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Abstract
Time series classification (TSC) has attracted considerable attention from the data mining community over the past decades. 
One of the effective ways to handle this task is to find discriminative subsequences in time series to train a classifier. Obvi-
ously, how to measure the discriminative power of subsequences and find the optimal combination of subsequences is crucial 
to the accuracy of TSC. In this paper, we introduce a new method, CRMI, to find high-quality discriminative subsequences 
for multi-class time series classification (MC-TSC). Different from existing methods, there are two significant innovations 
in the work. At first, we propose a novel measure, named coverage ratio, to evaluate the discriminative power of a subse-
quence based on a coverage matrix which is figured out by the clustering technique. Second, a heuristic algorithm based 
on mutual information (MI) is proposed to find the optimal combination of subsequence candidates. The calculation of MI 
is also based on the coverage matrix. Extensive experiments were conducted on 54 UCR time series datasets with at least 
3 categories, and the results show that (1) the proposed algorithm achieves the highest average accuracy and outperforms 
most of the existing shapelet-based TSC algorithms; (2) compared with existing methods, the proposed algorithm performs 
better on datasets with a large number of categories.

Keywords  Multi-class time series classification · Discriminative subsequence · Coverage ratio · Mutual information · 
Clustering

1  Introduction

Time series classification (TSC) has attracted considerable 
attention from the data mining community over the past 
decades because of the increase of time series data from 
various domains, such as the Internet of Things, finance, 
medicine, etc. Similar to the classification task in machine 
learning, TSC aims to build a classifier based on a time 

series training dataset and predict labels of target time series 
[1, 2]. Up to now, the technologies of TSC can be divided 
into four categories. The first is the whole-series compari-
son algorithm which combines classifiers, such as 1-Nearest 
Neighbor with similarity metrics, such as Euclidean Dis-
tance (ED) or Dynamic Time Warping (DTW) distance. The 
second category is the Deep Neural Network based TSC 
algorithm (DNN-TSC) which has been a popular topic in 
the field of machine learning recently [3]. The third cat-
egory is the ensemble algorithm which combines two or 
more popular TSC algorithms and employs a voting strategy 
to determine the label of the target time series. These two 
categories of algorithms, such as ResNet [4], InceptionTime 
[5], TapNet [6], Elastic Ensemble [7], COTE [8, 9], Prox-
imity Forest [10], etc., can achieve competitive results on 
most datasets. However, most of them cannot explain why a 
target time series is assigned to a particular label. Besides, 
training a DNN-TSC model or an ensemble classifier for 
TSC requires massive training data as well as considerable 
computing resources. The last category is the pattern-based 
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TSC algorithm which aims to find out some local patterns 
that can discriminate time series from different classes. The 
advantages of the pattern-based TSC algorithm are that it not 
only achieves high classification accuracy but also provides 
good interpretability. In this work, we focus on the pattern-
based TSC algorithm.

For TSC, a high-quality pattern is essentially a discrimi-
native subsequence which is helpful to improve the accuracy 
of classification. There are two approaches to the pattern-
based TSC, which are the shapelet-based algorithm [11] and 
the dictionary-based algorithm [12]. Generally, the shapelet-
based algorithm extracts a number of subsequences from 
the raw numeric time series and employs information gain 
(IG) to measure their classification ability. The subsequences 
with the highest IG will be regarded as shapelets and be used 
to build a classifier. For the dictionary-based algorithm, a 
classic example is the bag-of-patterns (BOP) algorithm [13] 
which involves converting a time series into a discrete series 
using Symbolic Aggregate approXimation (SAX), creating a 
set of SAX words for each series through the application of a 
short sliding window, and then using the frequency count of 
the words in a series as the pattern. Senin et al. [14] extend 
the BOP algorithm in SAX-VSM thereby computing TF-IDF 
weights for each word and label. Schäfer [15] proposes the 
BOSS algorithm which converts time series using Symbolic 
Fourier Approximation (SFA) and then creates a dictionary 
of SFA symbols represented patterns.

Obviously, there are two key issues in pattern-based 
TSC, i.e., how to measure the discriminative power of 
subsequences and how to find the optimal combination 
of subsequences. Ye and Keogh [15] who first proposed 
shapelets employ a brute force algorithm to enumerate 
subsequences from the raw time series dataset and use IG 
to measure the quality of subsequences. Since the num-
ber of subsequences is quadratic to the length of the time 
series and the IG requires calculating the distance between 
all the subsequences and time series, the complexity of 
the algorithm is O

(
n2 ⋅ m4

)
 where n is the number of time 

series and m is the length of time series. Although Keogh 
et al. [16, 17] proposed some techniques, e.g., candidate 
pruning, random masking, etc., to accelerate the discov-
ery of shapelets, they sacrifice the accuracy of the clas-
sification. Moreover, their method only selects the sub-
sequence with the highest IG score to be the shapelet to 
build a decision tree classifier which affects the accuracy 
of the TSC. Hills et al. [18] proposed a new algorithm 
named shapelet transformation (ST) which finds the top-
k shapelets to produce a transformed dataset. Since the 
transformed dataset removes the temporal relation from 
the time series, the ST method can be combined with any 
machine learning classifiers, such as SVM, random for-
est, neural network, etc., which significantly improves the 
accuracy of the shapelet-based classifier. However, the ST 

algorithm requires setting some parameters to limit the 
final shapelet lengths which are sensitive to both datasets 
and algorithms. Moreover, it also needs to evaluate all the 
subsequences which is computationally expensive. To han-
dle this problem, some shapelet-based methods replace the 
brute force algorithm with random sampling to improve 
the efficiency of the algorithm, such as gRSF [19], CRSF 
[20], ELIS [21], BSPCover [22], etc.

To address the two issues mentioned above, we propose 
a new method, Coverage Ratio and Mutual Information 
(CRMI), to find discriminative subsequences for multi-
class time series classification (MC-TSC). The first step of 
CRMI is random sampling for several minutes that obtain a 
large number of subsequence candidates. Then, it calculates 
a distance matrix in which each cell is the distance between 
a subsequence candidate and a time series. Based on the 
distance matrix, a clustering technique is employed to figure 
out a coverage matrix which is used to measure the discrimi-
native power of subsequence candidates. In this way, it can 
efficiently determine subsequence candidates that maximally 
represent each time series class. Next, a heuristic algorithm 
based on mutual information (MI) is designed to find the 
optimal combination of subsequence candidates. Finally, we 
also adopt the ST method to produce a transformed dataset 
and build a TSC classifier. The major contributions of this 
work can be summarized as follows:

(1) We propose an efficient algorithm named CRMI 
to find discriminative subsequences for MC-TSC. Differ-
ent from the shapelet-based algorithms and the diction-
ary-based algorithms, we exploit the clustering technique 
to build a coverage matrix and propose a new measure, 
named coverage ratio (CR), to evaluate the discriminative 
power of subsequence candidates. Moreover, we consider 
the effect of feature combinations and propose a heuristic 
algorithm based on MI to find the optimal combination of 
subsequences.

(2) Extensive experiments were performed on 54 UCR 
[23] time series datasets with at least three categories to 
evaluate the effectiveness of the proposed algorithm. First, 
we explore the parameter setting in the CRMI algorithm 
although it has only two parameters. Second, ablation exper-
iments were performed to demonstrate the effectiveness of 
our methods. Finally, we compare the CRMI algorithm 
with seven classic algorithms, including the 1NN + DTW 
and six state-of-the-art shapelet-based TSC algorithms. The 
efficiency of the algorithm is also discussed.

The rest of the paper is organized as follows. In Sect.  2, 
we recall some related works. Section 3 gives the symbols, 
concepts, and definitions in the paper. In Sect.  4, we intro-
duce the CRMI algorithm in detail. In Sect. 5, the design 
of the experiment and analysis of experimental results are 
presented. Finally, we summarize the findings of this work 
in Sect. 6.
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2 � Related Works

In this section, we review some related works of TSC. A 
classic approach to TSC is 1NN + DTW, which has been 
proven by Wang et al. [24] to be hard to beat. Given a tar-
get time series, it calculates its distance to all the training 
time series using DTW and adopts the 1NN algorithm to 
determine its label.

It is known to all that there are enormous works on 
TSC, however, the shapelet-based methods are close to our 
work which also aims to find discriminative subsequences 
for building classifier models. Therefore, we review some 
important works about shapelet-based TSC. Ye and Keogh 
first proposed the concept of shapelets in [16], and shape-
lets are time series subsequences that are maximally rep-
resentative of a class.

In this groundbreaking work, the IG is employed to 
measure the quality, i.e., discriminative power, of subse-
quence candidates, and a brute force algorithm is used to 
enumerate subsequences from the raw time series. Since 
the number of subsequences is quadratic to the length of 
the time series and the IG requires calculating the dis-
tances between all the subsequences and time series, the 
complexity of the algorithm is O

(
n2 ⋅ m4

)
 where n is the 

number of time series and m is the length of time series. 
To improve the efficiency of the algorithm, Keogh et al. 
proposed fast shapelets (FS) [25] which exploit a random 
projection technique on the SAX representation of time 
series to find potential shapelet candidates. Its time com-
plexity is O

(
n ⋅ m2

)
 which outperforms the previous work 

by two or three orders of magnitude. However, the FS 
algorithm cannot guarantee finding the best shapelet and 
it sacrifices the accuracy of the classification.

Grabocka et al. proposed a Scalable shapelet Discovery 
algorithm (SD) [26], which used the Piecewise Aggregate 
Approximation (PAA) to represent time series and adopted 
an online clustering/pruning technique to avoid measuring 
the prediction accuracy of similar candidates in Euclid-
ean distance space and incorporated a supervised shapelet 
selection to improve classification accuracy. Since the SD 
algorithm prunes 99% of shapelet candidates, it was three 
-four orders of magnitudes faster than FS.

Tight coupling of shapelet discovery and training of 
decision tree is another factor that hinders the accuracy 
improvement. Hill et al. proposed a ST [18] technique, 
which separates the shapelet discovery from the classi-
fier fitting, which can cooperate with any existing classi-
fiers, e.g., SVM, kNN, neural network, etc. The ties are 
resolved by constructing a new feature space based on the 
top-k best shapelets and then transforming the original 
time series data into the new feature space in which each 
data point is the similarity (i.e., distance) between the 

corresponding shapelet and the time series. However, ST 
is one of the slowest shapelet-based algorithms since it 
needs to evaluate all possible candidates.

Karlsson et al. proposed a generalized random shape-
let forest (gRSF) [19] algorithm which consists of a set 
of shapelet-based decision trees, where both the choice of 
instances used for building a tree and the choice of shape-
lets are random. The experiments prove its effectiveness and 
efficiency. However, some techniques in gRSF still decrease 
the efficiency of the algorithm, e.g., the growth of a deci-
sion tree needs to repetitively sample shapelets for each tree 
node. Yang et al. proposed a compressed random shapelet 
tree (CRSF) [20] algorithm to improve the gRSF algorithm 
by three techniques that are the SAX representation, an inno-
vative SAX distance measuring, and a shapelet-pool strategy 
for generating shapelet-based decision trees.

Li et al. proposed BSPCover [22] which focuses on the 
discovery of a set of high-quality shapelet candidates for 
model building. BSPCover prunes identical and highly simi-
lar shapelet candidates then uses the p-cover algorithm to 
determine discriminative shapelet candidates, and finally 
applies the existing shapelet-learning technique to build 
the classifier. They reported that BSPCover achieves very 
competitive performance compared with the existing TSC 
methods.

3 � Preliminaries

A time series is an ordered sequence of m real values, denoted 
as Ti = ti,1ti,2ti,3 ⋯ ti,m, where m is the length of the time 
series. Usually, the m real values are obtained by observing 
a target object at a fixed time interval. A time series dataset 
contains n time series instances which can be denoted as 
D = ⟨T , Y⟩, T =

�
T1, T2,⋯ , Tn

�
, Y =

�
y1, y2,⋯ , yQ

�
 , where 

T  is the time series set, Y  is the set of the time series labels, 
and Q is number of distinct labels. The label of Ti can be 
obtained by a function label

(
Ti
)
 . The proposed algorithm is 

appropriate for MC-TSC with Q ≥ 3.
A time series subsequence Tj,k

i
= ti,jti,j+1 ⋯ ti,j+k−1 is a con-

secutive sequence obtained from a time series Ti where j and 
k are the starting position and the length of the sequence, 
respectively. A discriminative subsequence is a specific time 
series subsequence that can strongly represent a class of time 
series. For simplicity, we also use symbol s to denote a time 
series subsequence. A discriminative subsequence is a spe-
cific time series subsequence that can strongly represent a 
class of time series. Finding the discriminative subsequence, 
requires calculating the distance between a subsequence 
and a time series. Regarding a subsequence as another time 
series with a shorter length, the distance between two time 
series with different length is defined below.
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Definition 1 (Distance between two time series)  The dis-
tance between time series T1 with length m1 and time series 
T2 with length m2 can be calculated by Formula (1). Without 
loss of generality, we assume m1 < m2.

It is not difficult to find that the distance is a variation of 
Euclidean distance. The proposed method adopts transfor-
mation, just like the ST algorithm, that converts the raw time 
series dataset to a distance matrix, also called transformation 
matrix.

Definition 2 (Subsequence transformation)  Assuming a set 
of subsequences S =

{
s1, s2,⋯ , snS

}
 has been extracted 

from a time series dataset D = ⟨T , Y⟩ , it can transforms the 
time series dataset to a distance matrix, D� =

{
di,j

}
 , where 

di,j is the distance between the i-th time series and the j-th 
subsequence, i.e., d

(
sj, Ti

)
 . Note that all distances need to be 

normalized.

4 � Finding Discriminative Subsequences 
for TSC

4.1 � Framework of Algorithm

This paper proposes an algorithm, CRMI, for finding dis-
criminative subsequences from time series to handle the 
TSC problem. The framework of the algorithm is shown 
in Fig. 1. The CRMI algorithm performs random sampling 

(1)d
(
T1, T2

)
= min

j=0…m2−m1

√√√√ 1

m1

m1∑

i=1

(
t1,i − t2,j+i

)2

on raw time series dataset and extracts a large number 
of subsequence candidates at first. This step is the same 
with some existing works. Then, it calculates the dis-
tances between each subsequence candidate and all the 
time series based on Eq. 1 and forms a distance matrix. 
The third step is clustering performed on the distance 
matrix which aims to reveal the coverage relation of a 
subsequence on time series. The details of this step will 
be explained in Sect. 4.2. After that, a coverage matrix 
is produced and a new measure, named CR, is employed 
to evaluate the discriminative power of each subsequence 
candidate. In step 5, a heuristic algorithm based on MI 
tries to find the optimal combination of subsequences. In 
the last step, a set of discriminative subsequences is used 
to produce a transformed dataset for classifier training.

The pseudo code of the proposed algorithm is given 
in Algorithm 1. In lines 2 to 4, a set of subsequences are 
randomly sampled from time series dataset D accord-
ing to the minimum length of subsequence minLen , the 
maximum length of subsequence maxLen . The sampling 
stops when the sampling time is higher than the param-
eter samplingTime . In Lines 5–7, it calculates the distance 
between each subsequences and time series. The distance 
is stored in a matrix M . In line 8, a K-means algorithm 
is performed on the distance matrix and figures out the 
coverage matrix ℂ . From lines 9–10, it calculates the CR 
for each subsequence based on the coverage matrix. The 
algorithm employs a MI-based heuristic algorithm to find 
the optimal combination of subsequences S′ in Line 11. 
The algorithm transforms the time series data set D to 
a new data set D′ based on S′ in Line 12 and trains the 
classifier Ψ on D′ in Line 13. More details of selection 
of subsequences will be elaborated in Sects. 4.2 and 4.3.

Fig. 1   Framework of the CRMI algorithm
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Algorithm 1:   Training a time series classifier based on 
Coverage Ratio and Mutual Information

4.2 � A Measure for Estimating Discriminative Power 
of Subsequences

IG is a popular measure for evaluating the discriminative 
power of subsequences at present. However, IG has several 
shortcomings, including (1) it is easy to be disturbed by 
the noise; (2) the computation of IG is time-consuming. 
To overcome these shortcomings, a new measure named 
CR is proposed to estimate the discriminative power of 
subsequences.

Given a subsequence sj sampled from time series Tj and 
D = ⟨T , Y⟩ is a time series dataset with Q distinct labels. 
At first, the method calculates each distance d

(
sj, Ti

)
 , 

1 ≤ i ≤ n . Obviously, d
(
sj, Ti

)
= 0 if label(sj) = label(Ti) , 

otherwise d
(
sj, Ti

)
≥ 0 . After that, the distance values are 

normalized by min–max strategy and a clustering algorithm 
e.g., K-Means, is exploited to group the distances into Q 
categories.

Since a small distance value means that there exists a 
subsequence of time series whose shape is similar to the 
target subsequence, we construct a vector in which the j-th 
value will be set to 1 if d

(
sj, Ti

)
 falls into the clustering set 

which contains the distance value 0, and otherwise, the j-th 
value of vector will be set to 0. In other words, the cover 
relation between a subsequence and a time series is revealed 
by the clustering of their distance, which is the main differ-
ence between our method and the existing works. Finally, the 
vectors of all subsequences form a Boolean matrix, called 
coverage matrix.

The advantages of our method involve: (1) it is a param-
eter-free technique that does not need to set any parameters, 
which is different from some works that require a distance 
threshold to determine whether a time series contains or 
does not contain a subsequence; (2) it does not require any 
transformation on the raw time series, e.g., SAX or SFA, 
which may lose some information and increase computing 
overhead. Moreover, the number of categories for clustering 
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is naturally set to Q which is the category size of a time 
series dataset. A toy example is given below.

Example 1  Assume a time series dataset that contains 5 time 
series T1, T2, T3, T4, T5 and has 3 distinct labels. Let s be a 
subsequence extracted from T1 . The distance between s and 
the 5 time series forms a vector [0.00, 0.56, 0.37, 0.62, 0.08], 
e.g., d

(
T5, s

)
= 0.08 . Then, we perform the K-Means algo-

rithm on the distance vector where K = 3 (which is same 
with the number of the distinct labels) and obtain the clus-
tering result {{0.00, 0.08}, {0.37}, {0.56, 0.62}}. Based on 
the result, the time series are divided into three groups: { T1
,T5 }, { T3 } and { T2,T4 }. It can be seen that s is taken from 
T1 and the group containing T1 also contains another time 
series T5 , therefore the values correspondent T1 and T5 in a 
coverage vector are set to 1 and the others are set to 0, that 
is [1, 0, 0, 0, 1]T . It indicates that the time series T1, T5 are 
covered by the subsequence s . In another word, there exist 
some subsequences in T1, T5 similar to s in shape.

Based on the coverage matrix, this paper proposed an 
innovative measure CR, for estimating the discriminative 
power of a subsequence. The definition of CR is given 
below.

Definition 3  (Coverage ratio, CR): Given a coverage matrix 
ℂ and a subsequence sj with the label label(sj) , the CR of sj , 
can be calculated by the following formula.

where Ti and sj represent the i-th time series and the j-th 
subsequence, respectively, and label

(
Ti
)
 and label

(
sj
)
 rep-

resent the labels of Ti and sj , respectively. In the coverage 
matrix ℂ , ci,j = 1 when the j-th subsequence covers the i-th 
time series. The symbol #() is a cardinal operator, and � is 
a parameter to control the weight of two components. The 
range of � is (0, 1] . It is not difficult to figure out that the 
range of CR(sj,ℂ) is [−1, 1] . The rationale behind the CR is 
simple that we hope a subsequence sj with great discrimina-
tive power covers as many time series with the label label

(
sj
)
 

as possible and covers as few time series with other labels 
as possible. A toy example for explanation is shown below.

(2)

CR
(

sj,ℂ
)

=
#
(

ci,j = 1 ∧ label
(

Ti
)

= label
(

sj
))

#
(

label
(

Ti
)

= label
(

sj
))

− � ⋅
#
(

ci,j = 1 ∧ label
(

Ti
)

≠ label
(

sj
))

#
(

label
(

Ti
)

≠ label
(

sj
))

Example 2  There are 12 time series and Y = {1, 2, 3} in the 
time series dataset (as shown in Table 1). Two subsequences 
s1, s2 are extracted from time series with the label 1. The 
coverage vectors of the two subsequences are shown in the 
3rd and the 4th row of Table 1, respectively. The parameter 
� is set to 0.5. We can calculate that the CR of s1 is 0.6875 
and the CR of s2 is 0.3125 based on Formula (2).

It demonstrates that s1 is more discriminative than s2 . Let 
us analyze the coverage vector of both subsequences, it is 
easy to find that most of the time series covered by s1 belong 
to the same category (i.e., the first category), and in contrast, 
the time series covered by s2 are distributed across three cat-
egories. It demonstrates that the new measure, i.e., CR, can 
reveal the discriminative power of subsequences.

4.3 � A MI‑Based Algorithm for Discriminative 
Subsequence Selection

Although a new measure has been proposed to evaluate the 
discriminative power of subsequences, selecting a set of 
subsequences that can maximally represent the time series 
is still an issue. Some works simply choose the top-k subse-
quences with the highest score for classifier training. How-
ever, it cannot work well on some the datasets because it 
does not consider the correlation among the subsequences.

MI is an important tool in information theory that can 
handle the correlation between two variables. Moreover, MI-
based feature selection has been proven to be effective in 
many works. In this section, an MI-based algorithm is pro-
posed to handle the problem of discriminative subsequence 
selection. First, the definition of MI is given below.

Definition 4 (Mutual information, MI)  Given a coverage 
matrix ℂ of a subsequence set S =

{
s1, s2,⋯ , snS

}
 on time 

series dataset D = ⟨T , Y⟩ , the MI between S and Y is denoted 
as follows.

where p(s, y) is the joint probability distribution function of s 
and y in ℂ , while p(s) and p(y) is the probability distribution 
function of s and y in ℂ , respectively. H(Y) is the information 
entropy of Y , and H(Y|S) is the conditional entropy of Y with 

(3)

MI(S;Y) =
∑

y∈Y

∑

s∈S

p(s, y)log2

(
p(s, y)

p(s)p(y)

)
= H(Y) − H(Y|S)

Table 1   Illustration for coverage 
ratio

Time series T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Label 1 1 1 1 2 2 2 2 3 3 3 3
ℂ

1
1 0 1 1 0 1 0 0 0 0 0 0

ℂ
2

0 1 1 0 0 0 1 1 0 1 0 0
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respect to S . Similar to the existing work, the algorithm aims 
to find a subset S′ of S such that MI(S;Y) is equal to MI(S�;Y).

To find the optimal combination of subsequences, we 
first group the subsequences into Q groups by their labels, 
and sort them by their CR values in descending order 
within the groups. Then, the subsequences with the high-
est CR in each group are chosen to form a core set. The 
core set is regarded as the starting set of the subsequence 
selection. Next, a round-robin strategy is employed that 
successively selects a subsequence from a group and adds 
it to S′ until MI(S�;Y) no longer increases. The process of 
the MI-based subsequence selection is shown in Fig. 2.

The pseudo-code of the algorithm is shown in Algo-
rithm 2. In the first line, the algorithm groups all the 

subsequences by their labels and sorts them by CR score in 
descending order within each group. In Line 2, the result 
set is set to be empty. From Lines 3 to 4, a core set is built 
using the first subsequence (i.e., the subsequences with the 
highest CR score in each group) in each group, where the 
function group.getAndRemove(0) removes the first element 
from the group and returns the element. The MI of the core 
set is calculated in Line 5 and assigned to a variable lastMI 
in Line 6. From Lines 8 to 19, a round-robin strategy is 
employed to traverse all groups to find the best subse-
quence in each group which can achieve the maximum MI 
value. The loop ends when the MI value does not increase 
(Lines 20–23). At the end of the algorithm, the algorithm 
returns the final subsequences S′.

Fig. 2   Process of the MI-based 
subsequence selection
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Algorithm 2:   Select Subsequences By MutualInformation (S,£,Y)

counting the time of coverage and its worst time com-
plexity is O

(
n ⋅ n

s

)
 . The final step requires calculating 

the MI for many times and its worst time complexity is 
O
(

n × Q ×
(

Q + (Q + 1) + (Q + 2) +⋯ + nS
))

≈ O
(

n ⋅ Q ⋅ n2s
)

  . 
Since Q ⋅ n

s
 is obviously higher than the length of the 

time series in most cases, the worst time complexity of 
the proposed algorithm is O

(
n ⋅ Q ⋅ n2

s

)
.

5 � Experiments

5.1 � Experiment Setup

In this section, we perform extensive experiments to evaluate 
the performance of the proposed algorithm. First, the data-
sets will be introduced in this paragraph. Second, we explore 

4.4 � Analysis of Time Complexity

The proposed algorithm is composed of five steps which 
involve random sampling time series subsequences, cal-
culating the distances between each subsequence and 
time series, clustering based on the distance matrix, 
calculating the CR for each subsequence, and finding 
the optimal subset of subsequences. The time of ran-
dom sampling is a parameter and we will discuss it in 
the experiments. The worst time complexity of the sec-
ond step is O

(
m ⋅ n ⋅ nS

)
 where m is the length of the 

time series, n and nS represent the number of time series 
and the number of subsequences to estimate, respec-
tively. The worst time complexity of the third step, e.g., 
K-means clustering, is O

(
Q ⋅ n ⋅ nS

)
 , Q is the number of 

distinct classes. The key operation of the fourth step is 
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the parameter setting strategies. Third, ablation experiments 
are performed to evaluate the effectiveness of the methods in 
CRMI, including the CR measure and the MI-based heuristic 
algorithm for discriminative subsequence selection. Finally, 
the performance of the proposed algorithm is evaluated by 
comparing it with six shapelet-based TSC algorithms as well 
as the 1NN + DTW algorithm which is claimed to be dif-
ficult to defeat.

The experiments were carried out on a server equipped 
with Intel Xeon Gold 5215 CPU (2.5 GHz) and 64 GB mem-
ory. The algorithm is coded in Java with toolkits Weka 3.4.3 
and Time Series Machine Learning (TSML) [27]. Since the 
proposed method is for MC-TSC, 54 datasets that have at 
least three categories are selected from the UCR reposi-
tory. The details of the datasets are shown in Table 2. The 
last four columns in the table are the number of training 
instances, the number of testing instances, the number of 
categories, and the length of the time series.

5.2 � Influence of Parameter Settings

In this section, we conduct experiments to study how to set 
the parameters in the CRMI algorithm, including the time of 
subsequence sampling and the parameter � in Formula (2).

First, we investigate the impact of the time of subse-
quence sampling by setting its value from 2 to 5 min with a 
step value of 1 min. The value of � is set to 1.0. For fairness, 
the experiments were performed 50 times on each dataset 
because the algorithm is stochastic. The accuracy of clas-
sification, as well as the training time and the testing time 
on each dataset, are recorded. For simplicity, we calculate 
the average value of the classification accuracy, the train-
ing time, and the testing time on all datasets. The results 
are shown in Fig. 3, in which the abscissa is the time of 
sampling and the left ordinate is the average accuracy of 
classification on all datasets and the right ordinate is the 
time cost of the algorithm. From the figure, it is obvious that 

Table 2   Descriptions of datasets

ID Name #Train #Test #Class Length ID Name #Train #Test #Class Length

1 Adiac 390 391 37 176 28 MedicalImages 381 760 10 99
2 ArrowHead 36 175 3 251 29 MiddlePhalanxO 400 154 3 80
3 Beef 30 30 5 470 30 MiddlePhalanxTW 399 154 6 80
4 Car 60 60 4 577 31 NonInvasiveFetal1 1800 1965 42 750
5 CBF 30 900 3 128 32 NonInvasiveFetal2 1800 1965 42 750
6 ChlorineCon 467 3840 3 166 33 OliveOil 30 30 4 570
7 CinCECGTorso 40 1380 4 1639 34 OSULeaf 200 242 6 427
8 CricketX 390 390 12 300 35 Phoneme 214 1896 39 1024
9 CricketY 390 390 12 300 36 Plane 105 105 7 144
10 CricketZ 390 390 12 300 37 ProximalPhalanxO 400 205 3 80
11 DiatomSizeR 16 306 4 345 38 ProximalPhalanxT 400 205 6 80
12 DistalPhalanxOAG 400 139 3 80 39 RefrigerationD 375 375 3 720
13 DistalPhalanxTW 400 139 6 80 40 ScreenType 375 375 3 720
14 ECG5000 500 4500 5 140 41 ShapesAll 600 600 60 512
15 ElectricDevices 8926 7711 7 96 42 SmallKitchen 375 375 3 720
16 FaceAll 560 1690 14 131 43 StarLightCurves 1000 8236 3 1024
17 FaceFour 24 88 4 350 44 SwedishLeaf 500 625 15 128
18 FacesUCR​ 200 2050 14 131 45 Symbols 25 995 6 398
19 FiftyWords 450 455 50 270 46 SyntheticControl 300 300 6 60
20 Fish 175 175 7 463 47 Trace 100 100 4 275
21 Haptics 155 308 5 1092 48 TwoPatterns 1000 4000 4 128
22 InlineSkate 100 550 7 1882 49 UWaveGestureA 896 3582 8 945
23 InsectWingBS 220 1980 11 256 50 UWaveGestureX 896 3582 8 315
24 LargeKitchenA 375 375 3 720 51 UWaveGestureY 896 3582 8 315
25 Lightning7 70 73 7 319 52 UWaveGestureZ 896 3582 8 315
26 Mallat 55 2345 8 1024 53 WordSynonyms 267 638 25 270
27 Meat 60 60 3 448 54 Worms 181 77 5 900
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Moreover, the subsequences in each group are ranked in 
descending order according to the CR value. Then, it con-
structs a core set that consists of subsequences with the high-
est CR value in each group. Finally, it successively selects 
a subsequence with the highest CR value in each group and 
adds it to the set. The algorithm ends until the value of MI 
does not grow.

(2) Core + Ranking.

The difference between this strategy and Core + Round-
Robin is that the former does not successively select a 
subsequence from each group, but from a collection of all 
subsequences. After the construction of the core set, this 
strategy ranks all the subsequences according to their CR 
values in descending order and successively selects a subse-
quence with the highest CR value. The algorithm ends until 
the value of MI does not grow.

(3) Ranking.

This strategy sorts all subsequences in descending order 
according to their CR values and then adds them to the 
result set one by one. It calculates the MI of the selected 
subsequences and the algorithm ends until the MI no longer 
increases.

In the experiments, the sampling time is set to 2 min 
and the value of � is set to 1.0. Similarly, each strategy was 
performed 50 times on each dataset, and the average value 
of classification accuracy as well as the training time was 
calculated. The experimental results are shown in Fig. 5. 
It is easy to find that the Core + Ranking strategy performs 
slightly better than the Ranking strategy. It demonstrates 
that the core set is helpful to improve classification accu-
racy. Furthermore, the Core + Round-Robin strategy per-
forms much better than the Core + Ranking strategy in 

the classification accuracy achieves the highest value, i.e., 
74.91%, when the sampling time is 2 min. The second high-
est classification accuracy is 74.59% which is achieved when 
the sampling time is set to 4 and 6, respectively. Obviously, 
2 min is a good choice for the sampling time.

Next, we conduct experiments to investigate the influ-
ence of the setting of � . The value of � is set from 0.2 to 
1.0 with a step value of 0.2. The sampling time is set to 
2 min. Similarly, the experiments were performed 50 times 
on each dataset, and the average value of classification 
accuracy is calculated. The results are shown in Fig. 4. 
As can be seen from the figure, the highest classification 
accuracy is 74.91% when the � is set to 1.0, and the low-
est classification accuracy is 73.70% when the � is set to 
0.8. Therefore, the value of � in the experiment is set to 
1.0. We also change the order of the parameter selection, 
i.e., first determine the setting of � and then determine the 
sampling time, the results show that it will not influence 
the performance of the algorithm.

5.3 � Comparison of Different Strategies in MI‑Based 
Discriminative Subsequence Discovery

In Algorithm 2, an MI-based algorithm for discovering the 
discriminative subsequences is proposed in which two strat-
egies are employed including a core set consisting of the 
subsequence with the highest CR value in each group and a 
round-robin selection strategy. In this section, we evaluate 
three different strategies.

(1) Core + Round-Robin.

This strategy is employed in the proposed algorithm. After 
the calculation of the CR value of all subsequences, the 
algorithm groups the subsequences according to their labels. 

Fig. 3   Influence of sampling 
time setting
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terms of classification accuracy. It proves the efficiency of 
the Round-Robin strategy. However, the training time of 
the Core + Round-Robin strategy is slightly longer than the 
Core + Ranking strategy. The only reason behind the phe-
nomenon is that the former selects more subsequences than 
the latter because the number of subsequences from each 
group is balanced under the Core + Round-Robin strategy. 
The experimental results prove that balancing the number 
of subsequences (features) from different categories of time 
series is helpful for TSC.

5.4 � Comparison Against the State‑of ‑the‑Art 
Algorithms

We compared the CRMI algorithm with seven TSC classi-
fiers, including 1NN + DTW and six state-of-art algorithms 

based on shapelets, which are ST [18], gRSF [19], CRSF 
[20], BSPCover [22], Fast Shapelet (FS) [25], and SD [26]. 
The reasons that we only select shapelet-based algorithms 
for comparison are twofold. On the one hand, existing works 
have shown that state-of-the-art shapelet-based algorithms 
perform much better than most dictionary-based algorithms. 
On the other hand, the proposed algorithm is similar to the 
shapelet-based algorithm in that all of them work on the raw 
time series data. This is different from the dictionary-based 
methods which need to convert the raw time series data by 
SAX or SFA etc. The parameters of algorithms for compari-
son were set according to the corresponding references. If 
datasets do not appear in the references, we use the default 
parameters in the open-source code.

The experiments were conducted on 54 datasets. All the 
stochastic algorithms were run 50 times on each dataset, 

Fig. 4   Average classification 
accuracy achieved by different 
values of λ

Fig. 5   Comparison of average 
accuracy and training time on 
different selection strategy
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Table 3   Accuracy comparison 
of 8 classifiers on 54 datasets

ID 1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

1 0.7829 0.6000 0.6990 0.7714 0.8000 0.7697 0.7169 0.7126
2 0.9911 0.9578 0.9807 0.9933 0.8627 0.9919 0.9927 0.9767
3 0.6469 0.5828 0.5377 0.7046 0.5326 0.6514 0.6249 0.7073
4 0.7266 0.6691 0.6667 0.7770 0.4676 0.8172 0.7363 0.7914
5 0.7893 0.3333 0.6517 0.8160 0.8560 0.8643 0.8229 0.8230
6 1.0000 0.7833 0.8800 0.9500 0.7167 0.9567 0.9392 0.9667
7 0.5844 0.5325 0.5182 0.5844 0.4883 0.7078 0.6347 0.5909
8 0.8049 0.8244 0.7668 0.8342 0.4878 0.8420 0.8463 0.8488
9 0.4640 0.5106 0.5104 0.5440 0.8182 0.6883 0.5639 0.5573
10 0.3973 0.4213 0.3701 0.6760 0.4271 0.6475 0.4517 0.4759
11 0.6427 0.3333 0.6347 0.8020 0.6432 0.8224 0.7123 0.8224
12 0.9600 0.9102 0.9341 0.9770 0.8400 0.9793 0.9576 0.9757
13 0.7167 0.7000 0.6556 0.9020 0.6167 0.8167 0.7175 0.8833
14 0.6812 0.7123 0.7778 0.9180 0.4457 0.8919 0.6953 0.9717
15 0.9804 0.8856 0.9139 0.8791 0.7745 0.8654 0.9109 0.8725
16 0.8296 0.9205 0.8045 0.7614 0.8182 0.8955 0.9659 0.9773
17 0.8333 0.7333 0.7733 0.8810 0.8621 0.8600 0.8333 0.9333
18 1.0000 1.0000 0.9580 1.0000 0.8600 1.0000 1.0000 1.0000
19 1.0000 0.2588 0.9813 0.9520 0.9512 0.9959 0.9833 0.9515
20 0.4333 0.5000 0.4444 0.7333 0.5667 0.5467 0.5683 0.8000
21 0.9293 0.9042 0.9129 0.9456 0.9257 0.9405 0.9316 0.9440
22 0.4156 0.3506 0.3532 0.5162 0.3896 0.4721 0.4705 0.5162
23 0.5844 0.5325 0.5377 0.7190 0.4796 0.7299 0.6273 0.6753
24 0.6043 0.6331 0.6091 0.6900 0.3022 0.6950 0.6921 0.6906
25 0.4870 0.5000 0.4610 0.5488 0.2727 0.5727 0.6019 0.5648
26 0.5909 0.6983 0.5397 0.9546 0.5866 0.8624 0.6855 0.8636
27 0.7561 0.7171 0.7141 0.8030 0.7574 0.7961 0.7966 0.8098
28 0.9498 0.9246 0.8563 0.9648 0.9166 0.8341 0.9475 0.9487
29 0.9933 0.9233 0.9760 0.9832 0.9754 0.9930 0.9908 0.9833
30 0.7544 0.5488 0.5928 0.8950 0.6852 0.8773 0.7279 0.5111
31 0.7829 0.8171 0.7291 0.9547 0.8215 0.9092 0.8637 0.9657
32 0.3836 0.2946 0.3982 0.4455 0.3834 0.4240 0.3892 0.4092
33 0.6849 0.5343 0.6247 0.7397 0.5890 0.7123 0.7459 0.7260
34 1.0000 0.9810 0.9848 1.0000 0.9520 0.9962 0.9881 1.0000
35 0.9348 0.9582 0.9308 0.9395 0.9346 0.9339 0.9709 0.9889
36 0.9630 0.9021 0.9078 0.8060 0.8025 0.9526 0.8996 0.9389
37 0.7275 0.6963 0.7603 0.7370 0.6963 0.8106 0.7799 0.7457
38 0.6340 0.6108 0.6709 0.8060 0.7012 0.7360 0.7025 0.6778
39 0.6583 0.6374 0.6754 0.9420 0.7542 0.7548 0.7348 0.7044
40 0.7211 0.6408 0.6595 0.6910 0.5145 0.6974 0.6497 0.7026
41 0.3576 0.4904 0.4947 0.4382 0.5697 0.6301 0.5779 0.6348
42 0.7590 0.5154 0.6829 0.7639 0.5544 0.7623 0.6753 0.7641
43 0.6974 0.4821 0.6590 0.7495 0.7254 0.7495 0.6855 0.7531
44 0.8000 0.4103 0.6897 0.7980 0.5026 0.7982 0.7142 0.7900
45 0.9456 0.6237 0.7125 0.7485 0.7324 0.9387 0.7349 0.7420
46 0.8859 0.6737 0.8487 0.9117 0.7025 0.8928 0.8383 0.8805
47 0.7920 0.7696 0.8614 0.9239 0.9239 0.9037 0.8737 0.9248
48 0.6489 0.4671 0.6201 0.5820 0.5412 0.5978 0.5679 0.6442
49 0.6215 0.5601 0.5865 0.7680 0.7681 0.7235 0.4737 0.7951
50 0.2284 0.2214 0.1459 0.3402 0.2275 0.2970 0.2275 0.3012
51 0.7903 0.7984 0.8084 0.9470 0.8354 0.9091 0.7645 0.8372
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including FS, SD, BSPCover, gRSF, and CRSF. The 
experimental results are shown in Table 3 in which the 
average accuracy of classification on 54 datasets for each 
algorithm is listed. The highest accuracy for each dataset 
is marked in bold. To describe the experimental results 
more intuitively, some comparisons are provided in the 
last five rows of the table. The “Wins” row shows the num-
ber of datasets on which the corresponding algorithm won 
the gold medal. The second row shows the average rank-
ing of the algorithm on 54 datasets. The last three rows 
show the number of datasets that CRMI wins, draws, and 
loses across all datasets compared with other algorithms, 
respectively. For example, compared with CRSF, CRMI 
won 38 times, drew 1 time, and lost 15 times on 54 data-
sets. As shown in Table 3, the CRMI algorithm achieves 
the best results on 19 datasets which is slightly better than 
the ST algorithm which won on 18 datasets. The number 
of datasets won on by other algorithms is far less than the 
proposed algorithm. In terms of the average ranking, the 
top three algorithms are CRMI, ST, and gRSF which get 
2.70, 2.74, and 2.81, respectively. Comparing CRMI with 
other algorithms one-to-one, it can also be found that the 
CRMI algorithm outperforms other algorithms.

We also exploit the Nemenyi test to detect whether 
there exist significant differences among the eight algo-
rithms. A critical difference diagram is shown in Fig. 6. 
Classifiers that are not significantly different at p = 0.05 

are connected. It can be easily found that CRMI is sig-
nificantly superior to the five algorithms, which are 
1NN + DTW, SD, FS, BSPCover, and CRSF. Since the 
difference among CRMI, ST, and gRSF is not significant, 
the empirical findings indicate that when aiming for the 
highest accuracy, any one of them can be safely recom-
mended. It is known to us that the ST algorithm is too 
time-consuming because it needs to evaluate all the subse-
quences in a time series dataset. Based on the prior analy-
sis, we can conclude that the accuracy achieved by CRMI 
is slightly better than gRSF and ST, and obviously better 
than the rest methods. It proves the effectiveness of the 
proposed algorithm.

5.5 � Cross Validation

To further analyze the effectiveness of the CRMI algorithm, 
fivefold cross-validation experiments were conducted on all 
54 datasets. Specifically, the training set data and testing set 
data in the UCR archive were merged, and the data with the 
same label was divided into five groups. One group was des-
ignated as the validation set, while the remaining four groups 
were served as the training set. We record the accuracy in 
the cross-validation experiments and figured out the average 
score. Same with the previous experiments, some algorithms 
which are stochastic were repeated 50 times on each dataset 
to ensure the fairness of results. Pairwise comparisons were 
performed on these experimental results which illustrated 
in Fig. 7. Each subplot represents the comparative analysis 
between the CRMI algorithm and another algorithm, where 
the y-axis represents the average accuracy of CRMI, and the 
x-axis represents the average accuracy of the compared algo-
rithm. Each point represents a dataset. If a point falls above 
the diagonal, it suggests that the CRMI algorithm performs 
better than the compared algorithm. Conversely, the CRMI 
algorithm is inferior to the compared algorithm.

From figures (a), (b), (c), (e), and (g), it is obvious that 
the CRMI algorithm are superior to the 1NN-DTW, FS, 
SD, BSPCover, and CRSF algorithms because most of the 
points fall on the upper side of the diagonal in those figures. 
In Figures (d) and (f), most points are near the diagonal, 

Table 3   (continued) ID 1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

52 0.8646 0.8345 0.8560 0.9540 0.8554 0.9331 0.7982 0.8651
53 0.6615 0.5055 0.6923 0.7130 0.7142 0.7059 0.6388 0.7341
54 0.7683 0.6100 0.7860 0.8540 0.7426 0.8405 0.8536 0.7467
Wins 11 1 0 18 2 9 3 19
Ave. Rank 4.50 6.61 6.06 2.74 5.94 2.81 4.15 2.70
1v1 Wins 37 51 48 28 48 27 38 –
1v1 Draws 2 1 0 3 0 2 1 –
1v1 Loses 15 2 6 23 6 25 15 –

Fig. 6   Nemenyi tests for 8 classifiers (p = 0.05)
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Fig. 7   Results of cross validation on 54 datasets
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however it can be also found that the CRMI algorithm is also 
slightly superior to the two algorithms, i.e., the ST algorithm 
and the gRSF algorithm. The results of the cross-validation 
also prove the effectiveness of the proposed algorithm.

5.6 � Analysis of the Impact of the Number 
of Categories

In this section, we investigate the impact of the number of 
categories in a dataset on CRMI in terms of classification 
accuracy. In terms of the distribution of category numbers, 
the datasets are categorized into three groups. The dataset 
category numbers in 3 groups are no more than 6, no less 
than 7, and no less than 10, respectively.

The experimental results are re-analyzed as listed in 
Table 4. From the table, it can be seen that the number of 
datasets won by the CRMI algorithm is 9 which is equal 
to that won by the ST algorithm when the number of cat-
egories is no more than 6. Although the CRMI algorithm 
is tied with the ST algorithm for first place in this metric, 
the average ranking of the former is 2.83 which is inferior 
to that of the ST as well as the gRSF which is 2.48. When 
the category number is no less than 7, it can be seen that the 
CRMI algorithm wins the gold medals on two metrics, i.e., 
Ave. Rank and Wins, which are 2.56 and 10, respectively. 
The second place is the ST algorithm which can achieve 9 
and 3.04 on the two metrics, respectively. Furthermore, it 
can be seen that the CRMI algorithm obtains 2.60 and 7 on 
the two metrics when the category number is no less than 
10. The second place of the two metrics is 3.13 and 4 which 
are obtained by the gRSF and the ST, respectively. Although 
the proposed algorithm achieves first place in both groups, 
it is easy to find that the advantage of the CRMI algorithm 
is apparent along with the increase in the category number 
of the dataset.

The analyses show that CRMI, ST, and gRSF have good 
classification ability for multi-class time series classifica-
tion. However, both the ST and the gRSF require calculating 
the IG to evaluate the discriminative ability of the shapelet. 
Moreover, the former will evaluate all shapelet candidates. 
Therefore, both of them are too time-consuming. For exam-
ple, the time costs of the ST and the gRSF are 6752 s and 
1872s on dataset NonInvasiveFetalECGThorax1, respec-
tively, which is far higher than that of the CRMI which is 
129 s. The experiments prove the effectiveness and effi-
ciency of the proposed algorithm.

Fig. 7   (continued)

Table 4   Experimental results of 
different number of categories 
in datasets

1NN + DTW FS SD ST BSPCover gRSF CRSF CRMI

Q ≤ 6 Ave. rank 4.34 7.24 5.93 2.48 6.28 2.48 4.10 2.83
Wins 6 0 0 9 0 7 1 9
1v1 Wins 19 28 25 17 25 14 19 –
1v1 Draws 1 0 0 1 0 1 0 –
1v1 Loses 9 1 4 11 4 14 10 –

Q ≥ 7 Ave. rank 4.68 5.88 6.20 3.04 5.56 3.20 4.20 2.56
Wins 5 1 0 9 2 2 2 10
1v1 Wins 18 23 23 11 23 13 19 –
1v1 Draws 1 1 0 2 0 1 1 –
1v1 Loses 6 1 2 12 2 11 5 –

Q ≥ 10 Ave. rank 4.67 5.87 6.40 3.33 5.40 3.13 3.60 2.60
Wins 3 1 0 4 2 2 1 7
1v1 Wins 10 14 14 7 13 7 11 –
1v1 Draws 1 1 0 1 0 1 1 –
1v1 Loses 4 0 1 7 2 7 3 –
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5.7 � Other Advantages

The experiments show the effectiveness and efficiency 
of the CRMI algorithm, especially in multi-class classi-
fication tasks. Furthermore, the ease of use of the pro-
posed algorithm is superior to most of the pattern-based 
algorithms of TSC because it is nearly a parameter-free 
algorithm. It is easy to find that the CRMI algorithm only 
requires determining the minimum and maximum lengths 
of the subsequences. We always set the two parameters 
to three and the length of the time series, respectively. 
The existing pattern-based algorithms of TSC, such as 
CRSF, ST, etc., must set a distance threshold to deter-
mine whether a time series contains or does not contain a 
subsequence which may greatly decrease the accuracy of 
the classification. Besides, the CRMI algorithm does not 
require any transformation of the raw time series. Some 
work, such as CRSF, BSPCover, BOSS, etc., require the 
representation of the time series by SAX or SFA which 
may lose some information and introduce extra computing 
overhead. Finally, the CRMI algorithm employs an MI-
based heuristic for looking for the optimal combination 
of subsequences. Feature selection has been studied for a 
long time and lots of efficient techniques can be exploited 
in our work, such as the meta-heuristic algorithms. It may 
further improve the effectiveness and efficiency of the pro-
posed algorithm.

6 � Conclusions

In this paper, we present a new algorithm named CRMI 
to find discriminative subsequences for MS-TSC. A new 
measure for evaluating the discriminative power of subse-
quences, called CR, is proposed which reveals the cover rela-
tion between a subsequence and time series via clustering 
their distances. Besides, an MI-based heuristic algorithm 
for looking for the optimal combination of subsequences 
is also presented. We perform extensive experiments on 54 
datasets to evaluate the effectiveness and efficiency of the 
CRMI algorithm. Some conclusions can be drawn. (1) Com-
pared with the 1NN + DTW classifier and six well-known 
shapelet-based classifiers, the CRMI algorithm can achieve 
the best average accuracy on 54 datasets. Although there is 
no significant difference in terms of the accuracy between 
CRMI and ST statistically, CRMI is much more efficient 
than the two algorithms. (2) Extensive experiments were 
conducted to evaluate the proposed strategies and explore 
the strategies of parameter setting. The experimental results 
show that the proposed strategies, i.e., employing a core 
set to be the start point of subsequence selection and the 

round-robin selection for subsequence selection, are effec-
tive. (3) The CRMI algorithm only requires setting two 
parameters, i.e., the time of subsequence sampling and the 
� in Formula (2). Experimental results show that 2 min and 
1.0 are good choices for the two parameters, respectively. (4) 
The CRMI algorithm performs well on time series datasets 
with a large number of categories.

However, this study still has limitations and faces sev-
eral challenges: (1) the UCR datasets are balanced, while 
many real-life data are imbalanced. Therefore, the CRMI 
algorithm which is trained on balanced datasets needs to 
consider imbalanced data; (2) although it has been proven 
the effectiveness of the algorithm in this paper, it can still be 
enhanced by utilizing representations such as SAX or SFA, 
or employing parallel computing to improve its efficiency; 
(3) it is necessary to consider the unseen time series data 
in real-life to improve the generalization of the algorithm.
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