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Abstract

Intuitionistic fuzzy sets, characterized by membership degree p, non-membership degree v and hesitation degree 7, are a
meaningful extension of fuzzy set. Inequalities on intuitionistic fuzzy sets/values are very important in solving real
problems. In this paper, some inequalities on intuitionistic fuzzy sets are derived from operations. Moreover, three
unweighted intuitionistic fuzzy aggregation operators, including unweighted intuitionistic fuzzy Square, unweighted
intuitionistic fuzzy Arithmetic and unweighted intuitionistic fuzzy Geometric, are developed. Later, some corresponding
inequality relations on them are deeply explored. Finally, some inequalities on intuitionistic fuzzy value are constructed by
equality i + v + m = 1 in critical definition and proved by some existing famous inequalities, which provide a novel basis
for the intuitionistic fuzzy inequalities in operations and aggregation operators.
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1 Introduction

Intuitionistic fuzzy set (IFS), firstly proposed by Atanassov
[1], is a resultful tool to depict vagueness. A remarkable
characteristic of IFS is that it assigns membership degree
(MD) and nonmembership degree (NMD) to each element
of the universe, whose sum is less than or equal to one.
Thus, it is a meaningful extension of fuzzy set (FS) [2]
which just assigns membership degree. In the past four
decades, more and more scholars are applying IFS to var-
ious fields, such as decision-making methods [3—7], cluster
[8], information measure [9-12], aggregation operators
[13-15], operations [1, 16—18].

Ever since the invention of IFSs [19, 20], many scholars
have paid great attention to the operations on IFSs. Ata-
nassov [1] initially defined the negation, multiplication,
addition, intersection, union, necessity, possibility
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operations on IFSs, whose sum of MD and NMD meets the
definition of IFS. In order to enrich the operations on IFS,
Atanassov [18] presented some new operations, including
@, $, #,*, and discussed some equalities and a part of
inequalities. Xu [13] developed A—multiplication and
power operations, and deduced the subsequent aggregation
operators by A— multiplication and multiplication. In
addition to the operations mentioned above, there are two
other well-known operations: subtraction and division
which can be regarded as simple arithmetic operations [21].
However, the subtraction and division operations discussed
in [21] have strict limitations, which seriously affect their
generality. Thus, the revised subtraction and division
operations are derived [22], which avoid all kinds of
unnecessary constraints and have similar external structure
compared with multiplication and addition operations.
Furthermore, most of the existing intuitionistic fuzzy
operations just discuss the equivalence relationship on
them, and rarely explore their properties or theorems
related to their inequality [22]. In other words, the study of
related inequalities on IFSs has important value and will
greatly enrich the relevant inequality theory.

Aggregation operator (AO), commonly in the form of
mathematical functions, is a usual technique for fusing all
the input into a single piece of data, which initially derived
from operations. Xu [13] primitively developed intuition-
istic fuzzy weighted averaging (IFWA) operator which
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deduces from the addition and A—multiplication opera-
tions, and discuss some inequalities on it. However, when
IFWA operator in [13] encounters special intuitionistic
fuzzy value (IFV) such as (1,0) in the decision-making
process, it is prone to counterintuitive phenomena, which
will vastly influence the authority of the decision-making
process and reduce the effectiveness of the algorithm.
Therefore, Seikh and Mandal [23] introduced intuitionistic
fuzzy Dombi weighted averaging (IFDWA) operator and
intuitionistic fuzzy Dombi weighted geometric (IFDWG)
operator for fusing job information and selecting optimal
alternative. While there is nothing counterintuitive about
the AOs in [23], the strict requirements for decision data
are necessary and non-negotiable. In other words, data that
does not meet the requirements will lead to an inability to
make decisions, reducing its versatility. To sum up, it is
important to develop AO without counterintuitive phe-
nomena and insensitive to data under intuitionistic fuzzy
environment. At the same time, inequalities related to AOs
can also enrich the connotation of IFS.

Furthermore, it can be easily seen that the existing
inequalities on IFSs/IFV arise from simple operations and
AOs. That is to say, none of them depend on definition of
IFS as p+ v+ m = 1. Thus, it will fill in the gaps in rel-
evant inequality research. The inequalities on IFSs/IFV are
derived by constructing operations, AOs, equality in defi-
nition, and proving them by some famous inequalities.
Moreover, the developed inequalities based equality in
definition may respectively prove the operations and AOs
on IFSs or IFVs to some extent. The main contributions of
this paper are summarized as follows:

1. The inequalities on IFSs are derived from some
existing operations, where the objective is to find their
relationships. The corresponding intuitionistic fuzzy
inequalities are well proved.

2. Depending on the excellent peculiarity of the operation
@, the unweighted intuitionistic fuzzy Square (UIFS)
operator is presented, which can avert counterintuitive
phenomena and insensitive to data. Some correspond-
ing inequalities based UIFS are constructed and
proved. Also, the unweighted intuitionistic fuzzy
Arithmetic (UIFA) operator and unweighted intuition-
istic fuzzy Geometric (UIFG) operator are explored by
linking a significant inequality with UIFS.

3. The inequalities on IFV derived from the equality u +
v+ 7m =1 in definition, which are proved by some
existing famous inequalities. It provides a new basis for
the intuitionistic fuzzy inequalities in operations and
AO:s.

To accomplish our ideas, the rest paper is organized as
follows. The fundamental definition, score function, some
operations on IFSs and some famous inequalities are
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reviewed in Sect. 2. Section 3 gives some inequalities on
IFSs, which derived from some existing operations. Sec-
tion 4 presents three unweighted intuitionistic fuzzy AOs
and corresponding inequalities. Section 5 introduces a set
of inequalities on IFV, which derived from equality in
definition. The paper gives some conclusions in Sect. 6.

2 Preliminaries

In this section, the basic definition, score function, opera-
tions of intuitionistic fuzzy sets and some famous
inequalities are reviewed to facilitate the further analysis of
the paper.

2.1 Intuitionistic Fuzzy Set
Intuitionistic fuzzy set (IFS) is an effective tool to depict

vagueness. The mathematical expression form of IFS can
be presented as follows.

Definition 2.1 [1] Let a set X be fixed. An IFS A in X is
an object having the form
A= {(r, 1(x),0(0) | 2 € X3, (1)

where u : X —[0,1] and v : X —[0,1] signify membership
degree and non-membership degree of the element y € X
to the set A, respectively, with the condition 0< u(y)
+v(y) < 1. The hesitation degree n(y) =1 — u(y) — v(y).
For simplicity, Xu [13] named & = (i, v) as an intuition-
istic fuzzy value (IFV). Especially, we call it as crisp
number when ¢ = (1,0) or d = (0,1). In this paper, we
also take the hesitation degree into consideration and sig-
nify d = (y,v, ) as an IFV.

Definition 2.2 [1, 13, 18, 22] Let A; and A, be any two
IFSs, then operations on IFSs are defined as follows.

(D) Ar © Ay iy () < (), v1(2) 2 v2(x) for Vy €

X;

2) A A= {600 + () — (0 m(x),
v1()v2(0)) | x € X}

) Ar@ Ay = {2 m ()1 (2), v1(x)

+02(x) —v1(v2(0)) | x € X}
@ Ao Ay = {06 ()va(x), 01 (%)
+ia (1) = o1 (D)) | 1 € X}
5) Ao Ar = {( 1 () +v2(x)
= (0200, i (D () |1 € X

©) OA = {(6m () L —m(0) | r e X}
M QA ={(t1 —ux), m( N1 x e X}
Q) AQA, = {<X7ul< )ﬂ;llz(/) o1 (%) Uz(Z)> Iy e x};

9 AisA =
| v € X}

{06V ) (1), Vo1 ()2 (1))
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S 2mm) 2
(10 ArgpAz = {</’u1u(l i) ) +v22 > |z € X}
(11  ApkxA,
w0+ (2) vi(1)+va(x
= { (1, sl el |y e X s
(12) Ay — Ay = {{z,max{vi (1), io(2)}, min{p; (%),

va(2)} ) [ e X}

a3) 2Ar = {1 = (=Y i0) |z e X},
A>0;

a4 A = {01 = (=) [ 7€ X},
4>0.

Definition 2.3 [13] For any IFN & = (p, v, ), the score
function of ¢ having the form

S(a>::u_ua S(Cl) € [_]a]] (2)
For any two IFNs d; and d,

) If S(al) > S(Clz), then da, > ady;
2 If S(a1)<8(a2), then d; <d.

2.2 Some Famous Inequalities and Theorem

The existing famous inequalities are considered as the form
of Lemma, including Rearrangement inequality [24], Mean
inequality (AM-GM, AM-SM, SM-GM,HM-AM,3 M)
[25], Nesbitt’s inequality [26], Chebyshev’s inequality
[27], Cauchy’s inequality [28], Power-Mean inequality
[29], Minkowski’s inequality [28], Holder’s inequality
[28], Carlson’s inequality [30], Jensen’s inequality [31],
Wei-Wei dual inequality [32], Tangent inequality [33],
Muirhead’s inequality [34], Schur’s inequality [35], Vasc
inequality [36] and Bernoulli’s inequality [37], which are
given as follows. In addition, the half concave and half
convex theorem is also listed.

Lemma 2.1
ordered sets {xi,xa,...,
Xy 2xp2

(Rearrangement inequality) [24] For any two

xXo} and {y1,y2,...,yn} with
> Xy and yy 2y > -+ 2> yy, then

n n n
inyn—H»l < ZX_/,-)’_,',- < in)’h
i—1 i=1 i—1 (3)

=
Reverse order Random order Same order

where {ji,j2,...,jn} is a arbitrary full permutation of

{1,2,...,n}, and the equal sign occurs when x; = x, =

= Xp 0Ly =y2 =0 =Yg

Lemma 2.2 (Mean inequality) [25] For any nonnegative
set {x1,X2,...,%,}, then

SM-GM

. . Squaremean
Arithmeticmean

Geometricmean "

Harmonicmean e N
X ;<= <
n 1 Exl — n —
Xi
=1 AM—GM
(4)
and
2
3(xpxp + xx3 + x3x1) < (X1 + X0 +x3)7, (5)

3M

where the equal sign occurs when x; = x, = -+ - = x,,.

Remark 2.1 The Mean inequality consists of Harmonic
mean (HM), Geometric mean (GM), Arithmetic mean
(AM) and Square mean (SM). Some common mean
inequalities can be written as SM-GM, AM-GM, HM-AM,
AM-SM and 3 M.

Lemma 2.3 (Chebyshev’'s inequality) [27] For two
ordered sets {xi,xs,...,x,} and {y1,y2,...,yn} in the
same order, then

inyi > % (Z%’) (Z)&‘) > inyn—iﬂ, (6)
=1 =1 =1 p

where the equal sign occurs when x; = x; =
Yi=¥Y2=-"=DYn

- =2Xx, or

Lemma 2.4 (Nesbitt’s inequality) [26] Let x, y, and z be
three positive numbers, then

Yizs
y+z 72 ™

cyc

where the equal sign occurs when x =y = z.

Lemma 2.5 (Power-Mean inequality) [29] For any non-

negative set {x1,x,,...,x,} and 9> a > 0, then

where the equal sign occurs when x; =x;, = --- = x,,.

Lemma 2.6 (Cauchy’s inequality) [28] For any two sets
{x1,%2, ..y Xu } and {y1,¥2,...,Yn}, then

EIE)E)

where the equal sign occurs when x; = ky; (i = 1,2,...,n).
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Lemma 2.7 (Generalized Cauchy’s inequality) [28] For

any two nonnegative  sets {xi,xp,....x,} and
{1,925+ sV}, @ >2, then

n o«

" x* (Z:x,)

P (10)
=i > Vi

i=1
where the equal sign occurs when x; = x, = --- = x, and
Yi=Y2=""=DYn

Lemma 2.8 (Holder’s inequality) [28] For any two non-
negative sets {x1,xa,...,X,} and {y1,y2,...,yn} such that
for o, f > 1,§+% =1, then

n % n % n
<ZX,“> (Zﬁ) 2 inyiv
i=1 i=1 i=1

where the equal sign occurs when x; = ky; (i = 1,2,...,n).

(11)

Lemma 29 (Carlson’s inequality)
x>0(=1,2,...,nj=1,2,...,m), then

m n # n m %
(Hzxg) > Z(H) |
=1 \j=1

j=1 i=1

[30]  Let

(12)

where the equal sign occurs when xj; = xp; = --- = x,; = 0
(more than one b)) or
Rl T UV N -

w=d= = G=1,2,...,m).

Lemma 2.10 (Wei-Wei dual inequality) [32] For non-
negative ordered set {xi1,xp, ..., xin} (i =1,2,...,m), and
/

{x};, x5, ..., X, } is one of its full permutations, then

n m n m
IS NI

j=1 i=l j=1 i=1

[1>w= 1130
j=1 =1 j=1 =1

where the equal sign occurs when {x},x,,...,x,,}(i=
1,2,...,m) is also an ordered set.
Lemma 2.11 (Minkowski’s inequality) [28] For any pos-
itive number x; (i =1,2,...,n;j=1,2,...,m) and a > 1,
then
n m * % m n i
EE)) 5w
i—1 \j=1 =1 \i=1
where the equal sign occurs when x;j,xp,...,Xim (i =

1,2,...,n) are proportional.

Lemma 2.12 (Jensen’s inequality) [31] Let fix) be a
function in the open interval (a, b), then for any x; (i =
1,2,...,n) in (a, b), then

@ Springer
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—(fa) +f () + -+ (w) =

S

1
f<— (1 +x+--F x,,)) ,f(x)is concave function,
n

1
() f2) + e ) <
X (16)
f<; (x1 + x4+ +xn)> ,f(x)is convex function,
where the equal sign occurs when x; =x, = --- = x,,.

Remark 2.2 And the converse weighted form of Jensen’s
inequality is

wif (x1) +waf (x2) + -+ waf (xa) <f

(Wixy +waxa + -+ - + wpxy,),

(17)

where w; > 0,> w; =1 and f(x) is a convex function in
i=1
the open interval (a, b).

Lemma 2.13 (ZTangent inequality) [33] If f(x) is continuous
and derivable function in the domain of definition, and is
defined at x = xo, then

(1) If f(x) >0, then f(x) >f"(x0)(x — x0) + f(x0) (con-
cave function);

(2) I (x) <0, then £(x) </"(x0)(x — xo) + f(x0) (con-
vex function).

Lemma 2.14 (Schur’s inequality) [35] Let x,y,z2>0 and
o € R, then

S -y —2) 20,

cyc

(18)

where the equal sign occurs when two of them {x, y, z} are
equal and the other is zero, or x =y =z If o =1, then

3
(Zx) —4 (Zx) <ny> +9xyz>0; If =2, then
cyc cye cyc
<4nyl> <12xy>
A oo .

xyz >
Lemma 2.15 (Muirhead’s inequality) [34] Given
alaa27a3aﬁlaﬁ27ﬁ3 such that 061206220(320,/3] ZﬁZ

>P320,00 2> P00+ =P+ Bo, o+ +o3> B+
By + 3 and x,y,z > 0, then

follyaz Z Zxﬁlyﬂz7

(19)
sym sym
meyzxzzot3 > Zxﬂ'yﬂzzﬁ3. (20)
sym sym
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Lemma 2.16 (Vasc inequality) [36] Let x, y, z be any real
numbers, then

<Zx2)2232x3y,

cyc cyc

(21)

<Z x2> >3 ny3. (22)

cyc cyc

Lemma 2.17 (Bernoulli’s inequality) [37] Let x be any
real number with x > — 1, then

{(1+x)“zl+ax, if a>1;

23
1+x)"<1l+ox, if0<a<l, (23)

where the equal sign occurs when x =0 or o =0 or oo = 1.

Remark 2.3 As can be seen from 17 famous inequalities
above, there are some inherent relations among them,
which are shown in the Fig. 1 [38]. The double arrows in
the figure indicate that the two famous inequalities can be
converted to each other to some extent, that is, there is a
certain equivalence relation. Also, the single arrow means
that it can only be derived from the beginning. This will
give us a new idea, that is, there are many ways to prove a
theorem or lemma. For instance, the AM-GM in Mean
inequality is equivalent to the Bernoulli’s inequality [37].
Another example, we can derive Vassilev-Missana’s
inequality by Young’s inequality [39, 40]. Obviously, we

Fig. 1 The inherent relationship
among the famous inequalities

Schur’s inequality €<— > Jensen's inequality

z
‘ Wei-Wei dual inequality }(—) Rearrangement inequality —){ Chebyshev's inequality ‘

can directly use the appropriate lemma, which will directly
reduce the difficulty of global proof, but also greatly
facilitate the further solution of the proof.

Theorem 2.1 (Half concave and Half convex theorem)
[41] Let f be a concave function on la, c] and convex
function on [c, b]. Suppose that the variables x,y,z € [a, D]
occur when x<y<z and x+y+z= C (C is constant).
Then it occurs that

(1) There exists x =y or z = b when f(x) + f(y) +f(2)
gets the minimum value;

(2) There exists x = a or y = z when f(x) + f(y) +f(z)
gets the maximum value.

3 Intuitionistic fuzzy inequalities derived by
operations

In this section, some intuitionistic fuzzy inequalities based
operations are derived. Moreover, they are correspondingly
proved by some famous inequalities.

Theorem 3.1 Let A, and A, be two IFSs on common X.
Then it holds that:

1) O(AI @A) 2 0(A @ Ay);
2 O(AeA;) 2 O(A; © Ay);
3) O(A1QA,) DO(A$A,);

Proof (1) Using the Definition 2.2, we get

!

, !
‘ Power-Mean inequality }<——){ Mean inequality }<—‘ Muirhead's inequality ‘

4

‘ Bernoulli's inequality |

|

| Nesbitt’s inequality ‘

‘ Vasc inequality H Tangent inequality |(—

)

‘ Carlson's inequality ‘—){

Cauchy's inequality Holder's inequality ‘

|

| Vassilev-Missana's inequality H

Young's inequality Minkowski's inequality ‘
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}D(An @ A2) = {(6m Dm0, 1= () 1m(0) | x €
X} and

}<>(A1 ©A) ={(x, 1=vi(0)v2(0), 1 (x)v2(0)) | 1 €
X1

Let f() =1 —vi())v2(y)

diate calculation displays

£ = 1=/ (00 + 1) - (1B +B()  (Use
Cauchy’s inequality: Lemma 2.6)

— i ()12 (1), then an imme-

= ¢(<u.(/>+ul< D=2 (00 (0)) - (1) + 200 24022)02(1))

> 1 /() + 01 (0 (2(2) + v2(2))?

=1—= (00 +v1(0)  (2(x) +v2(x))
>1-
(1 () +01(0) + 71 (1) - (2 (2) +v2(x) + m2(x))
=1-1-1
=0.

That is, 1 — vy (2)v2(%) > 1 (1) 12 ()-

Analogously, 1 — u, (1) pa (1) = vi(2)v2(%)-

Consequently, it is fully proved by the definition (1) in
Definition 2.2.

(2) It can be proved similarly to the formula (1) above.

(3) Using the Definition 2.2, we get

O(AIQAy) = {(g1 - nldfuld ey |y e x|
and

O(A1842) = { (2 Vi (01 (2), 1

i (02 (7))

Let f(x) = 1 = #2520 — /i (1) (7). then

f)=>1- Dl(x);vz(ﬁ ol );Hz( ba) >0 (Use Mean
inequality (AM-GM): Lemma 2.2).

That is, 1 — % > \/W

Ul(/)+U2( 0

Analogously, 1 — /u; (%) ua (%) >

Consequently, it is fully proved by the definition (1) in
Definition 2.2.

(4) Using the Definition 2.2, we derive

O(A1#A) = {(X, 1— [)210(11()111;222(2)) ’ [)210(1)( +U2? > Iye X}
and
) = (et

0 () F1 (1)
~ STntp ) | 1€ X

. — 2u(va(x)
Let f( ) =1 1 ()42 (%)

immediate calculation displays

) = (1 GO+ () +1) (01 () 02 (1) =401 () v2 (1)) +01 (1) +v2(2)
x 201 () +02(0) (i () + 1200 +1)

> 30 (0 +12 (1) +14+1) (201 (1) +02 (2)) —4v1 (1)v2 (1))
= 2(01 (1) +v2(0) (1 () +12(0)+1)

shev’s inequality: Lemma 2.3)

(0 +1 (1)

Gy hen an

(Use Cheby-
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1(
(1—v )2( )+U2( )(1 v1(2)))
10)

>0.

_ 201 (7)v2(x)
That is, 1— {50000 2 350Gt t0+ -

(D) (1) 201 (1) (%)
Analogously, 1— 2(#1(z)+uzz(z)+1) Z v](lx)+vzz(z)'

Consequently, it is fully proved by the definition (1) in
Definition 2.2. ]

i (0 +1 (1)

Remark 3.1 Four intuitionistic fuzzy inequalities in The-
orem 3.1 distinctly illustrate that two intuitionistic fuzzy
operations with dual form may possess a trend of potential
inequalities. It provides us with a new vision, that is, when
constructing inequalities, it is better to choose the dual
form of two new or existing operations, so that there may
produce better inequality relations under intuitionistic
fuzzy environment, and even equality relations.

Theorem 3.2 Let A, A, and A3 be three IFSs on common
X. Then it holds that:

(1) (./41 S) Az)@A3 D (.Al@.A3) S) (Az@A3);

(2) (./416./42)@./43 - (Al@A3)Q(A2@A3);

3) (AieA) — A3 D (A — A3) © (A — Az);
4 (AioAr) — A3 C (A — A3)o(Ar — As);
5) (.Al S) ./42)*./43 ) (.A1*.A2) © (.AZ*A3);

(6) (.Alﬂ.Az)*A3 - (A]*A3)Q(A2*A3).

Proof We just prove the formulas (1), (3) and (5), the
formulas (2), (4) and (6) can be proved similarly.
(1) Employing the Definition 2.2, we can get
(./41 S .Az)@A3 =
{<X7H|(Z)02(§)+ll3(l)7UI(X)+H2(X)*012(Z)#2( D4y | e X} and
(A1QA4;) © (AQA;) =

{<X (.“1(/)+H%</)i(02(x>+v3(l)) ,M H03(2) + 1 (x) + u3(2)2
—(01(2) + v3(0) (22 +115(0)4) | 1 € X).
Let f(y) = #1(1)‘)2<§)+l‘3<l> _ (m(z)ﬂls(z)i(vz(x)ﬂs(x))

immediate calculation displays
flx) = 11 (0 (02 () =v3 (1)) +#43 (1) =02 (1) =03 (1))
4

> 30 (0413 (0) (02 (1) =03 () +2—=02 (1) =3 (1))
= 7

, then an

(Use Cheby-

shev’s inequality: Lemma 2.3)
_ (m(x)w;(i))(l—vs(x))

>0.
That is. ‘(0w (g)ﬂta( 2> (ul<x>+u3(z)l<l>z(x)+vs(z))_
Analogously, vi(x )+')?(/)1;llz( D)

v )+ (0)—

(”1(X)+U3(Z))£#2(/)+Hs< 1) > 2(%)#2(%)+US(Z).

Consequently, it is fully proved by the definition (1) in
Definition 2.2.
(3) Using the Definition 2.2, we can get
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(A1 & Az) = As = { (i, max{p5 (), v1 () + 12(7)
=01 ()t ()}, min{s (7)), ()v2(2)}) | 2 € X} and
(A1 — As) & (A — As) =
{ < max{vi(x), 5 (1)} - min{py (), v3 ()}, max{p, (1),
v3(%)} +max{va(x), u3(1)}-
—max{u(x),v3(x)} - max{va (%), 3 ()} > | 1 € X}.
Let f(z) = max{u;(x),v1(x) + t2(x)  —v1()ma() }
—max{v (%), #5(x)} - min{g, (), v3(x)}, then four cases
are listed and discussed as follows:
Case 1: If vy (y) > us(y) and g, () > v3(y), then vy () +
(1) = v (0 (1) = vi(x) +r2(0) (1 = 1 (%)) = s ()-
Thus, f(x) = v1(x) + () = vi(2)ma () —v1(x)v3(x)
— ()1 = v3(2)) + 1) (1 = 01 (1)) > 0.
Case 2: If vi(y)>ps(y) and wy(x) <vs(yx), then
v1(x) + 12 (x) — vi(Or2 (1) = 13 ()-
Thus, f(x) =vi(x) + () — v (D) —v1(2)m(x)
— ()1 ~a2)) + () (1 = 1 (1)) > 0.
Case 3: If v, () < p3(x) and py () > v3(y), then
Case 3.1: If v1 (1) + 12(%) — v1 () 12(x) = p3(x), then
TG0 =000 + 1200 = () —rs (s (x) = s () —
13 (03 (1) = m3 () (1 = v3(x)) = 0.
Case 3.2: If v () + () — vi() a2 () < p3(x), then
0 = 13(0) — 13 (0vs () = u3 () (1 — v3(x)) > 0.
Case 4: If vy () < i5(x) and w,(x) <wvs(y), then
Case 4.1: If vy (1) + (1) — v1(0)#2(2) = 13(x), then
FO) = v1(x) + ma(x )—l’l(y)ﬂz(){)
—o1(Dia(2) = 03 () (1 = () + () (1 = v1(2)) > 0.
Case 4.2: If v1 (1) + 12(x) — v1 (D 12(x) < p3(x), then
TG0 = ws(x) — 1302 (1) = (1) (1 — pa(x)) = 0.
According to the above four cases, then we get ()
That is, max{u;(x),v1(x) + pa(x) — v1(2) 2 ()
max{v (%), u3(x)} - min{p (1), v3(2)}-
Analogously, ~max{s(x),vs(x)} +max{va(x), 13(x)}
—max{u, (%), v3(x) }
max{vs(x), u3 (%)} = min{vs (1), (1) v2(0)}-
Consequently, it is fully proved by the definition (1) in
Definition 2.2.
(5) According to the Definition 2.2, we get

>0.
}>

(A1 © Ap)kdy = {(z, MRILU o, () 4y +
1 ()1 (1) =01 (e (1) +v3 (%
) T A e ) | 7 € X} and

(AkA3z) © (ArkA;z)

{< m@HsG) | wruk)
L3 ()4 22 (0o ()4 1)

2(01(x) + v3(x) + 1) + il o nl)

+03(1)2(01 (1) + v3(2) + 1) - LUy | 5 € X

) — @+t w0+
et f(0) = 5ot st D e ey
% then an immediate calculation displays

1 ()2 () +445 ()
T 2 2tont) Tt 10

v (0)+v3 (1)

() +#3 (1) Ltz
2(m (o2 (1) +w3 (0)+1)  2(02(0)+v3(2)+1)

_ 1
T 2(m ()2 (1) +ra () +1)

(1 (mn () + () — Lt )
— 25 ()02 (1) (02 () +v3 (1)) + (2 () =03 (1)) 1t (0 115 (1) (02 (1) +2)
4 (o2 (0 +15 () +1) (02 (1) +03 (1) +1)

> i (0va )+ (G0)) (02 () +03 (0402 (1) =03 (1)) +143 (1) (02 (1) +2)
= 4 ()2 )+ G+ (02 (1) +03 (1) +1)

(Use Chebyshev’s inequality: Lemma 2.3)
2 (0v2 ()22 () + 1)+ (1) (v2(2)+2)
4 (o2 (1) +a3 (1) +1) (02 () +v3 (1) +1)
>0.

Similarly, we let g(X):z(

1500 + 1) — g -

130212 (2) + 13(0) + 1) —
+03 (0201 (1) + #2(2) — 01 ()
immediate calculation displays

_ o+ _ o)+ () =01 () (0 +v3 (1)
() = 21 (1) +v3 () +1) 2(”1(%)""#2? 0)—01(0) k2 (1) +v3 (1) +1) +

0y (2 (pae) + o) + 1) (1 - )

> v1 (1) +03 (%)
= 2(!)1( 0+ (1 ) l)l(y)ltz(/)+l)3(z>+1)
1)+ (1) =01 (1) 1 (1) +03 (1)
2( D)+ () (1= vl(/))

o)+ (2) (W0s(2)
+03(0) + 1) + 3G w0 (1 *2<v?]<z§+vix>+1>)
()1 (x)—=1)
ORI [ ) E cyEm )
N Y P
0+ (0)+1) 201 () +v3(x)+1)

2(1,
> ()i () —1) O+ v
i) +os(0+1) " 2(ma () +w3(0+1)

P
F03(x) +22(v1(x) +v3(x) + 1)
— 2 () (o (0413 () +1)v1 () =1 (1) + (1 (2) +113(2))

7))+ 03(0) + 1) + 230 (1 = pa ()41 (1) +v3(x)
(12 () + 13(x) + 1)

%(2.“2( )+01( )+U3( ))((#z(l)+u3(x)+l)vl(l)
+u3(2)) + 2030 (1 — 2 (2))4(01 (1) + v3(x) + 1) (12 (1)
+u5(y) + 1) (Use Chebyshev’s inequality: Lemma 2.3)

>0.

Consequently, it is fully proved by the definition (1) in
Definition 2.2. O

v1 (1) +v3(2) +H2( )+ (1)
vi(x)+v3(x)+1) 2(up (%)

v1 00+ (1) =1 (D (1)

»(7) +v3(y) + 1), then an

~ 20
u
+ s

—~
<
\.//—\

Theorem 3.3 Let A, A, and As be three IFSs on common
X. Then it holds that:

(1) (.Al $.A2) 6 A; 2 (-/41 © .Az) $ (./42 S ./43);

2) (.A] $ A2)6A3 - (.A]Q.A3) $ (./42@./43);

3) (Ai#A)S A3 D (Ao A;3) # (A0 Asz);
“4) (./41 # A2)®A3 (./41!3./43) # (A20A3);

5 (A *xA) @.A3 (A1 © A3) % (A, © Az);
(6) (.Al * .Az) (.A1ﬂ.A3) * (A29A3).

Proof We only prove the formula (1), and the formulas
(2)-(6) can be analogously proved.
(1) Using the Definition 2.2, we can derive
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(A8 A4)0A4; =

{ (03 (x \/#1 o \/Ul
o1 ()2 (1)1 ( )>|X€X}and

(Ao As)$ (Ao A;) = {v3(0 Vi () (1),
V(1 G) + 13() — o1 (s (2)) - (2(0) + 13(2)
—02(2)u3(2)))) | / € X}

Let = (Vor()v2(x) + m3(2)
v2(2)1a (1))~
(V(1(0) + 15(0) = o1 () (2)) - (2(2) + 15()

—02(2)3(2))))% then an immediate calculation displays

)+ us(%)

v1(x)

(X) = (\/ Ul 02 “!‘#3 \/l)l 1)2 ,u3 )
((( >)1)()X + 132 )—UI(X)Hs(/C)) (02(2) + 13 (2) — v2(2)
M3 %

= 15(2) (1= p3(2)) (2v/01(0)v2(2) = 01(x) + v2(2)))

< (7) (1= 1300) (01 (1) + 02(2) = (01 (%) +v2(2)))
(Use Mean inequality (AM-GM): Lemma 2.2)

=0.
Consequently, it is fully proved by the definition (1) in
Definition 2.2. O

Remark 3.2 Some intuitionistic fuzzy inequalities in
Theorem 3.2 and Theorem 3.3 distinctly reveal that
inequalities based on subtraction-division operations with
other operations have a distribution law similar to that of
equality. With the help of the similar structures of Theo-
rem 3.2 and Theorem 3.3, we can prove whether it con-
forms to the above formula by introducing a new or
developed operation, and then obtain a similar form of
inequality, and further enrich the theoretical connotation
based on the operation. Of course, most of them can be
proved or partially proved by some existing famous
inequalities.

4 Intuitionistic Fuzzy Inequalities Derived
by Aggregation Operators

In this section, we develop three unweighted intuitionistic
fuzzy aggregation operators (AOs), including UIFS, UIFA
and UIFG. Moreover, some inequalities on them are
derived and proved.

Definition 4.1 Let d; = (y;,v:)(i = 1,2,...,n) be a set of
IFVs and let UIFS or UIFA or UIFG: Q” — Q, if

UIFS (i, do, - - -, i) = )@@ - - - Qi (24)
or
UIFA(dy, da, . . ., dy) = d1 B 2 & - - & dy (25)
or

@ Springer

UIFG(al,ag,..., ) =d Rdy® - R dy, (26)

then UIFS or UIFA or UIFG is called unweighted
intuitionistic fuzzy Square (UIFS) or unweighted intu-
itionistic fuzzy Arithmetic (UIFA) or unweighted intu-
itionistic fuzzy Geometric (UIFG) operators, respectively.

According to the Definition 2.2 and Definition 4.1, the
following results can be deduced by using mathematical
induction.

Theorem 4.1 Let d; = (y;,v:)(i = 1,2,...,n) be a set of
IFVs. Then their integrated value by using the UIFS
operator or UIFA operator or UIFG operator is also an
IFV and

UIFS (i, G, - - -, diy)

1 n 1 1 n 1
= (27:1 My +Z;W““FDI +;WU,’>

(27)
or
UIFA(dy, dis, . . ., diy <1H ﬂi),ﬁvi> (28)
] - -
UIFG(d), dy, - - ., dp (Hﬂ —Hl—u,)). (29)

Proof We only prove Eq. (27), the Egs. (28) and (29) can
be analogously obtained.

(1) In the following, we prove that the integrated result
of some IFVs is still an IFV.

2n -1 .ul +22n i1 ,ul +2n T U1 +22n T Ui
i=2 i=2

= %(Ml +u1) + 2;2J—+1<#z + v;)

i=2

)
=1.

(2) Now, we prove that the integrated result is

(2" l:u“l +ZZ" /+ll’t172n lvl+22n i+ Ul)

l—|

i=2
® We ﬁrst prove that Eq. (27) holds for n = 2.
According to the operation @ in Definition 2.2, we get
UIFS(dy, da) = (M52, 252).
@ If Eq. (27) holds for n =k, i.e.,
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UIFS (1, do, . .

-, i)
1 S 1 =
= (Wﬂl + D seat My e U1 + er—ﬂvl)
i=2 i=2
Thus, when n = k+ 1, we can obtain the formula as
follows:
UIFS(dy, da, - . ., G, Giet1)
= UIFS(dy,dy, . . ., i) Q( Uy 15 Vict1)
K K
= <2+1M1 + Zﬁﬂi,#vl + Zﬁvz)
i=2 i=2
@(luh‘JrI’ UK+1)

| K+1 | | K+1 |
= (zetts + D semz tis3e V1 + D 5em Ui ).
i=2 i=2

Accordingly, Eq. (27) holds for all n, which finishes the
proof of Theorem 4.1. U

Example 4.1 For IFVs d; = (0,0.3),d, =(0.4,0.2),
ds = (0.6,0.4), by computation, we have

UIEG(dy, G, i) = (0-0.4-0.6,1 — (1 — 0.3)
(1-02) (1 —04)) = (0,0.664),

UIFS(di,dp,d3) = (-0 +3-04+3-0.6,5:-0.3 +
%502 +4-0.4) = (0.4,0.325),

UIFA(dy, da,d3) = (1—(1—0)-(1—04)-(1—0.6),
0.3-0.2-0.4) = (0.76,0.024).

Remark 4.1 The unweighted intuitionistic fuzzy AOs
proposed above are to perform corresponding operations on
a set of IFVs, without additional weighted forms. It is not
difficult to see that the UIFS operator can avoid counter-
intuitive phenomena and are insensitive to data. In other
words, some integrated preference information of mem-
bership or non-membership will be neglected when using
some special IFVs, including (1,0), (0,1), (0,0) and (1,0).
Moreover, the UIFA and UIFG operators are two particular
operators without weighted forms compared with intu-
itionistic fuzzy weighted averaging operator [13], which
also have the same issue.

Theorem 4.2 Let d; = (y;,v:)(i = 1,2,...,n) be a set of
IFVs. Then it holds that
UIFG(d, s, . . ., i)

30
<UIFS(d, d, . .. (30)

,Gy) <UIFA(d), s, . . ., Gy).

prove the UIFG(d, da, . . -
.,dy), and the other one can be anal-

Proof We only

d,) <UIFS(d, da, . .

ogously proved.
Using the Theorem 4.1, we have

UIFG(d), és, . . ., ) = <H 11—
i=1
UIFS (1, da, - . ., diy)

n n
_ 1 1 1 1
- <2nl My + Z n—i+1 His n—1 v + Z n—it1 V; ) .
i=2 i=2

ﬁ(lvi)) and

i=1

An immediate calculation displays

sy + Zzﬁﬂl

>1 (ﬁ + 2; ) <u1 + Z;'“i) (Use Chebyshev’s
inequality: Lemma 2.3)

n
(e 1= 3 S

ll‘l
Z;Zﬂi

=1
1
2 l:ll(ﬂi)"
Lemma 2.2)
> [T w
i=1

Assume that

(Use Mean inequality (SM-GM):

n

1 al 1
Sn =1 —H(l —l),‘) — <2n_101 +22n_1+10,> 20
i=2

i=1

holds.
Next, we prove S, > 0 by using mathematical induction.
(1) When n = 2, we can derive

S =1—(1—v)(1—vy) — 2=

=g oy

> /vy — v, (Use Mean inequality (AM-GM):
Lemma 2.2)

= 0102(1—,/0102>

>0.

(2) Assuming that n = k, S, >0 is true, i.e.,

K

1 X 1
SK =1- H(l — D,‘) — (Fvl +ZWU,> 20
i=2

i=1

So when n = k + 1, a direct calculation shows

i=1

K+1 1 K+1 1
SK+1:1_H(1_D[)_ FUI+;WUi

K

=1- (1 - UK+1) H(l - Ui)

i=1

K
1 1 1
- <2x v+ em Vi +5 Uic+l>

i=2
K
— 2(1-ve41)
=1-===]I
i=1
1 Sl 1
(1 —=vi) =5 301 + D 5emr Vi | — 3041
i=2
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:% (1- UHI H(I—U)

i=1
1(_1 11
—§<2— 1+22, = U;) +3 =20+l —
i=2
>

K K
34010 - (st + S

i=1 i=2

] K
Ur+1 H(l _ U,)

i=

:%(1 - ﬁ(l —v;) — (2,%01 +iﬁv,>>

i=2

4 (1= v - v fl0-w)
>

=1

(1= (0o -)
1)

> %(1 (Vi1 + (1 = V1) -
=0

Further, we can see from (1) and (2) that S, >0 is true
for all n.

Finally, employing the score function in Definition 2.3,
UIFG(dl,d'z,...,dn) SUIFS(dl,dz,. ..,dn) is fully
proved. U

Remark 4.2 From Theorem 4.2, it is not difficult to find
that the intrinsic relationship of the inequality based on
UIFG, UIFS and UIFA operators may be determined when
they were used as the primitive operations (P, ®,@). In
other words, when we establish this type of intuitionistic
fuzzy inequality, we can rely on the original operations to
filter out the inequality based on the AOs that may meet the
requirements at the beginning, and then use some famous
inequalities with mathematical induction in the subsequent
proof process. Relying on this idea and concept, it will
greatly promote the process of finding inequalities and
enrich the system of inequality methods. Moreover, it need
to be emphasized that if the above intuitionistic fuzzy AOs
appear in a weighted form which will not satisfy the above
inequality relationship.

Theorem 4.3 Ler d; = (y;,v;) (i=1,2,...,n) be a set of
IFVs and d = (p,v) be an IFV. Then it holds that:
(1)  UIFS(é} ©d,d} ©d,...,d" © d) < UIFS(d,ed,
Mpod, . . ., Md,ed), 1> 0;
(2) UIFS(id) © d,ir © d, . . .,
d, & od,. .. d od),iff 1>1;
UIFS(/lc'z'l Od, i Od,.
<UIFS(d} © d,d: S d,.. ., d" @a) ffo<i<l;
(3)  UIFS(2d\@d, Adrod, . . ., Ai,ed) > UIFS(dted, d;
ad, ..., d"ed), iff 1> 1,
UIFS(/lalaa, Mir@d, . . ., Miyod) < UIFS(dte
dted), iff 0< A< 1.

Jd, ©d) > UIFS(d} ©

o My © i)

d, ded, . . .,

@ Springer

Proof We only prove the formulas (1) and (2), and the
formula (3) can be analogously proved.
(1) Using the Theorem 4.1 and Definition 2.2, then

UIFS(df © d,d © d, .. .,d" S d)
n "
= (2}, weo + Zﬁufu,z—{l (1 -1 - - 01)7~> +

i=2

n

z%@ (- (1 — z),');‘) ) and

lZZUIFS(Adl Odi, Mir0di, . . ., Jiy@di)

— (= (1= =0 - w))

F3 g (1= (1= 0)(1 = ) ) 5 vfu+iﬁv;ﬁm.

Let s;=1—(1—=v)(1—pw) —u(i=1,2,...,n),
then we can deduce s, >1—(1—v)-1—1-0=0.
Further, we can derive

(1= (=) - ))
+i2n,+ﬂ(1f
=2

o+ 3 o
iz
Analogously, 5 (1 - (1= - vl)'l> + 3
i=2

(1= (1= w1 =) > s viu+ 3 v
i=2

Therefore, employing the score function in Defini-
tion 2.3, the original formula is fully proved.
(2) Using the Theorem 4.1 and Definition 2.2, we get

UIFS(Jdy © d, Ad> © d, ..., iy ©d) = (55 (1— (1—
/11))')0 +Zzn——lr+l(1_(1 _Mi)/t)vaﬁ(l)?"".u_v%ﬂ)

+22,, — (v} + 1 —vfp)) and

i=2

UIFS(df © d,d} © d, .. .,d" S d) =

(koo + St (1 1= (1 = w))
+ 35 (1= (1= w1 =0)')).
i=2
Let s = (1 — (1 - ui)i)v — wh
= (1 — (1= ) —u?‘)v
= (1= =) (1= 1) = ) Y
and
2 A A
t=1—(1 =1 —v)" — (vf +p—vjp)
=(1- ,u)(l —(1=v)" = 1)?’)
= (1= (1= (= vt =)™ = ui)).
® If 2> 1, then we have
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() <11 =) <1 () <1 and (1 —vy)"!
<1.
Further, we get

s = (1 — (1= p;)(1 = .“i))v_l - ﬂi(:ui))v_])
v>(1—(1—p)-1—u-1Hov=0and

r= (=) (1= =)0 —u) ) >

(1—,u)(1—(1—1),-)-1—1),-~1):O.
Finally, we can derive
1 (1-(1=yu) - (11—
(10w )o et (1w o

n
o+ 3 5t wio and

i=2

(Dl + ,u - Ul,u) + Z 2»1Ji+l

@; b i) < 5
+ Y st (1= (1= (1= w)).
i=2

Therefore, employing the score function in Defini-
tion 2.3, the original inequality holds.
@ If 0< A< 1, then we have

()™ =1, (=) T > L ) 21 and
(1—v)"'>1.

Further, we get

= (1= =) (1= 1) = )

<A1-(1-p) - 1—p-1Ho=0and

== @1 (=)= =)

(=@ —(1—v) 1—v-1)=0.

Finally, we can derive

2"%1(1 (1—/11))U+Zzn1+1

(1 - (1= Mi)A)US 7 v + Zznf—,ﬂufv and
7 (vf +#—U1#)+Zzn,+1(v +p— i) >
2»11(1_(1—#)(1—01))
3t (1 (=01 = 0)).

Therefore, utilizing the score function in Definition 2.3,
the original inequality holds.

From what has been discussed above, the original
formula is fully proved. O

Remark 4.3 As the data integration of a series of IFVs
relying on the UIFS operator, it has some better charac-
teristics in constructing inequality. When constructing the
inequality, we first follow the preliminary formation of two
special IFSs with good dual form (c’if' ©d and Ad;@d) or
partly dual form (1d; © ¢ and c'if O d; Ad;ed and c'if@d ), and

then compare the two magnitudes. And then extend to
multiple IFVs, that is, use the idea of UIFS to further verify
its feasibility. It may become a stable and feasible model
for other new operations or some existing operations to
construct inequalities based on UIFS or other intuitionistic
fuzzy AO:s.

Theorem 4.4 Let d; = (u,;,va) and b; = (i) (i =
1,2,...,n) be two sets of IFVs. Then it holds that:

(1) UIFS(d) © b, d> © by, . . ., dy © by) <
UIES(dy, di, . . ., G, )0 UIES(by, by, . . ., by);

(2) UIFS(d0by,dr0b,, . . ., > UIFS(d), d,

,G,)© UIES(by, by, . . ., by).

Gnob,)

Proof We only give a proof of formula (1), and the for-
mula (2) can be analogously proved.

(1) Using the Theorem 4.1 and Definition 2.2, we can
get

UIES(d; © by, d> © by, . . .,

dn @bn) = (%:ualvbl

n n

+ 37 5T MaiVbis 5t (Va1 + M1 — Var ) + 2 3 (Vait
i=2 i=2

Ipi = Vaitly;) ) and

UIFS(dy, dy, . . ., dy) © UIFS(b, by, . . ., by,) =

n
<2n11 (,u'al + l)bl) + Z 2n—1:+1 (:uai + Ubi)
i=2

n n
1 1 1 1
- (Wﬂal + ZZnHlﬂai) <2n1”b1 + Zznmvbi)
i=2 i=2

1 1 1 1
<2n IU”1+ZZn 1+l )<2n l‘ub1 +22n i+1 'ubz>>'

n
Let f= —2,,171 Ha1Vp1 + Z—ZHJM HaiVbi— (—2)71 (a1 + vp1)
i=2

n
+ 3 5t (Hai + Vbi)

i=2

n n
1 1 1 1
- (2111 Hq1 + Z p=Ea ,u'ai> <2nl Up1 + Z STl Uhi) ) , then
=2 =2

we can derive

n n
f= (2”111),11 —|—22,,1i+10bi) <2nl1l1a1 +Zznf++1“ai -1

i=2 =2

+ g gy (Vo1 — 1) +22rtj—iﬂﬂai(ubi —-1)<0.

Moreover, we let g=

n
+ >z (Vai 4 iy

i=2

(Zn%(vfu + Hp1 — Va1 1)
n

~ vuitt)) —((— o + z—)
i=2

n
(2% fpy + 2 5T ,ub,-> ), then an immediate calculation
im

gives
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n
_ 1 i
8§ = (Va1 + Hp1 = Valfpr) + 22 Pl (Vai + Hpi
i=2
1 S
—Vaiftp;) = | 31 Val + D 5t Vai
i=2
1 S
T Mot T D g
i=2
1 Y
= 51 (Va1 + Hp1 — Vartipr) + 20 gt (Vai + My
i=2
1 i S 1
—Vaillyi) = 537 Vallp1 — 3w Val D_ 5t Moy — 3 Hp1 2
i=2

n n

n 1 1 1

=2 31 Vai — Z 3—+1 Vai * Z =71 Hpi
=2 =2

n n

— 1 1 1

= Z = (Uai + Wpi — Vailly;  —Vai Z =1 Mpi — =1 Mp1
i=2 i=2

n
1 1 1
Vai) + 5t (Va1 + Vb1 —Va1Vb1 — 3=t Val b1 — D 5t MpiVat )
i=2

i (1 = 0ai)) + 3 (Va1 (1 = 55 iy
- Z 2n—li+l .ub[) + Up1 (1 — Ual))

i=2

>0.
Therefore, employing the score function in Defini-
tion 2.3, the original formula is fully proved. O

Remark 4.4 First of all, two operations with dual form are
no longer confined to the union of some IFVs as one ele-
ment in AO, but are extended to construct inequality by the
connection between AO and AO. Similar to the previous
Remark 4.2 and Remark 4.3, it also can become a
stable and feasible model for other other new operations or
some existing operations to construct new inequalities
based on UIFS or other intuitionistic fuzzy AOs.

Note 4.1 To sum up, the following three points need to be
specially stressed:

(1) It can be deduced that when all intuitionistic fuzzy
AOs (UIFS, UIFA and UIFG) with weighted form
[13], the Theorem 4.2 will not be invalid, espe-
cially for UIFS.

(2) The new operations, especially the pair of opera-
tions with dual form, can easily match the UIFS
operator in Theorems 4.2, 4.3 and 4.4, and may
produce better inequality relations. Finally, its
correctness is verified by some famous inequalities
or other classical methods.

(3) Since the UIFS operator in this paper is derived
from the operation @ to obtain a series of valuable
and related inequalities, whether the new intuition-
istic fuzzy AO derived from the new operation
maintains the consistency of the above inequalities
will be the focus of our subsequent discussion.
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In the following section, we will consider some special
intuitionistic fuzzy inequalities derived by equality
w—+v+ =1, which may be the foundation for proving
the inequalities of operations and AOs under intuitionistic
fuzzy environment.

5 Intuitionistic Fuzzy Inequalities Derived
by Equality

In this section, some intuitionistic fuzzy inequalities
derived by equality g+ v+ m =1 in Definition 2.1 are
cleverly constructed. Meanwhile, some necessary proofs of
intuitionistic fuzzy inequalities are provided, which are
employed some existing famous inequalities or their
combined forms, including Rearrangement inequality [24],
Mean inequality [25], Nesbitt’s inequality [26], Cheby-
shev’s inequality [27], Cauchy’s inequality [28], General-
ized Cauchy’s inequality [28], Holder’s inequality [28],
Minkowski’s inequality [28], Power-Mean inequality [29],
Carlson’s inequality [30], Jensen’s inequality [31], Wei-
Wei dual inequality [32], Tangent inequality [33], Muir-
head’s inequality [34], Schur’s inequality [35], Vasc
inequality [36], and Bernoulli’s inequality [37].

5.1 Intuitionistic Fuzzy Inequality Proved by
Rearrangement Inequality

The Rearrangement inequality [24] is a common inequality
whose intrinsic dependence can be summarized as “Rev-
erse order < Random order < Same order”. It depicts the
intrinsic relationship between “efficiency” and “fairness”
of unrestricted system, which has strong practical signifi-
cance in how to allocate resources. In addition, it can
derive many famous inequalities, such as: Mean inequality
(AM-GM), Cauchy’s inequality, Chebyshev’s inequality.
In the following, two intuitionistic fuzzy inequalities are
developed and proved by Rearrangement inequality.

Theorem 5.1 For any IFV d= (u,v,m) and satisfy
w0, T > 0. Then it holds that

| GES ) (31)

cyc cyc

Proof A direct equivalent calculation of Eq. (31) gives

[T =TT

cyc cyc

& [T - TTpt =TT T w

cyc cyc cyc cyc

< [Tw*>1n

cyc cyc
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e Jlw= (H u) :
cyc cyc
3
Thus, it suffices to prove that [ u* > (H ,u) .
cyc cyc

Without loss of generality, Let us assume p>v>m.

Further, we can get Ilgu> lgv > Igm.

It is known from the Rearrangement inequality in
Lemma 2.1 that

ulgu+vlgo+rnlgn>pulgu+nlgo+vlgn  (Same
order is superior to Random order),

ulgu+vlgv+nlgn>vlgpu+ ulgv+nlgn  (Same
order is superior to Random order),

ulgu+vlgv+rnlgn>nlgu+vlgv+ plgn  (Same

order is superior to Reverse order).
Summing the above three inequalities, an immediate
calculation displays
3(ulgu+vlgo+ nlgn)
>(u+v+n)(gu+lgo+lgn)
= lg(ﬂ'ul)') 71) > u+v+n lg )

(uv
& lg(w'n 1lg(/w )
Ig(pom)

Sl

") >
& lg(utv'n”) >
& photnt > (,uvn)%
1
3
In other words, [] u* > (H u) holds.
cyc cyc
Consequently, this completes the proof of Theorem
5.1. O

Theorem 5.2 Let d = (u,v,m) be an IFV. Then it holds
that

Sl (32)

cyc

Proof Without loss
w=min{u, v, n}.

Hence, there are two cases, which are discussed as
follows:

Case 1: u<v<m.

If ,u<u<n, then u(1+ u) <v(l+v)<n(l+n) and
I S B i
I+n — 1+U — 1+

It is known from the Rearrangement inequality in
Lemma 2.1 that

of generality, Let wus assume

Zu w1+ o(l+v) =n(l+n)
v l+v o140 1+= 1+u
= pu(l+p) ol +o) -z +a(l + 7)o

p(l+ ) -+ o(1+0) Ty + (L +7) -
dom order is superior to Reverse order)
=u+v+n=1.
Case 2: u<zw<v.

If u<n<v, then pu(1+ p)<n(1+n)<v(l1+v) and
I S WG B
I+v — 14+n — 14+u°

According to the Rearrangement
Lemma 2.1, a direct calculation gives

1+n (Ran-

inequality in

Zy _ w1+ o(l+v) =n(l+n)
o l+v 1+v 1+= 1+ u
=10l ol1 £0) gl 4 1
>u(l+p)- liu—i—v(l—i-v) ]L)—i-n(l—l—n) 7 (Ran-
dom order is superior to Reverse order)

=p+v+n=1

Consequently, this completes the proof of Theorem
5.2. ]

Remark 5.1 From Theorems 5.1 and 5.2, it can easily
derive a conclusion that using the Rearrangement
inequality assumes that each variable must be preset in the
corresponding order. While there is no agreement on the
order of magnitude of each variable, the optimization
hypothesis can be used. Moreover, the specific use of
Rearrangement inequality can be divided into two kinds,
namely symmetrical (Theorem 5.1) and cyclic (Theo-
rem 5.2). For the inequality of variable with cyclic form,
we need a more classification discussion than that of the
inequality of variable with symmetric form, and then prove
its feasibility. It is also interesting to note that the
inequality with the circular form of the variable has a
preference for using Random order and Reverse order. And
the inequality of the corresponding symmetric form of the
variable, the preference is Same order and Random order.
Of course, Same order and Reverse order can be regarded
as a peculiar Random order.

5.2 Intuitionistic Fuzzy Inequality Proved
by Mean Inequality

The Mean inequality is high-frequency used inequalities,
which has almost become the foundation of proof of
multitudinous inequalities such as Power-Mean inequality
and Nesbitt’s inequality. In the following, two intuitionistic
fuzzy inequalities are developed and proved by Mean
inequality (AM-GM and HM-AM).

Theorem 5.3 For any IFV d= (u,0,m) and satisfy
w0, T > 0. Then it holds that

@ Springer
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u+1 36
Zu(u+2) =7 (33)

cyc

Proof According to the Mean inequality (HM-AM), a
direct calculation gives

Z u+l > 9
2) = 1(pt2)
cyc H(yi2) Z—

9
(u+1)2-1
E el
cye
9

- Z(/.t+1)— o7

cye cye

3+E‘u Z}H’l

cye cye
= — L
4 2 :)l+]
cye
9
2 5

4_2014)

6

=3

Consequently, this completes the proof of Theorem
5.3. O

Theorem 5.4 Let d = (u,v,7) be an IFV. Then it holds
that

Y ovw<3( =[xl (34)

Proof A direct equivalent calculation of Eq. (34) gives

&S o+ 35 [Ju<3.
cyc cyc
Thus, it suffices to prove that > /mo + 33 /[ <3.
cye

cyc
According to the Mean inequality (AM-GM) in
Lemma 2.2, a direct calculation shows

U+ /U0 + Y uow

=p++5 20+ v-4n
<u+1(“+20)+§(§+u+4n)
=3(u+v+m)

Wl Wl

Similarity, we have

7+ A IR < L

Further, summing the three above inequalities, we have

Yt ymw+3s[n<4

v+ Vo4 Yuor < ‘3—‘ and

cyc cyc

Apparently, > /uv + 3 3/]] # <3 holds.
cyc

cyc

@ Springer

Consequently, this completes the proof of Theorem
54. ]

Remark 5.2 From Theorems 5.3 and 5.4, we can find that
using the right mean inequality in the right place is the
heart of the proof under intuitionistic fuzzy environment.
Meanwhile, using equality p+ v+ n = 1 to reduce some
of the terms that appear in the inequality at critical
moments will also greatly reduce the complexity of the
proof. In addition to the AM-GM and HM-AM listed
above, other classic Mean inequalities, including SM-GM,
AM-SM and 3 M, also shine in subsequent combined
famous inequalities.

5.3 Intuitionistic Fuzzy Inequality Proved
by Chebyshev’s Inequality

Chebyshev’s inequality can be easily derived by Mean
inequality and Rearrangement inequality. That is, Cheby-
shev’s inequality combines the advantages of the two, can
deal with specific types of issues in a more targeted man-
ner, and greatly improves the application scenarios of the
inequality. In the following, an intuitionistic fuzzy
inequality is constructed and proved by Chebyshev’s
inequality.

Theorem 5.5 For any IFV d= (u,v,7) and satisfy
w0, @ > 0. Then it holds that

Z3u +o+7n " =3 (35)

cyc

Proof A direct equivalent calculation of Eq. (35) gives

1
2w <3
cyc

1
At Z3;tz+17u S?’
AN Z u3p—1)

3;1-—,u+1 =

& Z 3l > 0.

Without loss of generality, assume that > v > 7.
Further, we have 3y —1>3v—1>3n — 1.

Since uv < (’”“) < %, a direct calculation shows

(3uv*1)(ufv)§0

& 3uo(p—v)<p—v

& 3u+, <30+

S3u—1+,<3v-1+;
1 1

<:>3u—l+] = 3.)—1+"

Similarly, 3—— 12 > ﬁ
= 7[

According to the Chebyshev’s inequality in Lemma 2.3,
an immediate calculation gives
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3u—1
3;4—1-%

cyc

i i
25'2(3#—1)'523#,71&

cyc

_1 1
o) o

cyc
=0.
Consequently, this completes the proof of Theorem
5.5. ]

5.4 Intuitionistic Fuzzy Inequality Proved
by Cauchy'’s Inequality

Cauchy’s inequality is a frequently used theoretical basis
when proving certain inequalities. The technique is mainly
to split the constant and make up the constant value. In the
following, we present an intuitionistic fuzzy inequality and
prove it by Cauchy’s inequality.

Theorem 5.6 Let d = (u,v, ) be an IFV that is not a crisp
number. Then it holds that

u 1 1
2+Zu+ﬁ§ gy;\/v+ﬂ<\/3+zv+n' (36)

cyc cyc

Proof The Eq. (36) can be proved in two steps, as shown
below.
(1) Right inequality: > /-4 < 3+
cyc cyc

A direct equivalent calculation of right inequality gives

i i
Z v+ S 3 + Z v+m
cyc cyc
] pto U
<:>Z\/ u+n§ ,u+v+zv+n
cyc cyc cyc

[_K utv n
A Z v+T S uto + Z utv
cyc cye

cyc

@2y
& e
< Z > (o) (ptm) = !

cye

w2+ u
cye <
& 2| S <

cye

w2+ u
&> |7——~r—<I
cyc (El‘> +Z#”
w2+
Fs\Ees!

cyc
cye

cyc cyc cyc

= u2+Hu<\/1+Zuv-

According to the Cauchy’s inequality in Lemma 2.6, we
have

(571

- (tvm i)

cyc
< (Zu) (Zu+ Zuv>
cyc cyc cyc
=14+ .
cyc

Hence, right inequality holds.

(2) Left inequality: \/m < P
cyc cyc

A direct equivalent calculation of left inequality shows

/ H I
2 + Z v+7 S Z v+7
cyc cyc
/2 1 1 I I
At 3 Z v+m + 3 Z v+m < E v+m
cyc cyc cyc
2 1 1 J2 I
A 3 Z U+ + 3 Z v+m < Z v+7
cyc cyc cyc

2 141 e I
3 E :Hﬁ‘} E :!7+1[ § AV
e

cyc < cye

L L
v v
cye cye

, 2w+3lln
o _+cyc cyc SZ

3 ,
3 (1 +> ,ut)) e
cyc
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& [T+][Iusy w2 +]1n
cyc cyc cyc
2 2
e | A+IIu) (X2 [+l
cyc cyc cyc
SYw+2y
cyc cyc
<u2+Hu><vz+Hu>+2Hu—l
cye cyc cyc
>0.

Using the Cauchy’s inequality in Lemma 2.6, we have

cyc cyc cyc cyc cyc

Y2y (u“l’[#) <02+Hu> +2[u—1

> Zu2+22<uv+l_[u> +2]Ipn—1

cyc cyc cyc cyc
=y +2 w+8][u—1

cyc cyc cyc

2
= (Z #) +8][n—1
cyc cyc
=14+8J[u—1
cyc

>0.

Hence, left inequality holds.
Consequently, this completes the proof of Theorem
5.6. O

5.5 Intuitionistic Fuzzy Inequality Proved
by Holder's Inequality

Holder’s inequality reflects the relationship between L,
spaces. Cauchy’s inequality is special form of Holder’s
inequality when o = f§ = 2. In the following, we develop
an intuitionistic fuzzy inequality and prove it by Holder’s
inequality.

Theorem 5.7 Let d = (u,v,7) be an IFV. Then it holds
that

D VEZ3VEY g, (37)

cyc cyc

Proof 1t is known from the Holder’s inequality in
Lemma 2.8 that

(;(ﬁ)‘) (;W) > <:u%u%) |

2 1

& (zw‘l)’(zm)ém

cyc cyc cyc

1%
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(=)

20

cye

3 2
(o) o))
6 2
(o o)

(5o ) )

cyc cyc cyc cyc

>3V33 w

cyc

Let P=>4>>0 and Q=Y uw >0, then a direct

eye eye
equivalent calculation of the above inequality gives
(P+2Q)° >27PQ?
& PP+ 6P*Q+ 12PQ” +8Q° >27PQ*
& PP+ 6P°Q — I5PQ* +8Q° >0
& (PP—PQ*) +6(P*Q—PQ*) —8(PQ*— Q) >0
< PP+ Q)(P— Q)+ 6PO(P
~Q) - 8Q* (P~ Q)20
& (P—Q)(P(P+ Q) +6PQ—80%)>0
& (P-Q)(P*+7PQ -8Q%)
& (P— QP (P+79)>0.
Consequently, this completes the proof of Theorem
5.7. O

5.6 Intuitionistic Fuzzy Inequality Proved
by Minkowski’s Inequality

Minkowski’s inequality can be derived by the Holder’s
inequality. Like the Holder’s inequality agove, Min-
kowski’s inequality can take countable measures in par-
ticular forms of sequences or vectors. In the following, we
develop an intuitionistic fuzzy inequality and prove it by
Minkowski’s inequality.

Theorem 5.8 Let d = (u,v,7) be an IFV. Then it holds
that

Z\/HZ—M—FIE\/?. (38)

cyc
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Proof 1t is known from the Minkowski’s inequality in
Lemma 2.11 that

VK -+l

cyc

_ 202 —2u+2 2u+2
_ Z W2+ (u;l) +1
cyc
2 2
(Zu) +<Z(u1)> +32

2 2

= \/’7.

Consequently, this completes the proof of Theo-
rem 5.8. ]

5.7 Inutitionistic Fuzzy Inequality Proved
by Jensen’s Inequality

Jensen’s inequality is a quite useful inequality which can
easily derive some famous inequalities, including Power-
Mean inequality [29], Holder’s inequality [28] and Min-
kowski’s inequality [28]. In the following, we present a
novel inutitionistic fuzzy inequality and prove it by Jen-
sen’s inequality.

Theorem 5.9 For any IFV d= (u,v,7) and satisfy
W0, T E [O,%]. Then it holds that

V6 +v2< ) /6 —10u<2ve. (39)

cyc

Proof The Eq. (39) can be proved in two steps, as shown
below.

(1) Right inequality: 3~ /6 — 10 < 2+/6.

cyc
Let flx)=v6—10x (x€
£(x) = —25(6 — 10x) 2 <0.
Hence, f(x) is a convex function on [0, %]

[O, %] ) , then

Further, using the Jensen’s inequality in Lemma 2.12,
we have

> VB T0R < 3(“57) = 3(}) = 2V6.

cyc

Hence, right inequality holds.

(2) Left inequality: v6 +v2< > /6 — 10

cyc

Without loss of generality, assume that p <v <.

Since u + v + © = 1, it can be achieved from the drawer
principle that u < %

A direct calculation of left inequality shows

S V6 —10p = /6 — 10 + V6 — 100 + /6 — 107

cyc

> /6~ 10 + \/(\/6—100+\/6—10n)2

— /6=T0x

+v/12 — 100 — 107 + 2/6 — 100 - V6 — 107
>/6 —10u+ /12 — 100 — 10x
=6 —10u+ 2+ 10

s=+6—10pu+ 2+ 10, pe [0,1], then an
immediate calculation gives

&2 = (V6 =10+ 2+ T0p)°

=8+2./(6 — 10u)(2 + 10u)

—8+2y/-100(u— 1)’ +16

>8424/-100(0 — 1)*+16

=8+4/3=(V6+v2)"

Hence, left inequality holds.

Consequently, this completes the proof of Theorem
5.9. O

5.8 Intuitionistic fuzzy inequality proved
by Tangent inequality

Tangent inequality can be derived the Jensen’s inequality
due to their have similar geometric meanings. In the fol-
lowing, combining with Theorem 2.1 (Half concave and
Half convex theorem) and Tangent inequality, we construct
an intuitionistic fuzzy inequality.

Theorem 5.10 Let ¢ = (u,v, ) be an IFV. Then it holds
that

2<Z “

cyc

W28 (40)

Proof Letf(x) = /17 (x € [0,1]), then we can derive its

second derivative as f”(x) = ——=&

(H—x) (1 x)

According to the Tangent inequality in Lemma 2.13, we
can deduce that f(x) is concave on [0,2] and convex on
1]

Without loss of generality, assume that u<v<m.

(1) Right inequality: <1+ 2‘[

cyc

1+u -
Using the Theorem 2.1, we just have to prove that:
@ F(u) +f(0) +f(m) <1+23 (u=0,0+7=1) and

@ f(1) +f0) +f(m <1+ (v=m).
Case 1: If n=0 and v+mn =1, then the Right
inequality is converted to prove that

2 =) + 1) +f ()

cyc

_ fl=pu /1= [1-m
- 1+;4+ 1+u+ 147
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_ 1— 1—
=14/t /1=
=1+ \/12+V5

<1428

Lety = \/;and ¢ = /3%, then 07:_:’12:“)2;1 and
74> =1 -3¢

Further, we can derive

1+\/%+ T=l4+n+to= 1+\/(n+e) =
L+ V2 +2ne+ @2 =1++/1-=31202 +255¢ =1
+\/—3(n<p—%)2+‘3-‘§1+\/§=1+¥.

Case 2: If v = 7, thenv € [O, %] and the Right inequality
is converted to prove that

2 =f(w) +/(v) +£(7)

cyc

1— — —
- @w\/ﬁ = V2R
Let g(v) = /15 + 24/15% then its derivative is
g ) = ' - (1+0)VT+v—2y0(1 —v)]

o(1—v)* (14v)*

> St [ 2V 0 = 2v0(1 )]

W10 (140)

:(17 —r [VI+v—2(1-v)].

Let h(v) = (VI+ 0)27(2(1 —))%, then we have
h(v) = —4v? +9v — 3.

It can be easily derived that A(v)>0 when v €
{9 V33 '} and h(v) <0 when v € {O,—g’gﬂ.

Further, g(v) is monotonically increasing on v €

[9 V33 1} and monotonically decreasing on v € [07 9— g/ﬂ

)
Further, the = maX{g 0),g (%) }

:max{Z,l +23ﬁ} =1 +%§.
Hence, Right inequality holds.

(2) Left inequality: 2< > ,/ .

cyc

8(V) e

Using the Theorem 2.1, we just have to prove that:
O f(u) +fw) +f(n) 22 (n+v=0,m=1) and

@ f(u) +f() +f(m) 22 (n=v).
Case 1: If p+ v = 0 and © = 1, then the Left inequality
is converted to prove that

CZW =S () +f) +f(7)

— l—p 1-v - __ —
= 1/ﬁ+1/m+1/]+—n— 1+1=2.

Case 2: If £ = v, then v € [O —] and the Left inequality
is converted to prove that

@ Springer

5\t = 0 +10) +/(7) =
\/l+_7r_2 1+Z+ l+n 1+I§+\/T

Using the Case 2 in (1), can
_ ,(9-V33
8(V) pin = g(T> >2

Combining with Case 1 and Case 2, we can derive that
> “ > 2 holds.
cyc

Hence, Left inequality holds.

Consequently, this completes the proof of Theo-
rem 5.10. 0

obtain

5.9 Intuitionistic Fuzzy Inequality Proved
by Muirhead’s Inequality

Muirhead’s inequality is symmetric and homogeneous.
Therefore, according to the number and degree character-
istics of the left and right sides of the inequality, the cor-
responding inequality issue is often succinctly proved. In
the following, we construct an intuitionistic fuzzy
inequality and prove it by Muirhead’s inequality.

Theorem 5.11 For any IFV d= (u,v,n) and satisfy
w0, @ > 0. Then it holds that
5,5
w—+v 1
— >, 41
v u(p+0v) — 3 (41)

Proof Using the Muirhead’s inequality in Lemma 2.15,
we have

1@+ 03 >t + ot = po(? + 0.

Further, we can deduce

W+’ o, ,u +v
/w (u+v) uo(u+v)

—Z(

f/erv)
cyc

=2 (W +v7) = X

cyc cyc

=231 =

cyc cyc

2
=2 (Zu) =23 mw [ =X mw

cyc cyc cyc

=2-5%

cyc

(=)
>0 5T

=1

=1

Consequently, this completes the proof of Theo-
rem 5.11. O
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5.10 Intuitionistic Fuzzy Inequality Proved
by Carlson’s Inequality

Carlson’s inequality can be denoted as an n X m non-
negative real number matrix, where the geometric mean of
the sum of the elements in each column of m columns is
not less than the geometric mean of the elements in each
row of n rows in the matrix. In the following, we construct
an intuitionistic fuzzy inequality by a same order matrix
and prove it by Carlson’s inequality.

Theorem 5.12 Let d = (u,v,m) be not a crisp number.
Then it holds that

2
LY
v+m 2

cyc

(42)

Proof Construct the 3 x 2 matrix that relates to our
conclusion:

a v+ T
vV+T
02
I'= T+
T+ U s
72 n
v
w+v #

It follows from the Carlson’s inequality in Lemma 2.9
that

2 2 2
oy vt oy v
(<v+n + T+ + n+u)
1

D2 (w4 m) (e ) (2 )

W+t ut e+

& ( %-2(u+u+n))%2u+v+n.
cyc

2
o )
cyc
Consequently, this completes the proof of Theo-
rem 5.12. O

5.11 Intuitionistic Fuzzy Inequality Proved
by Wei-Wei Dual Inequality

Wei-Wei dual inequality involves matrix that the sum of
column products of the ordered matrix is greater than or
equal to the sum of column products of the disordered
matrix and the column sum product of the ordered matrix is
less than or equal to the column sum product of the dis-
ordered matrix. In the following, we present an intuition-
istic fuzzy inequality and prove it by Wei-Wei dual
inequality.

Theorem 5.13 Let ¢ = (u,v, 1) be an IFV. Then it holds
that

1
H.US 37 (43)

cyc

Proof Without loss of generality, assume that u<v <.
Construct the 3 x 3 similarly ordered matrix as

U v o
O=|u v =7
U v om

Moreover, we also construct the 3 x 3 disordered matrix
as

Lov T
O=|v u u
T oW

Further, we can get
S©)=(u+u+wo+v+v)(n+n+n)=27]]u

cyc

3
and S(®') = <Z,u> =1
cyc
It follows from the Wei-Wei dual inequality in
Lemma 2.10 that S(®) < S(@").
Consequently, this completes the proof of Theo-

rem 5.13. O

Remark 5.3 From Theorems 5.12 and 5.13, we can find
that the clever construction of the matrix is the key to
subsequent proofs. Moreover, the intuitionistic fuzzy
inequality in Theorem 5.13 is special Mean inequality
(AM-GM) when n =3. In other words, the AM-GM
inequality can be derived by Wei-Wei dual inequality.

5.12 Intuitionistic Fuzzy Inequality Proved
by Some Combined Inequalities

It is no longer realistic to simply rely on a certain
inequality to solve or construct an inequality under intu-
itionistic fuzzy environment. In fact, it is a combination of
a variety of existing famous inequalities to achieve the
ability to solve inequality problems in operations, AOs and
so on. The combined famous inequalities in the developed
Theorems and Lemma are presented in Table 1.

Lemma 5.1
it holds that

3v2
;*/yiugz' (44)

Proof The Eq. (44) ~can Dbe
=2 (u+m) W

cyc cyc (utm)

Let f(x) = v/, then g"(x) = —1x 2 <0.

Let @ = (u,v, n) be not a crisp number. Then

equivalent  to
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Using the Tangent inequality in Lemma 2.13, we can
conclude that g(x) is convex function.
Hence, it is known from Eq. (17) that

+
25

RYEY
e (o) (utm)

ptr o ow
Z (u+v) wrn \/Z 2( ,u+v (putm)

cyc

Further, it just has to prove that

Z 2u 9
(utv)(utm) = 2
cye

@82,uu<9<2,uvn+z,u20)

cyc sym

@82(/102#) §9<2,uvn+z,uzv>

cyc cyc sym

& 83 (v + w? + uwmr) <9 (2,uvn +3 ,uzv>

cyc sym

& 3 o> 6uom.

sym

It follows from the Mean inequality (AM-GM) in
Lemma 2.2 that above inequality holds.

Consequently, this completes the proof of Theorem
5.1. O

Theorem 5.14 For any IFV d = (u,v,n) and satisfy
w, v, > 0. Then it holds that

Zl+ﬂ<6

ST )

Proof Without loss of generality, assume that u <v <.
Further, we can get

I+ /uw<1+or<1+,/un and

1 1 1
—F S e S T

Using the Rearrangement inequality in Lemma 2.1, we
can have

z% S0+ V)=
(1+ /) =L = zf

For this, it just has to prove that

Sivm <6 e TR <6 TG <
cyc cyc

Employing the Mean
Lemma 2. 2 we can obtain

I)TCSZ

cyc

inequality (AM-GM) in

21 \/T Zzzﬁ

= 22 u+n Z 2( ,u+u+n ,u+u) - chc (u4m)+(v+m)

= Z - Z Z y+n v+7r

e 2\/ (u+m) U-H'[) oe \/ (u+m (|>+n) oe

— u T — ptm
< Z (;Hrn v+n) - Z(,&Hn + ;tJrn) - u+m 3.
cyc cyc

cyc

4/
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Consequently, this completes the proof of Theo-
rem 5.14. ]

Theorem 5.15 Let d = (u,v,m) be not a crisp number.
Then it holds that

I 9
2w

cyc

(40)

Proof A direct equivalent calculation of Eq. (46) gives
2

I 9
Z(1ﬂ)3 =

cye
9
it Z (|)+n) = 8

. > 9
cyc cyc -3
. ©w 9
<~ Z(:u + l)) Z (|)+n)3 2 4
cyc cyc
S (. 2 9
A g('u + U) §<U+ﬂ (1)+7‘L)2) Z 4

It follows from the Cauchy’s inequality in Lemma 2.6
that

Sa+0) - (s o 2 (z —) :

cyc cyc cyc

2
It suffices to prove that (Z M’fﬂ) >392
cyc
According to the Nesbitt’s inequality in Lemma 2.4, it
holds.
Consequently, this completes the proof of Theo-

rem 5.15. O

Theorem 5.16 For any IFV d = (u,v,mn) and satisfy
o, f > 0. Then it holds that

Z 'u2n S 9 47
(0{0+ﬁ7'[)2n+1 - (“+ﬁ)2n+l ! ( )

cyc

Proof A direct calculation gives

= ((W%))z > (;(m) > (Use Gen-
g av+pn = Z(

2

2n

Z Y
2n+1
e (ow+pm)

ov+-fm)

cye

eralized Cauchy’s inequality: Lemma 2.7)

- (2 (wﬁﬁn) )? (OH_B)Z“_M

cyc
ny 2

((z2)

2 €2%0) (Use Power-Mean inequality:
Lemma 2.5)
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Table 1 The combined famous inequalities in the proposed Theorems and Lemma

Results Used inequalities

Lemma 5.1

Theorem 5.14
Theorem 5.15
Theorem 5.16
Theorem 5.17
Theorem 5.18
Theorem 5.19
Theorem 5.20
Theorem 5.21

Mean inequality (AM-GM), Tangent inequality

Mean inequality (AM-GM), Rearrangement inequality

Chebyshev’s inequality, Nesbitt’s inequality

Mean inequality (3 M), Generalized Cauchy’s inequality, Power-Mean inequality

Mean inequality (AM-GM and 3 M), Cauchy’s inequality, Vasc inequality, Schur’s inequality
Mean inequality (AM-GM and AM-SM), Carlson’s inequality

Mean inequality (AM-GM), Cauchy’s inequality, Muirhead’s inequality

Mean inequality (AM-GM and 3 M), Cauchy’s inequality, Carlson’s inequality

Mean inequality (AM-GM and 3 M), Bernoulli’s inequality

2y ny 2
=)
a2 gl | A2 /0
. (opv+pur)
<3]” <Zx;1nfﬂun) > ;
= wh) 2 @) (Use
Generalized Cauchy’s inequality: Lemma 2.7)
n 2
a2 3]7;1 1 >
3 (JH»/!)Z;UJ e (Z;“)
cyC P
= rh) = @ (Use
Mean inequality (3 M): Lemma 2.2)
(- () )
_ )
- (o+B)
__ 9
<o(+ﬁ)2n+l .
Consequently, this completes the proof of Theo-
rem 5.16. O

Theorem 5.17 Let d = (u,v,m) be not a crisp number.
Then it holds that

P i
cyc.u3+v3_2' ( )
Proof 1t follows from the Cauchy’s inequality in
2
4
Lemma 2.6 that 3° - 302 (1 +0°) > | 22407
cyc cyc cyc

(=) |

i % / >1
Further, we just need to prove that S () = 7
T
It is known from the Vasc inequality in Lemma 2.16
2

that 3 pu® < 3| >0 42
cyce cyce

Hence, a direct calculation gives

D +0Y) =30+ e

cye cyc cyc
Z 1203 (uto+m)
5 cye
=2+~
cyc Z 1
ave
Z (20?4 4w’ )
5 oc
=2
cye Z H

cye

E o Z ;12 1)2+E ;LU3 —? nzfnzyz 7071377!/13 +/w2n
o 'us + cye

cye cye

_g S

5 ;”“ 3 2,2
=S+ S oW+ e

cyc cyc cyc

cye

Z ;wn(uz n+n;42+vn2+u37uvn)

S

cyc

Z 1

=30+ | Tt
cyc LZ;H cyc cyc

Z (uzn+n,u2+v7z2+;43 —;wz)

o

—uom S

cye

5 ;:“U 3 2,2
=2

L
cyc F cyc cyc
cyc

Z (v2n+vn2+;43)

cye

TS

Yo + 37t | —pom| Yol

cyc cyc cyc

5 oye

2
SR+ w8 2w’

cyc cyc cyc cyc

LI —

o[ 42

cyc

For this, it suffices to prove that
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(S S

cyc cyc cyc

() o) e
cyc cyc cyc

Let n =) uv and ¢ = []u, then two identities can be

cyc cyc

derived as

(49)

W | =

s () o

cyc cyc cyc cyc

— E —(3(4-5 +3—14n+ 11y~ +7
MU”<C}C u ) 3 ne n ’7 n )

and

2
<Z u3> = (1—3n+30p)".
cyc
So, a direct equivalent calculation of Eq. (49) gives
(1-3n+3¢)°>1
13(4=5ne+3—14n+ 11> + 7 1)
& 54¢% +3(8 —28n)

@ +3—22n+ 43 =T — e >0.
Let g(@) = 549 + 3(8 — 28n) o, then
g (@) = 108¢p + 3(8 — 28n).
4;1 1

from Schur’s

inequality in

> on
Lemma 2.14 (p = 1) and using ¢ = >_ v < =5

cyc
Mean inequality (3 M) in Lemma 2.2, we can derive
g'(¢) >108 - -1 4 3(8 — 28y) = 12 — 361 >0.

That is, g(¢) is monotonically increasing on ¢ >

Employing ¢ >

1
—3fr0m

4nl

So we have

g(e) +3—22n+43n*> —Tn* — 9o

> g(47’71) +3 =22+ 43> —Tp* — e
=1-Zn+Ln* -1’ — Mmeo.

Additionally, it can be easily known that [](u — v)* > 0.

cyc

[Tu< 5 <9Zul>—2+

cyc cyc

2 <1 -3y ,uv) /1 —3>" ) holds, i.e.,
cyc cyc

@< 5 (9 —2+2(1 - 3n)y/T=73n).
Employing the above inequality, it suffices to prove that
1-Z2n+20* -7

7 =99 —2+2(1 — 3n)y/T—=31) >0.

Expanding it,

@ Springer

It is equivalent to
3(1=3n)(7Tn* — 11y +3 —2n/T =317) > 0.
Since n<4i, it suffices to
T — 11+ 3 — 2n/T =31 >0.

It follows from the Mean inequality (AM-GM) in
Lemma 2.2 that

T —1n+3—-2n/T=31 >Tp> =11y +3 — (> +
1=3n) =2(1—n)(1—3n)>0.

Consequently, the proof is fully completed. O

prove  that

Theorem 5.18 Let d = (p,v,m) be not a crisp number.
Then it holds that

© \/3*?12 (50)

>
e 2

cyc

Proof A direct equivalent calculation of Eq. (50) gives

3 — +> =
) /chu S Czycjﬂﬂz
) /3Czy;ﬂ_l+czyc::“ T2

Z /13 + 1)3
:u2+02

cyc

3 3
w—+v

=
>t

cyc

(u—v) ,u+x)
< Z 2027y
/3 21 /3 12+1
> < ‘z‘; ) ( ; + Z” - 3
= 2102
3ZH2+1 e +v

cye

u+u
At Z 2(;4 200

cyc

( H u U (Zﬂ v +ut)n>
> H— l) cyc cye .
;C: \/ Z,u +1 + H(#2+U2)
According to the Mean inequality (AM-SM) in

Lemma 2.2, it can derive /3> 2> > u=1.
cyc cyc

Further, we just need to prove that

H—) y21>2+,uv71>
Z(ufv);(/ﬂrv) > Z(ufzv)z 4 H (Z
cyc

2(12+0?) pod 1;[(#2+U2)
2H(yfu) (Z ,uzv2+/w7r)
= Z( ) (quiuz - 1) > = H(;;(Jrl)z)

cyc
cye



Page 23 of 28 111

oThwo (S )

2 2 cye aye
o Dl e » =

cyc

It follows from the Mean inequﬁlity (AM-GM) in
Lemma 2.2 that

H(,ufv)z»H(mwﬂervn)

2 2;w+,wr+un cyc cyc

cye

Hence, it suffices to prove that

; H(#*U)Z'HGWJFWHM) ZH H=0) (Z,u v +;w7r)
3\ [Toe+a) 2 [TG2+02)

cye cye

& 271[2uv + pn + vm)

cyc

TL02 + 03 28T (1 —v) (Z v+ /M) :

cyc cyc cyc

It is known from the Carlson’s inequality in Lemma 2.9
that

H(Z,uu + un+om) = (2uv + pm + vn)

cyc

3 (51)
(uv + 2um + o) (uo + pm + 2om) >2 (Z uv) .

cyc

Using the Mean inequality (AM-GM) in Lemma 2.2, a
direct calculation gives

Wo+om? +0Pn + il + @Pn+ . >24/ptoon? +

24/ 02rp? 4 24/ ptnmv? = 6uon

< 9(u+v)(v+7)(m+ 1) >8(uv + vr + mu)

S 9[[(u+v)>8> w
cyce cyc
©9g(u+v)28§uv-§cu
©g(u+v)2 %%}uv%;u
& [T +0%) > §30 wo* - 3042
cye cyc cyc

cyc cyc cyc

2 2
& <H(u2+vz)> > (32#2022#2) :

It is equivalent to

2 2
1_[(;12 +0?) > (Z u21)2> : (Z ,u2> . (52)

Combining with Eqgs. (51) and (52), it suffices to prove that

3 2 2
() )

> Tl —v)- <Zu202 +uvn) :

cyc cyc

R

Meanwhile, an immediate calculation gives

2 2 3
8 (Z ,u2vz> (Z ,uv) -3 (Z W + ,uun)
cyc cyc cyc

2
=38 <Z u202> (E Wt + 2,uv>
cyc cyc

3
-3 <Z W+ ,uvn)
cye

2
= 5(2 ,u2v2> +12uvm (Zu202> + 3120%n?
cyc cyc

(E,u v* — ,uvn)

2
=15 (Z ,u2v2> +12uvm (Z ,u202> + 3uPv*n?
cye cyce

(ere-nefe)

=

cyc

: <Z w2 (v — ﬂ)2>

>0.
Further, it just has to

2(2 Mv> (2= T(u —v).

cyc cyc

cyc

2
5 (Z u202> +12uvm (Z /le)2> + 3pPv*n?

prove that

Let n=> uw and ¢ = LT, then

cyc

Cl;{( —v)<1/(1:!( p—v)?

= /P — 4 +2(9 — 2)¢ — 2797

In other words, we just need to prove that

20(1 —2n)* > /n — 43 +2(9n — 2)p — 2797

Dividing it into the following two cases:

Case 1: 9 <2.

Since 2(1 —25)* —T=45
= (VT=4y —%)2—&—% (2(1 —4n)* + 1) >0, a direct cal-

culation gives

2n(1 —2n)* — /n* — 4 +2(9 — 2) — 2792

>2n(1 —2n)° — \/ii* — 4
= (20 -20) = vT=7)
>0.

Case 2: 9y >2.

Since VIR = 4P +2(9 —2)p — 27¢?

$H(1=3n)° — £ (279 -9 +2)° <
direct calculation shows

(11— 3), a
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20(1 = 21)* — /0 — 43 + 2091 — 2) — 27¢7

>2n(1—2n)* — (/55 (1 = 3p)°

=2n(1 —2n)* —2(1 = 3n)\/3(1 = 3n)
5(1=3n)

= 0n-2)(On-17+3) +45

vV
N
=
—_
—
|
N
=
N
(5]
|

C_onsequently, the proof is fully completed. O

Theorem 5.19 Let ¢ = (u,v, 1) be an IFV. Then it holds
that

3Hu+1222,u( vrr(1 — v)(1 —n)—i—v).

cyc cyc

(53)

Proof A direct equivalent calculation of Eq. (53) gives
3[Tu+1>23 pu(y/vn(l —v)(1 —m) +v).

cyc cyc

<3[[p+ (Z,u) =25 >

cyc cyc cyc

2% py/or(l —o)(1 —m)

cyc

& 3[Tp+3X W >23 uw/on(l —v)(1 - )

)c cyce 2cyc )
& (3Hu+2u2> >4<Z,u\/vn(l —v)(l—n)) .

According to the Cauchy’s inequality in Lemma 2.6,
then

2
4(%} uy/on(l —o)(1 — n))

2
=4uvn<2 W) —n))

cyc

<S4m0 - v)(1 - )

cyc cyc

=4pond (1 —v)(1 —n).

cyc

For this, we only need to prove that

<3Hu+2u2> —4pom (1 —v)(1 = 7) =0

cyc cyc cyc

& <Zu6+22u5(n+n) 33t ) —

cyc cyc cyc

dpor 37407 — 6w n2u2(0+ﬂ))+4<2u“+2

cyc cyc cyc

S vPn? — 3uor) >4 (Z WA o+ )+ 23 @3

cyc cyc cyc cyc

+7m?) = Spom > @ — 2uon Y vm).

cyc cyc
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According to the Muirhead’s inequality in Lemma 2.15,
we can get

St > Y pdor, S pt > 3 pPon

sym sym sym sym

Skt > Y pton.

sym sym

and

Moreover, a direct calculation gives
DU A2 w0+ ) + 3 w0 +7?)
cyc cyc cyc

—dn 35 i — 6pon Y- (v + )

cyc cyc

=10 2 o+ 3wt — dpon S 18

sym sym sym cyc

—6pwm 37 43 (1 — )

cyc

=13 ub 423 o+ 33wt + 2uon > 1P

sym sym sym cyc

—6uvn Y 1?

cyc

=13+ 23 o+ 33 pt + Y ptor =3 plon

sym sym sym sym sym

=310 +23 o+ 3 pton

sym sym sym

+3 S uh? =3 pPon
sym sym

>0

and

St + 23 v — 3pon

cyc cyc

=Yt 423 pi? = 3uon > u
cyce cyc cyce

=St 2> pi? =33 Pon

cyc cyc cyc

=1 (Z,u“ +23 12v? —3Z,uzlm>

sym sym sym

:% ((Z’“4 — Z/ftﬂt) +2<Z,u202 - Z/ﬁﬂt))
sym sym sym sym
>0.

In addition, using the Mean inequality (AM-GM) in
Lemma 2.2, it suffices to prove that

<2u6+22u5<v+n>+3Zu4(vz+n2)

cyc cyc cyc

—dn 3% i — 6pon 3 1 (v + 7))

cyc cyc

(Z w25 v — 3,uv7r> >

cyc cyc

(Z/P + 2w o+ m) 230 1 (0P + 7?)

cyc cyce cyce

—5uon 32 4 — 2uom S o).

cyc cyc
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Let G = (Zu"+2zu5(u+n) +33 1 (0? + n?) —

cyc cyc cyc

dpon 30 1 — 6pon 3 1P (0 + 1)) (X et 235070 —

cyc cyc cyc

cyc cyc cyc

m2) — Spom S 12 — 2uom Y vm)?

cyc cyc

= - (Zu6 =2 @ (+m) 33 ut(v ) -

cyc cyc cyc

451303 + 2w 30 1P (v + 1) — 9uPvPn?)

cyc cye
= wm - G, where G=>1 -2 1P (v+n)+
cyc cyc

35w +n?)

cyc
o+ 2uon S 1 (v + 1) — 9pPvPn?

—4570}

cyc cyc
Without loss of generality, assume that u <v <.
Lety=v—pu>0and ¢ = —0>0, then
G = (1 + 10 + ¢0*) 12 +2¢* (21 + ¢) (n*
10 + 2+ 0* (207 + 209 + ¢7)* > 0.
Consequently, this completes the proof of Theo-
rem 5.19. O

3pom) — (Z £+t v+ )+ 23w (0

Theorem 5.20 For any IFV d= (u,v,n) and satisfy
w0, @ > 0. Then it holds that

273w

cyc

- ;\/M‘FU

Proof The Eq. (54) can be proved in two steps, as shown
below.

427 Z 1o
cyc Z ‘u+v

It follows from the Carlson’s 1nequa11ty in Lemma 2.9
that

(5 (zm g -0): () -

B> 1
NECTLER) o o

cye cye

(1) Left inequality:

Further, it just has to prove that

27 Z 1o
1 > oo
Z ;12+Z u - 4
oye e
2
27 E 1o
N 1 > [-X»

BE

cyc cye

272;41)

cye

1
= lfz,uv 2 4

cye

cyc cyc

2> - <1—Z/w> <3

According to the Mean inequality (AM-GM and 3 M) in
Lemma 2.2, a direct calculation gives

2
(=)
S w< ~24—=1and

cyc

2
22;10-(1—2;10):22 ,ur)~<1—z,un>-
cyc cyc cyc cyc

) o(ElEE))

cyc

4 272#1)

T 0
Hence, —=< Zm is true.

4 ZHZ

(2) Right inequality: E 75 <3 5

explored Lemma 5.1, it can

Usmg the give

Z u+n ’%\/'

cyc
It follows from the Cauchy’s inequality in Lemma 2.6
that

S =S (s
n+o pto u+v
cyc cyc

S (Z ;H—U) <Z ;H—U) S \ / %ﬁ Xy: \/%

Further,it has to prove that

2 2
ok 3v2 w2 3 2 w
m = =2 o 2 = o | -
cyc cyc cyc

Meanwhile, a direct calculation shows

2 2
3 (v+7) ()
(Z u+n> <Z ,ll‘l+l) v+n)(niu)>

2

= cyzc H (u+v)

cye

Z\/ (v47) (41t
H(/H—v)

cye

(zm) (Z(NM)( u(n-wt)))z
[Gtv) [Tt

cye cye
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(Z #z(vﬂ)) (Z u(ﬂﬂt))
_\&

(Use Cauchy’s inequality:

= [ Tterw)
Lemma 2.6)
() () )
R 2R LRI
<2#0—3Hu> (1 - Zuv>
o cyc cyce
a S —Tu '
cyc cyc

Later, it just has to prove that

(T (xm)

3
> w-] ] 2
) 2
=3 <Zu> 2w =3 <1 - 22#!))
cyc cyc cyc cyc
2
& Zuv+3Hu24<Zuv>
cyc cyc cyc

& (Zu) Zuv+3<2u) Hu24(2uv>
& <Zu2> Zuv+2<2uu>
+3<Zu>ﬂu>4<2uv>

& (Z;ﬂ) Z:_uv+3<2u> Hu22 <2,uv>

& (Zu2> S uw>23 v + [T Yon

cyc cyc cyc cyc cyc

& Y (o4 ) =237 pPv?

cyc cyc

& > w(u—v)’>0.

cyc

4 Z#
u cye .
Hence, Z\/TW <3\ {5~ is true.
cyc

Finally, the proof is fully completed. O
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Theorem 5.21 Let ¢ = (u,v, ) be an IFV. Then it holds
that

2
154 if0<2<;
ZM;VU < pr (55)

cyce m, if )Z 2.

Proof (1) 0<A<I.
Employing the Bernoulli’s inequality in Lemma 2.17, a
direct calculation gives

Y= (1+p—1)v

cyc cyc

<2 (1+ A=)

cyc

— (=)t A

cyc cyc

=1-A4+1> w

cyc

2
)

<1—-/i+—--5%4 (Use Mean inequality (3 M):
Lemma 2.2)

—1-22

(2) 1>2.

Without loss of generality, assume that > v > 7.

It follows from the Bernoulli’s inequality in
Lemma 2.17 that

A
n An 2n
(1+ﬁ) >4 > 42,
In addition, a direct calculation shows
Ao n g
(L+m)v=p v(l +u)
A 2n
>u U(l +7>
= /ﬂv + ,ui’lvn + u’l’zuvn
> /ﬂv + v*lor + 7*2oom
= pro +vin 4t

=Y .
cyc
It is known from the Mean inequality (AM-GM) in
Lemma 2.2 that

(e+m)v

= (5

:;AU./H'E.’H'”.....’H'R
i J
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; 1
u+mn u+mn u+mn
A 7
< - gES
241
_ alfvtptm
=4 (A”T)
Finally, the proof is fully completed. O

Remark 5.4 From the above nine intuitionistic fuzzy
inequalities proved by combined well-known inequalities,
it can easily derive a conclusion that the most indispensable
inequality is Mean inequality, especially AM-GM. That is
to say, most known or unknown inequalities can be fully or
partly proved by Mean inequality (AM-GM, AM-SM,
3 M). Obviously, relying solely on a well-known inequality
to solve a certain inequality problem will become extre-
mely difficult, or even completely infeasible. How to use
existing well-known inequalities in a flexible combination
is the most critical part of the proof. In addition, as the
information with equality 4 + v+ nm = 1 embedded in the
proof of inequality, how to add or reduce at the right time
will have an unexpected and wonderful effect at the critical
moment. Since the inequalities proposed based on the
equality under the intuitionistic fuzzy environment are just
a preliminary discussion, how to apply it to the proof of
existing or developed aggregation operators (Sect. 4) and
operations (Sect. 3) will be a practical discussion.

6 Conclusion

Inequality is a significant part of basic theory under intu-
itionistic fuzzy environment. It is usually overlooked, but it
is essential for operations and AOs on IFSs/IFVs. In this
paper, some inequalities are developed for IFSs based on
some existing operations. Meanwhile, three unweighted
intuitionistic fuzzy AOs (UIFS, UIFA and UIFG) derived
by some existing operations (b, ® and @) are developed
for aggregating preference information, whose their cor-
responding inequality relations based on UIFS are deeply
explored and proved by some famous inequalities. In
addition, an important inequality of UIFS, UIFA and UIFG
is constructed, which reveals the nature of AOs to compare
sizes. Based on the equality u+v+m =1, a series of
inequalities on IFV are constructed and proved by some
famous inequalities, which will become a new foundation
of intuitionistic fuzzy inequalities in operations and AOs.

It is important to note that the developed intuitionistic
fuzzy inequalities based on equality are not yet correlated
effectively. In other words, each of them basically exists as
an independent individual, but they may become a quick

point for the next proof of inequality like a lemma or
famous inequalities. In the future, we will employ the
developed intuitionistic fuzzy inequalities in proving more
complicated inequalities under intuitionistic fuzzy envi-
ronment, and apply them in real decision-making envi-
ronment to deal with real decision requirements.

7 List of Abbreviations
The list of abbreviations is shown in Table 2.

Table 2 List of abbreviations

Full name Abbreviations
Intuitionistic Fuzzy Set IFS
Membership Degree MD
Nonmembership Degree NMD
Fuzzy Set FS
Aggregation Operator AO
Intuitionistic fuzzy weighted averaging IFWA
Intuitionistic fuzzy value IFV
Intuitionistic fuzzy dombi weighted averaging IFDWA
Intuitionistic fuzzy dombi weighted geometric IFDWG
Unweighted intuitionistic fuzzy square UIFS
Unweighted Intuitionistic Fuzzy Arithmetic UIFA
Unweighted Intuitionistic Fuzzy Geometric UIFG
Harmonic Mean HM
Geometric Mean GM
Arithmetic Mean AM
Square Mean SM
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