
Vol.:(0123456789)

International Journal of Computational Intelligence Systems (2024) 17:89
https://doi.org/10.1007/s44196-024-00461-4

RESEARCH ARTICLE

Finding Discriminative Subsequences Via a Coverage Measure
and Mutual Information Selection Strategy for Multi‑Class Time Series
Classification

Jun Yang1,2,3 · Siyuan Jing1,3

Received: 11 September 2023 / Accepted: 17 March 2024
© The Author(s) 2024

Abstract
Time series classification (TSC) has attracted considerable attention from the data mining community over the past decades.
One of the effective ways to handle this task is to find discriminative subsequences in time series to train a classifier. Obvi-
ously, how to measure the discriminative power of subsequences and find the optimal combination of subsequences is crucial
to the accuracy of TSC. In this paper, we introduce a new method, CRMI, to find high-quality discriminative subsequences
for multi-class time series classification (MC-TSC). Different from existing methods, there are two significant innovations
in the work. At first, we propose a novel measure, named coverage ratio, to evaluate the discriminative power of a subse-
quence based on a coverage matrix which is figured out by the clustering technique. Second, a heuristic algorithm based
on mutual information (MI) is proposed to find the optimal combination of subsequence candidates. The calculation of MI
is also based on the coverage matrix. Extensive experiments were conducted on 54 UCR time series datasets with at least
3 categories, and the results show that (1) the proposed algorithm achieves the highest average accuracy and outperforms
most of the existing shapelet-based TSC algorithms; (2) compared with existing methods, the proposed algorithm performs
better on datasets with a large number of categories.

Keywords Multi-class time series classification · Discriminative subsequence · Coverage ratio · Mutual information ·
Clustering

1 Introduction

Time series classification (TSC) has attracted considerable
attention from the data mining community over the past
decades because of the increase of time series data from
various domains, such as the Internet of Things, finance,
medicine, etc. Similar to the classification task in machine
learning, TSC aims to build a classifier based on a time

series training dataset and predict labels of target time series
[1, 2]. Up to now, the technologies of TSC can be divided
into four categories. The first is the whole-series compari-
son algorithm which combines classifiers, such as 1-Nearest
Neighbor with similarity metrics, such as Euclidean Dis-
tance (ED) or Dynamic Time Warping (DTW) distance. The
second category is the Deep Neural Network based TSC
algorithm (DNN-TSC) which has been a popular topic in
the field of machine learning recently [3]. The third cat-
egory is the ensemble algorithm which combines two or
more popular TSC algorithms and employs a voting strategy
to determine the label of the target time series. These two
categories of algorithms, such as ResNet [4], InceptionTime
[5], TapNet [6], Elastic Ensemble [7], COTE [8, 9], Prox-
imity Forest [10], etc., can achieve competitive results on
most datasets. However, most of them cannot explain why a
target time series is assigned to a particular label. Besides,
training a DNN-TSC model or an ensemble classifier for
TSC requires massive training data as well as considerable
computing resources. The last category is the pattern-based

 * Siyuan Jing
 syjing628@126.com

1 Sichuan Provincial Key Laboratory of Philosophy and Social
Science for Language Intelligence in Special Education,
Leshan Normal University, Leshan 614000, China

2 Chengdu Computer Application Institute CAS, Chengdu
Information Technology of Chinese Academy of Sciences
Co. Ltd., Chengdu 610041, China

3 Key Lab of Internet Natural Language Intelligent Processing
of Sichuan Provincial Education Department, Leshan Normal
University, Leshan 614000, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-024-00461-4&domain=pdf
http://orcid.org/0000-0002-3496-8402

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 2 of 17

TSC algorithm which aims to find out some local patterns
that can discriminate time series from different classes. The
advantages of the pattern-based TSC algorithm are that it not
only achieves high classification accuracy but also provides
good interpretability. In this work, we focus on the pattern-
based TSC algorithm.

For TSC, a high-quality pattern is essentially a discrimi-
native subsequence which is helpful to improve the accuracy
of classification. There are two approaches to the pattern-
based TSC, which are the shapelet-based algorithm [11] and
the dictionary-based algorithm [12]. Generally, the shapelet-
based algorithm extracts a number of subsequences from
the raw numeric time series and employs information gain
(IG) to measure their classification ability. The subsequences
with the highest IG will be regarded as shapelets and be used
to build a classifier. For the dictionary-based algorithm, a
classic example is the bag-of-patterns (BOP) algorithm [13]
which involves converting a time series into a discrete series
using Symbolic Aggregate approXimation (SAX), creating a
set of SAX words for each series through the application of a
short sliding window, and then using the frequency count of
the words in a series as the pattern. Senin et al. [14] extend
the BOP algorithm in SAX-VSM thereby computing TF-IDF
weights for each word and label. Schäfer [15] proposes the
BOSS algorithm which converts time series using Symbolic
Fourier Approximation (SFA) and then creates a dictionary
of SFA symbols represented patterns.

Obviously, there are two key issues in pattern-based
TSC, i.e., how to measure the discriminative power of
subsequences and how to find the optimal combination
of subsequences. Ye and Keogh [15] who first proposed
shapelets employ a brute force algorithm to enumerate
subsequences from the raw time series dataset and use IG
to measure the quality of subsequences. Since the num-
ber of subsequences is quadratic to the length of the time
series and the IG requires calculating the distance between
all the subsequences and time series, the complexity of
the algorithm is O

(
n2 ⋅ m4

)
 where n is the number of time

series and m is the length of time series. Although Keogh
et al. [16, 17] proposed some techniques, e.g., candidate
pruning, random masking, etc., to accelerate the discov-
ery of shapelets, they sacrifice the accuracy of the clas-
sification. Moreover, their method only selects the sub-
sequence with the highest IG score to be the shapelet to
build a decision tree classifier which affects the accuracy
of the TSC. Hills et al. [18] proposed a new algorithm
named shapelet transformation (ST) which finds the top-
k shapelets to produce a transformed dataset. Since the
transformed dataset removes the temporal relation from
the time series, the ST method can be combined with any
machine learning classifiers, such as SVM, random for-
est, neural network, etc., which significantly improves the
accuracy of the shapelet-based classifier. However, the ST

algorithm requires setting some parameters to limit the
final shapelet lengths which are sensitive to both datasets
and algorithms. Moreover, it also needs to evaluate all the
subsequences which is computationally expensive. To han-
dle this problem, some shapelet-based methods replace the
brute force algorithm with random sampling to improve
the efficiency of the algorithm, such as gRSF [19], CRSF
[20], ELIS [21], BSPCover [22], etc.

To address the two issues mentioned above, we propose
a new method, Coverage Ratio and Mutual Information
(CRMI), to find discriminative subsequences for multi-
class time series classification (MC-TSC). The first step of
CRMI is random sampling for several minutes that obtain a
large number of subsequence candidates. Then, it calculates
a distance matrix in which each cell is the distance between
a subsequence candidate and a time series. Based on the
distance matrix, a clustering technique is employed to figure
out a coverage matrix which is used to measure the discrimi-
native power of subsequence candidates. In this way, it can
efficiently determine subsequence candidates that maximally
represent each time series class. Next, a heuristic algorithm
based on mutual information (MI) is designed to find the
optimal combination of subsequence candidates. Finally, we
also adopt the ST method to produce a transformed dataset
and build a TSC classifier. The major contributions of this
work can be summarized as follows:

(1) We propose an efficient algorithm named CRMI
to find discriminative subsequences for MC-TSC. Differ-
ent from the shapelet-based algorithms and the diction-
ary-based algorithms, we exploit the clustering technique
to build a coverage matrix and propose a new measure,
named coverage ratio (CR), to evaluate the discriminative
power of subsequence candidates. Moreover, we consider
the effect of feature combinations and propose a heuristic
algorithm based on MI to find the optimal combination of
subsequences.

(2) Extensive experiments were performed on 54 UCR
[23] time series datasets with at least three categories to
evaluate the effectiveness of the proposed algorithm. First,
we explore the parameter setting in the CRMI algorithm
although it has only two parameters. Second, ablation exper-
iments were performed to demonstrate the effectiveness of
our methods. Finally, we compare the CRMI algorithm
with seven classic algorithms, including the 1NN + DTW
and six state-of-the-art shapelet-based TSC algorithms. The
efficiency of the algorithm is also discussed.

The rest of the paper is organized as follows. In Sect. 2,
we recall some related works. Section 3 gives the symbols,
concepts, and definitions in the paper. In Sect. 4, we intro-
duce the CRMI algorithm in detail. In Sect. 5, the design
of the experiment and analysis of experimental results are
presented. Finally, we summarize the findings of this work
in Sect. 6.

International Journal of Computational Intelligence Systems (2024) 17:89 Page 3 of 17 89

2 Related Works

In this section, we review some related works of TSC. A
classic approach to TSC is 1NN + DTW, which has been
proven by Wang et al. [24] to be hard to beat. Given a tar-
get time series, it calculates its distance to all the training
time series using DTW and adopts the 1NN algorithm to
determine its label.

It is known to all that there are enormous works on
TSC, however, the shapelet-based methods are close to our
work which also aims to find discriminative subsequences
for building classifier models. Therefore, we review some
important works about shapelet-based TSC. Ye and Keogh
first proposed the concept of shapelets in [16], and shape-
lets are time series subsequences that are maximally rep-
resentative of a class.

In this groundbreaking work, the IG is employed to
measure the quality, i.e., discriminative power, of subse-
quence candidates, and a brute force algorithm is used to
enumerate subsequences from the raw time series. Since
the number of subsequences is quadratic to the length of
the time series and the IG requires calculating the dis-
tances between all the subsequences and time series, the
complexity of the algorithm is O

(
n2 ⋅ m4

)
 where n is the

number of time series and m is the length of time series.
To improve the efficiency of the algorithm, Keogh et al.
proposed fast shapelets (FS) [25] which exploit a random
projection technique on the SAX representation of time
series to find potential shapelet candidates. Its time com-
plexity is O

(
n ⋅ m2

)
 which outperforms the previous work

by two or three orders of magnitude. However, the FS
algorithm cannot guarantee finding the best shapelet and
it sacrifices the accuracy of the classification.

Grabocka et al. proposed a Scalable shapelet Discovery
algorithm (SD) [26], which used the Piecewise Aggregate
Approximation (PAA) to represent time series and adopted
an online clustering/pruning technique to avoid measuring
the prediction accuracy of similar candidates in Euclid-
ean distance space and incorporated a supervised shapelet
selection to improve classification accuracy. Since the SD
algorithm prunes 99% of shapelet candidates, it was three
-four orders of magnitudes faster than FS.

Tight coupling of shapelet discovery and training of
decision tree is another factor that hinders the accuracy
improvement. Hill et al. proposed a ST [18] technique,
which separates the shapelet discovery from the classi-
fier fitting, which can cooperate with any existing classi-
fiers, e.g., SVM, kNN, neural network, etc. The ties are
resolved by constructing a new feature space based on the
top-k best shapelets and then transforming the original
time series data into the new feature space in which each
data point is the similarity (i.e., distance) between the

corresponding shapelet and the time series. However, ST
is one of the slowest shapelet-based algorithms since it
needs to evaluate all possible candidates.

Karlsson et al. proposed a generalized random shape-
let forest (gRSF) [19] algorithm which consists of a set
of shapelet-based decision trees, where both the choice of
instances used for building a tree and the choice of shape-
lets are random. The experiments prove its effectiveness and
efficiency. However, some techniques in gRSF still decrease
the efficiency of the algorithm, e.g., the growth of a deci-
sion tree needs to repetitively sample shapelets for each tree
node. Yang et al. proposed a compressed random shapelet
tree (CRSF) [20] algorithm to improve the gRSF algorithm
by three techniques that are the SAX representation, an inno-
vative SAX distance measuring, and a shapelet-pool strategy
for generating shapelet-based decision trees.

Li et al. proposed BSPCover [22] which focuses on the
discovery of a set of high-quality shapelet candidates for
model building. BSPCover prunes identical and highly simi-
lar shapelet candidates then uses the p-cover algorithm to
determine discriminative shapelet candidates, and finally
applies the existing shapelet-learning technique to build
the classifier. They reported that BSPCover achieves very
competitive performance compared with the existing TSC
methods.

3 Preliminaries

A time series is an ordered sequence of m real values, denoted
as Ti = ti,1ti,2ti,3 ⋯ ti,m, where m is the length of the time
series. Usually, the m real values are obtained by observing
a target object at a fixed time interval. A time series dataset
contains n time series instances which can be denoted as
D = ⟨T , Y⟩, T =

�
T1, T2,⋯ , Tn

�
, Y =

�
y1, y2,⋯ , yQ

�
 , where

T is the time series set, Y is the set of the time series labels,
and Q is number of distinct labels. The label of Ti can be
obtained by a function label

(
Ti
)
 . The proposed algorithm is

appropriate for MC-TSC with Q ≥ 3.
A time series subsequence Tj,k

i
= ti,jti,j+1 ⋯ ti,j+k−1 is a con-

secutive sequence obtained from a time series Ti where j and
k are the starting position and the length of the sequence,
respectively. A discriminative subsequence is a specific time
series subsequence that can strongly represent a class of time
series. For simplicity, we also use symbol s to denote a time
series subsequence. A discriminative subsequence is a spe-
cific time series subsequence that can strongly represent a
class of time series. Finding the discriminative subsequence,
requires calculating the distance between a subsequence
and a time series. Regarding a subsequence as another time
series with a shorter length, the distance between two time
series with different length is defined below.

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 4 of 17

Definition 1 (Distance between two time series) The dis-
tance between time series T1 with length m1 and time series
T2 with length m2 can be calculated by Formula (1). Without
loss of generality, we assume m1 < m2.

It is not difficult to find that the distance is a variation of
Euclidean distance. The proposed method adopts transfor-
mation, just like the ST algorithm, that converts the raw time
series dataset to a distance matrix, also called transformation
matrix.

Definition 2 (Subsequence transformation) Assuming a set
of subsequences S =

{
s1, s2,⋯ , snS

}
 has been extracted

from a time series dataset D = ⟨T , Y⟩ , it can transforms the
time series dataset to a distance matrix, D� =

{
di,j

}
 , where

di,j is the distance between the i-th time series and the j-th
subsequence, i.e., d

(
sj, Ti

)
 . Note that all distances need to be

normalized.

4 Finding Discriminative Subsequences
for TSC

4.1 Framework of Algorithm

This paper proposes an algorithm, CRMI, for finding dis-
criminative subsequences from time series to handle the
TSC problem. The framework of the algorithm is shown
in Fig. 1. The CRMI algorithm performs random sampling

(1)d
(
T1, T2

)
= min

j=0…m2−m1

√√√√ 1

m1

m1∑

i=1

(
t1,i − t2,j+i

)2

on raw time series dataset and extracts a large number
of subsequence candidates at first. This step is the same
with some existing works. Then, it calculates the dis-
tances between each subsequence candidate and all the
time series based on Eq. 1 and forms a distance matrix.
The third step is clustering performed on the distance
matrix which aims to reveal the coverage relation of a
subsequence on time series. The details of this step will
be explained in Sect. 4.2. After that, a coverage matrix
is produced and a new measure, named CR, is employed
to evaluate the discriminative power of each subsequence
candidate. In step 5, a heuristic algorithm based on MI
tries to find the optimal combination of subsequences. In
the last step, a set of discriminative subsequences is used
to produce a transformed dataset for classifier training.

The pseudo code of the proposed algorithm is given
in Algorithm 1. In lines 2 to 4, a set of subsequences are
randomly sampled from time series dataset D accord-
ing to the minimum length of subsequence minLen , the
maximum length of subsequence maxLen . The sampling
stops when the sampling time is higher than the param-
eter samplingTime . In Lines 5–7, it calculates the distance
between each subsequences and time series. The distance
is stored in a matrix M . In line 8, a K-means algorithm
is performed on the distance matrix and figures out the
coverage matrix ℂ . From lines 9–10, it calculates the CR
for each subsequence based on the coverage matrix. The
algorithm employs a MI-based heuristic algorithm to find
the optimal combination of subsequences S′ in Line 11.
The algorithm transforms the time series data set D to
a new data set D′ based on S′ in Line 12 and trains the
classifier Ψ on D′ in Line 13. More details of selection
of subsequences will be elaborated in Sects. 4.2 and 4.3.

Fig. 1 Framework of the CRMI algorithm

International Journal of Computational Intelligence Systems (2024) 17:89 Page 5 of 17 89

Algorithm 1: Training a time series classifier based on
Coverage Ratio and Mutual Information

4.2 A Measure for Estimating Discriminative Power
of Subsequences

IG is a popular measure for evaluating the discriminative
power of subsequences at present. However, IG has several
shortcomings, including (1) it is easy to be disturbed by
the noise; (2) the computation of IG is time-consuming.
To overcome these shortcomings, a new measure named
CR is proposed to estimate the discriminative power of
subsequences.

Given a subsequence sj sampled from time series Tj and
D = ⟨T , Y⟩ is a time series dataset with Q distinct labels.
At first, the method calculates each distance d

(
sj, Ti

)
 ,

1 ≤ i ≤ n . Obviously, d
(
sj, Ti

)
= 0 if label(sj) = label(Ti) ,

otherwise d
(
sj, Ti

)
≥ 0 . After that, the distance values are

normalized by min–max strategy and a clustering algorithm
e.g., K-Means, is exploited to group the distances into Q
categories.

Since a small distance value means that there exists a
subsequence of time series whose shape is similar to the
target subsequence, we construct a vector in which the j-th
value will be set to 1 if d

(
sj, Ti

)
 falls into the clustering set

which contains the distance value 0, and otherwise, the j-th
value of vector will be set to 0. In other words, the cover
relation between a subsequence and a time series is revealed
by the clustering of their distance, which is the main differ-
ence between our method and the existing works. Finally, the
vectors of all subsequences form a Boolean matrix, called
coverage matrix.

The advantages of our method involve: (1) it is a param-
eter-free technique that does not need to set any parameters,
which is different from some works that require a distance
threshold to determine whether a time series contains or
does not contain a subsequence; (2) it does not require any
transformation on the raw time series, e.g., SAX or SFA,
which may lose some information and increase computing
overhead. Moreover, the number of categories for clustering

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 6 of 17

is naturally set to Q which is the category size of a time
series dataset. A toy example is given below.

Example 1 Assume a time series dataset that contains 5 time
series T1, T2, T3, T4, T5 and has 3 distinct labels. Let s be a
subsequence extracted from T1 . The distance between s and
the 5 time series forms a vector [0.00, 0.56, 0.37, 0.62, 0.08],
e.g., d

(
T5, s

)
= 0.08 . Then, we perform the K-Means algo-

rithm on the distance vector where K = 3 (which is same
with the number of the distinct labels) and obtain the clus-
tering result {{0.00, 0.08}, {0.37}, {0.56, 0.62}}. Based on
the result, the time series are divided into three groups: { T1
,T5 }, { T3 } and { T2,T4 }. It can be seen that s is taken from
T1 and the group containing T1 also contains another time
series T5 , therefore the values correspondent T1 and T5 in a
coverage vector are set to 1 and the others are set to 0, that
is [1, 0, 0, 0, 1]T . It indicates that the time series T1, T5 are
covered by the subsequence s . In another word, there exist
some subsequences in T1, T5 similar to s in shape.

Based on the coverage matrix, this paper proposed an
innovative measure CR, for estimating the discriminative
power of a subsequence. The definition of CR is given
below.

Definition 3 (Coverage ratio, CR): Given a coverage matrix
ℂ and a subsequence sj with the label label(sj) , the CR of sj ,
can be calculated by the following formula.

where Ti and sj represent the i-th time series and the j-th
subsequence, respectively, and label

(
Ti
)
 and label

(
sj
)
 rep-

resent the labels of Ti and sj , respectively. In the coverage
matrix ℂ , ci,j = 1 when the j-th subsequence covers the i-th
time series. The symbol #() is a cardinal operator, and � is
a parameter to control the weight of two components. The
range of � is (0, 1] . It is not difficult to figure out that the
range of CR(sj,ℂ) is [−1, 1] . The rationale behind the CR is
simple that we hope a subsequence sj with great discrimina-
tive power covers as many time series with the label label

(
sj
)

as possible and covers as few time series with other labels
as possible. A toy example for explanation is shown below.

(2)

CR
(

sj,ℂ
)

=
#
(

ci,j = 1 ∧ label
(

Ti
)

= label
(

sj
))

#
(

label
(

Ti
)

= label
(

sj
))

− � ⋅
#
(

ci,j = 1 ∧ label
(

Ti
)

≠ label
(

sj
))

#
(

label
(

Ti
)

≠ label
(

sj
))

Example 2 There are 12 time series and Y = {1, 2, 3} in the
time series dataset (as shown in Table 1). Two subsequences
s1, s2 are extracted from time series with the label 1. The
coverage vectors of the two subsequences are shown in the
3rd and the 4th row of Table 1, respectively. The parameter
� is set to 0.5. We can calculate that the CR of s1 is 0.6875
and the CR of s2 is 0.3125 based on Formula (2).

It demonstrates that s1 is more discriminative than s2 . Let
us analyze the coverage vector of both subsequences, it is
easy to find that most of the time series covered by s1 belong
to the same category (i.e., the first category), and in contrast,
the time series covered by s2 are distributed across three cat-
egories. It demonstrates that the new measure, i.e., CR, can
reveal the discriminative power of subsequences.

4.3 A MI‑Based Algorithm for Discriminative
Subsequence Selection

Although a new measure has been proposed to evaluate the
discriminative power of subsequences, selecting a set of
subsequences that can maximally represent the time series
is still an issue. Some works simply choose the top-k subse-
quences with the highest score for classifier training. How-
ever, it cannot work well on some the datasets because it
does not consider the correlation among the subsequences.

MI is an important tool in information theory that can
handle the correlation between two variables. Moreover, MI-
based feature selection has been proven to be effective in
many works. In this section, an MI-based algorithm is pro-
posed to handle the problem of discriminative subsequence
selection. First, the definition of MI is given below.

Definition 4 (Mutual information, MI) Given a coverage
matrix ℂ of a subsequence set S =

{
s1, s2,⋯ , snS

}
 on time

series dataset D = ⟨T , Y⟩ , the MI between S and Y is denoted
as follows.

where p(s, y) is the joint probability distribution function of s
and y in ℂ , while p(s) and p(y) is the probability distribution
function of s and y in ℂ , respectively. H(Y) is the information
entropy of Y , and H(Y|S) is the conditional entropy of Y with

(3)

MI(S;Y) =
∑

y∈Y

∑

s∈S

p(s, y)log2

(
p(s, y)

p(s)p(y)

)
= H(Y) − H(Y|S)

Table 1 Illustration for coverage
ratio

Time series T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Label 1 1 1 1 2 2 2 2 3 3 3 3
ℂ

1
1 0 1 1 0 1 0 0 0 0 0 0

ℂ
2

0 1 1 0 0 0 1 1 0 1 0 0

International Journal of Computational Intelligence Systems (2024) 17:89 Page 7 of 17 89

respect to S . Similar to the existing work, the algorithm aims
to find a subset S′ of S such that MI(S;Y) is equal to MI(S�;Y).

To find the optimal combination of subsequences, we
first group the subsequences into Q groups by their labels,
and sort them by their CR values in descending order
within the groups. Then, the subsequences with the high-
est CR in each group are chosen to form a core set. The
core set is regarded as the starting set of the subsequence
selection. Next, a round-robin strategy is employed that
successively selects a subsequence from a group and adds
it to S′ until MI(S�;Y) no longer increases. The process of
the MI-based subsequence selection is shown in Fig. 2.

The pseudo-code of the algorithm is shown in Algo-
rithm 2. In the first line, the algorithm groups all the

subsequences by their labels and sorts them by CR score in
descending order within each group. In Line 2, the result
set is set to be empty. From Lines 3 to 4, a core set is built
using the first subsequence (i.e., the subsequences with the
highest CR score in each group) in each group, where the
function group.getAndRemove(0) removes the first element
from the group and returns the element. The MI of the core
set is calculated in Line 5 and assigned to a variable lastMI
in Line 6. From Lines 8 to 19, a round-robin strategy is
employed to traverse all groups to find the best subse-
quence in each group which can achieve the maximum MI
value. The loop ends when the MI value does not increase
(Lines 20–23). At the end of the algorithm, the algorithm
returns the final subsequences S′.

Fig. 2 Process of the MI-based
subsequence selection

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 8 of 17

Algorithm 2: Select Subsequences By MutualInformation (S,£,Y)

counting the time of coverage and its worst time com-
plexity is O

(
n ⋅ n

s

)
 . The final step requires calculating

the MI for many times and its worst time complexity is
O
(

n × Q ×
(

Q + (Q + 1) + (Q + 2) +⋯ + nS
))

≈ O
(

n ⋅ Q ⋅ n2s
)

 .
Since Q ⋅ n

s
 is obviously higher than the length of the

time series in most cases, the worst time complexity of
the proposed algorithm is O

(
n ⋅ Q ⋅ n2

s

)
.

5 Experiments

5.1 Experiment Setup

In this section, we perform extensive experiments to evaluate
the performance of the proposed algorithm. First, the data-
sets will be introduced in this paragraph. Second, we explore

4.4 Analysis of Time Complexity

The proposed algorithm is composed of five steps which
involve random sampling time series subsequences, cal-
culating the distances between each subsequence and
time series, clustering based on the distance matrix,
calculating the CR for each subsequence, and finding
the optimal subset of subsequences. The time of ran-
dom sampling is a parameter and we will discuss it in
the experiments. The worst time complexity of the sec-
ond step is O

(
m ⋅ n ⋅ nS

)
 where m is the length of the

time series, n and nS represent the number of time series
and the number of subsequences to estimate, respec-
tively. The worst time complexity of the third step, e.g.,
K-means clustering, is O

(
Q ⋅ n ⋅ nS

)
 , Q is the number of

distinct classes. The key operation of the fourth step is

International Journal of Computational Intelligence Systems (2024) 17:89 Page 9 of 17 89

the parameter setting strategies. Third, ablation experiments
are performed to evaluate the effectiveness of the methods in
CRMI, including the CR measure and the MI-based heuristic
algorithm for discriminative subsequence selection. Finally,
the performance of the proposed algorithm is evaluated by
comparing it with six shapelet-based TSC algorithms as well
as the 1NN + DTW algorithm which is claimed to be dif-
ficult to defeat.

The experiments were carried out on a server equipped
with Intel Xeon Gold 5215 CPU (2.5 GHz) and 64 GB mem-
ory. The algorithm is coded in Java with toolkits Weka 3.4.3
and Time Series Machine Learning (TSML) [27]. Since the
proposed method is for MC-TSC, 54 datasets that have at
least three categories are selected from the UCR reposi-
tory. The details of the datasets are shown in Table 2. The
last four columns in the table are the number of training
instances, the number of testing instances, the number of
categories, and the length of the time series.

5.2 Influence of Parameter Settings

In this section, we conduct experiments to study how to set
the parameters in the CRMI algorithm, including the time of
subsequence sampling and the parameter � in Formula (2).

First, we investigate the impact of the time of subse-
quence sampling by setting its value from 2 to 5 min with a
step value of 1 min. The value of � is set to 1.0. For fairness,
the experiments were performed 50 times on each dataset
because the algorithm is stochastic. The accuracy of clas-
sification, as well as the training time and the testing time
on each dataset, are recorded. For simplicity, we calculate
the average value of the classification accuracy, the train-
ing time, and the testing time on all datasets. The results
are shown in Fig. 3, in which the abscissa is the time of
sampling and the left ordinate is the average accuracy of
classification on all datasets and the right ordinate is the
time cost of the algorithm. From the figure, it is obvious that

Table 2 Descriptions of datasets

ID Name #Train #Test #Class Length ID Name #Train #Test #Class Length

1 Adiac 390 391 37 176 28 MedicalImages 381 760 10 99
2 ArrowHead 36 175 3 251 29 MiddlePhalanxO 400 154 3 80
3 Beef 30 30 5 470 30 MiddlePhalanxTW 399 154 6 80
4 Car 60 60 4 577 31 NonInvasiveFetal1 1800 1965 42 750
5 CBF 30 900 3 128 32 NonInvasiveFetal2 1800 1965 42 750
6 ChlorineCon 467 3840 3 166 33 OliveOil 30 30 4 570
7 CinCECGTorso 40 1380 4 1639 34 OSULeaf 200 242 6 427
8 CricketX 390 390 12 300 35 Phoneme 214 1896 39 1024
9 CricketY 390 390 12 300 36 Plane 105 105 7 144
10 CricketZ 390 390 12 300 37 ProximalPhalanxO 400 205 3 80
11 DiatomSizeR 16 306 4 345 38 ProximalPhalanxT 400 205 6 80
12 DistalPhalanxOAG 400 139 3 80 39 RefrigerationD 375 375 3 720
13 DistalPhalanxTW 400 139 6 80 40 ScreenType 375 375 3 720
14 ECG5000 500 4500 5 140 41 ShapesAll 600 600 60 512
15 ElectricDevices 8926 7711 7 96 42 SmallKitchen 375 375 3 720
16 FaceAll 560 1690 14 131 43 StarLightCurves 1000 8236 3 1024
17 FaceFour 24 88 4 350 44 SwedishLeaf 500 625 15 128
18 FacesUCR 200 2050 14 131 45 Symbols 25 995 6 398
19 FiftyWords 450 455 50 270 46 SyntheticControl 300 300 6 60
20 Fish 175 175 7 463 47 Trace 100 100 4 275
21 Haptics 155 308 5 1092 48 TwoPatterns 1000 4000 4 128
22 InlineSkate 100 550 7 1882 49 UWaveGestureA 896 3582 8 945
23 InsectWingBS 220 1980 11 256 50 UWaveGestureX 896 3582 8 315
24 LargeKitchenA 375 375 3 720 51 UWaveGestureY 896 3582 8 315
25 Lightning7 70 73 7 319 52 UWaveGestureZ 896 3582 8 315
26 Mallat 55 2345 8 1024 53 WordSynonyms 267 638 25 270
27 Meat 60 60 3 448 54 Worms 181 77 5 900

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 10 of 17

Moreover, the subsequences in each group are ranked in
descending order according to the CR value. Then, it con-
structs a core set that consists of subsequences with the high-
est CR value in each group. Finally, it successively selects
a subsequence with the highest CR value in each group and
adds it to the set. The algorithm ends until the value of MI
does not grow.

(2) Core + Ranking.

The difference between this strategy and Core + Round-
Robin is that the former does not successively select a
subsequence from each group, but from a collection of all
subsequences. After the construction of the core set, this
strategy ranks all the subsequences according to their CR
values in descending order and successively selects a subse-
quence with the highest CR value. The algorithm ends until
the value of MI does not grow.

(3) Ranking.

This strategy sorts all subsequences in descending order
according to their CR values and then adds them to the
result set one by one. It calculates the MI of the selected
subsequences and the algorithm ends until the MI no longer
increases.

In the experiments, the sampling time is set to 2 min
and the value of � is set to 1.0. Similarly, each strategy was
performed 50 times on each dataset, and the average value
of classification accuracy as well as the training time was
calculated. The experimental results are shown in Fig. 5.
It is easy to find that the Core + Ranking strategy performs
slightly better than the Ranking strategy. It demonstrates
that the core set is helpful to improve classification accu-
racy. Furthermore, the Core + Round-Robin strategy per-
forms much better than the Core + Ranking strategy in

the classification accuracy achieves the highest value, i.e.,
74.91%, when the sampling time is 2 min. The second high-
est classification accuracy is 74.59% which is achieved when
the sampling time is set to 4 and 6, respectively. Obviously,
2 min is a good choice for the sampling time.

Next, we conduct experiments to investigate the influ-
ence of the setting of � . The value of � is set from 0.2 to
1.0 with a step value of 0.2. The sampling time is set to
2 min. Similarly, the experiments were performed 50 times
on each dataset, and the average value of classification
accuracy is calculated. The results are shown in Fig. 4.
As can be seen from the figure, the highest classification
accuracy is 74.91% when the � is set to 1.0, and the low-
est classification accuracy is 73.70% when the � is set to
0.8. Therefore, the value of � in the experiment is set to
1.0. We also change the order of the parameter selection,
i.e., first determine the setting of � and then determine the
sampling time, the results show that it will not influence
the performance of the algorithm.

5.3 Comparison of Different Strategies in MI‑Based
Discriminative Subsequence Discovery

In Algorithm 2, an MI-based algorithm for discovering the
discriminative subsequences is proposed in which two strat-
egies are employed including a core set consisting of the
subsequence with the highest CR value in each group and a
round-robin selection strategy. In this section, we evaluate
three different strategies.

(1) Core + Round-Robin.

This strategy is employed in the proposed algorithm. After
the calculation of the CR value of all subsequences, the
algorithm groups the subsequences according to their labels.

Fig. 3 Influence of sampling
time setting

International Journal of Computational Intelligence Systems (2024) 17:89 Page 11 of 17 89

terms of classification accuracy. It proves the efficiency of
the Round-Robin strategy. However, the training time of
the Core + Round-Robin strategy is slightly longer than the
Core + Ranking strategy. The only reason behind the phe-
nomenon is that the former selects more subsequences than
the latter because the number of subsequences from each
group is balanced under the Core + Round-Robin strategy.
The experimental results prove that balancing the number
of subsequences (features) from different categories of time
series is helpful for TSC.

5.4 Comparison Against the State‑of ‑the‑Art
Algorithms

We compared the CRMI algorithm with seven TSC classi-
fiers, including 1NN + DTW and six state-of-art algorithms

based on shapelets, which are ST [18], gRSF [19], CRSF
[20], BSPCover [22], Fast Shapelet (FS) [25], and SD [26].
The reasons that we only select shapelet-based algorithms
for comparison are twofold. On the one hand, existing works
have shown that state-of-the-art shapelet-based algorithms
perform much better than most dictionary-based algorithms.
On the other hand, the proposed algorithm is similar to the
shapelet-based algorithm in that all of them work on the raw
time series data. This is different from the dictionary-based
methods which need to convert the raw time series data by
SAX or SFA etc. The parameters of algorithms for compari-
son were set according to the corresponding references. If
datasets do not appear in the references, we use the default
parameters in the open-source code.

The experiments were conducted on 54 datasets. All the
stochastic algorithms were run 50 times on each dataset,

Fig. 4 Average classification
accuracy achieved by different
values of λ

Fig. 5 Comparison of average
accuracy and training time on
different selection strategy

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 12 of 17

Table 3 Accuracy comparison
of 8 classifiers on 54 datasets

ID 1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

1 0.7829 0.6000 0.6990 0.7714 0.8000 0.7697 0.7169 0.7126
2 0.9911 0.9578 0.9807 0.9933 0.8627 0.9919 0.9927 0.9767
3 0.6469 0.5828 0.5377 0.7046 0.5326 0.6514 0.6249 0.7073
4 0.7266 0.6691 0.6667 0.7770 0.4676 0.8172 0.7363 0.7914
5 0.7893 0.3333 0.6517 0.8160 0.8560 0.8643 0.8229 0.8230
6 1.0000 0.7833 0.8800 0.9500 0.7167 0.9567 0.9392 0.9667
7 0.5844 0.5325 0.5182 0.5844 0.4883 0.7078 0.6347 0.5909
8 0.8049 0.8244 0.7668 0.8342 0.4878 0.8420 0.8463 0.8488
9 0.4640 0.5106 0.5104 0.5440 0.8182 0.6883 0.5639 0.5573
10 0.3973 0.4213 0.3701 0.6760 0.4271 0.6475 0.4517 0.4759
11 0.6427 0.3333 0.6347 0.8020 0.6432 0.8224 0.7123 0.8224
12 0.9600 0.9102 0.9341 0.9770 0.8400 0.9793 0.9576 0.9757
13 0.7167 0.7000 0.6556 0.9020 0.6167 0.8167 0.7175 0.8833
14 0.6812 0.7123 0.7778 0.9180 0.4457 0.8919 0.6953 0.9717
15 0.9804 0.8856 0.9139 0.8791 0.7745 0.8654 0.9109 0.8725
16 0.8296 0.9205 0.8045 0.7614 0.8182 0.8955 0.9659 0.9773
17 0.8333 0.7333 0.7733 0.8810 0.8621 0.8600 0.8333 0.9333
18 1.0000 1.0000 0.9580 1.0000 0.8600 1.0000 1.0000 1.0000
19 1.0000 0.2588 0.9813 0.9520 0.9512 0.9959 0.9833 0.9515
20 0.4333 0.5000 0.4444 0.7333 0.5667 0.5467 0.5683 0.8000
21 0.9293 0.9042 0.9129 0.9456 0.9257 0.9405 0.9316 0.9440
22 0.4156 0.3506 0.3532 0.5162 0.3896 0.4721 0.4705 0.5162
23 0.5844 0.5325 0.5377 0.7190 0.4796 0.7299 0.6273 0.6753
24 0.6043 0.6331 0.6091 0.6900 0.3022 0.6950 0.6921 0.6906
25 0.4870 0.5000 0.4610 0.5488 0.2727 0.5727 0.6019 0.5648
26 0.5909 0.6983 0.5397 0.9546 0.5866 0.8624 0.6855 0.8636
27 0.7561 0.7171 0.7141 0.8030 0.7574 0.7961 0.7966 0.8098
28 0.9498 0.9246 0.8563 0.9648 0.9166 0.8341 0.9475 0.9487
29 0.9933 0.9233 0.9760 0.9832 0.9754 0.9930 0.9908 0.9833
30 0.7544 0.5488 0.5928 0.8950 0.6852 0.8773 0.7279 0.5111
31 0.7829 0.8171 0.7291 0.9547 0.8215 0.9092 0.8637 0.9657
32 0.3836 0.2946 0.3982 0.4455 0.3834 0.4240 0.3892 0.4092
33 0.6849 0.5343 0.6247 0.7397 0.5890 0.7123 0.7459 0.7260
34 1.0000 0.9810 0.9848 1.0000 0.9520 0.9962 0.9881 1.0000
35 0.9348 0.9582 0.9308 0.9395 0.9346 0.9339 0.9709 0.9889
36 0.9630 0.9021 0.9078 0.8060 0.8025 0.9526 0.8996 0.9389
37 0.7275 0.6963 0.7603 0.7370 0.6963 0.8106 0.7799 0.7457
38 0.6340 0.6108 0.6709 0.8060 0.7012 0.7360 0.7025 0.6778
39 0.6583 0.6374 0.6754 0.9420 0.7542 0.7548 0.7348 0.7044
40 0.7211 0.6408 0.6595 0.6910 0.5145 0.6974 0.6497 0.7026
41 0.3576 0.4904 0.4947 0.4382 0.5697 0.6301 0.5779 0.6348
42 0.7590 0.5154 0.6829 0.7639 0.5544 0.7623 0.6753 0.7641
43 0.6974 0.4821 0.6590 0.7495 0.7254 0.7495 0.6855 0.7531
44 0.8000 0.4103 0.6897 0.7980 0.5026 0.7982 0.7142 0.7900
45 0.9456 0.6237 0.7125 0.7485 0.7324 0.9387 0.7349 0.7420
46 0.8859 0.6737 0.8487 0.9117 0.7025 0.8928 0.8383 0.8805
47 0.7920 0.7696 0.8614 0.9239 0.9239 0.9037 0.8737 0.9248
48 0.6489 0.4671 0.6201 0.5820 0.5412 0.5978 0.5679 0.6442
49 0.6215 0.5601 0.5865 0.7680 0.7681 0.7235 0.4737 0.7951
50 0.2284 0.2214 0.1459 0.3402 0.2275 0.2970 0.2275 0.3012
51 0.7903 0.7984 0.8084 0.9470 0.8354 0.9091 0.7645 0.8372

International Journal of Computational Intelligence Systems (2024) 17:89 Page 13 of 17 89

including FS, SD, BSPCover, gRSF, and CRSF. The
experimental results are shown in Table 3 in which the
average accuracy of classification on 54 datasets for each
algorithm is listed. The highest accuracy for each dataset
is marked in bold. To describe the experimental results
more intuitively, some comparisons are provided in the
last five rows of the table. The “Wins” row shows the num-
ber of datasets on which the corresponding algorithm won
the gold medal. The second row shows the average rank-
ing of the algorithm on 54 datasets. The last three rows
show the number of datasets that CRMI wins, draws, and
loses across all datasets compared with other algorithms,
respectively. For example, compared with CRSF, CRMI
won 38 times, drew 1 time, and lost 15 times on 54 data-
sets. As shown in Table 3, the CRMI algorithm achieves
the best results on 19 datasets which is slightly better than
the ST algorithm which won on 18 datasets. The number
of datasets won on by other algorithms is far less than the
proposed algorithm. In terms of the average ranking, the
top three algorithms are CRMI, ST, and gRSF which get
2.70, 2.74, and 2.81, respectively. Comparing CRMI with
other algorithms one-to-one, it can also be found that the
CRMI algorithm outperforms other algorithms.

We also exploit the Nemenyi test to detect whether
there exist significant differences among the eight algo-
rithms. A critical difference diagram is shown in Fig. 6.
Classifiers that are not significantly different at p = 0.05

are connected. It can be easily found that CRMI is sig-
nificantly superior to the five algorithms, which are
1NN + DTW, SD, FS, BSPCover, and CRSF. Since the
difference among CRMI, ST, and gRSF is not significant,
the empirical findings indicate that when aiming for the
highest accuracy, any one of them can be safely recom-
mended. It is known to us that the ST algorithm is too
time-consuming because it needs to evaluate all the subse-
quences in a time series dataset. Based on the prior analy-
sis, we can conclude that the accuracy achieved by CRMI
is slightly better than gRSF and ST, and obviously better
than the rest methods. It proves the effectiveness of the
proposed algorithm.

5.5 Cross Validation

To further analyze the effectiveness of the CRMI algorithm,
fivefold cross-validation experiments were conducted on all
54 datasets. Specifically, the training set data and testing set
data in the UCR archive were merged, and the data with the
same label was divided into five groups. One group was des-
ignated as the validation set, while the remaining four groups
were served as the training set. We record the accuracy in
the cross-validation experiments and figured out the average
score. Same with the previous experiments, some algorithms
which are stochastic were repeated 50 times on each dataset
to ensure the fairness of results. Pairwise comparisons were
performed on these experimental results which illustrated
in Fig. 7. Each subplot represents the comparative analysis
between the CRMI algorithm and another algorithm, where
the y-axis represents the average accuracy of CRMI, and the
x-axis represents the average accuracy of the compared algo-
rithm. Each point represents a dataset. If a point falls above
the diagonal, it suggests that the CRMI algorithm performs
better than the compared algorithm. Conversely, the CRMI
algorithm is inferior to the compared algorithm.

From figures (a), (b), (c), (e), and (g), it is obvious that
the CRMI algorithm are superior to the 1NN-DTW, FS,
SD, BSPCover, and CRSF algorithms because most of the
points fall on the upper side of the diagonal in those figures.
In Figures (d) and (f), most points are near the diagonal,

Table 3 (continued) ID 1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

52 0.8646 0.8345 0.8560 0.9540 0.8554 0.9331 0.7982 0.8651
53 0.6615 0.5055 0.6923 0.7130 0.7142 0.7059 0.6388 0.7341
54 0.7683 0.6100 0.7860 0.8540 0.7426 0.8405 0.8536 0.7467
Wins 11 1 0 18 2 9 3 19
Ave. Rank 4.50 6.61 6.06 2.74 5.94 2.81 4.15 2.70
1v1 Wins 37 51 48 28 48 27 38 –
1v1 Draws 2 1 0 3 0 2 1 –
1v1 Loses 15 2 6 23 6 25 15 –

Fig. 6 Nemenyi tests for 8 classifiers (p = 0.05)

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 14 of 17

Fig. 7 Results of cross validation on 54 datasets

International Journal of Computational Intelligence Systems (2024) 17:89 Page 15 of 17 89

however it can be also found that the CRMI algorithm is also
slightly superior to the two algorithms, i.e., the ST algorithm
and the gRSF algorithm. The results of the cross-validation
also prove the effectiveness of the proposed algorithm.

5.6 Analysis of the Impact of the Number
of Categories

In this section, we investigate the impact of the number of
categories in a dataset on CRMI in terms of classification
accuracy. In terms of the distribution of category numbers,
the datasets are categorized into three groups. The dataset
category numbers in 3 groups are no more than 6, no less
than 7, and no less than 10, respectively.

The experimental results are re-analyzed as listed in
Table 4. From the table, it can be seen that the number of
datasets won by the CRMI algorithm is 9 which is equal
to that won by the ST algorithm when the number of cat-
egories is no more than 6. Although the CRMI algorithm
is tied with the ST algorithm for first place in this metric,
the average ranking of the former is 2.83 which is inferior
to that of the ST as well as the gRSF which is 2.48. When
the category number is no less than 7, it can be seen that the
CRMI algorithm wins the gold medals on two metrics, i.e.,
Ave. Rank and Wins, which are 2.56 and 10, respectively.
The second place is the ST algorithm which can achieve 9
and 3.04 on the two metrics, respectively. Furthermore, it
can be seen that the CRMI algorithm obtains 2.60 and 7 on
the two metrics when the category number is no less than
10. The second place of the two metrics is 3.13 and 4 which
are obtained by the gRSF and the ST, respectively. Although
the proposed algorithm achieves first place in both groups,
it is easy to find that the advantage of the CRMI algorithm
is apparent along with the increase in the category number
of the dataset.

The analyses show that CRMI, ST, and gRSF have good
classification ability for multi-class time series classifica-
tion. However, both the ST and the gRSF require calculating
the IG to evaluate the discriminative ability of the shapelet.
Moreover, the former will evaluate all shapelet candidates.
Therefore, both of them are too time-consuming. For exam-
ple, the time costs of the ST and the gRSF are 6752 s and
1872s on dataset NonInvasiveFetalECGThorax1, respec-
tively, which is far higher than that of the CRMI which is
129 s. The experiments prove the effectiveness and effi-
ciency of the proposed algorithm.

Fig. 7 (continued)

Table 4 Experimental results of
different number of categories
in datasets

1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

Q ≤ 6 Ave. rank 4.34 7.24 5.93 2.48 6.28 2.48 4.10 2.83
Wins 6 0 0 9 0 7 1 9
1v1 Wins 19 28 25 17 25 14 19 –
1v1 Draws 1 0 0 1 0 1 0 –
1v1 Loses 9 1 4 11 4 14 10 –

Q ≥ 7 Ave. rank 4.68 5.88 6.20 3.04 5.56 3.20 4.20 2.56
Wins 5 1 0 9 2 2 2 10
1v1 Wins 18 23 23 11 23 13 19 –
1v1 Draws 1 1 0 2 0 1 1 –
1v1 Loses 6 1 2 12 2 11 5 –

Q ≥ 10 Ave. rank 4.67 5.87 6.40 3.33 5.40 3.13 3.60 2.60
Wins 3 1 0 4 2 2 1 7
1v1 Wins 10 14 14 7 13 7 11 –
1v1 Draws 1 1 0 1 0 1 1 –
1v1 Loses 4 0 1 7 2 7 3 –

 International Journal of Computational Intelligence Systems (2024) 17:89 89 Page 16 of 17

5.7 Other Advantages

The experiments show the effectiveness and efficiency
of the CRMI algorithm, especially in multi-class classi-
fication tasks. Furthermore, the ease of use of the pro-
posed algorithm is superior to most of the pattern-based
algorithms of TSC because it is nearly a parameter-free
algorithm. It is easy to find that the CRMI algorithm only
requires determining the minimum and maximum lengths
of the subsequences. We always set the two parameters
to three and the length of the time series, respectively.
The existing pattern-based algorithms of TSC, such as
CRSF, ST, etc., must set a distance threshold to deter-
mine whether a time series contains or does not contain a
subsequence which may greatly decrease the accuracy of
the classification. Besides, the CRMI algorithm does not
require any transformation of the raw time series. Some
work, such as CRSF, BSPCover, BOSS, etc., require the
representation of the time series by SAX or SFA which
may lose some information and introduce extra computing
overhead. Finally, the CRMI algorithm employs an MI-
based heuristic for looking for the optimal combination
of subsequences. Feature selection has been studied for a
long time and lots of efficient techniques can be exploited
in our work, such as the meta-heuristic algorithms. It may
further improve the effectiveness and efficiency of the pro-
posed algorithm.

6 Conclusions

In this paper, we present a new algorithm named CRMI
to find discriminative subsequences for MS-TSC. A new
measure for evaluating the discriminative power of subse-
quences, called CR, is proposed which reveals the cover rela-
tion between a subsequence and time series via clustering
their distances. Besides, an MI-based heuristic algorithm
for looking for the optimal combination of subsequences
is also presented. We perform extensive experiments on 54
datasets to evaluate the effectiveness and efficiency of the
CRMI algorithm. Some conclusions can be drawn. (1) Com-
pared with the 1NN + DTW classifier and six well-known
shapelet-based classifiers, the CRMI algorithm can achieve
the best average accuracy on 54 datasets. Although there is
no significant difference in terms of the accuracy between
CRMI and ST statistically, CRMI is much more efficient
than the two algorithms. (2) Extensive experiments were
conducted to evaluate the proposed strategies and explore
the strategies of parameter setting. The experimental results
show that the proposed strategies, i.e., employing a core
set to be the start point of subsequence selection and the

round-robin selection for subsequence selection, are effec-
tive. (3) The CRMI algorithm only requires setting two
parameters, i.e., the time of subsequence sampling and the
� in Formula (2). Experimental results show that 2 min and
1.0 are good choices for the two parameters, respectively. (4)
The CRMI algorithm performs well on time series datasets
with a large number of categories.

However, this study still has limitations and faces sev-
eral challenges: (1) the UCR datasets are balanced, while
many real-life data are imbalanced. Therefore, the CRMI
algorithm which is trained on balanced datasets needs to
consider imbalanced data; (2) although it has been proven
the effectiveness of the algorithm in this paper, it can still be
enhanced by utilizing representations such as SAX or SFA,
or employing parallel computing to improve its efficiency;
(3) it is necessary to consider the unseen time series data
in real-life to improve the generalization of the algorithm.

Acknowledgements The authors thank the reviewers for their work
and the contributors of the UCR archive.

Author Contributions Siyuan Jing helped design the algorithm and he
is a director of this work. Jun Yang contributed to the algorithm design
and performed the experiments.

Funding This work is supported by the open project fund of Key Lab
of Internet Natural Language Intelligent Processing of Sichuan Pro-
vincial Education Department (Grant No. INLP202304), the Project
Fund of Sichuan Tourism Development Research Center (LY22-14),
the Research and Cultivation Project of Leshan Normal University
(No. KYPY2024-0002), the Research and Innovation Team Cultivation
Project of Leshan Normal University (No. KYCXTD2023-9), the Min-
istry of Education Humanities and Social Sciences Planning Project
(Grant No. 23YJA740013), open project fund of Intelligent Terminal
Key Laboratory of Sichuan Province (Grant no. SCITLAB-1002).

Data Availability The datasets used to support the findings of this study
are from the UCR Time Series Classification Archive which can be
downloaded from https:// www. cs. ucr. edu/ ~eamonn/ time_ series_ data_
2018/.

Declarations

Conflict of Interest All authors declare that there are no conflicts of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2024) 17:89 Page 17 of 17 89

References

 1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The
great time series classification bake off: a review and experimen-
tal evaluation of recent algorithmic advances. Data Min. Knowl.
Disc. 31(3), 606–660 (2017)

 2. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.:
The great multivariate time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data
Min. Knowl. Disc. 35(2), 401–449 (2021)

 3. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller,
P.-A.: Deep learning for time series classification: a review. Data
Min. Knowl. Disc. 33(4), 917–963 (2019)

 4. Wang Z, Yan W, Oates T (2017) Time series classification from
scratch with deep neural networks: A strong baseline. In: 2017
International Joint Conference on Neural Networks (IJCNN), pp
1578–85

 5. Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt,
D.F., Weber, J., Webb, G.I., Idoumghar, L., Muller, P.-A.,
Petitjean, F.: InceptionTime: finding AlexNet for time series clas-
sification. Data Min. Knowl. Disc. 34(6), 1936–1962 (2020)

 6. Zhang X, Gao Y, Lin J, Lu C-T (2020) TapNet: Multivariate Time
Series Classification with Attentional Prototypical Network. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
pp 6845–52

 7. Lines, J., Bagnall, A.: Time series classification with ensembles
of elastic distance measures. Data Min. Knowl. Disc. 29, 565–592
(2015)

 8. Lines J, Taylor S, Bagnall A (2018) Time Series Classification
with HIVE-COTE: The Hierarchical Vote Collective of Trans-
formation-Based Ensembles. ACM Transactions on Knowledge
Discovery from Data 12(5):52:1–52:35

 9. Middlehurst M, Large J, Flynn M, Lines J, Bostrom A, Bagnall
A (2021) HIVE-COTE 2.0: a new meta ensemble for time series
classification. Machine Learning 110(11):3211–3243

 10. Lucas, B., Shifaz, A., Pelletier, C., O’Neill, L., Zaidi, N., Goeth-
als, B., Petitjean, F., Webb, G.: Proximity Forest: an effective
and scalable distance-based classifier for time series. Data Min.
Knowl. Disc. 33(3), 607–635 (2019)

 11. Gordon, D., Hendler, D., Kontorovich, A., Rokach, L.: Local-
shapelets for fast classification of spectrographic measurements.
Expert Syst. Appl. 42(6), 3150–3158 (2015)

 12. Bai, B., Li, G., Wang, S., Wu, Z., Yan, W.: Time series classifica-
tion based on multi-feature dictionary representation and ensem-
ble learning. Expert Syst. Appl. 169, 114162 (2021)

 13. Lin J,Khade R, LiY(2012) Rotation-invariant similarity in time
series using bag-of-patterns representation. Journal of Intelligent
Information Systems 39(2):287–315

 14. Senin P, Malinchik S (2013) SAX-VSM: interpretable time series
classification using sax and vector space model. In: Proceedings
of the 13th IEEE international conference on data mining (ICDM)

 15. Schäfer, P.: The BOSS is concerned with time series classification
in the presence of noise. Data Min. Knowl. Disc. 29(6), 1505–
1530 (2015)

 16. Ye L, Keogh E (2009) Time series shapelets: a new primitive for
data mining. In: Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining -
KDD '09, pp 947–56

 17. Ye L, Keogh E (2011) Time series shapelets: a novel technique
that allows accurate, interpretable and fast classification. Data
Mining and Knowledge Discovery 22): 149–82

 18. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Clas-
sification of time series by shapelet transformation. Data Min.
Knowl. Disc. 28(4), 851–881 (2013)

 19. Karlsson I, Papapetrou P, Boström H (2016) Generalized random
shapelet forests. Data Mining and Knowledge Discovery 30(5):
1053–85 (gRSF)

 20. Yang J, Jing S, Huang G (2023) Accurate and fast time series clas-
sification based on compressed random Shapelet Forest. Applied
Intelligence 53(5): 5240–5258 (CRSF)

 21. Fang Z, Wang P, Wang W (2018) Efficient Learning Interpretable
Shapelets for Accurate Time Series Classification. In: 2018 IEEE
34th International Conference on Data Engineering (ICDE), pp
497–508 (ELIS)

 22. Li G, Choi B, Xu J, Bhowmick S S, Chun K-P, Wong G L-H
(2022) Efficient Shapelet Discovery for Time Series Classifica-
tion. IEEE Transactions on Knowledge and Data Engineering
34(3):1149–1163 (BSPCover)

 23. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.-C.M., Zhu, Y.,
Gharghabi, S., Ratanamahatana, C.A., Keogh, E.: The UCR time
series archive. IEEE/CAA J Automatica Sinica 6(6), 1293–1305
(2019)

 24. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P.,
Keogh, E.: Experimental comparison of representation methods
and distance measures for time series data. Data Min. Knowl.
Disc. 26(2), 275–309 (2013)

 25. Keogh E, Rakthanmanon T (2013) Fast Shapelets: A Scalable
Algorithm for Discovering Time Series Shapelets. In: Proceedings
of the 2013 SIAM International Conference on Data Mining, pp
668–676 (FS)

 26. Grabocka J, Wistuba M, Schmidt-Thieme L (2015) Fast classifi-
cation of univariate and multivariate time series through shapelet
discovery. Knowledge and Information Systems 49(2): 429–54
(SD)

 27. Bagnall A, Bostrom A, Lines J. UEA Time Series Classification.
https:// github. com/ time- series- machi ne- learn ing/ tsml- java

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/time-series-machine-learning/tsml-java

	Finding Discriminative Subsequences Via a Coverage Measure and Mutual Information Selection Strategy for Multi-Class Time Series Classification
	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Finding Discriminative Subsequences for TSC
	4.1 Framework of Algorithm
	4.2 A Measure for Estimating Discriminative Power of Subsequences
	4.3 A MI-Based Algorithm for Discriminative Subsequence Selection
	4.4 Analysis of Time Complexity

	5 Experiments
	5.1 Experiment Setup
	5.2 Influence of Parameter Settings
	5.3 Comparison of Different Strategies in MI-Based Discriminative Subsequence Discovery
	5.4 Comparison Against the State-of -the-Art Algorithms
	5.5 Cross Validation
	5.6 Analysis of the Impact of the Number of Categories
	5.7 Other Advantages

	6 Conclusions
	Acknowledgements
	References

