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Abstract
It is known that Intuitionistic fuzzy models give more precision, flexibility and compatibility to the system as compared 
to the classic and fuzzy models. Intuitionistic fuzzy tree has an important role in neural networks, computer networks, and 
clustering. In the design of a network, it is important to analyze connections between the levels. In addition, the intuitionistic 
fuzzy tree is becoming increasingly significant as it is applied to different areas in real life. The study proposes the novel 
concepts of intuitionistic fuzzy graph (IFG) and some basic definitions. We investigate the types of arcs, for example, ��
-strong, ��-strong, and ��-arc in an intuitionistic fuzzy graph, and introduce some of their properties. In particular, the present 
work develops the concepts of intuitionistic fuzzy bridge (IFB), intuitionistic fuzzy cut nodes (IFCN) and some important 
properties of an intuitionistic fuzzy bridge. Next, we define an intuitionistic fuzzy cycle (IFC) and an intuitionistic fuzzy 
tree (IFT). Likewise, we discuss some properties of the IFT and the relationship between an intuitionistic fuzzy tree and an 
intuitionistic fuzzy cycle. Finally, an application of intuitionistic fuzzy tree is illustrated in other sciences.
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1  Introduction

In 1965, Zadeh [64] introduced the notion of a fuzzy set 
as a method for representing uncertainty. Since then, the 
theory of fuzzy sets has become a vigorous area of research 
in different disciplines including medical and life sciences, 
management sciences, social sciences, engineering, statis-
tics, graph theory, artificial intelligence, signal processing, 
multiagent systems, pattern recognition, robotics, computer 

networks, expert systems, decision making and automata 
theory.

Ten years after Zadeh’s landmark paper, Rosenfeld [43], 
and Yeh and Bang [63] introduced the concept of fuzzy 
graphs. Bhutani et al. [19] defined M-strong fuzzy graphs. 
The fuzzy relations between fuzzy sets were also consid-
ered by Rosenfeld and he developed the structure of fuzzy 
graphs, obtaining analogs of several graph theoretical con-
cepts. Later on, Bhattacharya [15] gave some remarks on 
fuzzy graphs, and some operations on fuzzy graphs were 
introduced by Mordeson and Peng [33]. Mordeson and Nair 
[34–36] studied fuzzy line graphs and cycles and co-cycles 
of fuzzy graphs. Mathew and Sunitha [31, 32] investigated 
types of arcs and node connectivity in a fuzzy graph. Domi-
nation in fuzzy graphs was introduced by Somasundaram 
[61]. Bhutani and Rosenfeld introduced the concepts of 
fuzzy end nodes [17], etc. They showed the existence of 
a strong path between any two nodes of a fuzzy graph. 
Fuzzy graph theory is now finding numerous applications 
in modern sciences and technology especially in the fields of 
information theory, neural networks, expert systems, cluster 
analysis, medical diagnosis, and control theory, etc.

Atanassov [5] introduced the concept of an intuitionistic 
fuzzy set and investigated new results on it [6–8]. Research 
on the theory of intuitionistic fuzzy sets (IFSs) has been 
witnessing an exponential growth in mathematics and its 
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applications. This ranges from traditional mathematics to 
information sciences. This leads to consider intuitionistic 
fuzzy graphs and their applications. The concept of intui-
tionistic fuzzy graph was introduced in 1994 in [57]. It was 
an object of some subsequent extensions (see [10, 13, 41, 
58]), representations (see [9, 11, 12]), and applications (see 
[11]). Chountas et al. [21–23, 40, 56] discussed an intuition-
istic fuzzy version of the special particular case of a graph, 
the tree, called an intuitionistic fuzzy tree. Alzebdi et al. [4] 
proposed their approach of using intuitionistic fuzzy trees to 
achieve an approximate XML query matching by consider-
ing a novel approach of matching arcs as the basic units of 
data schemas. Bujnowski et al. [14] presented a new classi-
fier called an intuitionistic fuzzy decision tree and studied 
its properties. Thamizhendhi and Parvathi [62] described 
the concepts of distance, eccentricity, radius, diameter and 
center of an intuitionistic fuzzy tree. Mahapatra et al. [30] 
investigated intuitionistic fuzzy fault tree using intuitionis-
tic fuzzy numbers. In [39], some important operations on 
intuitionistic fuzzy graphs were defined and their properties 
were studied. Further in [40], IFGs were applied to find the 
shortest path in networks using dynamic programming prob-
lem approach. Nagoor Gani et al. [37, 38] introduced order, 
size, and double domination on intuitionistic fuzzy graphs.

Pal et al. [42, 48, 49, 51] investigated modern trends in 
fuzzy graph theory, categorical properties in intuitionis-
tic fuzzy graphs, and new results in interval valued fuzzy 
graphs. Rashmanlou et al. [44–47, 50] studied several con-
cepts on vague graphs and bipolar fuzzy graphs. Sahoo et al. 
[52–54] defined intuitionistic fuzzy competition graphs 
and intuitionistic fuzzy tolerance graphs with an applica-
tion. Recently, some researches have been conducted by 
the authors in the continuation of previous works related 
to intuitionistic fuzzy trees and intuitionistic fuzzy graphs 
which are mentioned in [1–3, 18, 24–27, 55, 59, 60].

In this paper, we define types of arcs in an intuitionistic 
fuzzy graphs and intuitionistic fuzzy trees. Also, we study 
the intuitionistic fuzzy bridge, intuitionistic fuzzy cutnode, 
intuitionistic fuzzy cycle, intuitionistic fuzzy tree, and exam-
ine the relationship between an IFT and IFC. The paper is 
organized as follows: Section 2 contains basic definitions 
about IFGs. In Section 3, we introduce the concept of ��
-strong, ��-strong, ��-arc, ��-strong, ��-strong, and ��-arc 
(Definition 11). We also define ��-strong, ��-strong and �
-strong path with expression examples (Example 2) and dis-
cuss the properties of �-strong, �-strong, �-strongest, and �
-strongest path. In Sect. 4, the intuitionistic fuzzy bridge 
(IFB), intuitionistic fuzzy cutnode (IFCN), intuitionis-
tic fuzzy �-bridge (IF �-bridge) and intuitionistic fuzzy �
-bridge (IF �-bridge) are given. In Sects. 5 and 6, we first 
introduce intuitionistic fuzzy trees (IFT), then intuitionistic 
fuzzy cycle (IFC), and investigate the types of arcs in an 
IFC. Also, the relationship between an intuitionistic fuzzy 

cycle and an intuitionistic fuzzy tree is studied. In Sect. 7, 
we try to answer some questions. Finally, some applica-
tions of intuitionistic fuzzy trees are given. The paper is 
concluded in Sect. 9.

2 � Preliminaries

In this section, we first review some definitions of an intui-
tionistic fuzzy graph that are necessary for this paper. We 
define the concepts of �-cycle, �-cycle, �-tree,�-tree, �-path, 
�-path, �-connected, and �-connected.

Definition 1  [5] Let X be a fixed set. An intuition-
istic fuzzy set (IFS) A in X is an object of the form 
A = {(x,�A(x), �A(x))| x ∈ X} , where �A ∶ X → [0, 1] and 
�A ∶ X → [0, 1] are considered as degree of membership and 
degree of non-membership of the element x ∈ X , respec-
tively, and for every x ∈ X , 0 ≤ �A(x) + �A(x) ≤ 1.

Definition 2  [57] An intuitionistic fuzzy graph (IFG) is of 
the form G = (V ,E) where 

	 (i)	 V = {v0, v1,… , vn} so that �1 ∶ V → [0, 1] and 
�1 ∶ V → [0, 1] denote the degree of membership and 
non-membership of the element vi ∈ V  , respectively, 
and �1(vi) + �1(vi) ≤ 1 , for vi ∈ V  , (i = 1, 2,… , n).

	 (ii)	 E ⊆ V × V  w h e r e  �2 ∶ V × V → [0, 1] a n d 
�2 ∶ V × V → [0, 1] so that 

(a)	 �2(vi, vj) ≤ min[�1(vi),�1(vj)],
(b)	 �2(vi, vj) ≥ max[�1(vi), �1(vj)],
(c)	 0 ≤ �2(vi, vj) + �2(vi, vj) ≤ 1 , for every (vi, vj) ∈ E

.

Here, the triple (vi,�1i, �1i) denotes the degree of member-
ship and degree of non-membership of the vertex vi . The 
triple (eij,�2ij, �2ij) denotes the degree of membership and 
degree of non-membership of the edge eij = (vi, vj) on V. If 
we consider arcs of G only with the degree of memberships, 
then, they are called the �-arcs, and if we consider arcs of 
G only with the degree of non-memberships, then, they are 
called �-arcs.
Remark 1  Let G = (V ,E) be an IFG. If we consider all verti-
ces and arcs in G only with the degree of memberships, then 
we obtain a fuzzy graph. It is clear that all definitions and 
theorems for a fuzzy graph hold for it.

Definition 3  [57] Let G = (V ,E) be an IFG. An IFG 
H = (V �,E�) is said to be an intuitionistic fuzzy sub-
graph (IFSG) of G, if V ′ ⊆ V  and E′ ⊆ E so that for 
x ∈ V � , if 𝜇�

1(x) > 0 or 𝜈�1(x) > 0 , then, ��
1(x) = �1(x) 

and ��1(x) = �1(x) and for (x, y) ∈ E� , if 𝜇�
2(x, y) > 0 or 
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𝜈�2(x, y) > 0 , then, ��
2(x, y) = �2(x, y) and ��2(x, y) = �2(x, y) . 

Also, H is said to be an intuitionistic spanning fuzzy sub-
graph (ISFS) of G if V � = V .

Definition 4  We define the underlying graphs G∗
�
= (�∗

1
,�∗

2
) 

and G∗
�
= (�∗

1
, �∗

2
) , where 

	 (i)	 𝜇∗
1
= {u ∈ V ∶ 𝜇1(u) > 0 or 𝜈1(u) > 0},

	 (ii)	 𝜇∗
2
= {(u, v) ∈ E ∶ 𝜇2(u, v) > 0},

	 (iii)	 𝜈∗
1
= {u ∈ V ∶ 𝜈1(u) > 0 or 𝜇1(u) > 0},

	 (iv)	 𝜈∗
2
= {(u, v) ∈ E ∶ 𝜈2(u, v) > 0}.

Definition 5  [24] An IFG G = (V ,E) is strong if for all 
(vi, vj) ∈ E  ,  �2ij = min(�1i,�1j) and �2ij = max(�1i, �1j) , 
and is complete if for all vi, vj ∈ V  , �2ij = min(�1i,�1j) and 
�2ij = max(�1i, �1j).

Remark 2  When �2ij = �2ij = 0 for some i and j, then, there 
is no edge between vi and vj . Otherwise, there exists an edge 
between vi and vj.

Definition 6  [3] An IFG G = (V ,E) is a �-tree and also a �
-tree, if G∗

�
 and G∗

�
 are trees, respectively. Moreover, G is a 

tree, if it is both �-tree and �-tree, and G∗
�
= G∗

�
 . Also, G is 

a �-cycle and also a �-cycle, if G∗
�
 and G∗

�
 are cycles, respec-

tively. Furthermore, G is a cycle, if it is both �-cycle and �
-cycle, and G∗

�
= G∗

�
.

Remark 3  Let G = (V ,E) be an IFG. If G is a �-cycle, then, 
an arc (x, y) is said to be the weakest �-arc of G, if �2(x, y) 
is less than or equal to the degree of membership of all arcs 
of G. If G is a �-cycle, then, an arc (x, y) is said to be the 
weakest �-arc of G, if �2(x, y) is greater than or equal to the 
degree of non-membership of all arcs of G.

Example 1  In Fig.  1, let G = (V ,E) be an IFG so that 
V = {x, u, v,w} , E = {(x, u), (u, v), (v,w), (x,w)} . Then, G is 
a �-tree and �-tree, is not a tree.

Definition 7  [29] Let P ∶ x = v0, v1,… , vn = y be a sequence 
of distinct vertices in an intuitionistic fuzzy graph, then, P 
is a �-path from x to y, if 𝜇2(vj−1, vi) > 0 , and is a �-path, if 
𝜈2(vj−1, vi) > 0 for i = 1, 2,… , n . Also, P is a path, if it is 
both �-path and �-path, then, P is called a (x − y) path and 
the length of P is n. If x = y and n > 3 , P is called �-cycle, 
�-cycle and cycle, respectively.

Definition 8  [29] An intuitionistic fuzzy graph G = (V ,E) 
is �-connected, if there exists a �-path between every pair 
of vertices in G and is �-connected, if there exists a �-path 
between every pair of vertices in G. Also, G is called strong 

connected, if there exists a path between every pair of ver-
tices in G.

Remark 4  In Fig. 1, G is �-connected and �-connected, but 
it is not connected. There exist a �-path and �-path from x to 
v, but there is no path between them.

Definition 9   [24 ,  29]  I f  vi, vj ∈ V ⊆ G  ,  the  �

-strength of connectedness between vi and vj is 
�∞
2

= sup{�k
2
(vi, vj)| k = 1, 2,… , n}  a n d  t h e  �

-strength of connectedness between vi and vj is 
�∞
2

= inf{�k
2
(vi, vj)| k = 1, 2,⋯ , n} . �k

2
(vi, vj) is defined as 

sup{�2(u, v1) ∧ �2(v1, v2) ∧⋯ ∧ �2(vk−1, v)|u, v1, v2,… , vk−1, v ∈ V} , if 
u, v are connected by �-paths of length k. Also, if u, v are 
connected by �-paths of length k, then, �k

2
(u, v) is defined as 

inf{�2(u, v1) ∨ �2(v1, v2) ∨⋯ ∨ �2(vk−1, v)|u, v1, v2,⋯ , vk−1, v ∈ V}.

Remark 5  [24, 29] If P is a �-path in G = (V ,E) from x to y, 
then, the �-strength of P is denoted by �∞

P
(x, y) and if P is a 

�-path in G, then, the �-strength of P is denoted by �∞
P
(x, y) . 

A path between a pair of vertices x and y is the �-strongest 
(x − y) path and �-strongest (x, y) path, if the �-strength and 
�-strength is equal to �∞

P
(x, y) and �∞

P
(x, y) , respectively.

3 � Types of Arcs and Paths

In this section, we present the types of arcs and paths in an 
intuitionistic fuzzy graph with an expression of an example 
(Example 2), and, we investigate some important properties.

Definition 10  An arc (x,  y) in an IFG G = (V ,E) is 
called �-strong and �-strong, if �2(x, y) ≥ ��∞

2
(x, y) and 

�2(x, y) ≤ ��
∞

2
(x, y) , respectively. Also (x, y) is called strong, 

if it is �-strong or �-strong.

Definition 11  An arc (x,  y) in G = (V ,E) is called ��
-strong, ��-strong, ��-arc, ��-strong, ��-strong and ��
- a r c ,  i f  𝜇2(x, y) > 𝜇�∞

2
(x, y)  ,  �2(x, y) = ��∞

2
(x, y)  , 

Fig. 1   �-tree and �-tree G 
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𝜇2(x, y) < 𝜇�∞

2
(x, y) , 𝜈2(x, y) < 𝜈�

∞

2
(x, y) , �2(x, y) = ��

∞

2
(x, y) 

and 𝜈2(x, y) > 𝜈�
∞

2
(x, y) , respectively.

E x a m p l e  2   I n  F i g .   2 ,  l e t  G = (V ,E) 
b e  a n  I F G ,  s o  t h a t  V = {x, u, v,w, z}  , 
E = {(x, u), (x, v), (u, v), (u,w), (v, z), (w, z)} . Then, the arc 
(x, u) is ��-arc and ��-strong, the arc (x, v) is ��-strong and 
��-arc, the arc (u, v) is ��-strong and ��-strong and the arcs 
(u, w), (v, z) and (w, z) are ��-strong and ��-strong.

Definition 12  Let P ∶ x = v0, v1,… , vn = y be a �-path from 
x to y in an IFG G = (V ,E) . P is �-strong ( ��-strong), if 
for i = 1, 2,… , n , the arcs (vi−1, vi) are �-strong ( ��-strong). 
Let P be a �-path, then, P is �-strong ( ��-strong), if for 
i = 1, 2,… , n , the arcs (vi−1, vi) are �-strong ( ��-strong). Let 
P be a path, then P is strong ( �-strong), if it is �-strong or �
-strong ( ��-strong or ��-strong).

Remark 6  In Fig. 2, the path P : x, v, u is a ��-strong path 
and the path P� ∶ x, u, v is a �� - strong path. Hence, P and P′ 
are �-strong paths.

Proposition 1  If G = (V ,E) is a �-connected IFG, then, there 
exists a �-strong path between every pair of vertices of G.

Proof  It is obvious. □

Proposition 2  If G = (V ,E) is a �-connected IFG, then, there 
exists a �-strong path between every vertex of G.

Proof  Let IFG G be �-connected, hence, there exists �-path 
between every pair of vertices x, y. If (x, y) is not a �-strong 
arc, then, we have 𝜈2(x, y) > 𝜈�

∞

2
(x, y) . Therefore, there 

exists a �-path P from x to y, of which �-strength is less than 
�2(x, y) . Now if some arcs of P are not a �-strong, we repeat 
this argument. Finally, we will have a �-path from x to y, 
which is �-strong. This completes the proof. □

Proposition 3  If a �-path P from x to y in an IFG G = (V ,E) 
is ��-strong, then, P is a �-strongest (x − y) path.

Proof  It follows from [31]. □

Remark 7  The converse of Proposition 3 is not true. In 
Example 2, the path P ∶ u − v − z − w is a �-strongest 
(u − w) path, but it is not a ��-strong (u − w) path.

Proposition 4  If a path P from x to y in an IFG G = (V ,E) is 
��-strong, then, P is a �-strongest (x − y) path.

Proof  Let P ∶ x = v0, v1,… , vn = y be a ��-strong path and 
suppose that P is not a �-strongest (x − y) path in G. Let 
P� ∶ x = v�

0
, v�

1
,… , v�

n
= y be a �-strongest (x − y) path in 

G. Hence 𝜈2(v�i−1, v
�
i
) < 𝜈∞

P
(x, y) , for i = 1, 2,… , n . Also, 

P and P′ form a �-cycle, called C. The weakest �-arc of 
C is in P. Let (u, v) be the weakest �-arc in P. Let P′′ be 
the (u − v) path in C not including (u, v). It follows that 
�2(u, v) ≥ �∞

P�� (u, v) ≥ ��
∞

2
(u, v) which implies in which (u, v) 

is not a ��-strong arc, which contradicts the assumption. 
Therefore, P is a �-strongest (x − y) path in G. □

Remark 8  The converse of Proposition 4 is not true. In 
Example 2, the path P : u, v, z, w is �-strongest (u − w) path, 
but it is not ��-strong (u − w) path.

4 � Intuitionistic Fuzzy Bridge 
and Intuitionistic Fuzzy Cut Vertex

Now we study the intuitionistic fuzzy bridges and intui-
tionistic fuzzy cut vertices with an expression of an 
example (Example 3). We show that, if an arc (x, y) in an 
IFG is an IF �-bridge and an IF �-bridge, then, we have 
𝜇2(x, y) > 𝜇�∞

2
(x, y) and 𝜈2(x, y) < 𝜈�

∞

2
(x, y) , respectively. 

Also, we examine some other properties of an IF �-bridge, 
IF �-bridge and IFB.

Definition 13  An arc (x, y) in an IFG G = (V ,E) is said to 
be an intuitionistic fuzzy �-bridge (IF �-bridge), if delet-
ing (x, y) reduces the �-strength of connectedness among 
some pairs of vertices. Equivalently, there exists u, v ∈ V  
so that (x, y) is an arc of every �-strongest (u − v) path. An 
arc (x, y) is said to be an intuitionistic fuzzy �-bridge (IF �
-bridge), if deleting (x, y) increases the �-strength of con-
nectedness between some vertices pairs. Equivalently, there 
exists u, v ∈ V  so that (x, y) is an arc of every �-strongest 
(u − v) path. An arc (x, y) is said to be an intuitionistic fuzzy 
bridge (IFB), if it is an IF �-bridge or IF �-bridge.

Definition 14  A vertex x ∈ V  in an IFG G = (V ,E) is an 
intuitionistic fuzzy �-cut vertex (IF �-cut vertex), if deleting Fig. 2   Intuitionistic fuzzy graph G 
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it reduces the �-strength of connectedness between some 
pair of vertices. Equivalently, there exist u, v ∈ V  so that x 
is a vertex of every �-strongest (u − v) path. A vertex x ∈ V  
is an intuitionistic fuzzy �-cut vertex (IF �-cut vertex), if 
deleting it increases the �-strength of connectedness between 
some pair of vertices. Equivalently, there exists u, v ∈ V such 
that x is a vertex of every �-strongest (u − v) path. A vertex 
x ∈ V  is an intuitionistic fuzzy cut vertex (IFCV), if it is an 
IF �-cut vertex or IF �-cut vertex.

E x a m p l e  3   I n  F i g .   3 ,  l e t  G = (V ,E) 
b e  a n  I F G ,  s o  t h a t  V = {x, u, v,w, z}  , 
E = {(x, u), (x, v), (u, v), (u,w), (v, z), (w, z)} . Then, the arcs 
(x, u) and (x, v) are ��-strong and ��-strong, the arcs (u, v) 
and (u, w) are ��-strong and ��-arc, the arcs (v, z) and (w, z) 
are ��-strong and ��-strong. Hence, all arcs are strong. Also, 
the arcs (v, z) and (w, z) are IF �-bridges, and the arcs (x, u), 
(x, v), (v, z) and (w, z) are IF �-bridges. Hence, all arcs except 
(u, v) are IFB. Also, z is an IF �-cut vertex and x, z are IF �
-cut vertex. Hence, x and z are IFCV.

Theorem 5  Let (x, y) be an arc in an IFG G = (V ,E) , then

	 (i)	 (x ,   y)  is an IF �-bridge if  and only if 
𝜇2(x, y) > 𝜇�∞

2
(x, y).

	 (ii)	 (x, y) is an IF �-bridge if and only if 𝜈2(x, y) < 𝜈�
∞

2
(x, y)

.
	 (iii)	 (x, y) is an IFB if and only if 𝜇2(x, y) > 𝜇�∞

2
(x, y) or 

𝜈2(x, y) < 𝜈�
∞

2
(x, y).

Proof  (i) It follows from [Theorem 1 of 9] and Definition 11.
(ii) Assume that (x, y) is an IF �-bridge. Hence, there 

exists u, v ∈ V  so that ∀ (x, y), there is an arc of �-strongest 
(u, v) path, which is called P. Now let P′ be a �-path from u 
to v which does not including (x, y) and the �-strength of it 

is the minimum between all the �-paths from u to v which 
does not include (x, y).

Then, P and P′ form a cycle called C and C − (x, y) is a 
�-path called P′′ . We claim that P′′ is the �-strongest path 
between x and y. Let P′ be a �-strongest path between x 
and y, then, deleting (x, y) does not increase the �-strength 
of u and v. This contradicts the assumption. Hence 
�∞
P�� (x, y) = ��

∞

2
(x, y) . Also, the weakest �-arc of C is on P′ , 

therefore, 𝜈2(x, y) < 𝜈∞
P�� (x, y) implies that 𝜈2(x, y) < 𝜈�

∞

2
(x, y) . 

Conversely, if 𝜈2(x, y) < 𝜈�
∞

2
(x, y) , then, deleting (x,  y) 

increases the �-strength of connectedness between x and y. 
Hence, (x, y) is an IF �-bridge.

(iii) It follows from (i) and (ii). □

Corollary 6  Let (x, y) be an arc in an IFG G = (V ,E) , then, 

	 (i)	 (x, y) is an IF �-bridge iff is an ��-strong arc.
	 (ii)	 (x, y) is an IF �-bridge iff is an ��-strong arc.
	 (iii)	 (x, y) is an IFB if it is an ��-strong arc or ��-strong 

arc.

Corollary 7  Every IFB in an IFG G = (V ,E) is a strong arc.

Remark 9  The converse of Corollary 7 is not true. In Exam-
ple 2, (u, v) is a strong arc, but it is not an IFB.

Proposition 8  Let (x, y) be an arc in an IFG G = (V ,E) . 
Then, we have: 

	 (i)	 If (x, y) is �-strong, then, �2(x, y) = �∞
2
(x, y).

	 (ii)	 If (x, y) is �-strong, then, �2(x, y) = �∞
2
(x, y).

	 (iii)	 If (x,  y) is strong, then, �2(x, y) = �∞
2
(x, y) or 

�2(x, y) = �∞
2
(x, y).

Proof  (i) It is clear.
(ii) In an IFG, we always have �2(x, y) ≥ �∞

2
(x, y) . Sup-

pose that (x, y) is a �-strong arc, then, �2(x, y) ≤ ��
∞

2
(x, y) . 

If �2(x, y) = ��
∞

2
(x, y) , then, �2(x, y) = �∞

2
(x, y) . Also, if 

𝜈2(x, y) < 𝜈�
∞

2
(x, y) , then, �2(x, y) = �∞

2
(x, y) , which com-

pletes the proof.
(iii) It follows from (i) and (ii). □

Proposition 9  An arc (u, v) in an IFG G = (V ,E) is an IF 
�-bridge if and only if (u, v) is not the weakest �-arc in all 
cycles in G.

Proof  See [43]. □

Proposition 10  An arc (u, v) in an IFG G = (V ,E) is an IF �
-bridge if and only if (u, v) is not the weakest �-arc in every 
cycle in G.Fig. 3   Intuitionistic fuzzy graph G 
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Proof  Let (u, v) be the weakest �-arc of a cycle C in G and P 
is the path C − (u, v) from u to v. Then, �2(u, v) ≥ �∞

P
(u, v) . 

Also ��∞
2
(u, v) ≤ �∞

P
(u, v) implies that �2(u, v) ≥ ��

∞

2
(u, v) . 

Hence, (u, v) is not a ��-strong arc. Therefore, (u, v) is not 
an IF �-bridge by Corollary 6. Conversely, let (u, v) be not 
an IF �-bridge. By Corollary 6, (u, v) is not ��-strong. Thus 
�2(u, v) ≥ ��

∞

2
(u, v) . Let P be a path from u to v in G − (u, v) 

such that ��∞
2
(u, v) = �∞

P
(u, v) . Then, �2(u, v) ≥ �∞

P
(u, v) . The 

path P with adding the arc (u, v) forms a cycle called C. 
Clearly (u, v) is the weakest �-arc in C, which contradicts 
the assumption. □

5 � Intuitionistic Fuzzy Trees

In this section, we introduce types of intuitionistic fuzzy 
trees. We recognize types of arcs in an intuitionistic fuzzy 
tree. Also, we study necessary conditions that an intuition-
istic fuzzy graph can be an IFT.

Definition 15  A �-connected IFG G = (V ,E) is an intui-
tionistic fuzzy �-tree (IF �-tree), if it has an intuitionistic 
fuzzy spanning subgraph F, which is a �-tree, so that for all 
arcs (u, v) which are not in F, 𝜇2(u, v) < 𝜇∞

F
(u, v) . Also, F is 

called a spanning �-tree of G.

Definition 16  A �-connected IFG G = (V ,E) is an intuition-
istic fuzzy �-tree (IF �-tree), if it has an intuitionistic fuzzy 
spanning subgraph F′ , which is a �-tree, so that for all arcs 
(u, v) which are not in F′ , 𝜈2(u, v) > 𝜈∞

F� (u, v) . Also, F′ is 
called a spanning �-tree of G.

Definition 17  Let G = (V ,E) be a strong connected IFG. 
Then, G is an intuitionistic fuzzy tree (IFT), if it has an intui-
tionistic fuzzy spanning subgraph of F′′ which is a tree, so 
that for all arcs (u, v) which are not in F′′ , 𝜇2(u, v) < 𝜇∞

F�� (u, v) 
and 𝜈2(u, v) > 𝜈∞

F�� (u, v) . Also, F′′ is called a spanning tree of 
G.

Next, we consider the intutionistic fuzzy graph of 
G = (V ,E) as a strong connected IFG. Obviously, we have 
the following.

Proposition 11  If G = (V ,E) is an IFT, then, G is an IF �
-tree and IF �-tree.

Remark 10  The converse of the Proposition 11, is not true 
(see Example 4).

Example 4  In Fig. 4, G = (V ,E) is an IF �-tree and IF �-tree, 
but it is not an IFT, because there is not a spanning tree F′′.

Theorem 12  An arc (x, y) in an IF �-tree G = (V ,E) is ��
-strong if and only if (x, y) is an arc of the spanning �-tree 
F of G.

Proof  It is clear. □

Using the Theorem 12, an IF �-tree F consists of all ��
-strong arcs. So, we have the following.

Corollary 13  If G = (V ,E) is an IF �-tree, then F is unique 
spanning �-tree.

Theorem 14  An arc (x, y) in an IF �-tree G = (V ,E) is ��
-strong if and only if (x, y) is an arc of the spanning �-tree 
F′ of G.

Proof  Assume that (x, y) is a ��-strong arc in G, then, by 
Definition 11, 𝜈2(x, y) < 𝜈∞

G−(x,y)
(x, y) . If (x,  y) does not 

belong to F′ , then 𝜈2(x, y) > 𝜈∞
F� (x, y) . Also, the spanning �-

tree F′ is an ISFS of G − (x, y) . Hence, �∞
F� (x, y) ≥ �∞

G−(x,y)
(x, y) . 

It follows 𝜈2(x, y) > 𝜈∞
G−(x,y)

(x, y) , which contradicts the 
assumption. Hence, (x, y) is in F′ . Conversely, let the arc 
(x, y) belong to F′ . If (x, y) is not a ��-strong arc in G, then, 
�2(x, y) ≥ �∞

G−(x,y)
(x, y) . We consider C as a �-cycle consisting 

of (x, y). Hence, there exists the arc (u, v) in C, which is not 
in F′ . Therefore, 𝜈2(u, v) > 𝜈∞

F� (u, v) . We have the �-path 
P = C − (u, v) from u to v in F′ , hence, �∞

P
(u, v) = �∞

F� (u, v) , 
because F′ is a �-tree. Also, we have �∞

P
(u, v) ≥ �2(x, y) , thus, 

�∞
F� (u, v) ≥ �2(x, y) , which implies that 𝜈2(u, v) > 𝜈2(x, y) . 

Therefore, (x, y) is not the weakest �-arc of every cycle in G. 
Hence, (x, y) is an IF �-bridge by Proposition 10. Thus, (x, y) 
is ��-strong, which completes the proof. □

Corollary 15  If G = (V ,E) is an IF �-tree, then, F′ is a unique 
spanning �-tree.

Proposition 16  In an IFT G = (V ,E) , there exists unique 
spanning tree F′′ so that F�� = F� = F.

Fig. 4   Intuitionistic fuzzy �-tree and �-tree G 
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Proof  If G = (V ,E) is an IFT, then, there exists a spanning 
tree F′′ such that for all arcs (u, v) which are not in F′′,

and

By (1), there exists a unique spanning �-tree F so that 
F�� = F and by (2), there exists a unique spanning �-tree F′ 
so that F�� = F� . Hence, F′′ is a unique spanning tree and 
F�� = F� = F . □

Corollary 17  An IFG G = (V ,E) is an IFT if and only if G is 
an IF �-tree and IF �-tree with F = F�.

Proof  If G = (V ,E) is an IFT, then by Proposition 11, G 
is an IF �-tree and IF �-tree, and F�� = F� = F by Proposi-
tion 16. Conversely, let there exist a spanning �-tree F and 
spanning �-tree F′ so that F = F� . Consider F�� = F� = F . 
Now for (x,  y) which is not found in F�� = F , we have 
𝜇2(x, y) < 𝜇∞

F�� (x, y) and 𝜈2(x, y) > 𝜈∞
F�� (x, y) . Hence, G is an 

IFT with spanning tree F′′ . □

Example 5  In Fig. 5, G = (V ,E) is not an IF �-tree, because 
it has ��-strong arcs, but G is an IF �-tree, because it has no 
any ��-strong arcs. Hence, it is not an IFT.

The arcs (u, v) and (u, w) are ��-strong and ��-strong, the 
arcs (x, u) and (x, v) are ��-strong and ��-strong and the arcs 
(w, z) and (v, z) are ��-arcs and ��-strong.

Corollary 18  An arc (x, y) in an IFT G = (V ,E) is ��-strong 
if and only if it is ��-strong.

Proof  Let (x, y) be ��-strong, then, (x, y) is in F by Theo-
rem 12. G is an IFT, hence F�� = F� = F and implies that 
(x, y) is in F′ . Therefore, (x, y) is ��-strong by Theorem 14. 
The converse is similar. □

(1)𝜇2(u, v) < 𝜇∞
F�� (u, v)

(2)𝜈2(u, v) > 𝜈∞
F�� (u, v)

Proposition 19  Let G = (V ,E) be an IFG, then, we have: 

	 (i)	 If G is an IF �-tree and the arc (x, y) is not in F, then 
�∞
F
(x, y) = ��∞

2
(x, y).

	 (ii)	 If G is an IF �-tree and the arc (x, y) is not in F′ , then, 
�∞
F� (x, y) = ��

∞

2
(x, y).

	 (iii)	 If G is an IFT and the arc (x, y) is not in F′′ , then, 
�∞
F�� (x, y) = ��∞

2
(x, y) and �∞

F�� (x, y) = ��
∞

2
(x, y).

Proof 

	 (i)	 Let P be a �-path from x to y in F. All arcs of P are ��
-strong by Theorem 12. Hence, P is a ��-strong path. 
Thus, by Proposition 3, P is a �-strongest (x − y) 
path. It follows that �∞

F
(x, y) = ��∞

2
(x, y).

	 (ii)	 Let P be a �-path from x to y in F′ . All arcs of P are ��
-strong by Theorem 14. Hence P is a ��-strong path. 
Thus by Proposition 4, P is a �-strongest (x − y) path. 
It follows that �∞

F� (x, y) = ��
∞

2
(x, y).

	 (iii)	 It follows obviously from (i) and (ii). □

Example 6  In Fig. 6, G = (V ,E) is an IF �-tree and IF �-tree 
and also we have F = F� . Hence, G is an IFT.

The arcs (x, v), (u, v), (u, w) and, (w, z) are ��-strong and 
��-strong. The arcs (x, u), (v, z), and (v, w) are ��-arcs and 
��-arcs.

6 � Intuitionistic Fuzzy Cycles

In this section, we study types of intuitionistic fuzzy 
cycles. We use types of arcs to study properties of an IFC. 
Also, we study the relationship between intuitionistic 
fuzzy cycle and intuitionistic fuzzy tree.

Fig. 5   Intuitionistic fuzzy �-tree G 
Fig. 6   Intuitionistic fuzzy graph G 
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Definition 18  Let G = (V ,E) be a �-cycle. Then, G is an 
intuitionistic fuzzy �-cycle (IF �-cycle), if it contains more 
than one weakest �-arcs. Let G be a �-cycle, then, it is an 
intuitionistic fuzzy �-cycle (IF �-cycle), if it contains more 
than one weakest �-arcs. Let G be a cycle, then G is an intui-
tionistic fuzzy cycle (IFC), if it is an IF �-cycle or IF �-cycle.

Proposition 20  Let G = (V ,E) be an IFG. Then, we have: 

	 (i)	 If G is an IF �-cycle, then, G has no ��-arcs.
	 (ii)	 If Gis an IF �-cycle, then, G has no ��-arcs.
	 (iii)	 If G is an IFC, then, G has no ��-arcs or ��-arcs.

Proof 

	 (i)	 If (u, v) is a ��-arc in G, then, it becomes the unique 
weakest �-arc in G, which contradicts the Definition 
18.

	 (ii)	 If (u, v) is a ��-arc in G, then, it becomes the unique 
weakest �-arc in G, which contradicts the Definition 
18.

	 (iii)	 It follows the (i) and (ii).

□
Lemma 21  Let G = (V ,E) be an IFG. Then, we have: 

	 (i)	 If G is a �-cycle, then, G is an IF �-cycle if and only 
if it has at least two ��-strong arcs.

	 (ii)	 If G is a �-cycle, then, G is an IF �-cycle if and only 
if it has at least two ��-strong arcs.

	 (iii)	 If G is a cycle, then, it is an IFC if and only if it has 
at least two ��-strong arcs or ��-strong arcs.

Proof 

	 (i)	 If G is an IF �-cycle, then, there exist at least two 
weakest �-arcs that are ��-arcs. Hence, G has at least 
two ��-strong arcs. The inverse relation is obvious.

	 (ii)	 If G is an IF �-cycle, then there exists at least two 
weakest �-arcs which are ��-arcs. Hence, G has at 
least two ��-strong arcs. The inverse relation is obvi-
ous.

	 (iii)	 We get from (i) and (ii) directly.

□
Theorem 22  Let an IFG G = (V ,E) be a �-cycle, then, G is 
an IF �-cycle if and only if it is not an IF �-tree.

Proof  It is easy, see [24]. □

Theorem 23  Let an IFG G = (V ,E) be a �-cycle, then, G is 
an IF �-cycle if and only if it is not an �-tree.

Proof  If G is an IF �-cycle, then, it has no ��-arcs by Propo-
sition 20. Let G be an IF �-tree, then, there exists a unique 
spanning �-tree F′ . If (x, y) is not in F′ , 𝜈2(x, y) > 𝜈∞

F� (x, y) 
and by Proposition 19, we have �∞

F� (x, y) = ��
∞

2
(x, y) . It fol-

lows that 𝜈2(x, y) > 𝜈�
∞

2
(x, y) . Therefore, G is not an IF �

-cycle. Conversely, suppose that G is not an IF �-tree. Then, 
for an arbitrary arc (u, v) in G, there exists a unique (u − v) 
path P = G − (u, v) in G so that �2(u, v) ≤ �∞

P
(u, v) . It follows 

that there is no unique weakest �-arc in G. Hence, G is an 
IF �-cycle. □

Corollary 24  Let an IFG G = (V ,E) be a cycle. If G is an 
IFC, then G is not an IFT.

Proof  If G is an IFC, then G is an IF �-cycle or IF �-cycle. 
Let G be an IF �-cycle, then, G is not an IF �-tree by Theo-
rem 22. Hence, G is not an IFT. Let G be an IF �-cycle, then 
G is not an IF �-tree by Theorem 23. Hence, G is not an IFT. 
This completes the proof. □

Remark 11  The converse of Corollary 24 is not true. In 
Example 7, G is neither an IFT nor an IFC.

Example 7  In Fig.  7, let G = (V ,E) be an IFG, so that 
V = {x, u, v,w, z} ,  E = {(x, u), (x, v), (u,w), (v, z), (w, z)} . 
Then, the arcs (x, v), (w, z) and (u, w) are ��-strong and ��
-strong, the arc (x, u) is ��-arc and ��-strong, the arc (v, z) is 
��-strong and ��-arc. Hence, G is an IF �-tree and IF �-tree, 
but it is not an IFT, because F = F� . Also, G is not an IFC.

7 � Questions

Now we try to answer the following questions: 

(1)	 How can we recognize an intuitionistic fuzzy tree?

Fig. 7   Intuitionistic fuzzy �-tree and �-tree G 
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(2)	 How much can we change the degree of membership 
and non-membership of arcs from an intuitionistic 
fuzzy tree G until G stops being an IFT?

For Question 1, we can easily recognize by Theorem 25, 
Theorem  26, and Corollary 27. Also we can obtain a 
unique spanning �-tree, a unique spanning �-tree, and a 
unique spanning tree by Proposition 28.

Theorem 25  Let G = (V ,E) be a �-connected IFG. Then, G 
is an IF �-tree if and only if it has no ��-strong arcs.

Proof  It follows from [31]. □

Theorem 26  Let G = (V ,E) be a �-connected IFG. Then, G 
is an IF �-tree if and only if it has no ��-strong arcs.

Proof  Let G = (V ,E) be an IF �-tree and let F′ be the unique 
spanning �-tree of G. Then, all arcs in F′ are ��-strong by 
Theorem 14. Suppose that (x, y) is a ��-strong arc in G, 
then, (x, y) is not in F′ . Hence, 𝜈2(x, y) > 𝜈∞

F� (x, y) . Also, 
we have �∞

F� (x, y) = ��
∞

2
(x, y) , by Proposition 19. It follows 

𝜈2(x, y) > 𝜈�
∞

2
(x, y) . Hence, (x, y) is a ��-arc, which is a con-

tradiction. Therefore, G has no ��-strong arcs. Conversely, 
suppose that G has no ��-strong arcs. If G has no �-cycles, 
then, G is an IF �-tree, by Theorem 23. Now assume that G 
has �-cycles. Let C be a �-cycle in G. Then, C will contain 
only ��-strong arcs and ��-arcs. Also, all arcs of C can not 
be ��-strong, thus, there exists one ��-arc in C. By deleting 
��-arcs in G, we have an IFSS, S. We claim that S is a span-
ning �-tree of G. By Proposition 2, between every vertices 
of G there exists a �-strong path. Also by deleting ��-arcs, 
we do not have any �-cycles in G. Let (x, y) be not be in S, 
then, 𝜈2(x, y) > 𝜈�

∞

2
(x, y) . All arcs in S are ��-strong, hence 

the �-path between x, y is the �-strongest (x − y) path by 
Proposition 4. Therefore, �∞

S
(x, y) = ��

∞

2
(x, y) . It follows that 

𝜈2(x, y) > 𝜈∞
S
(x, y) . Hence, G is an IF �-tree. □

Corollary 27  Let G = (V ,E) be an IFG. If Gis an IFT, then 
G has no ��-strong and ��-strong arcs.

Remark 12  The converse of Corollary 27, is not true. In 
Figure 7, G is an IF �-tree and IF � - tree, hence it has no ��
-strong and ��-strong, but G is not an IFT, because F ≠ F′.

Proposition 28  Let G = (V ,E) be an IFG, then, 

	 (i)	 If G is an IF �-tree, then a unique spanning �-tree F 
gets from deleting of ��-arcs.

	 (ii)	 If G is an IF �-tree, then a unique spanning �-tree F 
gets from deleting of ��-arcs.

	 (iii)	 If G is an IFT, then a unique spanning tree F′′ gets 
from deleting of ��-arcs or ��-arcs.

Proof 

	 (i)	 By Theorem 25, if G is an IF �-tree, then has no 
��-strong arcs. Also all arcs in F are ��-strong, by 
Theorem 12. Hence, all arcs are ��-arcs and F are 
achieved by deleting all ��-arcs.

	 (ii)	 It is similar to (i).
	 (iii)	 It follows (i) and (ii).

□
To answer Question 2, we discuss the following proposi-

tions. We also consider various cases of arcs in an intuition-
istic fuzzy tree.

Proposition 29  Let G = (V ,E) be an intuitionistic fuzzy tree 
and F be the unique spanning �-tree of G. If IFG G′ is 
obtained from G by increasing the degree of membership of 
(x, y) ∈ V × V ⧵ F up to �∞

G−(x,y)
(x, y) , then, G′ is IFT.

Proof  For an arc (x, y) ∈ V × V ⧵ F  ,  we consider 
𝜇�

2(x, y) < 𝜇∞
G−(x,y)

(x, y) so that ��
2(x, y) ≤ 1 − �2(x, y) , which 

��
2(x, y) is the degree of membership the arc (x, y) in G′ . 

A l s o ,  �∞
G−(x,y)

(x, y) = �∞
G�−(x,y)

(x, y)  i m p l i e s  t h a t 
𝜇�

2(x, y) < 𝜇∞
G�−(x,y)

(x, y) . Thus, (x, y) is a ��-arc in G′ . Also, 
fo r  o t h e r  a r c s  ( u ,   v )  i n  G ,  w e  h ave 
�∞
G−(u,v)

(u, v) = �∞
G�−(u,v)

(u, v) . Hence, the type of all areas in 
G does not change with the increase of the degree of mem-
bership of (x, y). So, F is a unique spanning �-tree of G′ . 
Thus, G′ is an IFT. This completes the proof. □

Proposition 30  Let G = (V ,E) be an intuitionistic fuzzy tree 
and F be the unique spanning �-tree of G. If IFG G′ is 
obtained from G by reducing the degree of non-membership 
of (x, y) ∈ V × V ⧵ F down to �∞

G−(x,y)
(x, y) , then, G′ is IFT.

Proof  For an arc (x, y) ∈ V × V ⧵ F  ,  we consider 
𝜈�2(x, y) > 𝜈∞

G−(x,y)
(x, y) so that ��2(x, y) ≤ 1 − �2(x, y) , in 

which ��2(x, y) is the degree of non-membership of the arc 
(x, y) in G′ . Also, �∞

G−(x,y)
(x, y) = �∞

G�−(x,y)
(x, y) implies that 

𝜈�2(x, y) > 𝜈∞
G�−(x,y)

(x, y) . Thus (x, y) is a ��-arc in G′ . Also for 
other arcs (u, v) in G, we have �∞

G−(u,v)
(u, v) = �∞

G�−(u,v)
(u, v) . 

Hence, the type of all arcs in G does not change with the 
reduction of the degree of non-membership of (x, y). Hence, 
F′ is a unique spanning �-tree of G′ . Thus, G′ is an IFT. This 
completes the proof. □

Proposition 31  Let G = (V ,E) be an intuitionistic fuzzy tree 
and F be the unique spanning �-tree of G. If IFG G′ is 
obtained from G, replacing �∞

G−(x,y)
(x, y) by �2(x, y) , for an 
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arc (x, y) ∈ V × V ⧵ F , so that �∞
G−(x,y)

(x, y) ≤ 1 − �2(x, y) , 
then, G′ is not an IFT.

Proof  For the arc (x, y) ∈ V × V ⧵ F  ,  we consider 
��

2(x, y) = �∞
G−(x,y)

(x, y)   .  W e  a l s o  h a v e 
�∞
G−(x,y)

(x, y) = �∞
G�−(x,y)

(x, y) . Then, ��
2(x, y) = �∞

G�−(x,y)
(x, y) . 

Hence, there exists a ��-strong arc in G′ . Thus, G′ is not an 
IFT, by Theorem 25. □

Proposition 32  Let G = (V ,E) be an intuitionistic fuzzy tree 
and F be the unique spanning �-tree of G. If IFG G′ is 
obtained from G, replacing �∞

G−(x,y)
(x, y) by �2(x, y) , for an arc 

(x, y) ∈ V × V ⧵ F , so that �∞
G−(x,y)

(x, y) ≤ 1 − �2(x, y) , then, 
G′ is not an IFT.

Proof  For the arc (x, y) ∈ V × V ⧵ F  ,  we consider 
��2(x, y) = �∞

G−(x,y)
(x, y)  .  A l s o ,  w e  h a v e 

�∞
G−(x,y)

(x, y) = �∞
G�−(x,y)

(x, y) . Then, ��2(x, y) = �∞
G�−(x,y)

(x, y) . 
Hence, there exists a ��-strong arc in G′ . Therefore, G′ is not 
an IFT, by Theorem 26. □

8 � Applications of Intuitionistic Fuzzy Tree 
in Other Sciences

8.1 � Road Transport Network

Road transport network can be represented by an intuition-
istic fuzzy tree, because there exists the labeling data for 
nodes as location, the degree of importance and etc., and 
for arcs as length, width, traffic, quality and etc., so the best 
way to represent a road transport network is using intuition-
istic fuzzy tree such that the nodes and the arc, represent 
points and route between them, respectively. One of the most 
widely used algorithms in these networks is Dijkstra’s algo-
rithm. Dijkstra’s algorithm is an algorithm for finding the 
shortest paths between nodes in a road transport network. 
It was conceived by computer scientist Edsger W. Dijkstra 
in 1956 and published 3 years later. The shortest path algo-
rithm is widely used in network routing protocols. A more 
common variant of Dijkstra’s algorithm fixes a single node 
as the “source” node and finds the shortest paths from the 
source to all other nodes in the graph. Hence here, distance 
of source node will be very useful because in addition to 
finding the shortest paths, selected the most valuable them.

8.2 � In Stock Markets

Time series data are of growing importance in many new 
database applications such as data mining. A time series 
is a sequence of real numbers, each number representing 

a value at a time point. For example, the sequence could 
represent stock or commodity prices, sales, exchange rates, 
weather data, biomedical measurements, etc. For example, 
we may want to find stocks that behave in approximately 
the same way (or approximately the opposite way) for hedg-
ing; or products that had similar selling patterns during the 
last year; or years when the temperature patterns in two 
regions of the world were similar. In queries of this type, 
approximate, rather than exact, matching is required. Most 
of the existing data mining techniques are not so efficient to 
dynamic time series databases. However, mining different 
queries from huge time-series data is one of the important 
issues for researchers. Intuitionistic Fuzzy Tree for unpre-
dictable dynamic stock exchange databases has been con-
structed using weighted fuzzy production rules (WFPR). In 
WFPR, a weight parameter is assigned to each proposition 
in the antecedent of a fuzzy production rule (FPR) and a cer-
tainty factor (CF) is assigned to each rule. It is based on min-
imum classification information entropy to select expanded 
attributes. In similarity-based fuzzy reasoning method, we 
analyze WFPR’s which are extracted from FDT. The analy-
sis is based on the result of consequent drawn for different 
given facts (e.g. variables that can affect stock markets) of 
the antecedent. Certainty factors have been calculated using 
some important variables (e.g. effect of other companies, 
effect of other stock exchanges, effect of overall world situ-
ation, effect of political situation etc.) in dynamic stock mar-
kets. Some advantages, such as accurate stock prediction, 
efficiency and comprehensibility of the generated WFPR’s 
rules, are important to data mining. These WFPRs allow us 
to effectively classify patterns of non-axis parallel decision 
boundaries using membership functions properly, which is 
difficult to do using attribute-based classification methods.

8.3 � Intrusion Detection Systems (IDS)

Developing effective methods for the detection of intrusions 
and misuses is essential for assuring system security. Various 
approaches to intrusion detection are currently being in use 
with each one having its own merits and demerits. The objec-
tive of this study is to test and improve the performance of a 
new class of decision tree-based IDS, as explained in [38]. 
The C-fuzzy decision trees are classification constructs that 
are built on a basis of information granules fuzzy clusters. The 
way in which these trees are constructed deals with successive 
refinements of the clusters (granules) forming the nodes of the 
tree. When growing the tree, the nodes (clusters) are split into 
granules of lower diversity (higher homogeneity). The perfor-
mance, robustness, and usefulness of classification algorithms 
are improved when relatively few features that are involved in 
the classification. Thus, selecting relevant features for the con-
struction of classifiers has received a great deal of attention. 
Several approaches to feature selection have been explored. 
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The purpose is to identify best candidate feature subset in 
building the C-fuzzy decision tree IDS that is computationally 
efficient and effective. The usefulness of a C-fuzzy decision 
tree for developing IDS with data partition is based on hori-
zontal fragmentation. The focus is on improving the perfor-
mance by reducing the number of features and selecting more 
appropriate data set. It is evident from the results that our data 
partition and feature selection technique result in an improved 
C-fuzzy decision tree to build an effective IDS.

9 � Conclusion

It is well known that graphs are among the most ubiquitous 
models of both natural and human made structures. Fuzzy 
graph theory has numerous applications in modern sciences 
and technology, especially in the fields of operations research, 
neural networks, artificial intelligence and decision making. 
The concepts of intuitionistic fuzzy graphs can be applied in 
various areas of engineering, computer science: database the-
ory, expert systems, neural networks, signal processing, pattern 
recognition, robotics, computer networks, and medical diag-
nosis. In this paper, the concepts of IFT, IFC, IFB, IFCN, and 
the types of arcs in an IFG have been investigated. We plan to 
extend our research of fuzzification to connectivity of an IFG.
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