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Abstract
In the field of ship detection, the intricate nature of ship images arises from a multitude of factors, including variations in 
ship orientation, color contrasts, and diverse shapes. These factors collectively contribute to the challenge of achieving high 
detection precision. Thus, it is necessary to investigate the application of advanced networks for ship image detection. In this 
paper, we have put forward an improved network called YOLF-ShipPnet, which utilizes a popular pyramid vision transformer 
with increased depth as the backbone for the RetinaNet network. To increase the model’s generalization ability, You Only 
Look Once eXtreme’s (YOLOX’s) hue, saturation, and value (HSV) random augmentation technique is employed to simulate 
light and color effects on ship images during the construction of the network. Ablation experiments were conducted on the 
model with two popular datasets: High-Resolution Ship Collections 2016 (HRSC2016) and SAR Ship Detection Dataset 
(SSDD). The YOLF-ShipPnet network has been verified to improve detection precision and generalization ability in ship 
detection by 5.22% and 5.46% , respectively, compared to RetinaNet baseline, exhibiting strong robustness and high effective-
ness. The proposed network is applicable to the field of fine-grained ship detection and achieves an accuracy improvement 
of 10.03% compared to the baseline network.
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Abbreviation
YOLOX	� You Only Look Once eXtreme
HSV	� Hue, saturation, and value
HRSC2016	� High-Resolution Ship Collections 2016
SSDD	� SAR Ship Detection Dataset
YOLO	� You Only Look Once
SSD	� Single-stage detector
Faster RCNN	� Fast region-based convolutional neural 

network

Mask RCNN	� Mask region-based convolutional neural 
network

FPN	� Feature pyramid network
R-CNN	� Region-based convolutional neural 

network
NMS	� Non-maximum suppression processing
Skew-NMS	� Skew non-maximum suppression
PVT	� Pyramid vision transformer
PVTv1	� Pyramid Vision Transformer Version 1
PVTv2	� Pyramid Vision Transformer Version 2
ResNet	� Residual network
CNN	� Convolutional neural network
RNN	� Recurrent neural network
ViT	� Vision transformer
TNT	� Transformer iN transformer
RR-CNN	� Rotated region-based convolutional 

neural network
RRoI	� Rotated region of interest
FCN	� Fully convolutional network
RPN	� Region proposal network
R2PN	� Rotated region proposal network
MSCAF-Net	� Multi-scale convolutional attention 

fusion network
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GHFormer-Net	� Gradient harmonized transformer 
network

GHM-C	� Gradient harmonized single-stage detec-
tor with context aggregation

GHM-R	� Gradient harmonized regression
UP-ViTs	� UP-vision transformer
IR-Net	� Improved RetinaNet
SRA	� Spatial reduction attention
FCN	� Fully convolutional networks
SAR	� Synthetic aperture radar
BIGSARDATA​	� SAR in big data era
AP	� Average precision
mAP	� Mean average precision

1  Introduction

Ship detection exhibits excellent application prospects in 
maritime trade, ship traffic control, port transportation, 
and national defense security. The conducted research on 
advanced networks is of much importance [1]. Although 
researchers have paid much effort into investigating ship 
detection, it remains challenging due to the various orienta-
tions of ships, color contrast within specific ship types, and 
the higher resolution requirements of the ship images. Many 
researchers have proposed networks for ship detection; how-
ever, they often do not incorporate a fine-grained study of 
specific ships. This is due to the fact that changes in external 
light intensity or the use of different colors on similar ships 
can greatly affect detection accuracy.

With the advancement in object detection algorithms for 
deep convolutional neural networks, two detection modes 
with different stage numbers have emerged and are dis-
tinguished by whether the region proposal is utilized [2]. 
One-stage algorithm for detection is characterized by direct 
access to positional coordinates and corresponding regres-
sion for target categories, which helps to reduce time com-
plexity. Typical one-stage detectors are You Only Look Once 
(YOLO) [3], single-stage detector (SSD) [4], and RetinaNet 
[5]. Two-stage detection introduces the application of region 
proposal as front refinement, and regions of interest are clas-
sified and located in the latter stage [6]. Typical two-stage 
detectors are faster region-based convolutional neural net-
work (faster RCNN) [7], mask region-based convolutional 
neural network (mask RCNN) [8], and feature pyramid net-
work (FPN) [9]. In this paper, the base classifier is a one-
stage RetinaNet, which operates through the use of a robust 
focal loss method. As a result, it is able to combine the ben-
efits of a one-stage detector, such as fast speed, with those 
of a two-stage detector, such as high detection precision. 
With respect to computer vision, the horizontal frame target 
detection algorithm based on a region-based convolutional 
neural network (R-CNN) shows rich application scenarios 

in the classification and detection of remote sensing images. 
However, it may generate background noise when detecting 
targets with large aspect ratios. The omission of detection 
targets is likely to occur when performing non-maximum 
suppression (NMS) processing. Therefore, in recent years, 
a significant number of scholars have devoted themselves to 
the study of rotating region proposal algorithms designed by 
introducing anchor frame rotation angle parameters, which 
effectively retain the target orientation feature information 
as opposed to background noise [10] and improve tilt target 
detection accuracy with the help of skew non-maximum sup-
pression (skew-NMS).

In this paper, we introduce YOLF-ShipPnet, a novel net-
work architecture that utilizes the state-of-the-art Pyramid 
Vision Transformer Version 2 (PVTv2) as the backbone net-
work for the RetinaNet base classifier. The rotating frame is 
used for global and fine-grained ship image detection. Dis-
tinguished from foregoing works, the depth of the network is 
increased, and we perform random data augmentation using 
YOLOX’s HSV to improve its fine-grained classification 
capability for the ship dataset.

Our main contributions are:

(1)	 We propose the YOLF-ShipPnet network, which will 
be used in ship detection for commercial and military 
purposes. In the YOLF-ShipPnet network, we intro-
duce the application of popular PVTv2 architecture to 
the construction of the backbone of the RetinaNet base 
classifier, fully exploring its depth effectiveness. Also, 
YOLOX’s HSV is led into the field to manipulate ran-
dom data augmentation on the ship datasets.

(2)	 We demonstrate that the detection precision of YOLF-
ShipPnet outperforms the conventional scheme and, as 
the depth of the network's depth increases, it gradu-
ally shows better performance. After random data aug-
mentation, it is shown that the model can have better 
generalization abilities and is effective in enhancing 
the designed network. With the deepened network 
and effective data augmentation, the proposed YOLF-
ShipPnet network is applicable for fine-grained ship 
detection and transcends the baseline by a large margin.

The remaining parts of this paper are developed as fol-
lows. In Sect. 2, we summarize the related work concerning 
the development of transformer architecture and the evolu-
tion of rotated frame detection. Also, existing methods with 
different functionalities for ship detection are briefly summa-
rized. In Sect. 3, we demonstrate the detailed construction of 
the PVTv2 backbone and the mechanism of YOLOX’s HSV 
for data augmentation. In Sect. 4, we provide the results of 
the validation and ablation experiments on two datasets to 
prove the depth effectiveness of the PVTv2 network and the 
validity of the YOLOX’s HSV data augmentation strategy. 
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It is proved that our proposed network can be applied to 
fine-grained ship detection. We also compare our network 
with other advanced networks to demonstrate its superiority. 
The conclusion of our research is given in Sect. 5. Reflec-
tion on our current work and future research prospect are 
demonstrated in Sect. 6.

2 � Related Work

Transformer architecture is used in place of residual net-
work (ResNet) [11] to form the backbone of the RetinaNet 
[5] network. In 2017, the Google team first proposed the 
transformer model, which abandoned the traditional convo-
lutional neural network (CNN) and recurrent neural network 
(RNN) architecture, making the entire network structure 
composed completely of the attention mechanism. Trans-
former is the pioneer in transduction mode design with the 
functionality of calculating primary substitution of input and 
output based on the principle of self-attention [12], which 
is widely used in the computer vision field to manipulate 
image detection tasks.

The development of transformer structure can be divided 
into three stages, with its enhancement in function and 
boost in efficiency. In the first stage, the emergence of the 
attention mechanism enhanced the traditional CNN net-
work with an optimized fusion of functionality. Bello et al. 
(2019) introduced a self-attention transformer model with 
two-dimensional architecture that combines convolutional 
feature maps and feature mapping generated by self-atten-
tion[13]. By leveraging a global perspective to analyze the 
entire image, the model outperforms a CNN that is limited to 
processing only local information, resulting in a significant 
improvement in accuracy for image detection tasks. Later, 
the transformer architecture reached the level of complete 
replacement of CNN with its excellent testing performance, 
due to the attention mechanism being used in image detec-
tion. For example, Dosovitskiy et al. (2020) introduced a 
vision transformer (ViT), which is directly applied to a series 
of image patches without any reliance on CNNs, demand-
ing less computational power and achieving better detec-
tion performances as compared to first-class prototypes of 
convolutional neural networks [14]. Since then, based on 
ViT, a series of methods have emerged to improve and opti-
mize the transformer structure for enhanced efficiency and 
effectiveness. Han et al. (2021) issued a brand-new vision 
architecture of a transformer called Transformer iN Trans-
former (TNT), which divides the local patch into sub-patch. 
It integrates both information and generates representation at 
patch granularity with the help of the outer transformer [15]. 
Wang et al. (2022) proposed the pyramid vision transformer 
(PVT), which can obtain higher output resolution when 
trained on denser regions of an image and reduce the cost 

of large feature maps’ computations by employing a pro-
gressively contracting pyramid [16]. To conclude, the trans-
former architecture integrates the attention mechanism into 
the construction of the forward feedback network, which has 
better parallelism and global optimization capabilities. It sig-
nificantly improves the execution of dense image detection 
in terms of efficiency and accuracy, exhibiting broad appli-
cation prospects in multimodality and object identification.

Rotated frame detection is widely used when conducting 
ship detection. For example, Liu et al. (2016) proposed a 
novel ship rotation bounding box that accurately captures 
the true shape of ships embedded in complex backgrounds. 
The method involves generating representative candidate 
regions using a closed-form region approach, which outper-
forms traditional horizontal frame target detection schemes 
[17]. Hu et al. (2017) introduced the rotated region-based 
convolutional neural network (RR-CNN), which integrates 
a rotated region of interest (RRoI) pooling layer and a 
regression model equipped with a rotating bounding box 
to accomplish ship detection. It excels in the extraction of 
key features within rotated regions and thus can capture the 
inclined detection targets more precisely [18]. Liao et al. 
(2022) proposed a novel rotated region proposal network 
(R2PN) to form multi-directional proposals featured by 
the angle information of the orientation of ships, which 
adopts a pooling layer activated by rotated region of inter-
est to manipulate key feature extraction and uses bounding 
boxes regression to increase the accuracy of the inclined 
ship region proposals. The proposed network model achieves 
superior performance in ship detection, particularly for ships 
with multiple orientations [10].

Existing methods for ship detection hardly investigate 
into the depth effectiveness of the feature extraction net-
works and have limited generalization or fine-grained 
detection ability. Liu et al. (2023) proposed multi-scale con-
volutional attention fusion network (MSCAF-Net), a frame-
work with PVTv2-B2 backbone for detecting camouflaged 
objects that focuses on learning features that are sensitive 
to context at different scales. While the efficacy of the net-
work is evident for the reference datasets, its potential for 
profound exploration is constrained due to the utilization 
of a solitary layer of the PVTv2 network [19]. Sun et al. 
(2022) proposed gradient harmonized transformer network 
(GHFormer-Net), which utilizes PVTv2-B1 as the backbone 
network and incorporates gradient harmonized single-stage 
detector with context aggregation (GHM-C) and gradient 
harmonized regression (GHM-R) loss functions to improve 
fruit detection in low-light conditions. The experimental 
results demonstrate the effectiveness of the model, but the 
study only investigates the first layer of the network and does 
not explore the potential benefits of using deeper layers of 
PVTv2 [20]. Hao et al. (2021) proposed a unified network 
called UP-Vision Transformer (UP-ViTs) for systematic 
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pruning of vision transformers and their extensions. How-
ever, their study revealed that when using UP-ViTs to prune 
PVTv2-B2 into UP-PVTv2-B1 on ImageNet–1 k valida-
tion, it increased the accuracy of PVTv2-B1, but was less 
effective than the deepened PVTv2-B2. This suggests that 
the lack of depth effectiveness in the network's design may 
have contributed to the suboptimal results [21]. Liu et al. 
(2017) proposed RR-CNN, which features an intensive task 
approach for non-maximum suppression among different 
classes, overcoming challenges in detecting strip-like rotated 
assembled objects. The network outperforms baseline mod-
els by a significant margin, but its compatibility with other 
rotation-based frameworks is limited [18]. Yan et al. (2019) 
proposed an innovative data augmentation method that 
utilizes simulated remote sensing ship images to augment 
positive training samples, thereby improving the quality of 
the training set. Experimental results on the ship detection 
dataset using Faster R-CNN demonstrate the effectiveness 
of the approach. However, the method is only applicable 
to a limited number of ship models and does not possess 
the ability of fine-grained classification [22]. Zhao et al. 
explores low-resolution fine-grained object classification and 
proposes a new model, which combines feature equilibrium 
principle and progressive interaction theory. It improves the 
accuracy of network when applied to low-resolution image 
detection, but when it comes to fine-grained classification, 
it only increases the baseline model by 3.4%, which is not 
satisfactory enough [23].

3 � Model and Network

We propose a brand-new network called YOLF-ShipPnet, 
which incorporates deepened PVTv2 into the construction 
of the backbone of the RetinaNet network. The network 
structure of YOLOF-ShipPnet is demonstrated in Fig. 1. 
The RetinaNet network is a comprehensive baseline net-
work consisting of a backbone, a neck and a head consist-
ing of two subnets. The backbone network, namely, PVTv2, 

implements the convolutional feature mapping over the tar-
get image and is treated as a non-self-convolutional network. 
The neck part of the network is the feature pyramid network 
(FPN), which is utilized for multi-scale feature integration. 
The output of the FPN is then fed into the head part of the 
network, which comprises two subnets, namely the class 
subnet and the box subnet. Two subnets are distinguished 
by branch functions, one for classification and the other for 
regression. Specifically, the first subnet carries out object 
classification with a convolutional technique targeted at the 
backbone output, and the second subnet implements con-
volutional regression with the help of a bounding boxes. In 
YOLF-ShipPnet, considering the need for higher precision 
accompanied by the deepened network, we choose to use 
PVTv2 for its deepened network architecture.

3.1 � Backbone Network: PVTv2 with Transformer 
Architecture

Since the introduction of ViT, there has been a large num-
ber of researches on vision transformers, roughly along two 
main directions: one is to improve the effectiveness of ViT in 
image classification; the other is to apply ViT to other image 
tasks, such as image segmentation and target detection. The 
PVT [24] introduced in this paper belongs to the latter. PVT 
is a simple, non-convolutional backbone that can be applied 
for many prediction tasks containing dense images. Unlike 
ViT, which employs a pure transformer architecture, PVTv2 
incorporates a hybrid architecture that combines both trans-
former and convolutional neural network (CNN) structure. 
PVT overcomes the difficulty of applying a transformer to 
various task-oriented predictions with complex partitions, 
exhibiting better feature extraction performance.

PVT was originally proposed by Wang Wenhai and Xie 
Enze at Nanjing University and has undergone two genera-
tions of evolution, Pyramid Vision Transformer Version 
1 (PVTv1) and PVTv2 [25]. Generally, PVTv1 has three 
main limitations. Firstly, PVTv1 treats the images as a 
series of non-overlapping facets, which somewhat loses the 

Fig. 1   The architecture of YOLF-ShipPnet network diagram of the model
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characteristic of partial continuity of the images, limiting its 
application for fined-grained ship classification. Secondly, 
the size of the encoding of position in PVTv1 architecture 
is pre-determined and invariant for processing images of 
discretional size. However, the most significant drawback 
of PVTv1 is that its network architecture has limited depth, 
which harms the precision of image classification. Taking 
into account the fact that the detection precision of our base-
line network maintains at a low level, we choose to use deep-
ened PVTv2 with depth-wise convolution as the backbone 
to trade off a lightweight network for higher precision, as 
shown in Fig. 2. It can detect dense ship images and perform 
feature extraction of local features more smoothly for fine-
grained classification, which is satisfactory for application 
on ship image detection (Table 1). 

Different layers of the PVTv2 network (B0–B5) are con-
structed by changing the following hyperparameters:

Si ∶ The stride in stage i for overlapping patch embedding.
Ci ∶ The number of channels in the output of the ith stage.
Li ∶ The number of encoded overlapping in the ith stage.
Ri Deceleration ratio of the ith stage Spatial Reduction 

Attention (SRA).
Pi ∶ Mean pool size of linear SRA in the ith stage.
Ni ∶ Head number of the self-attention network in the ith 

stage.
Ei ∶ The expansion ratio of the ith stage feedforward layer.
The design of the PVTv2 network adheres to the princi-

ple that is used to construct ResNet, where the number of 
channel dimensions increases as the layers deepen, leading 
to a theoretical improvement in the detection precision of 
PVTv2 with increased depth. So, we suppose that the effect 

Fig. 2   Comparison of the depth 
of two versions of PVT

Table 1   Overall network architecture of PVTv2

Output size Layer label Pyramid Vision Transformer 
v2

B0 B3 B5

Stage 1 H

4
×

W

4

Overlapping
patch embed-

ding

S
1
= 4

C
1
= 32 C

1
= 64

Transformer
encoder

R
1
= 8

N
1
= 1

E
1
= 8

L
1
= 2

R
1
= 8

N
1
= 1

E
1
= 8

L
1
= 3

R
1
= 8

N
1
= 1

E
1
= 4

L
1
= 3

Stage 2 H

8
×

W

8

Overlapping
patch embed-

ding

S
1
= 2

C
2
= 64 C

2
= 128

Transformer
encoder

R
2
= 4

N
2
= 2

E
2
= 8

L
2
= 2

R
2
= 4

N
2
= 2

E
2
= 8

L
2
= 3

R
2
= 4

N
2
= 2

E
2
= 4

L
2
= 6

Stage 3 H

16
×

W

16

Overlapping
patch embed-

ding

S
1
= 2

C
3
= 160 C

3
= 320

Transformer
encoder

R
3
= 2

N
3
= 5

E
3
= 4

L
3
= 2

R
3
= 2

N
3
= 5

E
3
= 4

L
3
= 18

R
3
= 2

N
3
= 5

E
3
= 4

L
3
= 40

Stage 4 H

32
×

W

32

Overlapping
patch embed-

ding

S
1
= 2

C
4
= 256 C

4
= 512

Transformer
encoder

R
4
= 1

N
4
= 8

E
4
= 4

L
4
= 2

R
4
= 1

N
4
= 8

E
4
= 4

L
4
= 3

R
4
= 1

N
4
= 8

E
4
= 4

L
4
= 3
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of depth-wise convolution of PVTv2 is still manifested in 
the HRSC2016 dataset. Taking into account the matching 
of the dataset, network complexity, and computational cost, 
we choose to deepen the layer of our network from B1 to B5.

3.2 � Neck: Feature Pyramid Net

We apply FPN to the neck part of the network. The origin 
of the idea of FPN is the image pyramid in traditional image 
processing [26]. It aims to enhance the robustness of the 
model when the input images are of different sizes or vari-
ous objects exist in the scenarios of target detection. FPN 
adopts the multi-scale feature fusion method, which consid-
ers global and local features during target detection. FPN 
enhances the conventional convolutional network with novel 
transverse connections and top-down pathways, thereby con-
structing a comprehensive, multi-dimensional feature pyra-
mid from singular input images. Each layer of the pyramid 
can be used to detect objects with various dimensions. FPN 
is a powerful technique for improving multi-dimensional 
predictions from fully convolutional networks (FCN). It has 
been used to generate a range of subsequent networks such 
as region proposal network (RPN), deep mask object pro-
posal, and two-stage detectors like faster R-CNN and mask 
R-CNN.

3.3 � Head: Classification and Regression of Rotating 
Frame Networks

The objective of focal loss [27] is to address the issues of 
imbalanced class distribution and the resulting challenges in 
classification, particularly when the dataset contains a large 
number of easy background samples and a few foreground 
samples that are challenging to classify. Focal loss mitigates 
these problems and enhances the accuracy of detection by 
modifying the cross-entropy function, increasing the cat-
egory weights � and the sample difficulty weight modulating 
factor (1 − pt) . The focal loss function takes the following 
form:

In formula 1, −log(pt) stands for the initial cross-entropy 
loss function, � is the weight parameter between categories, 
(1 − pt)� is the modulating factor between simple and com-
plex samples, and � is the focusing parameter.

One common loss function used for bounding box regres-
sion in the head part of object detection models is the L1 
loss. In ship detection, L1 loss is particularly useful for accu-
rately predicting the coordinates of the bounding box around 
a ship. By minimizing the mean absolute difference between 
the predicted and actual bounding box coordinates, L1 loss 
helps to improve the accuracy of the ship detection model. 
The formula for L1 loss is as follows:

where yi denotes the true label and f
(
xi
)
 indicates the pre-

dicted label.

3.4 � Data Augmentation Strategy: HSV [28]

HSV is a color space put forward by a.r. Smith, in 1978 
inspired by the intuitive properties of the color [29], also 
known as the hexagonal model. In the field of data aug-
mentation in ship detection, it is used to enhance the color 
contrast of the image by adjusting the intensity ratio of hue, 
saturation, and value channel [30]. It extracts and manifests 
the feature color space of the ship image corresponding to 
the change of light state and external color of ships. The 
color space of the HSV model can be visualized using a 
cone, as shown in Fig. 3, accompanied by target images with 
contrast brightness and colors. H (hue) in the cone represents 
the phase angle of the color, with a range of 0◦ to 360◦ . S 
(saturation) stands for a ratio value, which is correlated with 
the purity of a specific color. Following the direction of the S 
arrow, the purity of color witnessed a significant increase. V 
(value) represents the brightness of the color, ranging from 0 
to 1. V value of the cone ranges from 0 at the black bottom 

(1)FL
(
pt
)
= −�t

(
1 − pt

)�
log

(
pt
)
.

(2)L1 =

n∑

i=1

||
|
yi − f

(
xi
)|
|
|
,

Fig. 3   HSV augmentation for color-oriented data augmentation
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point to 1 at the top white point, with higher values indicat-
ing greater brightness.

In the YOLF-ShipPnet network, HSV is used to manipu-
late data augmentation on the ship dataset by adequately 
adjusting the three-channel values of the color space, aim-
ing to simulate the background state of ship images under 
various lighting conditions and also to adjust the bright-
ness, colors, and other factors of the image to reduce the 
sensitivity of our proposed model to ship colors. The data 
augmentation strategy eliminates disturbance factors such as 
potential changes in light intensity and color differences of a 
specific ship, which significantly improves the local feature 
extraction ability and the robustness of the network. The 
efficiency of training and the performance of our network is 
also further enhanced with the help of the YOLOX’s HSV 
random data augmentation technique.

3.5 � YOLOF‑ShipPnet

The model of YOLOF-ShipPnet is shown in Fig. 4. HSV 
color space is employed as a data augmentation technique 
to augment the light effects on ships and the external colors 
of certain ships. This approach produces a set of synthe-
sized images by leveraging the HRSC2016 dataset, which 
helps in improving the model's training. We select PVTv2 
as the backbone network, which is an enhanced transformer 

network with depth inheritance. After testing and refine-
ment, our proposed network is expected to carry out global 
ship image and fine-grained classification.

4 � Experiment and Analysis

4.1 � Dataset

Ablation experiments are performed on the famous remote 
sensing dataset HRSC2016 [31] and the synthetic aperture 
radar (SAR) dataset SSDD [32] to validate the effectiveness 
of our proposed YOLF-ShipPnet network.

Northwestern Polytechnical University published the 
HRSC2016 [31] dataset in 2016. The set issued by Google 
Earth contains 1,061 images with 4 classes and 19 sub-
classes, covering 2976 instances of ships. The training, vali-
dation, and test sets incorporate 436, 181, and 444 images, 
respectively. The image sizes of HRSC2016 range from 
300 × 300 to1500 × 900 , with the majority of the images 
having sizes greater than 1000 × 600 . The dataset covers 27 
types of remote sensing ground objects. For a fair compari-
son with other networks, only ship objects are selected for 
our experiments.

The SSDD dataset [32] was first unveiled at the SAR 
In Big Data Era (BIGSARDATA) conference in Beijing in 

Real ship images

Simulation images HRSC2016

Testing samples

HSV Data Augmentation Strategy1 YOLOF-ShipPnet2

Network inheritance

B0

B1 B2 B3 B4 B5

Global detectionFine-grained detection

PVTv2

Box subnets
Different light intensity

HSV

Test & Classification3

Fig. 4   Design flowchart of YOLOF-ShipPnet
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2017. The set contains 1160 images and 2456 ships, with an 
average number of ships of 2.12 per image. The image sizes 
are around500 × 500 . The set is partitioned into the training, 
validation, and test sets, with a random ratio of 7 ∶ 1 ∶ 2 . 
This dataset contains SAR images specially used for ship 
detection with a single ship type.

Our ablation experiments use average precision ( AP ) and 
mean average precision ( mAP ) for evaluation of the per-
formance of YOLF-ShipPnet. In MMROTATE, the general 
definition of AP is the gross area below the precision–recall 
curve. Precision measures the accuracy of prediction, while 
recall reflects the proportion of positive samples that are 
successfully retrieved. So to calculate them, the quantities 
that shall be known in advance aretp , the number of correctly 
determined positive samples, and fn and fp , which are incor-
rectly determined negative and positive samples. Formulas 
3 and 4 illustrate the calculation processes of precision and 
recall:

After plotting corresponding data points of precision and 
recall into a curve, the value of AP can be calculated by 
integrating the area beneath the curve. Then, mAP is derived 
by averaging over the AP of each epoch.

4.2 � Configuration of Ablation Experiment 
and Model Training

All the experiments are conducted on a deep-learning server. 
The detailed configuration is shown in Table 2.

(3)Precision =
tp

tp + fp
.

(4)Recall =
tp

tp + fn
.

Our experiments are trained on the HRSC2016 dataset. 
The optimizer of YOLF-ShipPnet is AdamW. The momen-
tum coefficient is 0.9 and the weight decay coefficient is equal 
to 0.05. The original learning rate of the model is 0.0001 . The 
significance of weight decay is that the learning rate gradu-
ally reduces during training and converges quickly. Also, a 
threshold of 72 epochs is set to ensure the convergence of the 
network.

4.3 � Ablation Experiments

The YOLF-ShipPnet we propose employs PVTv2 as the back-
bone, and YOLOX’s HSV is used for random data augmenta-
tion. To analyze the extent to which the proposed network 
elevates the performance of the model, we design a set of abla-
tion experiments.

RetinaNet serves as the baseline object detection framework 
in our experimental setup, acting as a standard of comparison. 
It is composed of a backbone network and an FPN. The back-
bone network extracts image features, while the FPN produces 
feature maps of varying resolutions for further regression and 
classification. To demonstrate the effectiveness of our back-
bone network, we compare the performance of PVTv2 with the 
baseline. For depth effectiveness experiments, we explore the 
efficacy of PVTv2 layer by layer, comparing their mAPs and 
investigating the general trend of mAPs with increased depth. 
Random data augmentation based on HSV is also performed 
and compared with the baseline and the PVTv2 layer with 
the best performance. Additionally, we assess the fine-grained 
classification capability of our network and use the baseline 
for comparison. Finally, the generalization ability of YOLF-
ShipPnet over different datasets is evaluated by replacing the 
original dataset with SSDD.

4.3.1 � Effectiveness of PVTv2

In this section, we use only PVTv2 as the backbone for the 
baseline, referred to as PVTv2-B0, to evaluate the effective-
ness of PVTv2. Table 3 below presents the results of the exper-
iment after 72 epochs.

According to the results from Table 3, it can be seen that 
the feature extraction accuracy reaches52.50% , indicating that 
our baseline is reliable. Compared with the values of AP under 
different categories, the PVTv2 group generally has higher 
AP values than the RetinaNet group, and the mAP is finally 
improved by 0.41% . Therefore, it can be concluded that PVTv2 

Table 2   Configuration of parameters

Parameter Configuration

Central processing unit (CPU) 12 core Intel(R) 
Xeon (R) Platinum 
8255C

Graphic processing unit (GPU) RTX 2080 Ti
Operating system Ubuntu 18.04
Programming language Python 3.8
GPU accelerator CUDA 10.2

Table 3   Ablation experiments 
of PVTv2 on HRSC2016

Method mAP AP50 AP60 AP70 AP80 AP85 AP90 AP95

RetinaNet 0.5250 0.8380 0.8050 0.7080 0.3990 0.2140 0.1080 0.0200
PVTv2-B0 0.5291 0.8500 0.8350 0.7240 0.3860 0.2010 0.1030 0.0110
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effectively enhances the ability of the feature extraction of the 
YOLF-ShipPnet.

4.3.2 � Depth Effectiveness of PVTv2

In this section, PVTv2-B0 is used as the control group. 
We inherit PVTv2-B0 and modify the weights to obtain 
the B-series networks based on PVTv2 to prove the depth 
effectiveness of PVTv2. To observe the changes in indica-
tors, Table 4 lists the effect of B0, B3, and B5: the control 
group, the group with moderate effect, and the group with 
the best effect.

According to Table 4, it can be seen that there is an 
upward trend in the mAP from B0 to B5. The overall detec-
tion accuracy of the model was improved by 2.27% and 
2.78% in each step, with a total increase of 5.05% . Compar-
ing the average accuracy of each method in Table 4, the 
mean precision level shows an overall upward trend from 
PVTv2-B0 to PVTv2-B5. PVTv2-B5 has the highest mean 
average precision, which is expected and demonstrates the 
depth effectiveness of PVTv2.

4.3.3 � Effectiveness of HSV Data Augmentation on Ship 
Dataset

In this section, we aim to verify the contribution of data 
augmentation to the detection performance of our model. 
Based on the network involved in the above experiments, 
we only add YOLOXHSVRandom to randomly adjust the hue, 
saturation, and value of ship images.

Considering the inheritance relationship among the 
networks, our experiment adds augmentation to the base-
line only to verify that it can improve the model detection 

accuracy without adding the PVTv2. Then, we add HSV 
strategy to the PVTv2 B5 to verify that the combination of 
deepened PVTv2 and data augmentation jointly contribute 
to the model performance.

Table 5 presents the results of two groups of experiments 
based on the baseline, with or without data augmentation. 
The mAP value increases from 52.50 to 53.84% before and 
after the augmentation, showing a leap of 1.34% in average 
precision. It indicates that adding data augmentation alone 
can improve the model effect.

Table  6 shows the results of the three experimental 
groups: PVTv2-B0, PVTv2-B5, and PVTv2-B5_Aug. By 
comparing the results of PVTv2-B5 with and without data 
augmentation, the mAP increases by 0.17% . We can also 
find that mAPs of PVTv2-B5 and PVTv2-B5_Aug are 5 .05% 
and 5.22% higher than PVTv2-B0. The results demonstrate 
our model’s robustness and show that the augmentation can 
further improve the detection performance of the model on 
the PVTv2, verifying the effectiveness of the data augmenta-
tion strategy.

4.3.4 � Effectiveness of Fine‑Grained Classification 
Experiment for Ship Dataset

The above ablation experiments validate the effectiveness 
of PVTv2-B5_Aug, which is 5.63% more accurate than the 
baseline.

In this section, the baseline and PVTv2-B5_Aug are used 
to detect 31 subclasses of ships to examine the ability of the 
YOLOF-ShipPnet network for fine-grained ship detection. 
Table 7 shows the results of the fine-grained experiments of 
baseline and PVTv2-B5_Aug on HRSC2016.

Table 4   Ablation experiments 
of the depth effect of PVTv2 on 
HRSC2016

Method mAP AP50 AP60 AP70 AP80 AP85 AP90 AP95

PVTv2-B0 0.5291 0.8500 0.8350 0.7240 0.3860 0.2010 0.1030 0.0110
PVTv2-B3 0.5518 0.8600 0.8440 0.7270 0.4940 0.2880 0.0780 0.0100
PVTv2-B5 0.5796 0.8570 0.8400 0.7370 0.4970 0.2910 0.1120 0.0910

Table 5   Ablation experiments 
of HSV data augmentation on 
HRSC2016

Method Data Aug mAP AP50 AP60 AP70 AP80 AP85 AP90

RetinaNet 0.5250 0.8380 0.8050 0.7080 0.3990 0.2140 0.1080
RetinaNet √ 0.5384 0.8440 0.8210 0.7120 0.4400 0.2120 0.1070

Table 6   Ablation experiments 
of HSV data augmentation with 
increased depth on HRSC2016

Method Data Aug mAP AP50 AP60 AP70 AP80 AP85 AP90

PVTv2-B0 0.5291 0.8500 0.8350 0.7240 0.3860 0.2010 0.1030
PVTv2-B5 0.5796 0.8570 0.8400 0.7370 0.4970 0.2910 0.1120
PVTv2-B5 √ 0.5813 0.8590 0.8470 0.7450 0.5100 0.2890 0.1370
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From Table 7, it can be known that both the baseline 
and PVTv2-B5_Aug can be used for fine-grained detection. 
PVTv2-B5_Aug performs better on fine-grained detection, 
showing an enormous leap of 10.03%.

4.3.5 � Performance of YOLF‑ShipPnet on the SSDD Dataset

In this section, the dataset is replaced with SSDD to verify 
the generalization ability of PVTv2-B5_Aug(YOLF-ShipP-
net). Table 8 shows the mAP of baseline and PVTv2-B5_Aug 
on the SSDD dataset.

In comparison to the detection accuracy between the two 
groups, PVTv2-B5_Aug showed an improvement in per-
formance of 5.46%. This reflects the strong generalization 
ability of our proposed network and indicates its potential 
application in other datasets.

4.3.6 � Loss Curve for Training

The following plots are the training loss of the above abla-
tion experiments. In these plots, the networks reach conver-
gence after 72 epochs (Figs. 5, 6, 7).  

4.4 � Visualization of the Result

We visualize the results of baseline and PVTv2-B5_Aug on 
HRSC2016 to intuitively compare the detection effect before 
and after the model improvement.

As shown in Fig.  8, part (i) shows the visualization 
results of the baseline and part (ii) demonstrates the results 
of PVTv2-B5_Aug.

In Fig. 8, some ships that are not identified with the base-
line detector are identified by PVTv2-B5_Aug, indicating 
that PVTv2-B5_Aug shows a better detection performance 
than baseline.

In Fig. 9, the detection precision of PVTv2-B5 is higher 
than the baseline for the same ship, indicating that PVTv2-
B5_Aug can identify ships more accurately. From Fig. 10, 
we discover that the baseline and PVTv2-B5_Aug can detect 
multiple classes of ships, and PVTv2-B5 performs better in 
terms of identifiability and accuracy.

At the same time, PVTv2-B5_Aug on the SSDD dataset 
also achieves a better detection effect, which verifies the 
generalization ability of the model. Figure 11 demonstrates 
the visualization results, which show the effectiveness of 
PVTv2-B5_Aug on the SSDD dataset.

4.5 � Comparisons Among the Advanced Networks

Table 9 shows the performance of YOLF-ShipPnet and other 
networks on the HRSC2016 dataset. It is observed that the 
mAP of our proposed network shows a significant leap com-
pared to other ship detection models, further verifying the 
depth effectiveness of the PVTv2 backbone and the excellent 
performance of the YOLOX’s HSV random data augmenta-
tion strategy. Then, it is observed that the networks listed can 
only perform global ship detection. However, our network 
extends the function of fine-grained classification for more 
specific purpose ship classification.

5 � Conclusion

This paper proposes a rotation ship detection network 
YOLF-ShipPnet based on RetinaNet, which innovatively 
introduces the application of deepened PVTv2 network 
and HSV strategy for data augmentation. Generally, the 
backbone network utilizes the popular transformer struc-
ture along with the deepened PVTv2 network, which 
focuses on exploring the depth effectiveness in the context 
of ship image detection. The neck part employs the FPN 
model for multi-scale fusion of features. The head part 
takes in the combined characteristics and performs clas-
sification and regression of the rotating frame. To further 
improve the generalization and fine-grained classification 
abilities of our proposed network, we applied the random 
data augmentation strategy HSV on the ship datasets to 
complement the PVTv2 network and achieve a more cohe-
sive and effective performance. Through a series of valida-
tion and ablation experiments, it has been confirmed that 
the YOLF-ShipPnet exhibits promising depth effective-
ness for the detection of ships. Furthermore, the efficacy 
of the HSV data augmentation strategy has been demon-
strated, resulting in significantly improved accuracy com-
pared to the baseline model. The use of this strategy also 
makes the models less sensitive to such external factors 
as color or light changes. In addition, the YOLF-ShipPnet 
has demonstrated exceptional generalization abilities, 

Table 7   Fine-
grained classification 
experiments on HRSC2016

Method Data Aug mAP AP50 AP60 AP70 AP80 AP85 AP90

RetinaNet 0.1958 0.3140 0.2920 0.2540 0.1690 0.0960 0.0230
PVTv2-B5 √ 0.2961 0.4330 0.4130 0.3800 0.2800 0.1950 0.0880

Table 8   Ablation experiments 
on the SSDD dataset

Method Data Aug mAP

RetinaNet 0.7151
PVTv2-B5 √ 0.7697
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Fig. 5   Loss curve for ablation experiments on HRSC2016
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Fig. 6   Loss curve for ablation experiments on SSDD

Fig. 7   Loss curve for fine-grained classification experiments on HRSC2016

Fig. 8   Effectiveness of PVTv2-
B5_Aug on HRSC2016
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particularly for fine-grained classification, as verified 
using the HRSC2016 and SSDD datasets. These results 
suggest that the proposed network has great potential for 
applications in industrial ship management. Overall, our 
work highlights the significant strengths of the PVTv2 net-
work for enhancement of accuracy in the depth dimension 
and the importance of the HSV data augmentation strategy 
for improving the generalization capability. The use of this 
network in real-world scenarios may lead to significant 
improvements in the efficiency and effectiveness of ship 
management systems.

Fig. 9   Higher detection accu-
racy of PVTv2-B5_Aug on 
HRSC2016

Fig. 10   Effectiveness of 
PVTv2-B5_Aug with fine-
grained experiment on 
HRSC2016

Fig. 11   Effectiveness of 
PVTv2-B5_Aug on SSDD

Table 9   Performance of YOLF-ShipPnet and other networks on 
HRSC2016

Model Backbone Input_size mAP

YOLF-ShipPnet PVTv2 800 × 800 0.5813
IR-Net [19] ResNet 800 × 800 0.5580
CP [20] Fast R-CNN 800 × 800 0.5570
Kld [33] ResNet50 800 × 512 0.5415
FR-O [34] VGG-16 1024 × 1024 0.5413
RetinaNet [35] ResNet50 800 × 512 0.5206



	 International Journal of Computational Intelligence Systems           (2023) 16:58 

1 3

   58   Page 14 of 15

6 � Reflection and Future Work

The YOLOF-ShipPnet network has shown promising results 
in terms of its depth effectiveness. However, there is still 
room for improvement in the model's performance by further 
tuning the parameters associated with the number of layers, 
which will be investigated in future studies. While FPN has 
been used as the neck part of the network, other networks 
such as faster R-CNN may offer promising performance in 
ship detection tasks due to their robustness and flexibility. 
Therefore, it may be worthwhile to retrain the network using 
faster R-CNN and compare the results with the previous 
ones. Currently, the HSV technique is utilized as a means of 
random data augmentation to enhance the network’s ability 
to generalize when presented with ship images that vary in 
color or lighting conditions. However, this method is lim-
ited in some circumstances, and other data augmentation 
strategies should be explored in the future to accommodate 
different application scenarios.
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