ↓" refers to the per-
cent of FLOPs reduction.

Figure 7 presents the cluster tree diagram of the first to
fifth convolutional layers (Conv_1, Conv_2, Conv_3, Conv_4)
for both APSSF-2 and APSSF-4. In this diagram, the X-axis
represents the index of filters, while the Y-axis represents the
distance between the categories. The vertical lines in the tree
graph represent the distance between different categories. A
greater distance between these vertical lines indicates a larger
dissimilarity between the corresponding categories. This vis-
ual representation allows for a clear observation of the cluster-
ing process throughout the different layers. By analyzing the
cluster tree graph, the clustering process can be discerned,

Fig. 8 Cluster tree graph of the first convolution layer in VGG-16.
The number of clusters is 28 when pruning the first convolution layer,
as shown in the red dashed line. Filters are divided into 28 categories.

The first filter in each category is preserved, and the rest are removed.
The cluster cutoff is the red dashed line

Table 3 Performance of VGG-16 with � = 2 & � = 4 on CIFAR100

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_13 – 0.02 13.43 12.30 74.22 0.01 13.33 12.95 74.41
Conv_12 – 0.01 11.58 24.38 77.78 0.00 11.11 27.45 78.67
Conv_11 0.00 9.60 37.31 81.58 – 0.02 8.89 41.95 82.95
Conv_10 0.00 7.91 48.34 92.54 0.01 6.68 56.38 87.22
Conv_9 + 0.02 6.13 59.97 88.27 0.03 4.46 70.87 91.48
Conv_8 + 0.03 4.94 67.74 90.55 0.01 3.13 79.56 94.04
Conv_7 + 0.01 4.35 71.59 91.70 0.00 2.46 83.94 95.33
Conv_6 + 0.01 3.89 74.60 92.57 0.00 1.91 87.53 96.39
Conv_5 0.00 3.59 76.56 93.15 – 0.03 1.57 89.75 97.03
Conv_4 + 0.02 3.45 77.47 93.42 – 0.05 1.41 90.79 97.35
Conv_3 – 0.01 3.38 77.93 93.57 – 0.07 1.32 91.38 97.51
Conv_2 – 0.02 3.34 78.19 93.64 – 0.04 1.28 91.64 97.60
Conv_1 + 0.01 3.32 78.32 93.67 – 0.08 1.27 91.71 97.61

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 20 of 27

showcasing how filters are grouped based on their similar-
ity. The branches of different colors in the graph represent
different classes. Due to the large number of filters, only the
20 nodes of filters are shown in Fig. 7. For example, in the
APSSF-2_Conv_1 subgraph, the X-axis represents the index
of filters, and the values in parentheses indicate the number
of filter nodes included. There are a total of 28 clusters, Fig. 8
is a detailed expansion of the APSSF-2_Conv_1 subgraphs.
Cluster 1 includes the 37th filter, cluster 2 includes the 29th
filter, cluster 3 includes the 33rd filter, and so on. In addi-
tion, cluster 21 comprises the 1st, 3rd, 7th, 8th, 9th, 10th,
12th, 13th, 15th, 16th, 17th, 18th, 19th, 21st, 22nd, 23rd, 27th,
30th, 31st, 32nd, 34th, 35th, 36th, 39th, 40th, 41st, 45th, 46th,
47th, 49th, 54th, 55th, 56th, 57th, 58th, 61st, 63rd filters, and

so forth, with cluster 28 encompassing the 48th filter. Based
on the clustering results, the 64 filters are divided into 28
clusters, which represent relatively independent subsets. This
structure helps us better understand the features and distribu-
tion of the data. By observing the filters contained in each
cluster, we can infer which filters have similar impact pat-
terns in the feature space. For example, cluster 21 contains
37 filters, indicating that these filters have similar features
in a certain feature space and can be classified into the same
category or label. This helps us discover the correlations and
interactions between data features. Based on the clustering
results, we choose to retain the first filter in each cluster and
prune the rest. The number of filters is reduced from 64 to 28
in 1st convolutional layer.

Fig. 9 The number of filters for
APSSF-2 on the CIFAR100 in
VGG-16

Fig. 10 The number of filters
for APSSF-4 on the CIFAR100
in VGG-16

International Journal of Computational Intelligence Systems (2024) 17:129 Page 21 of 27 129

In Fig. 8, the cluster tree graph of the first convolutional
layer (Conv_1) in VGG-16 is shown. The graph reveals that
when the clustering distance is set at 0.25 (indicated by the
blue dashed line), the number of clusters is 5. This informa-
tion can serve as a manual reference for setting the fixed
distance threshold and the number of clusters. However, in
the process of filter pruning, it can be challenging to manu-
ally determine the appropriate distance threshold and the
number of clusters. If there are too many cluster categories,
the pruning strength may be weakened. On the other hand,
having too few cluster categories may result in excessive
pruning and loss of accuracy. To address this challenge,
finding a suitable number of clusters dynamically based
on the model’s parameters becomes essential. An adaptive
approach can alleviate the need for manually setting thresh-
olds and conducting multiple tests, as it allows for automatic
adjustment based on the desired compression rate.

Figure 8 also illustrates the pruning process of the first
convolutional layer. The graph depicts that when pruning
this layer, a total of 28 clusters are formed (as indicated
by the red dashed line). Each category corresponds to a
particular group of filters. Among these clusters, one filter
from each category is preserved, while the remaining fil-
ters are removed. By dynamically determining the thresh-
old for cluster formation, the adaptive approach helps to
optimize the pruning process and achieve a better balance
between model size reduction and preserving accuracy.

Adaptive methods improve overall efficiency in model
pruning in several aspects:

Reduction of computational complexity: Adaptive
methods effectively reduce computational complexity by
introducing techniques such as dimension reduction and
dynamically adjusting distance thresholds. This makes
computing similarity and clustering more efficient, thereby
accelerating the model pruning process.

Flexibility and control: Adaptive methods allow param-
eters such as compression rate and distance threshold to
be dynamically adjusted according to specific needs and
performance requirements. This flexibility and controlla-
bility make the pruning process more intelligent, enabling
adjustments based on specific situations and ultimately
improving overall efficiency.

Preservation of relative similarity relationships: While
reducing computational complexity, adaptive methods are
still able to preserve important structural information and
relative similarity relationships. This means that during
the pruning process, although some absolute similarity
values may be lost, the relative similarity relationships are

Table 4 Performance of ResNet-34 with � = 2 on CIFAR10

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_35 0.00 18.90 11.32 72.12 0.00 17.75 16.71 75.51
Conv_33 0.00 16.49 22.63 75.74 0.00 14.20 33.37 79.64
Conv_30 0.00 14.71 30.98 80.45 0.00 11.53 45.90 82.85
Conv_28 0.00 14.11 33.79 85.54 0.00 10.64 50.08 87.43
Conv_26 0.00 13.52 36.56 88.36 0.00 9.75 54.25 92.46
Conv_24 0.00 12.91 39.42 91.53 0.00 8.85 58.47 95.04
Conv_22 0.00 12.31 42.24 92.71 0.00 7.95 62.70 96.43
Conv_20 + 0.01 11.71 45.05 93.87 + 0.01 7.05 66.92 97.59
Conv_17 + 0.01 11.26 47.17 94.25 + 0.01 6.38 70.06 98.23
Conv_15 + 0.02 11.11 47.87 95.32 + 0.01 6.16 71.10 98.35
Conv_13 + 0.02 10.95 48.62 95.57 + 0.02 5.93 72.18 98.58
Conv_11 + 0.02 10.80 49.32 95.66 + 0.02 5.71 73.21 98.61
Conv_8 + 0.02 10.69 49.84 95.71 + 0.02 5.54 74.01 98.70
Conv_6 + 0.03 10.65 50.03 95.75 + 0.03 5.48 74.29 98.75
Conv_4 + 0.04 10.61 50.22 95.80 + 0.04 5.43 74.52 98.80
Conv_2 + 0.04 10.58 50.36 95.84 + 0.04 5.37 74.80 98.88

Table 5 Comparison of ResNet-34 on CIFAR10 pruning methods

Method Acc ± Parameter (M) Parameter ↓
(%)

Flops ↓ (%)

GAL (λ = 0.5) + 0.05 4.60 78.46 65.40
GAL (λ = 0.8) + 0.08 5.85 72.60 45.20
GA – 0.04 4.64 75.54 51.46
LWM – 0.02 9.74 54.36 32.36
APSSF-2 + 0.04 10.58 50.36 95.84
APSSF-4 + 0.04 5.37 74.80 98.88

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 22 of 27

maintained, effectively reducing the computational burden
and improving overall efficiency.

In conclusion, adaptive methods effectively improve the
overall efficiency of the model pruning process by reduc-
ing computational complexity, providing flexibility and
control, preserving relative similarity relationships, and
dynamically adjusting the clustering process, making the
pruning process more intelligent, efficient, and effective.

4.2.2 Pruning VGG‑16 on CIFAR100

A fixed compress rate does not apply for all convolutional
layers. Because most architectures of CNN are designed for

specific datasets, and the ability of extract the features of the
convolution layers is not necessarily suitable for CIFAR10,
CIFAR100, and other datasets. The static pruning strategy
is suboptimal because each category requires only a few
channels. A good pruning strategy should produce differ-
ent compression rates for each layer. APSSF sets a range of
the compression rate within which the number of clusters
is adaptively determined. The compression rate varies for
each convolution layer after pruning. Tables 3 are the prun-
ing of VGG-16 on CIFAR100, respectively. Table 3 are the
experimental results on CIFAR100. The results show that
if the value of � is large, pruning those shallow convolu-
tional layers has a more significant impact on the accuracy.

Fig. 11 The number of filters
for APSSF-4 on the CIFAR10
in RESNET-34

Fig. 12 The number of filters
for APSSF-2 on the CIFAR10
in RESNET-34

International Journal of Computational Intelligence Systems (2024) 17:129 Page 23 of 27 129

Fig. 9 and Fig. 10 respectively compare the number of fil-
ters in each layer before and after VGG-16 pruning on the
cifar100 dataset.

4.3 Pruning ResNet

The VGG-16 is standard convolutional structures. The
ResNet-34 increased the residual block compared to
VGG-16, and it has more parameters and higher accuracy.
In the research, only the standard convolutional layers in
ResNet-34 were pruned, while the structure of the resid-
ual blocks remained unchanged. For the ResNet-34 on the
CIFAR dataset, preprocessing includes the following steps:

Data type conversion: The loaded training and testing
data is converted to the float32 type. This is because in deep
learning models, 32-bit floating-point numbers are com-
monly used to represent data.

Label processing: One-hot encoding is applied to the
labels of the training and testing sets. We convert category
labels into the one-hot encoding format.

These preprocessing steps ensure the consistency of
data format and compliance with the requirements of deep
learning models, enabling subsequent model training and
evaluation.

The learning rate (lr) is set to 0.0001, which is an essential
hyperparameter controlling the step size of model parameter
updates. A smaller lr typically means slower convergence
speed, but it may lead to better results. The echop was set
to 500. The lr decay is set to 1e-6, indicating that the lr
decays exponentially at each update step. Momentum is set
to 0.9, serving as a method to accelerate SGD and aiding in

finding the optimal solution more quickly in the parameter
space. Nesterov momentum is set to True, indicating the use
of Nesterov momentum, which is an improved momentum
method that converges to the optimal solution more quickly.
The choice of these parameters is usually based on empirical
observations and experimental results, and can be adjusted
based on the specific problem and dataset.

4.3.1 Pruning ResNet‑34 on CIFAR10

As demonstrated in Table 4, we conducted experiments by
setting � to 2 (APSSF-2) and 4 (APSSF-4). The accuracy
of the pruned network (APSSF-2) is increased by 0.04
on CIFAR10. The number of parameters is reduced from
17.75M to 5.37 M, reduced by 50.36%, and FLOPs is
also reduced by 95.84%. Moreover, in our experiments,
the accuracy of the APSSF-4 also increased by 0.04 on
the CIFAR10. The number of parameters was reduced to
5.37M, indicating a significant reduction of 74.80%. In
addition, the FLOPs decreased by an impressive 98.88%

Comparing our method with others, such as GAL, GA
[16], and LWM [10], as shown in Table 5, it is worth not-
ing that the FLOPs achieved by APSSF outperformed the
other algorithms. Specifically, the FLOPs of APSSF-4
showed a remarkable decrease of 98.88%, exhibiting a
superiority of 33.48% over GAL (λ = 0.5) and a significant
improvement of 47.42% over LWM. However, it is impor-
tant to consider that although the APSSF method showed
slightly lower accuracy compared to GAL, its outstanding
reduction in FLOPs highlights its competitiveness.

Table 6 Performance of ResNet-34 with � = 2 & � = 4 on CIFAR100

Conv_X APSSF-2 APSSF-4

Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%) Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

Conv_35 0.00 18.99 11.09 74.64 – 0.01 17.80 16.66 75.61
Conv_33 – 0.01 16.62 22.18 78.68 – 0.01 14.24 33.33 78.77
Conv_30 – 0.01 14.84 30.52 82.58 – 0.01 11.58 45.78 81.93
Conv_28 – 0.01 14.24 33.33 92.76 – 0.02 10.69 49.95 85.32
Conv_26 – 0.01 13.63 36.18 93.27 – 0.02 9.80 54.12 92.58
Conv_24 – 0.02 13.02 39.04 93.55 – 0.03 8.90 58.33 95.04
Conv_22 – 0.03 12.42 41.85 93.70 – 0.04 8.01 62.50 96.53
Conv_20 – 0.02 11.82 44.66 93.57 – 0.03 7.12 66.66 96.76
Conv_17 – 0.01 11.37 46.76 93.67 – 0.03 6.46 69.75 97.43
Conv_15 – 0.01 11.22 47.47 93.89 – 0.02 6.23 70.83 97.67
Conv_13 – 0.01 11.07 48.17 94.27 – 0.02 6.01 71.86 97.87
Conv_11 0.00 10.92 48.87 94.64 – 0.01 5.78 72.94 98.21
Conv_8 0.00 10.85 49.20 94.77 0.00 5.61 73.73 98.52
Conv_6 + 0.01 10.81 49.39 94.83 0.01 5.56 73.97 98.58
Conv_4 + 0.02 10.77 49.57 94.95 0.01 5.50 74.25 98.62
Conv_2 + 0.03 10.73 51.45 94.97 0.02 5.44 74.53 98.68

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 24 of 27

Figures 11 and 12 show the number of filters before and
after pruning for each layer when the � is set to 4 (APSSF-4)
and 2 (APSSF-2). The horizontal axis represents the convo-
lutional layers, and the vertical axis represents the number of
filters. The blue bars in the graph represent the number of fil-
ters before pruning, while the orange bars represent the num-
ber of filters after pruning. It is clear to see the changes in
the number of filters for each layer before and after pruning.

In this case, the APSSF method adopts an adaptive strat-
egy to determine the number of clusters, and the pruning
quantity of each layer automatically seeks a suitable value
within the compression rate range. This is different from
setting a fixed pruning ratio threshold because it allows
each layer to determine the pruning quantity based on its
own characteristics and data distribution, rather than simply
applying a fixed compression rate. This adaptive pruning
method can better adapt to the characteristics of different
layers, thereby maintaining the performance and effective-
ness of the model after pruning. By automatically finding
the appropriate pruning quantity, the APSSF method can
achieve more efficient model pruning while maintaining
model performance. This adaptability helps to improve
the efficiency and accuracy of model pruning, making the
pruned model more compact and efficient.

4.3.2 Pruning ResNet‑34 on CIFAR100

In addition to the experiments conducted on the CIFAR10,
we also evaluated our proposed method by setting � to 2
(APSSF-2) and 4 (APSSF-4) on the CIFAR100. The results
revealed that the accuracy of the APSSF-4 increased by
0.02. Concurrently, the number of parameters decreased
from 17.80 million to 5.44 million, representing a reduc-
tion of 74.53%. Furthermore, the FLOPs also underwent a
significant decrease of 98.68%.

To provide a comprehensive comparison, the results of
the experiments on the CIFAR100 are displayed in Table 6.
These additional findings further validate the effectiveness
of our proposed method in achieving higher accuracy and
substantial reductions in the number of parameters and
FLOPs.

In ResNet-34, the selection of pruning standard
convolutional layers can have a significant impact on the
overall model architecture and performance. Below, we
will detail how this selection affects the model architecture
and performance, and discuss how dimensionality
reduction techniques can enhance overall efficiency.

Architecture impact: Pruning standard convolutional
layers leads to changes in the modelk architecture.
Through pruning, some of the convolutional layer filters
are pruned, thereby reducing the model’s parameter and
computational load. The pruned model architecture may
become sparser, meaning that many positions in the output
feature maps of certain convolutional layers are zero. This
sparsity can offer computational and storage advantages
as calculations for zero-value positions can be skipped.

Performance impact: The selection of pruning standard
convolutional layers can impact model performance. Pruning
may result in a decrease in model accuracy as some impor-
tant filters are pruned. Therefore, careful selection of the
convolutional layers to prune is necessary during the prun-
ing process to maintain model performance. To mitigate the
impact of pruning on performance, fine-tuning techniques
can be employed to retrain the pruned model. Fine-tuning
can aid in restoring or improving performance by adjusting
filters through further training on the pruned model.

Table 7 Comparison of ResNet-50 on ImageNet pruning methods

Method Acc ± Parameter (M) Parameter ↓ (%) Flops ↓ (%)

GAL
(λ = 0.5)

 + 0.04 21.20 78.46 43.03

GAL
(λ = 1)

 + 0.06 14.67 72.60 61.37

FPGM – 0.01 – – 53.50
SSR-GR – 0.01 – – 55.10
HRel – 0.03 9.10 64.40 66.42
LFPC – 0.02 – – 60.80
ThinNet – 0.06 8.66 66.07 71.27
CSHE – 0.05 13.08 48.70 65.10
ASFRP – 0.15 – – 41.80
APSSF-2 + 0.36 11.69 54.26 84.64
APSSF-4 + 0.45 5.16 79.80 86.58

Table 8 Performance of
indicator network

Model � = 2 � = 4

Acc (%) Parameter (M) FLOPs Acc (%) Parameter (M) FLOPs

Pruned VGG-16 84.26 2.39 1.19 × 107 83.23 1.19 0.59 × 107

Same_StructureNet 82.75 2.39 4.41 × 107 79.68 1.19 2.01 × 107

Same_LayerNet 83.43 2.68 4.55 × 107 76.86 1.18 2.00 × 107

Same_ParameterNet 10.00 2.39 4.43 × 107 10.00 1.18 2.00 × 107

Same_FilterNet 86.62 7.43 12.61 × 107 82.52 9.96 16.92 × 107

International Journal of Computational Intelligence Systems (2024) 17:129 Page 25 of 27 129

Computational complexity: The computational complex-
ity of pruning standard convolutional layers depends on the
extent of pruning and the resulting model architecture. Prun-
ing can reduce computational load as the pruned filters no
longer participate in calculations. However, pruning also
introduces sparsity, which may require additional computa-
tions to handle sparse matrix multiplication. Dimensional-
ity reduction techniques can enhance overall efficiency. For
instance, dimensionality reduction techniques for convolu-
tional layers (e.g., 1 × 1 convolutions) can reduce the num-
ber of channels in feature maps, thereby decreasing com-
putational load and storage requirements. Dimensionality
reduction techniques can be applied before or after pruning
to further enhance overall efficiency.

In conclusion, the selection of pruning standard convolu-
tional layers can impact the architecture and performance of
ResNet-34. Pruning can reduce computational and param-
eter load but may also lead to performance degradation. By
carefully selecting the convolutional layers to prune and
employing fine-tuning techniques, pruning can be achieved
while maintaining performance. Dimensionality reduction
techniques can further enhance overall efficiency by reduc-
ing computational complexity and storage requirements.

4.3.3 Pruning ResNet‑50 on ImageNet

The evaluation of APSSF was conducted on the ImageNet
dataset using the ResNet-50 architecture. During the training
process, a batch size of 32 was employed, and the network
was trained for 300 epochs with a lr of 0.001. The cross-
entropy loss function was adopted to calculate the loss. In
the pruning process, we specifically selected two standard
convolutional layers in each residual block for pruning.

When training the ResNet-50 model on the ImageNet
dataset, data preprocessing and initialization steps are
performed.

Preprocessing:
Image resizing: Images in the ImageNet dataset come in

various sizes and need to be resized to a uniform size of
224 × 224 for input into the ResNet-50 model.

Mean rormalization: Mean normalization is applied to
each channel of the images, which involves subtracting the
mean of each channel to bring the data mean closer to 0.
This helps accelerate the model’s convergence process.

Standardization: Each channel of the images undergoes
standardization, where the value of each channel is divided
by its standard deviation, aiming to bring the data’s standard
deviation close to 1.

Initialization:
When training the ResNet-50 model, pre-trained weights

are used as initialization parameters. These weights are
obtained from training on the ImageNet dataset and can

aid the model in converging faster and achieving better
performance.

The results demonstrated that the parameters of the
APSSF-4 achieved a reduction of 79.80%, while the FLOPs
experienced a significant drop of 86.58%. These outcomes
indicate that our pruning method outperforms other tech-
niques, such as GAL, FPGM [11], SSR-GR [26], ThiNet
[13], HRel [27], LFPC [28], CSHE, and ASFRP[29], as
displayed in Table 7. As can be seen from the Table 7, the
APSSF method has great advantages in improving the accu-
racy and speed (FLOPs).

The APSSF method is compared with other methods on
the ResNet-50 image dataset in the following aspects:

Accuracy improvement: According to the provided data,
the accuracy improvement of the APSSF-2 method on the
ResNet-50 image dataset is + 0.36, while the accuracy
improvement of the APSSF-4 method is + 0.45. These two
values are significantly higher than those of other meth-
ods, indicating that the APSSF method can maintain a high
level of accuracy after pruning, and even achieve significant
improvement.

Reduction in the number of parameters: The reduction
in the number of parameters for the APSSF-2 method is
54.26%, while for the APSSF-4 method, it is 79.80%. These
two values are also significantly higher than those of other
methods, indicating that the APSSF method can achieve
a substantial reduction in the number of parameters after
pruning.

Reduction in FLOPs: The reduction in floating-point
operations for the APSSF-2 method is 84.64%, while for
the APSSF-4 method, it is 86.58%. Similarly, these two
values are significantly higher than those of other methods,
indicating that the APSSF method can achieve a substantial
reduction in floating-point operations after pruning.

Based on these numerical comparisons, we can conclude
that the APSSF method outperforms other methods on the
ResNet-50 image dataset, primarily in terms of accuracy
improvement, reduction in the number of parameters, and
reduction in floating-point operations. These numerical
comparisons clearly demonstrate that the APSSF method
can comprehensively consider multiple performance indi-
cators during the pruning process and achieve a substantial
reduction in parameters and computational workload while
maintaining efficient performance.

4.4 The Performance of Indicator Network

APSSF has the ability to generate subnets of varying sizes
and accuracies. To evaluate whether these subnets possess
a performance advantage over directly building models with
the same structure, we conducted experiments to compare
the performance of indicator networks with that of mod-
els having similar structures. In these experiments, we

 International Journal of Computational Intelligence Systems (2024) 17:129 129 Page 26 of 27

constructed four CNNs from scratch: Same_StructureNet,
Same_LayerNet, Same_ParameterNet, and Same_FilterNet.
The performance of these models is presented in Table 8. We
build the model based on the structure of the pruned VGG-
16, using the CIFAR10 dataset with a training epoch set to
300, a batch size of 128, and a lr of 0.01.

• Same_StructureNet

This model is built with the same structure as the pruned
VGG-16. It is trained from scratch and the same parameter
settings employed during the pruning process.

• Same_LayerNet

The number of layers in this model is the same as the
pruned VGG-16, but the filters are equally distributed across
each layer.

• Same_ParameterNet

This model has the same total number of parameters as
the pruned VGG-16. It consists of four convolutional layers,
with the first and second layers having 64 filters each, the
third layer having 128 filters, and the fourth layer having
142 filters.

• Same_FilterNet

A network with the same total number of filters as the
pruned VGG-16. Same_FilterNet has nine convolutional
layers. Each of the first three layers has 64 filters, layers 4
and 5 have 128 filters each, layers 6, 7 and 8 have 256 filters
each, and layer 9 has 512 filters.

The results presented in Table 8 indicate that the accu-
racy and FLOPs of Same_StructureNet, Same_LayerNet,
and Same_ParameterNet are lower than those of the pruned
VGG-16. Although the accuracy of Same_FilterNet reaches
82.52%, which is only 0.68% lower compared to the pruned
VGG-16, both the number of parameters and FLOPs are
considerably higher than those of the pruned VGG-16.
This observation suggests that redundancy in parameters is
necessary in the initial stages of model training. Training a
small-scale model from scratch leads to significantly lower
overall performance compared to pruning a larger model that
already exhibits high accuracy.

Large-scale models typically achieve high accuracy and
satisfactory performance. However, using APSSF, it is feasi-
ble to obtain small-scale models with similar levels of accu-
racy. This illustrates the effectiveness of the APSSF method

in producing small-scale models that possess the same level
of performance as large-scale models.

5 Conclusions

Pruning is widely acknowledged as an effective technique
for compressing CNN. This paper introduces the APSSF
pruning method, which offers several notable advantages,
including a high compression rate, minimal accuracy loss,
efficient computational speed, and straightforward imple-
mentation. The experimental results on CIFAR10/100 and
ImageNet datasets demonstrate that APSSF achieves state-
of-the-art performance. Through systematic experimentation
and analysis on these three benchmark datasets, we observed
that deep convolutional layers in CNN often contain a sig-
nificant amount of redundant parameters. By selectively
removing these redundant parameters, the pruned model
can even outperform the original model. Moving forward,
our future research will focus on exploring more efficient
pruning methods to further optimize the performance of
compressed models.

Author Contributions The study is written by all authors. All authors
reviewed the results and approved the final version of the manuscript.

Funding This work is supported by the Key Research and Development
Plan of Shanxi Provence No. 201903D421007 and 202302010101004.

Data Availability The datasets used in the experiments are publicly
available.

Declarations

Conflict of Interest The authors declare no conflicts of interest relevant
to this article.

Ethical Approval and Consent to Participate All authors have read and
agree to participate in this paper. In addition, the authors confirm that
this manuscript has not been submitted to any other journal for simul-
taneous consideration.

Consent for Publication All authors appeared in this paper agreed to
publication in this journal.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http:// creat iveco mmons.
org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2024) 17:129 Page 27 of 27 129

References

 1. Simonyan, K, Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: International Conference on
Learning Representations (ICLR), pp. 1–14 (2015)

 2. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for
Image Recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
pp. 770–778 (2016). https:// doi. org/ 10. 1109/ CVPR. 2016. 90.

 3. Chollet, F.: Xception: Deep learning with depthwise separable
convolutions. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 1800–1807
(2017). https:// doi. org/ 10. 1109/ CVPR. 2017. 195.

 4. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated resid-
ual transformations for deep neural networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR), vol. 1, no. 2 pp. 1492–1500 (2017)

 5. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv
preprint arXiv: 1605. 07146 (2016)

 6. Zhang, Q., Shi, Y., Zhang, L., Wang, Y., Tian, Y.: Learning com-
pact networks via similarity-aware channel pruning. In: 2020
IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), Shenzhen, China, pp. 145–148. https:// doi.
org/ 10. 1109/ MIPR4 9039. 2020. 00037 (2020)

 7. Han, S., Pool, J., Tran, J., Dally, W. L.: Learning both weights and
connections for efficient neural networks. In: Proceedings of the
28th International Conference on Neural Information Processing
Systems, vol. 1, December 2015, pp.1135–1143 (2015)

 8. Carreira-Perpinan, M. A., Idelbayev, Y.: “Learning-Compression”
algorithms for neural net pruning. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, pp. 8532–8541. https:// doi. org/ 10. 1109/ CVPR. 2018. 00890
(2018)

 9. Ghimire, D., Kim, S.H.: Magnitude and similarity based variable
rate filter pruning for efficient convolution neural networks. Appl.
Sci. 13(1), 316 (2023). https:// doi. org/ 10. 3390/ app13 010316

 10. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H. P.: Prun-
ing filters for efficient convnets. In: Proceedings of International
Conference on Learning Representations, pp. 1–13 (2017)

 11. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via
geometric median for deep convolutional neural networks accel-
eration. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (Long Beach, CA), pp. 4340–
4349. https:// doi. org/ 10. 1109/ CVPR. 2019. 00447 (2019)

 12. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning
efficient convolutional networks through network slimming. In:
Proceedings of the IEEE International Conference on Computer
Vision (Venice), pp. 2736–2744. https:// doi. org/ 10. 1109/ ICCV.
2017. 298 (2017)

 13. Luo, J. H., Wu, J., Lin, W.: ThiNet: a filter level pruning method
for deep neural network compression. In: 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, pp. 5068–
5076. https:// doi. org/ 10. 1109/ ICCV. 2017. 541 (2017)

 14. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning
convolutional neural networks for resource efficient inference. In:
International Conference on Learning Representations (ICLR),
pp. 1–17 (2017)

 15. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Impor-
tance estimation for neural network pruning. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, pp. 11256–11264. https:// doi. org/ 10. 1109/
CVPR. 2019. 01152 (2019)

 16. Yang, T.-J., Chen, Y.-H., Sze, V.: Designing energy-efficient con-
volutional neural networks using energy-aware pruning. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, pp. 6071–6079. https:// doi. org/ 10.
1109/ CVPR. 2017. 643 (2017)

 17. Chu, C., Chen, L., Gao, Z.: Similarity based filter pruning for
efficient super-resolution models. In: 2020 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Paris, France, pp. 1–7. https:// doi. org/ 10. 1109/ BMSB4
9480. 2020. 93797 12 (2020)

 18. Shao, M., Dai, J., Wang, R., Kuang, J.D., Zuo, W.M.: CSHE: net-
work pruning by using cluster similarity and matrix eigenvalues.
Int. J. Mach. Learn. & Cyber. 13, 371–382 (2022). https:// doi. org/
10. 1007/ s13042- 021- 01411-8

 19. Li, L.Q., Xu, Y.H., Zhu, J.: Filter level pruning based on similar
feature extraction for convolutional neural networks. IEICE Trans.
Inf. Syst. E101D(4), 1203–1206 (2018)

 20. Chang, J.F., Lu, Y., Xue, P., Xu, Y.Q., Wei, Z.: Iterative clustering
pruning for convolutional neural networks. Knowl.-Based Syst.
265, 8 (2023). https:// doi. org/ 10. 1016/j. knosys. 110386

 21. Ian, G., Yoshua, B., Aaron, C.: Deep Learning, pp. 201–202. The
People’s Posts and Telecommunications Press, Beijing (2024)

 22. Krizhevsky, A.: Learning multiple layers of features from tiny
images. Technical Report, Computer Science Department, Univer-
sity of Toronto, http:// www. cs. toron to. edu/ ~kriz/ cifar- 10- binary.
tar. gz (2009)

 23. Krizhevsky, A.: Learning multiple layers of features from tiny
images. Technical Report, Computer Science Department, Univer-
sity of Toronto. http:// www. cs. toron to. edu/ ~kriz/ cifar- 100- binary.
tar. gz. (2009)

 24. Jia, D., Wei, D., Socher, R., Li, L. J., Kai, L., Li, F. F.: Imagenet: A
large-scale hierarchical image database. In: 2009 IEEE conference
on computer vision and pattern recognition, pp. 248–255 (2009)

 25. Lin, S. et al.: Towards Optimal Structured CNN Pruning via Gen-
erative Adversarial Learning. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, pp. 2785–2794. https:// doi. org/ 10. 1109/ CVPR. 2019.
00290. (2019)

 26. Wang, Z., Li, C., Wang, X.: Convolutional Neural Network Prun-
ing with Structural Redundancy Reduction. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, pp. 14908–14917, https:// doi. org/ 10. 1109/
CVPR4 6437. 2021. 01467 (2021)

 27. Sarvani, C., Ghorai, M., Dubey, S.R., Basha, S.S.: Hrel: filter
pruning based on high relevance between activation maps and
class labels. Neural Netw. 147, 186–197 (2022)

 28. He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., Yang, Y.: Learning
Filter Pruning Criteria for Deep Convolutional Neural Networks
Acceleration. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp.
2006–2015. https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 00208
(2020)

 29. Cai, L., An, Z., Yang, C., Xu, Y.: Softer pruning, incremental
regularization. In: 2020 25th International Conference on Pattern
Recognition (ICPR), Milan, Italy, pp. 224–230, https:// doi. org/ 10.
1109/ ICPR4 8806. 2021. 94129 93 (2021)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.195
http://arxiv.org/abs/1605.07146
https://doi.org/10.1109/MIPR49039.2020.00037
https://doi.org/10.1109/MIPR49039.2020.00037
https://doi.org/10.1109/CVPR.2018.00890
https://doi.org/10.3390/app13010316
https://doi.org/10.1109/CVPR.2019.00447
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2017.643
https://doi.org/10.1109/CVPR.2017.643
https://doi.org/10.1109/BMSB49480.2020.9379712
https://doi.org/10.1109/BMSB49480.2020.9379712
https://doi.org/10.1007/s13042-021-01411-8
https://doi.org/10.1007/s13042-021-01411-8
https://doi.org/10.1016/j.knosys.110386
http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
http://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz
http://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR46437.2021.01467
https://doi.org/10.1109/CVPR46437.2021.01467
https://doi.org/10.1109/CVPR42600.2020.00208
https://doi.org/10.1109/ICPR48806.2021.9412993
https://doi.org/10.1109/ICPR48806.2021.9412993

	APSSF: Adaptive CNN Pruning Based on Structural Similarity of Filters
	Abstract
	1 Introduction
	2 Related Work
	3 Adaptive CNN Pruning
	3.1 The Weight Tensor of Filters
	3.2 The Calculation of Filter Similarity
	3.3 Filter Clustering
	3.4 Adaptive Pruning

	4 Experiments
	4.1 Evaluation Indicator and Datasets
	4.2 Pruning VGG-16
	4.2.1 Pruning VGG-16 on CIFAR10
	4.2.2 Pruning VGG-16 on CIFAR100

	4.3 Pruning ResNet
	4.3.1 Pruning ResNet-34 on CIFAR10
	4.3.2 Pruning ResNet-34 on CIFAR100
	4.3.3 Pruning ResNet-50 on ImageNet

	4.4 The Performance of Indicator Network

	5 Conclusions
	References

