
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems          (2023) 16:143  
https://doi.org/10.1007/s44196-023-00310-w

RESEARCH ARTICLE

Multi‑temporal Sequential Recommendation Model Based 
on the Fused Learning Preferences

Jianxia Chen1 · Liwei Pan1 · Shi Dong2   · Tianci Yu1 · Liang Xiao1 · Meihan Yao1 · Shijie Luo1

Received: 1 May 2023 / Accepted: 31 July 2023 
© The Author(s) 2023

Abstract
Since sequential recommendation can effectively capture the user’s dynamic interaction pattern according to the user’s 
historical interaction, it plays one of the important roles in the field of recommendation systems. Nowadays, the sequential 
recommendation models based on deep learning approaches have achieved good results in reality due to their excellent 
performance in information retrieval and filtering. However, there are still some challenges that still should be overcome of 
them. A major disadvantage of them is that they are only considering users’ short-time interests while ignoring their long-
term preferences. Moreover, they are incapable of considering the influence of time information in the original interaction 
sequence, which could be helpful to fully extract various patterns via the different temporal embedding forms. Therefore, this 
paper proposes a novel model named multi-temporal sequential recommendation model based on the fused learning prefer-
ence named MTSR-FLP in short. In the proposed framework, this paper adopts an MLP-based state generation module to 
consider the user’s long-term preferences and the short-time interests simultaneously. In particular, the proposed MTSR-FLP 
model designs a global representation learning approach to obtain the user’s global preference, and a local representation 
learning approach to capture the users’ local preference via its historical information. Moreover, the proposed model develops 
a multiple temporal embedding scheme to encode the positions of user–item interactions of a sequence, in which multiple 
kernels are utilized for the absolute or relative timestamps to establish unique embedding matrices. Finally, compared with 
other advanced sequence recommendation models on five public real-world datasets, the experimental results show that the 
proposed MTSR-FLP model has improved the performance of HR@10 from the 6.68% through 31.10% and NDCG@10 
from the 8.60% through 42.54%.

Keywords  Sequential recommendation · Deep learning · Time series embedding · Global representation learning · Local 
representation learning

1  Introduction

A recommendation system is an effective and powerful tool 
to address information overload by making users easily cap-
ture information in terms of their preferences and allow-
ing online platforms to widely publicize the information 
they produce. Different from traditional recommendation 
systems, such as content-based and collaborative filtering 
systems, which prefer focusing on the user’s static historical 

interactions and assume that all user–item interactions in the 
historical sequence are equally important, sequential recom-
mendation (SR) systems aimed at catching the dynamic pref-
erences of users from their historical interaction. Therefore, 
SR is more consistent with real-world situations to obtain 
more accurate results with more information considered.

Generally, the conventional SR methods are classified 
into traditional machine learning approaches and deep 
learning-based approaches. The traditional machine learn-
ing (ML) approaches are mainly exploited to build up 
the sequence data, such as k-means, Markov chains, and 
matrix decomposition [1–4]. Especially, matrix factoriza-
tion (MF) can obtain users’ long-term preferences through 
various sequences [5]. Nowadays, the sequential recom-
mendation models based on the deep learning approaches 
have achieved relatively good results in reality due to their 
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excellent performance in information retrieval and filtering, 
mainly including convolutional neural networks (CNNs) [6] 
and recurrent neural networks (RNNs) [7]. This is because 
DL-based SR approaches utilize a much longer sequence 
which is beneficial to the semantic information of the whole 
sequence [8]. In addition, DL-based SR approaches also 
have achieved much better performance for both the sparse 
data and different length sequences.

However, there are still some challenges that still should 
be overcome in the above DL-based SR approaches. A 
major disadvantage of them is that they are only consider-
ing users’ short-time interests while ignoring their long-term 
preferences. Moreover, they are incapable of considering 
the influence of time information in the original interaction 
sequence, which could have been helpful to fully extract 
various patterns by finding different temporal embedding 
forms. Therefore, this paper aims to propose a deep learning-
based sequential recommendation system. It utilizes both 
the global preference and the local preference of users with 
the multi-temporal embedding to encode both absolute and 
relative positions of a user–item interaction, and simulates 
the real-time recommendation environment.

This paper proposes a novel model named multi-temporal 
sequential recommendation model based on the fused learn-
ing preference named MTSR-FLP. The proposed MTSR-
FLP model consists of four parts: multi-temporal embedding 
learning; local representation learning; global representation 
learning; item similarity gating module. First, the multi-
temporal embedding learning module is the most important 
and innovative in the proposed model. It is well designed 
especially to address the timestamp information with the 
construction of the multiple temporal embedding, which will 
be sent to the local representation learning module, named 
LRL in short. Moreover, the local representation learning 
module is developed via the framework of the SASRec 
model [9], which infers the multiple temporal embedding 
with the different weight and their aggregations, to obtain 
the local preference of users. Afterward, in the global rep-
resentation learning module, named GRL in short, a novel 
location-based attention layer has been developed to obtain 
the final global learning representation of all users. Finally, 
the proposed model designs a novel item similarity gating 
module, which is critical in coordinating the local preference 
of the specific user and the global preference of all users. 
Meanwhile, it considers the influence of candidate items by 
calculating the similarity of candidate items and recently 
interacted items.

The main contributions of the proposed MTSR-FLP 
model are described as follows: (1) the proposed model 
develops a multiple temporal embedding scheme to encode 
the positions of user-item interactions of a sequence; (2) 
to capture the local representation of a user via his histori-
cal information, the MTSR-FLP model proposes a local 

representation learning module; (3) to effectively capture 
the user’s global preference, the proposed model designs a 
global representation learning module; (4) compared with 
the four traditional models on five public datasets, experi-
mental results demonstrated that the proposed model had 
better performance regarding the effectiveness and feasibil-
ity of the sequence recommendation.

The rest of this paper is organized as follows. Section 2 
briefly introduces the recent development of sequential rec-
ommendation based on deep learning and temporal recom-
mendation. Section 3 describes the specific details of the 
proposed model and the procedures of its training. Experi-
mental results on five public datasets and comparison with 
existing models are analyzed in Sect. 4. Finally, Sect. 5 gives 
a conclusion of the paper study and the directions for future 
work.

2 � Related Work

2.1 � DL‑Based Sequential Recommendation

Recently, many researchers utilize DL-based sequential rec-
ommendation (SR) models to obtain nonlinear and dynamic 
features. In particular, DL models based on the RNNs are 
nearly the first to be incorporated into sequential modeling, 
which naturally models sequences step-by-step [10, 11]. 
Moreover, GRU4Rec model [12] has been proposed to 
effectively extract the position information between adja-
cent sequences, and GRU4Rec+ model [13] adopts vari-
ous sampling strategies and loss functions. However, these 
models are more dependent on the user’s recent interactions, 
weakening the training efficiency Afterward, some research-
ers utilized CNNs-based models to address the vanishing 
gradient issue resulting from the RNNs-base SR models. 
For example, Caser model [5] learns sequence patterns using 
convolutional filters on the local sequences with the dense 
users’ behavior data. A simple convolutional generative 
network is proposed to learn high-level representation from 
both short- and long-range item dependencies [14].

Since the attention mechanisms have an advantage in 
their proper hierarchical structure, some DL-based models 
utilize them to solve sequential recommendation problems. 
For example, as an entire and famous attention mechanism, 
the Transformer model [15] computes representations of 
its input and output without RNNs or CNNs, which makes 
the Transformer more parallelizable and faster to be trained 
with superior translation quality. However, the Transformer 
model does not directly utilize the position information in 
the sequence and cannot extract local features [16]. In addi-
tion, some SR models have been developed through the 
self-attention mechanism. For example, SASRec [9] not 
only can uncover the long-term user's preference but also 
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can predict the next recommended item mainly based on 
the recently interacted items. Bert4Rec [17] captures the 
correlation of items in both left-to-right and right-to-left 
directions to obtain a better sequence representation of user 
sequence. LSSA [18] deals with both long-term preferences 
and sequential dynamics based on a long and short-term 
self-attention network. However, they are limited to only 
capturing the sequential patterns between consecutive inter-
active items, ignoring the complex relationships between the 
high-order interactions.

Recently, graph neural networks (GNNs) have been 
widely utilized to model high-order transformation relation-
ships in the area of SR. For example, NGCF [19] and Light-
GCN [20] argue that graph-based models can effectively 
deal with collaborative data and are critical in presenting 
user/item embedding. SRGNN [21] converts the sequence 
data into graph-structured data with the gated GNNs to 
perform message propagation on graphs. GCE-GNN [22] 
utilizes a GNN model for the session graph to learn item 
embedding with a session-aware attention mechanism. 
GC–MC [23] proposes a graph convolutional matrix com-
pletion (GC–MC) framework from the perspective of link 
prediction on graphs. However, the GC–MC framework only 
models the user’s direct scoring of items in a convolutional 
layer. CTDNE [24] defines a temporal graph to learn the 
dynamic embedding of nodes. However, most of these GNN-
based models only capture sequential transition patterns 
based on items’ locations and identities, while ignoring the 
influence of contextual features such as time intervals, which 
will cause the models to fail to learn appropriate sequence 
representations.

Inspired by the SASRec [9], which has the advantages of 
not only uncovering the long-term user’s preference but also 
predicting the next recommended item mainly based on the 
recently interacted items, the proposed model utilizes the 
SASRec as the framework of the local representation learn-
ing layer. Different from the SASRec, the proposed local 
representation learning module infers the multiple temporal 
embedding with the different weight and their aggregations, 
to improve the performance of the local preference of users. 
In addition, the paper has not utilized the GNNs so the pro-
posed model has a disadvantage at the high-order transfor-
mation relationships in some areas of the SR.

2.2 � Temporal Recommendation

Since user preferences are dynamic in the SR problems, it is 
essential to capture temporal information. Originally, matrix 
factorization (MF) has often been utilized in temporal rec-
ommendation systems due to its relatively high accuracy 
and scalability [25]. However, it is difficult for the rating 
prediction of new users via the MF. Collaborative filtering-
based (CF) approaches also have been proven of success in 

modeling temporal information [26]. However, some linear 
approaches are unsuitable for the more complex dynamics 
of temporal changes, and the transition matrix usually is 
homogeneous for all users [27]. In addition, it is impractical 
for large datasets due to their time-consuming performance 
and so on.

Afterward, there are also deep learning-based models in 
temporal recommendation systems, which encode temporal 
interval signals into the user preference representations to 
predict the user’s future actions. For example, Time-LSTM 
[28] combined the LSTM model with several time gates to 
achieve better performance of the time intervals in users’ 
interaction sequences. Zhang et al. [29] introduced a self-
attention mechanism into the sequence-sense recommenda-
tion model that represented the user’s temporal interest. CTA 
model [30] utilized multiple-parameter kernel functions to 
address the temporal information as an attention mecha-
nism [31]. Tang and Wang [10] combined a convolutional 
sequence embedding model with Top-N sequential recom-
mendation as a way for a temporal recommendation. TiSAS-
Rec [32] is the absolute positions of items and the time inter-
vals between them in a sequence. Moreover, TASER [33] 
proposes a temporal-aware network based on absolute and 
relative time patterns. KDA [34] utilizes the temporal decay 
functions of various relations between items to explore the 
time drift of their relation interactions.

In addition, some GNN-based temporal SR models have 
been proposed recently. For example, RetaGNN model [35] 
improves the inductive and transferable performance of the 
SR by encoding the sub-graphs resulting from the user-item 
pairs. Moreover, DSPR [36] proposes a novel sequential POI 
recommendation approach to capture the real-time impact 
and absolute time. DRL-SRe [37] obtains the dynamic pref-
erences based on the global user-item graph for each time 
slice that deploys an auxiliary temporal prediction task over 
consecutive time slices. TARec [38] captures the user’s 
dynamic preferences based on the combination of an adap-
tive search-based module and a time-aware module.

Inspired by TiSASRec model [32], this paper seeks to uti-
lize multi-scale temporal information embeddings based on 
the absolute and relative time patterns to comprehensively 
capture the diverse patterns of users’ behavior. However, 
self-attention operations and global preference learning have 
been integrated with the time-aware into the proposed model 
to improve the performance of the SR.

3 � The MTSR‑FLP Model

In this section, the paper proposes the MTSR-FLP model, 
i.e., fusing the global and the local preference of users with 
self-attention networks based on the multi-temporal embed-
ding for the sequential recommendation. Without loss of 
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generality, the paper has a recommendation system with 
implicit feedback given by a set of users to a set of items. 
Therefore, the entire recommendation process can be defined 
as follows.

•	 Multiple temporal embeddings

•	 Convert the T =
{
t1; t2; … ; tL

}
∈ ℝ

|I| into abso-
lute embedding by combining EDay ∈ ℝ

|I|×d and 
EPos ∈ ℝ

|I|×d , which contain the information of 
the index and the time information of each item in 
sequence, respectively.

•	 Convert the T = {t1; t2; … ; tL} ∈ ℝ
|I| into relative 

embedding ESin ∈ ℝ
|l|×|l|×d , EExp ∈ ℝ

|I|×|l|×d and 
ELog ∈ ℝ

|I|×|I|×d , which present different temporal 
information to a greater extent.

•	 Local learning representation
•	 Input matrix X(0) = {x1;x2;… ;xL} ∈ ℝ

|I|×d is obtained, 
in which the absolute position embedding matrix 
EAbs = {a1;a2;… ;aL} ∈ ℝ

|I|×d to the embedding item 
matrix E ∈ ℝ

|I|×d.
•	 Input the matrix X(0) into stacked self-attentive 

blocks (SAB) to get the output of the bth block as the 
X(b) = SAB(b)

(
X(b−1)

)
b ∈ {1, 2,… ,B}.

•	 Global learning representation
•	 The global representation of the sequences is formal-

ized as y = LBA(E) = sof tmax
(
qS
(
EW�

K

)T)
EW�

V.
•	 Item similarity gating

•	 The specific computing equation is formalized as

where y represents the global representation, msl is the 
recently interacted item embedding vector, and mi is the 
candidate item embedding vector. WG and bG are weight 
and bias separately.

3.1 � MTSR‑FLP Model Overview

As shown in Fig. 1, the MTSR-FLP model mainly con-
sists of four layers as follows: multi-temporal embedding 
learning; local representation learning; global representa-
tion learning; item similarity gating. Moreover, the entire 
algorithm of the MTSR-FLP model is described in Algo-
rithm 1. The roles of the four components of the proposed 
model are described as follows:

g = σ
([
msl, y,mi

]
WG + bG

)
,

Fig. 1   The framework of the MTSR-FLP model
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First, the multi-temporal embedding plays an important 
role in making full use of the temporal information of the 
user by constructing multiple temporal embeddings. In addi-
tion, the temporal embeddings are classified as two different 
forms of embedding vectors by the calculation way. Then, 
the paper utilizes a specific gate mechanism to integrate one 
form of embedding vectors as the absolute embeddings and 
integrate the other form of embedding vectors as the relative 
embeddings.

Second, the local representation learning layer mainly uti-
lizes the self-attention mechanism, the absolute embeddings, 
and the relative embeddings learned in the multi-temporal 
embedding learning module to learn the local representation 
of the specific user.

Third, the global representation learning layer also uti-
lizes all users’ historical sequence to capture the global pref-
erence of all users using the attention mechanism which is 
modified based on the self-attention mechanism.

Finally, the item similarity gating layer balances the 
global representation and the local representation using gate 
mechanism.

As shown in Table 1, there are the symbolic representa-
tions of the diagram in Fig. 1.

3.2 � Multi‑temporal Embedding Learning Module

To address timestamp information, this module makes the 
following improvements:

(1)	 The construction of multiple temporal embeddings: 
EExp , ELog , ESin , EDay , and EPos.

(2)	 The construction of absolute embedding by combining 
EDay and EPos.

(3)	 The construction of relative embedding by combining 
EExp , ELog , and ESin.

3.2.1 � Time Series Embedding

In the user’s historical sequence, each item is clicked by 
the user at a specific time, so time information is more 
important for recommendation.

Table 1   Notation

Notations Description

Su Historical interaction sequence for user u
MD Day unit learnable embedding matrix
T Timestamp sequence of user
EExp,ESin,ELog,EDay Multiple temporal embedding vector
EAbs Absolute temporal embedding vector
ERel Relative temporal embedding vector
WQ,WK,WV Embedding matrix of query, key and value
Δ Unit lower triangular matrix
rl+1,i Output of model as item i
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The paper converts the T =
{
t1;t2;… ;tL

}
∈ ℝ

|I| into 
EDay ∈ ℝ

|I|×d and EPos ∈ ℝ
|I|×d . The d denotes the hidden 

vector dimension. EPos contains the information on the 
index of each item in a sequence. EDay contains the time 
information of each item in a sequence. Compared with 
ETimestamp , the EDay is more reasonable. Since EDay can save 
more storage space compared with ETimespamp using one day 
as a time interval, in the meantime it can take advantage of 
the time information of users’ historical sequence.

In addition, the paper maintains a learnable embed-
ding matrix MD ∈ R|D|×d , where |D| is the time interval 
by taking a day as a unit of measure between the earliest 
clicked item and the latest clicked item in uses’ historical 
sequence. Position embedding is a learnable positional 
embedding, where MP ∈ R|l|×d , where |l| represents the 
length of the sequence. In this paper, the paper defines 
|l| as 50.

The paper also converts the T = {t1;t2;… ;tL} ∈ ℝ
|I| 

into ESin ∈ ℝ
|l|×|l|×d , EExp ∈ ℝ

|I|×|l|×d and ELog ∈ ℝ
|I|×|I|×d . 

This paper uses different time embeddings to utilize dif-
ferent temporal information to a greater extent. First, this 
paper defines a temporal differences matrix as D ∈ ℝ

N×N , 
in which the element is defined as dab =

ta−tb

�
 , where � is 

the adjustable unit time difference; in the ESin, the paper 
converts the difference dab to a latent vector �⃗θab ∈ ℝ

1×h , as 
shown in Eq. (1):

where �⃗𝜃ab,c is the cth value of the vector �⃗𝜃ab . In the above 
equation, freq and h are adjustable parameters. Similarly, in 
the EExp , the paper converts dab to �⃗eab and l⃗ab respectively, 

(1)�⃗θab,2c = sin

(
dab

freq
2c
h

)
�⃗θab,2c+1 = cos

(
dab

freq
2c
h

)

and the superposition of these vectors gives EExp and ELog 
respectively, as shown in Eq. (2):

3.2.2 � Absolute and Relative Embeddings Calculation

The calculation of absolute embeddings and relative embed-
dings is shown in Fig. 2. Here, EDay and EPos are not simply 
addition operations to get the absolute embeddings, however, 
the paper calculates the different weights of the EDay and EPos , 
then the paper adds them together via their weights. The spe-
cific calculation is described in Eq. (3):

where [., .] denotes the ternary concatenation operation, 
Wday_pos ∈ ℝ

2d×1 and bday_pos ∈ ℝ
1×1 . To restrict each ele-

ment in � from 0 to 1, the paper utilizes the sigmoid activa-
tion function �(z) = 1∕(1 + e−z) . Then, the paper adds EDay 
to EPos to obtain EAbs . The calculation procession is formal-
ized in Eq. (4):

In the end, the paper can get the absolute embedding 
EAbs ∈ ℝ

|I|×d.Meanwhile, the paper calculates the relative 
embeddings with the same approaches of above. First, the 
paper can calculate � to balance the EExp and ELog . This cal-
culation process is described in Eqs. (5, 6):

(2)�⃗eab,c = exp

(
−|dab|
f req

c
h

)
l⃗ab,c = log

(
1 +

|dab|
f req

c
h

)

(3)� = �
([
EDay,EPos

]
Wdaypos

+ bdaypos

)

(4)as� = 𝛼s ⊗ ps� + (1 − 𝛼s) ⊗ ps� ,� ∈ {1, 2,… , L}

Fig. 2   Absolute and relative embeddings
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where Wsin_log ∈ ℝ
2d×1 , bsin_log ∈ ℝ

|I|×|I|×1 . Then, we add ESin 
to ELog to obtain ESin_Log using weight �:

Second, the paper calculates the weight γ using a method 
in Eq. (7):

where Wsin_log_exp ∈ ℝ
2d×1 , bsin_log_exp ∈ ℝ

|I|×|I|×1 . Finally, the 
paper adds ESin_log to EExp to obtain the relative embeddings 
ERel ∈ ℝ

|I|×|I|×1 by weight � in Eq. (8):

3.3 � Local Learning Representation Module

Based on the SASRec model [9], the output vector x from 
the top self-attentive block is used as the local learning rep-
resentation for the user's dynamic preferences in a sequence. 
Due to the importance of the absolute positions of a user-
item interaction of a sequence, the paper adds the absolute 
position embedding matrix EAbs = {a1;a2;… ;aL} ∈ ℝ

|I|×d 
to the embedding item matrix E ∈ ℝ

|I|×d 33. In the end, an 
input matrix X(0) = {x1;x2;… ;xL} ∈ ℝ

|I|×d is obtained. The 
specific process is formalized as shown in Eq. (9):

Afterward, the paper inputs the matrix X(0) into stacked 
self-attentive blocks (SAB) to get the output of the bth block 
which is defined as shown in Eq. (10):

Next is the omission of the normalization layer with 
residual connections, where each self-attentive block is con-
sidered as a self-attentive layer (・), and then the results are 
fed into the feed forward layer, and values are calculated as 
shown in Eqs. (11–14):

(5)� = �
([
ESin,ELog

]
Wsin_log + bsin_log

)

(6)sl s� = 𝛽s ⊗ ss� + (1 − 𝛽s)⊗ ls� ,� ∈ {1, 2,… , L}

(7)� = �
([
ESinLog ,EExp

]
Wsin_log_exp + bsin_log_exp

)

(8)rs� = 𝛾s ⊗ sl s� + (1 − 𝛾s)⊗ es� ,� ∈ {1, 2,… , L}

(9)x
(0)

�
= ms

�
+ a

�
,� ∈ {1, 2,… , L}

(10)X(b) = SAB(b)
(
X(b−1)

)
b ∈ {1, 2,… ,B}

(11)SAB(X) = FFL(SAL(X))

(12)
X

�

= SAL(X) = softmax
�
𝜕 ⊗

QKT

√
d
+ (1 − 𝜕)⊗

QKT

√
d
⊗

QERelT

√
d

�
Δ ⋅ V

(13)FFL
(
X

�)
= ReLU

(
X

�

W1 + 1Tb1
)
W2 + 1Tb2

(14)𝜕 = 𝜎
��

QKT

√
d
,
QKT

√
d
⊗

QERelT

√
d

�
Wabsrel

+ babsrel

�

Here, X is the input matrix containing absolute positional 
information, Q = XWQ,K = XWK,V = XWV  , in whichWQ , 
WK and WV present different weight matrixes. To consider 
the influence of each interaction pairs in the sequence, the 
paper uses relative embeddingERel . Moreover, the weight � is 
introduced to balance the effect of the absolute embeddings 
and the relative embeddings. In Eq. (14), Wabs_rel ∈ ℝ

2d×1 
andbabs_rel ∈ ℝ

d×1 , [., .] denotes the ternary concatenation 
operation, � is the sigmoid function. Using the method, the 
paper can control the influence of the relative embeddings.

To improve flexibility, W1 , W2 are the weights, and b1 , 
b2 are biases of the two convolution layers. In the above 
equations, 1 ∈ ℝ

d×1 is a unit vector, and Δ is a unit lower 
triangular matrix to be used as a mask, preserving only the 
transformation of the previous step. Meanwhile, the paper 
introduces a layer of normalization to normalize the output 
and dropout to avoid over-fitting, in which specific usage of 
layer normalization and dropout is the same as those in the 
SASRec [9].

3.4 � Global Representation Learning Layer

Inspired by the paper [39], the paper proposes a novel atten-
tion module, called the location-based attention layer LBA 
(・), to obtain the global learning representation of all users. 
In particular, the user u’s preference for interaction item s 
is generated in step l + 1 as a uniform aggregation of other 
interaction item representations, so the predicted ratings can 
be considered as the factorial similarity between user u’s 
historical item and candidate item s, as shown in Eq. (15):

In this paper, to calculate the most representative fea-
ture representation of all items in all sequences, the paper 
introduces qS ∈ ℝ

1×d as the query vector, rather than an 
average weighted aggregation. The qS is different from Q in 
Eq. (12). This is because this module aims to calculate all 
users’ global preferences instead of individual preferences.

The global representation of the sequences is formalized 
in Eq. (16):

where E is the initial input matrix and W ′
K , W ′

V are the 
learnable weight matrixes, similar to WQ,WK,WV.

The dropout layer in the training process can avoid over-
fitting and generalize the global representation in all steps, 
and then obtain the final global representation of all users' 
matrix Y  , as shown in Eq. (17):

(15)
ỹu
l+1

=
1

√|||S
u�
{
su
l+1

}|||

∑

i�∈Su�{sul+1}

mi�

(16)y = LBA(E) = softmax
(
qS
(
EW�

K

)T)
EW �

V
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3.5 � Item Similarity Gating Layer

Designing the item similarity gating module has two main 
reasons. First, the global representation and the local repre-
sentation are all important to the final recommendation. The 
paper must distinguish the importance between the global 
learning representation and the local learning representation. 
Second, the problem of uncertainty in users’ intent in SR 
when user sees candidate items commonly exists.

Inspired by the NAIS [40], the paper designs a novel item 
similarity gating module which is critical in coordinating the 
local preference of the specific user and the global prefer-
ence of all users. Meanwhile, it considers the influence of 
candidate items by calculating the similarity of candidate 
items and recently interacted items. The specific computing 
equation is formalized as follows in Eq. (18):

where y represents the global representation, msl is the 
recently interacted item embedding vector, and mi is the 
candidate item embedding vector. WG and bG are weight and 
bias separately. The paper utilizes the sigmoid function as 
the activation function.

At step l of the sequence, the final representation zi is the 
weighted sum of the related local learning representation xi 
and the global learning representation y , as shown in Eq. (19):

where ⊗ is the broadcast operation in TensorFlow.
The final prediction of the item i preference to be the 

(i + 1)th item in the sequence is shown in Eq. (20):

MTSR-FLP is trained using the Adam optimizer, which loss 
function is shown in Eq. (21):

in which ru
l+1,j

 is the negative sample’s possibility as the 
(i + 1)th item in the sequence, and δ

(
su
l+1

)
 is used as eliminat-

ing the influence of padding items. If su
l+1

 is a padding item, 
δ
(
su
l+1

)
 will be 0, otherwise, it will be 1.

(17)yl = Dropout(y)l ∈ {1, 2,… ,L}

(18)g = �
([
msl, y,mi

]
WG + bG

)

(19)Zl = xi ⊗ g + y⊗ (1 − g)

(20)Rl+1,i = zl
(
mi

)T

(21)

L = −
∑
u∈U

L−1∑
l=1

δ
�
su
l+1

��
log

�
σ
�
ru
l+1,su

l+1

��
+ log

�
1 − σ

�
ru
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���

4 � Experimental Results and Analysis

4.1 � Experimental Environment

The related experiments environment of the proposed model 
is based on versions Python 3.6 and above and torch 1.10.0 
or higher, and the running environment version requires 
Anaconda 3-2020.02 and above. The main data packages 
include cuda 10.2, cudnn10.2, torch = = 1.10.0 + cu102, 
networkx = = 2.5.1, numpy = = 1.19.2, pandas = = 1.1.5, 
six = = 1.16.0, scikit-learn = = 0.24.2, and space = = 3.4.0. The 
hardware environment of this model is processor Intel Xeon 
Gold 5218, GPU is Rtx 3060 and memory is 32 GB DDR4.

This paper verifies the proposed model performance 
under strong generalization conditions by dividing all users 
into training/testing sets in the ratio of eight to two. In the 
user’s historical sequence, the last item in the user’s historical 
sequence is used in the testing set, and other items are used 
in the training set. During the process of training, the model 
is evaluated using the following two commonly used metrics. 
This paper conducts experiments on five real-world datasets—
Beauty [41], Games [42], Steam [43], Foursquare [44] and 
Tmall [45]. The specific statistics are shown in Table 2. The 
optimal values of the nine parameters shown in Table 3 are the 
conclusions drawn through experimental comparison.

Table 2   Statistics of the processed datasets

Dataset #Users #Items #Intera-
tions

Avg. 
length

Density (%)

Games 29,341 23,464 280,945 9.58 0.04
Beauty 40,226 54,542 353,962 8.8 0.02
Foursquare 22,748 11,146 145,106 6.38 0.06
Tmall 201,139 97,636 1,936,790 9.63 0.01
Steam 281,428 13,044 3,488,899 12.4 0.10

Table 3   Parameter descriptions and optimal settings

Parameter name Parameter description Optimal value

Num_epochs Number of epochs 450
Batch_size Batch size 128
Lr Learning rate 0.001
Maxlen Sequence length maximum 50
Hidden_units Hidden vector dimension 50
Num_blocks Number of self-attended blocks 2
Num_heads Number of attention heads 1
Dropout_rate dropout rate 0.5
l2_reg L2 regularization 0
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4.2 � Evaluation Indicators

4.2.1 � Click‑Through Rate

This paper uses click-through rate (HR) to evaluate the 
percentage of recommended items that incorporate the 
correct item for at least one user interaction, and the met-
ric is calculated as shown in Eq. (22):

in which δ(⋅) is the indicator function and equal to 1 if 
|||
�Iu,N ∩ Tu

||| > 0.

4.2.2 � Normalized Discounted Cumulative Gain

The paper takes the normalized discounted cumulative 
gain (NDCG@10) because it takes into account the loca-
tion of correctly recommended items, and is calculated as 
shown in Eq. (23):

where îu,k denotes the kth item recommended to user u , 
and Z is a normalization constant indicating the discounted 
cumulative gain (NDCG@10) of the ideal case, which is the 
maximum possible value of NDCG@10.

4.3 � Baseline Model

The following baseline models are utilized to be compared 
with the proposed MTSR-FLP model in this paper:

•	 BPRMF [46]: a standard recommendation model based 
on MF via pairwise loss.

(22)HR@N =
1

�U�
∑
u∈U

δ
����
�Iu,N ∩ Tu

��� > 0

�

(23)NDCG@N =
1

Z
DCG@N =

1

Z

1

�U�
∑
u∈U

N∑
k=1

δ
�
îu,k∈Iu

�

log2(k+1)

•	 FISM [47]: another popular model learning the similarity 
matrix between items.

•	 GRU4Rec [1]: one of the earliest improved RNN models 
based on deep learning via an additional sampling strat-
egy land twice loss function for sequence recommenda-
tion.

•	 SASRec [9]: a popular sequential recommendation model 
using a self-attention network.

4.4 � Experimental Results

As shown in Table 4, the MTSR-FLP model achieves bet-
ter results in both HR@10 and NDCG@10 compared with 
other sequence recommendation models. The performance 
comparison of MTSR-FLP and SASRec is shown in Figs. 3 
and 4.

From Figs. 3 and 4, the MTSR-FLP’s performance in five 
datasets is much better than those of the SASRec. In the 
foursquare dataset, the performance SASRec is better than 
MTSR-FLP. This might because that the results are influ-
enced by over-fitting with the longer training time.

4.5 � Ablation Study

As shown in Table 5, model-1 is the proposed model, the 
other models have different attention factors including 
absolute embeddings, relative embeddings, and calculating 
approaches. The performances of models with different set-
tings are described in Table 6.

In the model-2, the paper defines EPos as the absolute 
embedding, EExp as the relative embedding. Since model-2 
has only one absolute embedding and one relative embed-
ding, the EAbs is the same as EPos and the ERel is the same 
as EExp . In other words, the absolute embedding calculation 
block and the relative embedding calculation block are use-
less. Therefore, Eq. (12) is replaced by Eq. (24):

Table 4   HR@10 and 
NDCG@10 performance 
comparison

Dataset Metric BPRMF FISM GRU4Rec SASRec MTSR-FLP MTSR-FLP 
vs. SASRec

Tmall HR@10 0.1744 0.2149 0.3526 0.3844 0.4382 14.00%
NDCG@10 0.0825 0.1043 0.2072 0.2123 0.2462 15.97%

Steam HR@10 0.1023 0.3183 0.3177 0.3424 0.4489 31.10%
NDCG@10 0.0468 0.1703 0.1707 0.1789 0.255 42.54%

Games HR@10 0.3454 0.4791 0.4825 0.5769 0.6662 15.49%
NDCG@10 0.1981 0.2631 0.2906 0.3507 0.4134 17.88%

Beauty HR@10 0.2498 0.3533 0.2729 0.3433 0.4311 25.58%
NDCG@10 0.1148 0.1942 0.1683 0.2119 0.2658 25.41%

Foursquare HR@10 0.2659 0.3977 0.4324 0.4767 0.5095 6.88%
NDCG@10 0.1287 0.2025 0.2375 0.2611 0.2818 8.60%
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Compared with Eq. (12), there is no parameter � which 
means model-2 does not consider the negative influence 

(24)X� = SAL(X) = soft𝑚𝑎𝑥
�

QKT

√
d
⊗

QERelT

√
d

�
Δ ⋅ V

of relative embeddings. Model-3 is similar to the model-2 
except that EExp is replaced with ESin.

In model-4, the paper uses EPos as absolute embedding 
and uses EExp and ELog as the relative embeddings, in which 
EAbs is same as EPos , so the absolute embedding calculation 

Fig. 3   SASRec model and MTSR-FLP model on five different data-
sets performance on HR@10. The blue dotted line represents MTSR-
FLP and the red dotted line represents the SASRec model. It can be 

seen that under the evaluation index of NDCG@10, MTSR-FLP per-
forms better than the SASRec model in the five datasets
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Fig. 4   SASRec model and MTSR-FLP model on five different datasets performance on NDCG@10. It can be seen that under the evaluation 
index of NDCG@10, MTSR-FLP performs better than the SASRec model in the five datasets

Table 5   MTSR-FLP models 
with different settings

Model ID Absolute embeddings Relative embeddings Calculating approaches

Model-1 EDay,EPos ELog,ESin,EExp Product, add by weight
Model-2 EPos EExp Product
Model-3 EPos ESin Product
Model- 4 EPos EExp,ELog Product, forward neural network
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block is useless. The relative embedding calculation block 
is different from that of the proposed model. First, the paper 
concatenates the ESinandELog together to get ERel . Then, the 
paper feds ERel into the feed forward neural network to get 

the final ERel . Model-4 does not consider the negative influ-
ence of the relative embeddings. This can be formalized by 
following Eq. (25):

The performance of different settings of the model is 
shown in Table 6. To highlight the training performance, 
the paper depicts the results in Fig. 5. From the Fig. 5 the 
proposed model performs best in almost all datasets on 
HR@10 and NDCG@10. The specific training process 
is shown below. The paper can see the proposed model’s 
performance is better than the model with other settings in 
almost all datasets.

The specific training process is shown in Figs. 6 and 7. 
It is easy to see that the proposed model’s performance 
is better than the model with other settings in almost all 
datasets. The analysis of ablation experimental results is 
described as follows.

(25)ERel = FFL
(
[ESin

,ELog]
)

Table 6   Performance of models with different settings

Dataset Metric Model-1 Model-2 Model-3 Model-4

Tmall HR@10 0.4382 0.4646 0.3974 0.4237
NDCG@10 0.2462 0.263 0.2178 0.2338

Steam HR@10 0.4489 0.4276 0.4412 0.4328
NDCG@10 0.255 0.2406 0.2492 0.2474

Games HR@10 0.6662 0.6689 0.6611 0.6577
NDCG@10 0.4134 0.4078 0.4015 0.396

Beauty HR@10 0.4311 0.4174 0.3965 0.3964
NDCG@10 0.2658 0.254 0.2335 0.2335

Foursquare HR@10 0.5095 0.4576 0.4773 0.4806
NDCG@10 0.2818 0.2447 0.2561 0.258

Fig. 5   The performance of MTSR-FLP with different settings. In both HR@10 and NDCG@10, Model-1 performed very well. Except for Tmall 
datasets, Model-1 outperforms other models on the other four datasets
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•	 Model-1 vs. Model-2 and Model-3. In the training pro-
cess, the paper can see the performance of Model-1 
is better than Model-2 and Model-3 in most datasets. 
The reason for this is that Model-1 only uses EExp as 
relative embedding and the Model-2 only use ELog as 
relative embedding, but the proposed model useEExp , 
ELog , and ESin as relative embeddings. Therefore, the 

proposed model uses more information than Model-2 
and Model-3.

•	 Model-2 vs Model-3. In different datasets, the perfor-
mance of Model-2 and Model-3 is different. This is 
mainly because the EExp and ESin capture different time 
information. If the paper uses EExp as relative embed-
ding, a large time gap can quickly decay to zero. But if 

Fig. 6   The performance in different HR@10 for MTSR-FLP models with different settings. Model-2 performed well on the first datasets. 
Model-1 outperformed the other models on the remaining four datasets
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the paper uses ESin as relative embedding, the relative 
embedding only captures periodic occurrences. Time 
information is different in different datasets, so the per-
formance in different datasets is different.

•	 Model-4 vs Model-2 and Model-3. Compared with 
Model-2 and Model-3, Model-4 performs worse than 
Model-2 and Model-3. Though Model-4 uses more infor-

mation than Model-2 and Model-3, combining EExp and 
ELog using feed forward network causes over-fitting.

•	 Model-1 vs Model-2, Model-3 and Model-4. From 
Table 6, it can be seen that the performance of Model-
2, Model-3, and Model-4 in datasets foursquare is 
worse than the proposed model. In these models, they 
do not consider the negative influence of relative 

Fig. 7   The performance in different epochs of NDCG@10 for MTSR-FLP models with different settings
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embedding. But in this datasets, relative time infor-
mation is useless.

5 � Conclusion

This paper proposes a novel MTSR-FLP model for the 
sequence recommendation. In particular, the paper inte-
grates attention mechanisms, including multi-temporal 
embeddings self-attention network, and a factorial item 
similarity, to improve the performance of the SR. In par-
ticular, the multiple temporal embedding provides the 
absolute embeddings and relative embeddings for the self-
attention network using temporal information and multiple 
encoding functions, where different attention heads handle 
different temporal embeddings. Meanwhile, this paper also 
designs a gating module for modulating local and global 
representations, considering the relationship between can-
didate items, recent interacted items, and all user’s global 
preferences to cope with possible uncertainty in user intent.

In addition, there are some directions to improve the 
proposed model. First, although this paper has tried deep 
learning and self-attention network models, more strate-
gies might be worth trying to improve the performance of 
SR. In the near future, the paper will try integrating some 
new attention mechanisms, such GNNs, and generative 
adversarial networks (GANs) into the MTSR-FLP model. 
Second, future works should capture the multi-dimension 
information of items and the users in the SR, which can 
be utilized to further classify recommendation items and 
the users. In addition, more detailed time feature infor-
mation also needs to be obtained to improve the accuracy 
of the SR. Finally, the paper will utilize new datasets to 
evaluate and improve the performance of the proposed 
model.

Acknowledgements  The authors would like to thank the anonymous 
reviewers for their comments which helped us to improve the quality 
of the paper.

Author Contributions  All the authors have contributed to the design 
and evaluation of the schemes and the writing of the manuscript. All 
the authors have read and approved the final manuscript.

Funding  This paper is supported by Key scientific research projects of 
colleges and universities in Henan Province (Grand No. 23A520054).

Data Availability  Data sharing is not applicable to this article as no 
real-world datasets were acquired or analyzed during the current study.

Declarations 

Conflict of Interest  The authors of the paper certify that they have no 
affiliations with or involvement in any organization or entity with any 
financial interest.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D., Japa.: Ses-
sion-based recommendations with recurrent neural networks 
(2015) Doi: https://​doi.​org/​10.​48550/​arXiv.​1511.​06939

	 2.	 Le, DT., Lauw, HW., Fang, Y.: Modeling contemporaneous bas-
ket sequences with twin networks for next-item recommendation. 
(2018) Doi: https://​doi.​org/​10.​24963/​ijcai.​2018/​474

	 3.	 Chen, X., Xu, H., Zhang, Y., et al.: Sequential Recommendation 
with User Memory Networks. In: Proceedings of the Eleventh 
ACM International Conference on Web Search and Data Mining 
(2018) Doi: https://​doi.​org/​10.​1145/​31596​52.​31596​68

	 4.	 Jannach, D., Ludewig, M.: When Recurrent Neural Networks 
meet the Neighborhood for Session-Based Recommendation. In: 
Proceedings of the Eleventh ACM Conference on Recommender 
Systems; 2017. Doi: https://​doi.​org/​10.​1145/​31098​59.​31098​72

	 5.	 He, R., McAuley, J.: Fusing similarity models with markov 
chains for sparse sequential recommendation. In: Paper pre-
sented at: 2016 IEEE 16th International Conference on Data 
Mining (ICDM)2016. Doi: https://​doi.​org/​10.​1109/​ICDM.​2016.​
0030

	 6.	 Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recom-
mender system. ACM Comput. Surv. 52(1), 1–38 (2019). https://​
doi.​org/​10.​1145/​32850​29

	 7.	 He, X., He, Z., Du, X., Chua, T-S.: Adversarial Personalized 
Ranking for Recommendation. In: The 41st International ACM 
SIGIR Conference on Research & Development in Information 
Retrieval (2018) Doi: https://​doi.​org/​10.​1145/​32099​78.​32099​81

	 8.	 Wang, S., Cao, L., Wang, Y., Sheng, Q.Z., Orgun, M.A., Lian, D.: 
A survey on session-based recommender systems. ACM Comput. 
Surv. 54(7), 1–38 (2022). https://​doi.​org/​10.​1145/​34654​01

	 9.	 Kang, W-C., McAuley, J.: Self-Attentive Sequential Recommen-
dation. In: 2018 IEEE International Conference on Data Mining 
(ICDM) (2018) Doi: https://​doi.​org/​10.​1109/​ICDM.​2018.​00035

	10.	 Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T-SJAToIS.: 
Temporal relational ranking for stock prediction (2019) 37(2): 
1-30. Doi: https://​doi.​org/​10.​1145/​33095​47

	11.	 Wu, C.-Y., Ahmed, A., Beutel, A., Smola, AJ., Jing, H.: Recurrent 
recommender networks. In: Paper presented at: Proceedings of 
the tenth ACM international conference on web search and data 
mining (2017) Doi: https://​doi.​org/​10.​1145/​30186​61.​30186​89

	12.	 Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-
based recommendations with recurrent neural networks. In ICLR 
(2016). https://​doi.​org/​10.​48550/​arXiv.​1511.​06939

	13.	 Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k 
gains for session-based recommendations. In: Proceedings of the 
27th ACM International Conference on Information and Knowl-
edge Management (CIKM) (2018) p. 843–852. Doi: https://​doi.​
org/​10.​1145/​32692​06.​32717​61

	14.	 Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: 
A simple convolutional generative network for next item 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.24963/ijcai.2018/474
https://doi.org/10.1145/3159652.3159668
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1109/ICDM.2016.0030
https://doi.org/10.1109/ICDM.2016.0030
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3209978.3209981
https://doi.org/10.1145/3465401
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1145/3309547
https://doi.org/10.1145/3018661.3018689
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/3269206.3271761
https://doi.org/10.1145/3269206.3271761


	 International Journal of Computational Intelligence Systems          (2023) 16:143 

1 3

  143   Page 16 of 16

recommendation. Paper Present (2019). https://​doi.​org/​10.​1145/​
32896​00.​32909​75

	15.	 Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you 
need. Paper presented at: Advances in neural information process-
ing systems (2017) Doi: https://​doi.​org/​10.​48550/​arXiv.​1706.​03762

	16.	 Devlin, J., Chang, M. W., Lee. K., et al.: Bert: Pre-training of 
deep bidirectional transformers for language understanding. arXiv 
preprint arXiv:​1810.​04805 (2018) Doi: https://​doi.​org/​10.​48550/​
arXiv.​1810.​04805

	17.	 Fei, S., Jun, L., Jian, W., Changhua, P., Xiao, L., Wenwu, O., 
Peng, J.: BERT4Rec: sequential recommendation with bidirec-
tional encoder representations from transformer. CIKM. (2019). 
https://​doi.​org/​10.​1145/​33573​84.​33578​95

	18.	 Chengfeng, Xu., Feng, J., Zhao, P., Zhuang, F., Wang, D., Liu, 
Y., Sheng, V.S.: Long and short-term self-attention network for 
sequential recommendation. Neurocomputing 423(2021), 580–
589 (2021). https://​doi.​org/​10.​1016/j.​neucom.​2020.​10.​066

	19.	 Xiang, W., Xiangnan, H., Meng, W., Fuli F., Tat-Seng, C.: Neural 
Graph Collaborative Filtering. In SIGIR. (2019) 165–174. Doi: 
https://​doi.​org/​10.​1145/​33311​84.​33312​67

	20.	 He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Light-
gcn: simplifying and powering graph convolution network for 
recommendation. ACM (2020). https://​doi.​org/​10.​1145/​33972​
71.​34010​63

	21.	 Shu, W., Yuyuan, T., Yanqiao, Z., Liang, W., Xing, X., Tieniu, T.: 
Session-Based Recommendation with Graph Neural Networks. In 
AAAI. 8 pages (2019) Doi: https://​doi.​org/​10.​1609/​aaai.​v33i01.​
33013​46

	22.	 Wang, Z., Wei, W., Cong, G., Li, X.-L., Mao, X.-L, Qiu, M.: 
Global Context Enhanced Graph Neural Networks for Session-
based Recommendation. In: Proceedings of the 43nd International 
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, (2020) pp. 169–178. Doi: https://​doi.​org/​10.​
1145/​33972​71.​34011​42

	23.	 Rianne van den Berg, Thomas N. Kipf, and Max Welling.: Graph 
convolutional matrix completion. arXiv:1706.02263. Retrieved 
from https://​arxiv.​org/​abs/​1706.​02263 (2017) Doi: https://​doi.​org/​
10.​48550/​arXiv.​1706.​02263

	24.	 Nguyen G. H., Lee J. B., Rossi R. A., Ahmed N. K., Koh E., 
Kim S.: “Continuous-Time Dynamic Network Embeddings” In: 
12 Web Conference 2018—Companion of the World Wide Web 
Conference, WWW 2018, no. BigNet, pp. 969–976, 2018. Doi: 
https://​doi.​org/​10.​1145/​31845​58.​31915​26

	25.	 Lo, Y.-Y., Liao, W., Chang, C-S., Lee, Y-CJIToCSS.: Temporal 
matrix factorization for tracking concept drift in individual user 
preferences (2017) 5(1): 156-168. Doi: https://​doi.​org/​10.​1109/​
TCSS.​2017.​27722​95

	26.	 Koren, Y.: Collaborative filtering with temporal dynamics. In: 
Paper presented at: Proceedings of the 15th ACM SIGKDD 
international conference on Knowledge discovery and data min-
ing2009. Doi: https://​doi.​org/​10.​1145/​15570​19.​15570​72

	27.	 Dallmann, A., Grimm, A., Pölitz, C., Zoller, D., Hotho, AJapa.: 
Improving session recommendation with recurrent neural net-
works by exploiting dwell time (2017) Doi: https://​doi.​org/​10.​
48550/​arXiv.​1706.​10231

	28.	 Zhu, Y., Li, H., Liao, Y., et al.: What to Do Next: Modeling User 
Behaviors by Time-LSTM. In: Paper presented at: IJCAI2017 
Doi: https://​doi.​org/​10.​24963/​ijcai.​2017/​504

	29.	 Zhang, S., Tay, Y., Yao, L. et al.: Next item recommendation with 
self-attentive metric learning. Thirty-Third AAAI Conference on 
Artifcial Intelligence (2019), Doi: https://​doi.​org/​10.​48550/​arXiv.​
1808.​06414

	30.	 Wu, J., Cai, R., Wang, H. Déjà, vu: A contextualized temporal 
attention mechanism for sequential recommendation. In: Paper 
presented at: Proceedings of The Web Conference 2020. Doi: 
https://​doi.​org/​10.​1145/​33664​23.​33802​85

	31.	 Zhou, C., Bai, J., Song, J., et al.: Atrank: An attention-based user 
behavior modeling framework for recommendation. In: Paper 
presented at: Proceedings of the AAAI Conference on Artificial 
Intelligence2018. Doi: https://​doi.​org/​10.​1609/​aaai.​v32i1.​11618

	32.	 Li, J., Wang, Y., & McAuley, J.: Time interval aware self-attention 
for sequential recommendation. In: Proceedings of the 13th inter-
national conference on web search and data mining (pp. 322–330). 
(2020). Doi: https://​doi.​org/​10.​1145/​33361​91.​33717​86

	33.	 Ye, W., Wang, S., Chen, X., Wang, X., Qin, Z., & Yin, D. (2020). 
Time matters: Sequential recommendation with complex tempo-
ral information. In: Proceedings of the 43rd international ACM 
SIGIR conference on research and development in information 
retrieval (pp. 1459–1468). Doi: https://​doi.​org/​10.​1145/​33972​71.​
34011​54

	34.	 Wang, C., Ma, W., Zhang, M., Chen, C., Liu, Y., Ma, S.: Toward 
dynamic user intention: Temporal evolutionary effects of item 
relations in sequential recommendation ACM Transactions on 
Information Systems (TOIS), 39 (2020), pp. 1-33. Doi: https://​
doi.​org/​10.​1145/​34322​44

	35.	 Hsu,C., Li, C.-T.: Retagnn: Relational temporal attentive graph 
neural networks for holistic sequential recommendation. In: Pro-
ceedings of the web conference (2021) (pp. 2968–2979). Doi: 
https://​doi.​org/​10.​1145/​34423​81.​34499​57

	36.	 Wang, H., Li, P., Liu, Y., Shao, J.: Towards real-time demand-
aware sequential poi recommendation. Inf. Sci. 547, 482–497 
(2021). https://​doi.​org/​10.​1016/j.​ins.​2020.​08.​088

	37.	 Chen, Z., Zhang, W., Yan, J., Wang, G., & Wang, J. (2021). Learn-
ing dual dynamic representations on time-sliced user-item interac-
tion graphs for sequential recommendation. In: Proceedings of the 
30th ACM international conference on information & knowledge 
management (p. 231–240). Doi: https://​doi.​org/​10.​1145/​34596​37.​
34824​43

	38.	 Jin, J., Chen, X., Zhang, W., Huang, J., Feng, Z., & Yu, Y. (2022). 
Learn over past, evolve for future: Search-based time-aware rec-
ommendation with sequential behavior data. In: Proceedings of 
the ACM web conference 2022 (pp. 2451–2461). Doi: https://​doi.​
org/​10.​1145/​34854​47.​35121​17

	39.	 Cho, S.M., Park, E., Yoo, S.: MEANTIME: mixture of atten-
tion mechanisms with multi-temporal embeddings for sequential 
recommendation. Paper Present (2020). https://​doi.​org/​10.​1145/​
33833​13.​34122​16

	40.	 Lin, J., Pan, W,, Ming Z. FISSA: Fusing Item Similarity Models 
with Self-Attention Networks for Sequential Recommendation. 
Fourteenth ACM Conference on Recommender Systems; 2020. 
Doi: https://​doi.​org/​10.​1145/​33833​13.​34122​47

	41.	 He,X., He, Z., Song, J., et al.: Nais: Neural attentive item similar-
ity model for recommendation. (2018) 30(12): 2354–2366. Doi: 
https://​doi.​org/​10.​1109/​TKDE.​2018.​28316​82

	42.	 Beauty. http://​jmcau​ley.​ucsd.​edu/​data/​amazon/. Accessed 12 July 
2023

	43.	 Games. http://​jmcau​ley.​ucsd.​edu/​data/​amazon/. Accessed 12 July 
2023

	44.	 Steam. https://​cseweb.​ucsd.​edu/​~jmcau​ley/​datas​ets.​html#​steam_​
data. Accessed 12 July 2023

	45.	 Foursquare. https://​archi​ve.​org/​downl​oad/​201309_​fours​quare_​
datas​et_​umn. Accessed 12 July 2023

	46.	 Tmall. https://​tianc​hi.​aliyun.​com/​datas​et/. https://​doi.​org/​10.​
48550/​arXiv.​1205.​2618. Accessed 12 July 2023

	47.	 Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, 
LJ. BPR: Bayesian personalized ranking from implicit feedback 
(2012) Doi: https://​doi.​org/​10.​48550/​arXiv.​1205.​2618

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3289600.3290975
https://doi.org/10.1145/3289600.3290975
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1016/j.neucom.2020.10.066
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1145/3397271.3401142
https://doi.org/10.1145/3397271.3401142
https://arxiv.org/abs/1706.02263
https://doi.org/10.48550/arXiv.1706.02263
https://doi.org/10.48550/arXiv.1706.02263
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1109/TCSS.2017.2772295
https://doi.org/10.1109/TCSS.2017.2772295
https://doi.org/10.1145/1557019.1557072
https://doi.org/10.48550/arXiv.1706.10231
https://doi.org/10.48550/arXiv.1706.10231
https://doi.org/10.24963/ijcai.2017/504
https://doi.org/10.48550/arXiv.1808.06414
https://doi.org/10.48550/arXiv.1808.06414
https://doi.org/10.1145/3366423.3380285
https://doi.org/10.1609/aaai.v32i1.11618
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1145/3397271.3401154
https://doi.org/10.1145/3397271.3401154
https://doi.org/10.1145/3432244
https://doi.org/10.1145/3432244
https://doi.org/10.1145/3442381.3449957
https://doi.org/10.1016/j.ins.2020.08.088
https://doi.org/10.1145/3459637.3482443
https://doi.org/10.1145/3459637.3482443
https://doi.org/10.1145/3485447.3512117
https://doi.org/10.1145/3485447.3512117
https://doi.org/10.1145/3383313.3412216
https://doi.org/10.1145/3383313.3412216
https://doi.org/10.1145/3383313.3412247
https://doi.org/10.1109/TKDE.2018.2831682
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
https://archive.org/download/201309_foursquare_dataset_umn
https://archive.org/download/201309_foursquare_dataset_umn
https://tianchi.aliyun.com/dataset/
https://doi.org/10.48550/arXiv.1205.2618
https://doi.org/10.48550/arXiv.1205.2618
https://doi.org/10.48550/arXiv.1205.2618

	Multi-temporal Sequential Recommendation Model Based on the Fused Learning Preferences
	Abstract
	1 Introduction
	2 Related Work
	2.1 DL-Based Sequential Recommendation
	2.2 Temporal Recommendation

	3 The MTSR-FLP Model
	3.1 MTSR-FLP Model Overview
	3.2 Multi-temporal Embedding Learning Module
	3.2.1 Time Series Embedding
	3.2.2 Absolute and Relative Embeddings Calculation

	3.3 Local Learning Representation Module
	3.4 Global Representation Learning Layer
	3.5 Item Similarity Gating Layer

	4 Experimental Results and Analysis
	4.1 Experimental Environment
	4.2 Evaluation Indicators
	4.2.1 Click-Through Rate
	4.2.2 Normalized Discounted Cumulative Gain

	4.3 Baseline Model
	4.4 Experimental Results
	4.5 Ablation Study

	5 Conclusion
	Acknowledgements 
	References


