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Abstract

In this study, we introduce the new concept of s-convex fuzzy-interval-valued functions. Under the new concept, we pre-
sent new versions of Hermite—Hadamard inequalities (H-H inequalities) are called fuzzy-interval Hermite-Hadamard type
inequalities for h-convex fuzzy-interval-valued functions (h-convex FIVF) by means of fuzzy order relation. This fuzzy
order relation is defined level wise through Kulisch—-Miranker order relation defined on fuzzy-interval space. Fuzzy order
relation and inclusion relation are two different concepts. With the help of fuzzy order relation, we also present some H-H
type inequalities for the product of h-convex FIVFs. Moreover, we have also established strong relationship between Her-
mite—Hadamard—Fej er (H-H-Fej er) type inequality and s-convex FIVF. There are also some special cases presented that
can be considered applications. There are useful examples provided to demonstrate the applicability of the concepts proposed
in this study. This paper's thoughts and methodologies could serve as a springboard for more research in this field.

Keywords Convex fuzzy-interval-valued function - Fuzzy Riemann integral - Fuzzy-interval Hermite - Hadamard
inequality - Fuzzy-interval Hermite - Hadamard - Fej er inequality

1 Introduction

The significance and supreme applications of convex func-
tions are well known in different fields, especially in the
study of integral inequalities, variational inequalities and
optimization. Therefore, much attention has been given in
studying and characterizing different directions of classical
idea of convexity. Recently, many extensions and generaliza-
tions of convex functions have been studied. For more useful
details, see [1-4, 6, 7, 14, 18-21, 25] and the references
are therein. In classical approach, a real valued function
¥ : K — Ris called convex if

P(z+ (1 -8y <Y+ -5Y0), (D

forall z,ey € K, € € [0, 1].
The concept of convexity with integral problem is an
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interesting area for research. Therefore, many inequalities
have been introduced as applications of convex functions.
Among those, the H-H inequality is an interesting outcome
in convex analysis. The H-H inequality [16, 17] for convex
function ¥ : K — R on an interval K = [u, v]
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+v 1 YY)+ ¥Y(v)
2 Tv—u (2)dz < 2 &)
forall z € K.

On the other hand, the concept of interval analysis was
proposed and investigated by Moore [24], and Kulish and
Miranker [23] to improve the reliability of the calculation
results and automatically perform error analysis. It is a dis-
cipline in which an uncertain variable is represented by an
interval of real numbers and real operations are replaced
by interval operation. In last 5 decades, the concept of
interval was used as a tool to handle uncertain problems.
Recently, many authors have contributed their role in this
theory and introduced new concepts. Zhao et al. [30] intro-
duced h-convex interval-valued functions and proved that
the following H-H type inequality for A-convex interval-
valued functions:

Theorem 1.1. Let ¥ : [u,v] CR = K[ be a h-convex
interval-valued function given by V() = [‘I’*(z), lI”"(z)] for
all z € [u, v], where ¥ (2) is a h-convex function and W*(z)
is a h-concave function. If ¥ is Riemann integrable, then

v

2h<1 )\P(”;V) > Viu/‘l’(z)dz

u

N =

1
> YT / hE)de. 3)
0

Y, (z), = ¥*(2), then integral inequality (3) reduces for
-convex function, see [29]. We refer to the readers for further
analysis of literature on the applications and properties of
generalized convex functions and H-H integral inequalities,
see [5, 8,9, 15, 17, 22, 27, 28, 31-48] and the references
therein.

There are some integrals to deal with fuzzy-interval-
valued functions (FIVF), where the integrands are FIVFs.
For instance, Oseuna-Gomez et al. [26], and Costa [11]
constructed H-H and Jensen’s integral inequality for FIVFs
using fuzzy Aumann integrals. Using same approach
Costa and Floures [10] and Costa et al. [12] also presented
Minkowski and Beckenbach’s inequalities, where the inte-
grands are interval-valued and FIVFs. Motivated by [10, 11,
26, 29] and [30], we generalize integral inequality (2) by
constructing fuzzy-interval integral inequality for 4-convex
FIVF, where the integrands are h-convex FIVFs.

This study is organized as follows: Sect. 2 presents
preliminary notions, new concepts and results in interval
space, in the space of fuzzy-intervals and for h-convex
FIVFs. Section 3 obtains fuzzy-interval H-H inequalities

@ Springer

via h-convex FIVFs. In addition, some interesting exam-
ples are also given to verify our results. Section 4 gives
conclusions.

2 Preliminaries

In this section, we recall some basic preliminary notions,
definitions and results. With the help of these results, some
new basic definitions and results are also discussed.

We begin by recalling the basic nota-
tions and definitions. We define interval as,
[a)*,w*] = {z ER: v, £z7<Lwandw,,w* € R}, where
w, <o

We write len [w*,w*] =" —ow,, If len [w*,w*] =0
then, [a)*,a)*] is called degenerate. In this article, all
intervals will be non-degenerate intervals. The collection
of all closed and bounded intervals of R is denoted and
defined as K¢ = {|0,,®*| : 0,,0* € Randw, < o*}. If
o, > 0 then, [a)*,a)*] is called positive interval. The set
of all positive interval is denoted by ICZ and defined as
Ki ={|o,. 0*] : [0,,0*| € Kcandw, > 0}.

We'll now look at some of the properties of intervals
using arithmetic operations. Let [o*,p*], [&*,&*] € K¢
and p € R, then we have

[0, 0"] + [&..&7] = [0, + &..0" + &7],

min{0,&,,0"&,,0,&", 0" &"},

[0, 7] x [&.. &7] = [max{o*&*,o*&*,o*&*,o*&*}

ifp >0,

ifp <O0.

*
vt ={ 2

For [o*, 0*], [&*, &*] € K¢, the inclusion “C” is defined
by [0*, 0*] - [&*, &*], if and only if &, < ¢,, 0" < &*.

Remark 2.1. The relation “<;” defined on K. by
.. 0] </ [&,.&*] if and only if o, < &,,0" < &,
for all [Q*,Q*], [&*,&*] € K¢, it is an order relation,
see [23]. For given [0*,0*], [&*,&*] € K¢, we say that
[0.,07] < [&.,&] if and only if o, < &,,0" <&" or
0, < &, 0" <&

Moore [24] initially proposed the concept of Riemann
integral for IVF, which is defined as follows:

Theorem 2.2. [24]If¥ : [u,v] C R — K is an IVF on such
that ¥(z) = [‘I—’*, ‘-P*] Then ¥ is Riemann integrable over
[u, v]if and only if, ¥, and ¥* both are Riemann integrable
over|u, v] such that
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UR) / Y(z)dz

=|® / ¥, (2)dz, (R) / W (2)dz

Let R be the set of real numbers. A mapping
¢ : R —[0,1] called the membership function distin-
guishes a fuzzy subset set A of R. This representation is
found to be acceptable in this study. F(R) also stand for the
collection of all fuzzy subsets of R.

A real fuzzy interval ¢ is a fuzzy set in R with the fol-
lowing properties:

(1) ¢isnormali.e. there exists z € R such that {(z) = 1;

(2) ¢ is upper semi continuous i.e., for given z € R, for
every z € R there exist e > 0 there exist 6 > 0 such that
(@) — () < eforall y € R with|z—y| < 4.

(3) (¢isfuzzyconvexi.e.,{((1 — &)z + &y) > min({(2), {(V)),
Vz,yeRandé € [0, 1];

(4) ¢ is compactly supported i.e., c/{z € R|{(z))0}is com-
pact.

The collection of all real fuzzy intervals is denoted by [F,.

Let { € F, be real fuzzy interval, if and only if, g-lev-
els [¢]? is a nonempty compact convex set of R. This is
represented by

(€1 = {z € RI¢GR) = B},
from these definitions, we have
1€ = [¢.B).¢*(B)].

where

.(p) = inf{z € R|{(2) > p},

&*(P) = sup{z € R|{(2) = B}.

Thus a real fuzzy interval { can be identified by a para-
metrized triples

{(¢.(B).¢*(B). B) : p€10,11}.

These two end point functions ¢,(f#) and {*(f) are used
to characterize a real fuzzy interval as a result.

Proposition 2.3. [10] Let {,® € F,. Then fuzzy order rela-
tion “<” given on [, by

£<0 if and only if, [C]ﬂ < [@]ﬂfor all p € (0, 1],

it is partial order relation.

We will now look at some of the properties of fuzzy
intervals using arithmetic operations. Let {,® € F, and
p € R, then we have

[c70]° = [¢1P + [0, )
(%01 = [¢1P x [0]F, o)
[p.C1° = p.[C1°. ©6)

For y € F, such that { = ®Fy, we have the existence
of the Hukuhara difference of { and ®, which we call the
H-difference of ¢ and ®, and denoted by {=0. If H-differ-
ence exists, then

W) (B) = (£=0)"(p) =L"(B) — ©"(B)

W).(B) = (=0).(B) = {.(F) — ©,(p). @)

Theorem 2.4. [13, 26] The space F, dealing with a supre-
mum metric i.e., fory,® € F,

D(y,0) = sup H([¢1%,101°), ®)
0<p<1

it is a complete metric space, where H denote the well-
known Hausdorff metric on space of intervals.

Definition 2.5. [10] A fuzzy-interval-valued map
Y : K C R — Fyis called FIVF. For each f € (0, 1], whose
B-levels define the family of IVFs ¥, : K CR — K¢
are given by Wy(z) = [“P*(Z, B, ¥ (z, ﬂ)] for all z € K.
Here, for each g € (0, 1], the end point real functions
Y., ), P*(,P) : K— R are called lower and upper func-
tions of .

The following conclusions can be drawn from the pre-
ceding literature review [10, 13, 22, 24]:

Definition 2.6. Let ¥ : [u,v]CR — F, be a FEVF. Then
fuzzy integral of ¥ over [u, v], denoted by (FR) / Y(z)dz, it

is given level-wise by

p

(FR) / Y(z)dz| =(IR) / ¥4(2)dz

@ Springer
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v

= /‘P(z, ﬂ)dZ . \P(Z, ﬁ) € 7?’([u,\/],[i) ’ (9)

u

for all g € (0, 1], where R([u,v],ﬂ) denotes the collection of
Riemannian integrslble functions of IVFs. W is FR-integrable

over [u, v]if (FR) f Y¥(z)dz € F,. Note that, if both end point

functions are Lebesgue-integrable, then W is fuzzy Aumann-
integrable function over [u, v], see [13, 22, 24].

Theorem 2.7. Let ¥ : [u,v] C R — [, be a FIVF, whose f
-levels define the family of IVFs ¥y : [u,v] C R = K¢ are
given by ¥5(z) = [‘P*(z, 5, P (z, ﬂ)]for all z € [u, v]and for
all p € (0,1]. Then ¥ is FR-integrable over[u, v] if and only
if, Y.(z, p) and Y*(z, p) both are R-integrable over [u, v].
Moreover, if ¥ is FR-integrable over [u, v], then.

v B
(FR) / Y(2)dz

=R / ¥, (z, f)dz. (R) / Y (z, p)dz

= (IR) / ¥, (2)dz (10)

for all p € (0,1]. For all p € (0,11, FRy,,.; 5 denotes the
collection of all FR-integrable FIVFs over [u, v].

Definition 2.8. Let K be convex setand / : [0,1]C K — R
such that h = 0. Then FIVF ¥ : K — F.(R) is said to be:

e h-convex on K if
Yz + (1 =5GP (@)Fh(1 = EP(y), 11

forall z,y € K, & € [0, 1], where ¥(z)=0.
e h-concave on K if inequality (11) is reversed.
e affine h-convex on K if

Yz + (1= Oy) = h(§Y(@)+h(1 - OHF(), (12)

forall z,y € K, & € [0, 1], where ¥(z)=0.
Remark 2.9. The h-convex FIVFs have some very nice prop-
erties similar to convex FIVF,

If ¥ is h-convex FIVF, then YW is also #-convex for Y > 0

If W and W both are #-convex FIVFs, then max(¥(z), ¥(z))
is also h-convex FIVF.

@ Springer

We now discuss some special cases of #-convex FIVFs:

(1) If k(&) = &%, then h-convex FIVF becomes s-convex
FIVF, that is

Y&z + (1 = Hy=<E¥(@+(1 - &)’ P ().

forall z,y € K, & € [0, 1].
(i) If h(&) =&, then h-convex FIVF becomes convex
FIVF, see [25], that is

Yz + (1 = Hy=<EY @+ - HY (),

forall z,y € K, & € [0, 1].
(iii) If h(&) = 1, then h-convex FIVF becomes P-convex
FIVF, that is

Y(éz+ (1 - H=<¥@+Y (),

forall z,y € K, & € [0, 1].
Note that, special cases (i) and (iii) are also new ones.

Theorem 2.10. Let K be convex set, non-negative real val-
ued function h : [0,11 € K - R such that h =0 and let
Y : K = F-(R) be a FIVF, whose f-levels define the family
of interval valued functions ¥y : K C R — IC?7 C K are
given by

W52 = [P,z B). V(2 B). (13)

forall z € K and for allp € [0, 1]. Then W is h-convex on
K, if and only if, for all p € [0, 1], ¥ (2, p) and ¥*(z, p) are
h-convex.

Proof. Assume that for each f € [0, 1], ¥,.(z, f) and ¥*(z, §)
are h-convex on K. Then from (11), we have.

<h@VY.(z B) +h(1 = HY,.(y, B)
forall z,y € K, & € [0, 1],and
Y (z+ (1 =8y, p)

< h(©Y (2, p) + h(1 = EF* (v, ),

forallz,y € K, & € [0, 1].
Then by (13), (4) and (6), we obtain

Wiz + (1= &)y)
= [P,z + (1= &y, B, P (Ez+ (1 - &)y, p),

< [WEW, G B), MOV, )]
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+[h(1 = &Y, (v, B). h(1 = EF*(, B)].
that is
Yz + (1 = KM Y()+h(1 - EHYP().Vz,y € K, & € [0, 1].

Hence, ¥ is h-convex FIVF on K.
Conversely, let ¥ is h-convex FIVF on K. Then for all
z,y € Kand & € [0, 1], we have

Y&z + (1 = H=<h(EF(@)+h(1 — OP().
Therefore, from (13), we have

Ypz+ (1 =9y

= [P.(Ez+ (1 =&y, B, ¥*Ez+ (1 - &)y, p)].
Again, from (13), we obtain

h(E)W5(2) + h(1 — &)¥4(2)
= [h(&Y,(z, B), h(&)¥*(z. p)

+[h(1 = O, 0, B), h(1 = OF* (v, B, (14)

forall z,y € K and & € [0, 1]. Then by h-convexity of ¥, we
have for all z,y € K and & € [0, 1] such that

Y. (Sz+ (1 =&y, p) S hOVY,.(z. ) + h(1 = OHY. (3. B).

and

Y€z + 1 -5y, B

< h(©Y (2, B) + h(1 = EF* (3, ),

for each g € [0, 1]. Hence, this concludes the proof.

Remark 2.11. If ¥ (z, p) = ¥*(z, p) with § = 1, then h-con-
vex FIVF reduces to the classical h-convex function, see
[29]. If ¥,.(z, p) = W*(z, p) with f =1 and k(&) = & with
s € (0, 1) then h-convex FIVF becomes the classical s-con-
vex function, see [6].

If¥,(z, B) = ¥*(z, p) with f = 1and h(€) = &, then h-con-
vex FIVF reduces to the classical convex function.

fY,(z, ) = P*(z, p) with § = 1and h(£¢) = 1then h-con-
vex FIVF becomes the classical p-convex function, see [14].

Example 2.12. We consider h(&) = &, for £ € [0, 1] and the
FIVEVY : [0, 1] — Fo(R) defined by

2676 e [0, 2z2]

Y(2)(0) =4 £2%6 € (222,47
272
Ootherwise,
Then, for each pe€[0,1], we have

‘Pﬂ(z) = [Zﬁzz, 4 - Zﬂ)zz]. Since end point functions
¥, (z, B), P*(z, B) are h-convex functions for each g € [0, 1].
Hence ¥(z) is h-convex FIVF.

3 Main Results

In this section, we propose fuzzy-interval H-H inequalities
for h-convex FIVFs. Furthermore, several examples are given
to demonstrate the applicability of the theory produced in this
research.

Theorem 3.1. Let ¥ : [, v] = Fo(R) be a h-convex FIVF
with non-negative real valued function h . [0,1] - R and
h(%)#(LmMﬁnaﬂﬂe[QlLTﬂ:KI:R—»K@*CK%
represent the family of IVFs through p-levels. If
¥ € FR () p) then

1

1
2h<5

|‘|+v>

1 1%
>tp( )<= H(FR)/ﬂ‘P(i)di
N 1
< [P + ¥ / G (15)

Proof. Let ¥ : [M,v] = F.(R), h-convex FIVFE. Then, by
hypothesis, we have

1 (I_I +v
2
()
Therefore, for every f € [0, 1], we have
1 M+v
e (5)
SYEN+A=Ev, )+ +((1 =M+ &v, p),
| g D4y
iy (550)
SPHEN+ A =&V, p) + V(1 = HM + v, ).
Then

) < WET+ (1= &) + ¥ = O+ V),

@ Springer
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1 1
() de < [ W+ (- v, P
>0 0
1
+ [ W1 =&+ Ev, prde,
0
1 1
1 * +v %
ol (#4.9)ae < [ Wi @r (1 = v, e
1
+ [P = &+ Ev, P)de.
0
It follows that
= ‘P(%ﬂ) < i/v‘P*(z, pdz,
n(3) v "
1 * +v 2 "
h<%>\P (”T?ﬁ) < EM/lP (Z,ﬁ)dZ.
That is

Tl ) ()

12 v

Sl 2# /‘P*(l’hﬁ)dZ’/lP*(Z,ﬂ)dZ .

u I

Thus,

1 + 1
"P( prv )S (FR) / Y(z)dz. (16)
2h<1) 2/ v-u
2 H
In a similar way as above, we have

1

ﬁ(FR) / Y(2)dz< [P () F¥(v)] / h(&)dE. 17

0

Combining (16) and (17), we have

)7/ %

)lp( 2

1 )x— ~(FR) / W()dz
2h<E J

1
<[P F¥W)] / h(&)dé.
0

Hence, the required result.

Remark 3.1. If h(&) = &%, then Theorem 3.1 reduces to the
result for s-convex FIVF which is also new one:

@ Springer

zf—lw(”—”)<L<FR> / ¥(2)dz
2 V—Uu
]

1
s+ 1

<— [FWFPW)].

If (&) = &, then Theorem 3.1 reduces to the result for
convex FIVF which is also new one:

ptvy 1 [ W) FP()
‘P( : )SE(FR)/‘P(Z)dZST.
"

If k(&) = 1 then Theorem 3.1 reduces to the result for P
FIVF which is also new one:

llp(/l+v
2

)<L(FR) / Y(2)dz<P (1) FP().
2 V—Uu
"

If ¥Y,(z,p) =¥*(z, p) with g =1, then Theorem 3.1
reduces to the result for classical A-convex function, see [29]:

”+V)s 1 (R)/‘P(z)dz
vV
u

1
< [¥(w) +¥Y(v)] / h(&)d¢.
0

Y, (z, f) = ¥Y*(z, p) with § = 1and (&) = &, then Theo-
rem 3.1 reduces to the result for classical s-convex function,
see [21]:

23—1‘11(“7”) < ﬁ(R)/‘P(z)dz
u

< 1
s+1

[Y() + ¥ (W)I.

IfY¥Y, (z, B) = ¥*(z, p) with p = 1and h(&) = &, then Theo-
rem 3.1 reduces to the result for classical convex function,
see [16, 17]:

b4 ¥
lp(ﬂ +v) < 1 (R)/‘P(,u)dz < (u) + (V).
2 V—u 2
u
If¥, (z, f) = P*(z, f) with § = 1 and h(€) = 1 then Theo-
rem 3.1 reduces to the result for classical P-convex function,
see [14]:
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1y, (HTV 1
5\1!(7) < m(R)/‘I‘(z)dz <W(p) +¥W).
M

Example 3.1 We consider h(¢) = &, for &€ € [0, 1], and the
FIVFY : [u,v] =[0,2] = F-(R) defined by,

267(7 € [0, 212]

P(2)(0) =4 £5%5 € (222,47
27
Ootherwise,
Then, for each pe€[0,1], we have

lI’ﬂ(z) = [Zﬂzz, “4- Zﬁ)zz]. Since end point functions
Y. (z, ) = 2672, P*(z, f) = (4 — 2P)7? are h-convex func-
tions for each g € [0, 1]. Hence W(z) is h-convex FIVF. We
now computing the following

LI (“*“,ﬂ)sL/\P*(z,ﬂ)dz
V—HU
M

1 * 2
2h<5>

1
< [, B + ¥, (v, B) / h(£)dé.
0

1 H+v _ _
2h<%)lp*< ) = W.(1.5) =25,
v 2

! _1 24, = P
L [vep=] [pre-2

U 0

1

[¥.(u, )+ P, (v, p)] / h(&)dE = 4p,

0

for all g € [0, 1]. That means
8
2p < Tﬂ <4p.

Similarly, it can be easily show that

I ‘P*<ﬂ+v,ﬁ)s—l /‘I’*(z,ﬁ)dz
V—p
U

2h<%) 2

1
< [¥Hv, B) + ¥ (v, )] / h(&)dé.
0

for all g € [0, 1], such that

1 q;*(”""’

1 2
2h<§>

2
iﬂ /‘I’*(z,ﬁ)dz= %/(4—2ﬂ)zzdz= AL}
0

B) =0, =4-2p),

3

u"

1
[ (u, p) + ¥*(v. B / h(E)AE = 2(4 - 2).
0

From which, we have

44 - 2p)
3

(4-2p) < <2(4-2p),

that is

86 4(4-2p)

3 3 <y [45.2(4 = 2p)),

[28.(4 =2p)] <, [

for all g € [0, 1].
Hence,

1

2h<%

u+v

>‘P< 2

)Jx——(R) / W(2)dz
V—HU
"

1
<[P+ / h(&)dg.
0

Theorem 3.2. Let ¥ : [u,v] = F-(R) be a h-convex FIVF
with non-negative real valued function h . [0,1] - R and
h(L) #0.and for all p €10,11,%, : K CR = Kf € K

represent the family of IVFs through p-levels. If
¥ € FR (01 p) then

1

n(3)

(4 Ty )< <——FR) / W(2)dz<>
2 2 V—Uu
U

1
<[l [ +4(3)] / HE)E,
0

where

@ Springer
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1 ety
Y()FYW) ..+ v 3 ;
>1=[ ()| [ nee, L q,( ”:V>< L [ v (1)
0 4h<§) von/
In a similar way as above, we have
>, = 1 [‘P<3M+V>-T-‘P<”+3V>], y
4h(l> 4 4 . y
2 +
1 ‘P(” V>< 1 /‘P(Z)dz. (19
d — * — * 4h<l) 4 V—H
and>| = [>1,,>1], >y = [>y.. 23] > i
Proof. Take [u, ”TJ'V] , we have Combining (18) and (19), we have
_ gkt _ pty v
1 T(fﬂ+<1 o7 L d 5>M+€z> 1 [T<3u+v>w<u+3v>]< 1 /q,(z)dZ
h<%) 2 2 4h<%> 4 4 V_M,,

v Using Theorem 3.1, we have
>' 1 <;4+v>_ 1 <13,u+v 1 +3)
2 2 /7 2°\2" 4 20 4 )
Therefore, for every g € [0, 1], we have 1 1
y B €10,1] 4[h<2>] 4[}1(2)]
: Eut (=M (1-Eu+El
v, 3 + P

) :

<¥(eu+ (-0 )e(a -

Therefore, for every f € [0, 1], we have

For )= g (5 s s)

2
sw. (w0t p) e (a-our et p) it (50) = i (2 1)
h(E)T*(sH(lj)"% + (l—é);42+f%,ﬂ> < 4[11(1%)]2 [h(%)‘{’(&d:\/ﬂ) +h<%)‘{'(%3“ﬁ>]
< ‘P*(&u +(1 - ‘S)M?’ﬁ> + \P*<(1 - &u+ C%,ﬂ). < 4[h(1%)]2 [h(%)‘l’*(w:v’ﬂ) + h(%)\{l*(%ﬁﬁﬂ
In consequence, we obtain
s = Doy
ai () < 2/ v e
ﬁ‘l‘@‘%ﬁ) <L [_ "2 p)dz. < ﬁ: @ )z,
That is < 4 [ ¥ Pz
u

N
=

N -

SN———
—
&

*
VN
(O8]

=
=+
<

=
N———
&

*
/N
oY)

=
=+
<

=
N————
| S

IA

[Luprten g (s )| /lh(é)df,

- o < |:‘P*(” ﬁ);ll‘*(vﬁ) +\P*( >] fh(g)dg
2 2
< ! / ¥,z f)dz, / W, fydz |
V—Uu - [>l*’
" H =p*

It follows that
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W, h)+Y,(v,5) Y. (u, )+
< [—2 +h(§)< W (v, f) )] [ h(&)de,

W B+ (v,5) W (u, P+
< [—2 +h(§)< W (v, f) )] [ h(&)dé,

= [¥, (1, ) + ¥, (v, B)] [% +h<%)] h(&)dg,

—C~~

=19 e )+ Dl 5+ (3 )|/ ez,
that is

1

Ji(3)]

qf(” il )s >, <——(FR) / W(2)dz<>,
2 V—u

1
<[roree)] 3 +a(3)] [ e
0

Hence, the proof has been completed.

Example 3.2. We consider h(&)=¢&, for £e€]0,1],
and the FIVF ¥ : [u,v] =[0,2] - F.(R) defined by,
¥,(2) = [282%, (4 — 2B)2|, as in Example 3.1, then ¥(z) is
h-convex FIVF and satisfying (10). We have ¥,(z, f) = fz
and Y*(z, f) = (4 — 2f)z. We now computing the following.

¥, 0)+ 2.0 )] [ +4(3)] 0/1 HEE = 4,

(9" (u, )+ 0. I + (4 {1 hE)E = 42 - ),

>l = [w +¥ <”+V )] flh(é)dé
=38, '
o = [‘i‘*’(u,ﬂ);‘l’*(v,ﬂ) " q;(/%v p)] {1 h(&)dé
=32-p),

S e O )

= 35.
= g () () +4(3)w (50

=32-p.

Then we obtain that

2ﬂs§ﬂ ;” 3p <48,
22-p<ie-p< <

Hence, Theorem 3.2 is verified.

Following results find the new versions of H-H inequal-
ities for the product of two A-convex FIVFs.

Theorem 3.3. Let ¥, J: [u,vl > F(R) be two h
-convex FIVFs with non-negative real valued func-
tions hy,hy 110,11 = R, and for all pe]0,1],

Y, KCR— ICJE C K¢ represent the family of IVFs
through p-levels. If ¥, J and Y J € .F’R([”’v]yﬁ), then

1 R / W% A2)dz

V—HUu

< M(u, V)/hl(f)hz(if)dé
0

‘P/\/’(ﬂ,‘/)/hl(f)hz(l - &)dé,
0

where M(u,v) = Y)XT()FYWV)XI(v),
Mu,v) = ¥(XITW)FEWXT(W), a n d
Mﬂ(/’l’ V) = [M *((I’l’ V)?ﬁ)’ M*((//I, V)’ ﬂ)] an d

Nﬂ(ﬂ? V) = [N*((/’l’ V)’ ﬂ)7 M((/"’ V)’ ﬂ)] .

Example 3.3. We consider h;(§) =&, h(8) =1, for

£€[0,1], and the fuzzy interval-valued functions
Y, J: [u,v] =10, 1] - F-(R) defined by,
2%6 e [O, 212]
¥(2)(0) = L3%0 € (222,477
272
Ootherwise,
( —6 € [0,z]
Je)o) =1 = 25 € (z,21]
00therw1se
Then, for each pe€[0,1], we have

¥,(2) = [2p2%, (4 - 2P)2*| and Ty(2) = [Bz, (2 — p)z]. Since
end point functions ¥ _(z, f) = 2872, ¥*(z, f) = (4 — 28)7?
and J x(z, f) = Pz, Tz, B) = (2 — B)z h, and h,-convex
functions for each g € [0, 1], respectively. Hence ¥, 7 both
are h-convex FIVFs. We now computing the following

@ Springer
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ﬁ [ ¥ (2. p) X T #(z, f)dz = %2
U

L [ X T @ e = T,
U

1
M (), B) [ 1y (Ohy(O)dE = p2,
0

1
M ((u,v), B) [ 1y (O)hy(E)dE = (2 - B,
0

1

N (4, v), B) [ hy(Ehy(1 = E)AE =0
0
1

N (1, ), B) [ hy(EOhy(1 = E)dE = 0,
0

for each g € [0, 1], that means

2
_<ﬂ2+0 ﬂZ

(“”2<<2 AP +0=2-p>

Hence, Theorem 3.3 is demonstrated.

Theorem 3.4 Let ¥, J : [M,v] = F(R) be two h-convex
FIVFs with non-negative real valued func-

1 1

§>h2(§) #0,
and for allp € [0,1], ¥ : KCR — Kt € K¢ represent
the family of IVFs through p-levels. If YT € FR ) g) then

|‘|+v)>~<j<l_|+v>

S OROMERAE

tionsh, h, : [0,1] = R, respectively and hl(

W(h) x JDdi
M

~ 1 - 1
+ M(H»V)/Oh1(§)hz(1 —&d¢ + /\/(W,V)/Ohl(é)hz(é)di,

where CM(,y) = W(T) X ) + P(v) X J),
N, v) =P(M) X J(v) + P(v) X J(N), and
MM, v) = [M (T, v), B), M*((N,v), B)] and
Ny, v) = [N (T, v), B, N (T, v), B)].

Proof. By hypothesis, for each f € [0, 1], we have

wo(Fa) ()
v(a) e (5)

@ Springer

YT

+¥ *<(1

Eu+ Eu+
f)wﬁ) XJ*((I —é’)wﬁ)

Eu+ (1 =8&u+
—§>v,ﬂ> XJ*( Ev.p )

‘T*<(1—§)u+> < Eu+ )
1 1 Ev, B 1=%v.p
+h1<§>h2<§> +\p*<(1“5)“+> <(1—5)u+>
i év, p
05 (5 )
! ! (1 =%&v,p (1=&v,p
Shl<§)h2(§) +‘P*< Eu+t >xj*<(1—§)u+>
| (1 =%v.p

[ f (1L =8u+ Eu+
+h (l)h (1) ¥ < v, p )XJ*<(1— 912 ﬂ)
1\ 3 )"\3 +lp*((1—§)u+>xj*< é)u+> ’

cv. p

o |
YRS <<1—”Svﬂ)>

(I =&u+ (1-&u+
+‘P>k_< £v. B )xj( Ev. p

)
u

< hy (@)W (7, )+ )
hy(1 =W (v, B)
X<h2(1 =T *(M. pr+ )

hy (&) T (v, p)

hy(1 = EW (1, )+ > ’

h ()Y (v, p)
hy ()T +(M, p)+ >
hy(1 = )T #(v., )

Eu+

T( ¢ ) f< _gu+‘ )
cn(D(2)] s N0 o

o’
!

(h (1= ¥, p)
X<h2(1 —OJ M. H+

. (1—§)M+ = &u+
_< )”* < &v.p )

1(5)‘{'*(r| P+ >

hy(&)T (v, B) >
(I =P, ﬁ)+> '

h (Y (v, B)
hz(é)J*(l_l P+ >
hy(1 =T (v, )

(55, )55
(DD NGO I a-ovp

+¥

(0

Eu+ (1 =8u+
&v.p >XJ*< &v.p )
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PERGAGE
{ hi(1 = &hy(1 - &) }N*(('_"V), B
hl(&)hz(l -6+ s
{ hy(1 = &hy(€) }M *((M,v), B)

[ . Eu+ Eu+
=h<1)h <l T<(1_§)V»ﬂ>xj*<(1—§)\/,ﬂ>
15 )| 3 +\P*<(1_5)u+>xj*<(1_5)”+>
| év, p év,p
hy(&)hy(E)+ }J\/*((ﬂ,v), 5

+h (\n, (L {hl(l_‘f)hz(l_é) |
D20 NUrisins

hi(1 = &hy(&)

+h1(%>h2(%

Integrating over [0, 1], we have
1 M+v M+v
—2h|<%>h2(%)qj *(T,ﬁ) X j*(Taﬂ)
< =R/ (B X T #(t, Hdi
+M (T, ), B) [ (‘)llzl(:)hz(l — &)de
+N (T, V), B) [ 1y (E)hy(E)E,

1 w [ T+v M+v
NORON (5p) x 7 (% 5)
< =R [} HXT (4, )di
+ME((T, V), B) [ gy Oy (1 — E)AE
N (T, v), B) [ oy (EYha(E)dE,

that is

1 p |_|+v)>~<j<|_|+v)

T OO

1

<
Sy

(FR) / W(h) X JHdi
M

~ 1 - 1
+ M(I_I,V)/ hi($hy(1 = &)dE + N(W,V)/ hy(&)hy(§)dE,
0 0
Hence, the required result.

Example 3.4. We consider h;(§) =&, (&) =1, for
£ €10,1], and the FIVFs ¥, 7 : [M1,v] = [0, 1] - F-(R),
as in Example 3.3. Then, for each g € [0, 1], we have
¥y(1) = [261%, (4= 29| and Tp() = [1. 2~ p)t] and,
Y(1), J(1) both are h-convex and h,-convex FIVFs, respec-
tively. We have W «(1, f) = 2812, W*(1, B) = (4 — 28)1* and
J (1, B) = p1, T (4, f) = (2 — f)i. We now computing the

following.

1 v ﬂ2
L[ (1, B x T #(4 df = L=,

— [ B X T (4 Bdi = S

M (T, V), B) [ ohy ©y(1 = E)E = B2,
M, ), B) [ (O (1 = E)AE = (2 = B)?,

N #(T,v), B) [ ghy (E)ho(E)dE = 0,
N, ), B) [ gl (Ehy(E)dE = 0,

for each g € [0, 1], we conclude that

4 2 2’
—p)? _pB? a2
@ 4ﬂ) < 2 2ﬂ) +2- ﬁ)2 +0= 3(22ﬂ) ,

hence, Theorem 3.4 is demonstrated.

We now give HH-Fej er inequalities for A-convex FIVFs.
Firstly, we obtain the second HH-Fejer inequality for
h-convex FIVF.

Theorem 3.5. Let ¥ : [M,v] = F-(R) be a h-con-
vex FIVF with M <v and h : [0,1] > R*, and for all
pelo,1], ¥,: KCcR— Kct € Ko represent the
Samily of IVFs through B-levels. If ¥ € FR 5 and
VvV [Mv] = R,V(@) >0, symmetric with respect to %,
then

Y / WV (i
v—T1 o

N 1
< [‘I’(W) + ‘P(V)]/ ROV = &M+ Ev)de. (20)
0

Proof. Let ¥ be a h-convex FIVF. Then, for each g € [0, 1],
we have

YN+ (1 =5v, HVET+ (1 =&E)v)
< (HOW +(T, )+ h(1 = OF %(v, ﬁ))V< A, )
YN+ A =E&Hv, HVEN+ (1 = Ev)
. " Eu+
< (MO, B) + h(1 = HF*(v, ﬂ))V< a _§)V>~

ey

And

@ Springer



158 Page 12 of 15

International Journal of Computational Intelligence Systems

(2021) 14:158

W (1= DN+ Ev, V(1 — O+ &)
< 1= 0¥ =)+ W sy (D),
(= N+ Ev, V(1 — O+ &)

] ) (1= &
< (h(1 = O (1), ) + h(E)¥ (v,ﬂ))V< +§v )

(22)

After adding (21) and (22), and integrating over [0, 1],
we get

Jo¥ #EM+ (1 =&, HVET+(1 - E)de
/¥ KL= O+ v, AV = O+ Ev)dg
HEVEN +(1 - &)
o *(”””{ Hh(1 = V(1 = & +Ev) } i
B ﬁ){ h(1 = OV +(1 - &) } ’
+hEV((L =&+ £v)
Jo¥ (1= O+ Ev. V(L = O + Ev)de
/¥ EN+ (1= EW, HV(EN + (1 = Ev)de
: HEVEN +(1 - &)

v (”’ﬁ){ (1= OV((1 - N+ &) } "

) { h(1 = VET+ (1= &Hv) }
+hEV((L = &N+ £v)

1
</

= 2¥ (7, ) [ 4 H(EVEN + (1 — E)) dé
+2W (v, B) [ g HEV((1 — &+ &v) d,
= 2¥* (T, ) [, HEVET + (1 — E)v) dé
+2W(v, B) [ 4 HEV((1 = )1 + Ev) dE.

Since V is symmetric, then

=2 <)+ ¥ s o () as
: : (1= @9
=202 + oy v (") e

Since

[o¥ #(EN+ (1 = &)v, HV(EM + (1 — E)v)dé
= [ #(1 = ON + &v, HV((1 — O + Ev)de
= L [1W «(t. V()

JowH (1 = O+ &v, HV((L = O + Ev)ae
= /é‘l’*(él‘l + (1 =&V, HVEM + (1 — E)v)dE
= L [1W($ AV

From (23) and (24), we have

— /¥ (4, BV}

<[W (M, B) + W (v, )] [ o HEV((L = O + £v) dE,
— [LW (5 AV (DA

<[P0, 0) + W (v, D)1 [ o MEOV((1 = O+ Ev) de,

(24)

@ Springer

that is

1

[— / ¥t V(DL — / ‘P*(i,ﬂ)V(i)di]
v—TI1J n v—ID1J) 1

< [W ([, B) + W (v, B), W (T, B) + (v, )]

1
/ RV = &N+ Eév) dé
0
hence

—L_FR) / W(HV(H)df
v—Tl M

N 1
< [wr) + v / OV = £+ Ev)de,
this concludes the proof.

Next, we construct first HH-Fej“er inequality for
h-convex FIVF, which generalizes first HH-Fej er inequal-
ity for h-convex function, see [29].

Theorem 3.6 Let ¥ : [M,v] > F(R) be a h-con-
vex FIVF with M<v and h : [0,1] > R*, and for all
pel01], ¥ KCR~— Kct € Ko represent the
famlly of IVFs through B-levels. If ¥ € FRn,, 5 and

2 [M,v] = R, V(1) > 0, symmetric with respect to i
and /HV(i)di > 0, then

1

‘P(I_I+v (25)

. ) < v di(FR) / W)V ().

Proof. Since ¥ is a h-convex, then for f € [0, 1], we have
M+v
W ( - ﬁ)

hh) YN+ 1 =5v. p)
T\ Y A =HN+Ev.p) )7

) (26)
v (50)
1 PN+ A =5v, p)
()i on i)
By multiplying (26) by

V(EM+ (1 = &)v) = V((1 — &M+ &v) and integrate it by &
over [0, 1], we obtain
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. (”” )/OV((I — O + Ev)de

Eu+
Jo¥ #(En+ =&, ﬂ)V< 0y )d:

1-—
(1 - ON+ v, ﬂ)V< o )d:
(28, 9) [V = £+ vz

Tyys Eu+
fo¥reEn+a —é)v,ﬂ)V< ( —f)v)dé

Sh(

0=
N—

1—
tf - onenpv (4o Yae
@)
Since
Sy T+ (1= £ AVET+ (1 = e
= [ (1 = DN+ &v, HV((L = N+ EVNE,
= = [L¥ =, HV (DL, 08)

[ (1 = &+ &v, V(1 — O + Ev)de
= [ W&+ (1 = &), BV(E + (1 — EWV)dE,
= = [L¥ G AV (DL,

From (27) and (28), we have

2h
v, p) < 7 20Ny, /. DV

(520) = P v

From which, we have

v (50w (50)

f ¥, (z, )V(2)dz, f‘P*(z ﬁ)V(z)dZ]

2n( L )
=1 V@dz

that is

‘P(”+V)<

Then we complete the proof.

2h<1>

/ V(z)dz

(FR) / Y(2)V(2)dz,

Remark 3.2. If h(§) = &, then inequalities in Theorem 10 and
11 reduces for convex FIVFs which are also new one.

IfY, (z, B) = P*(z, p) with f = 1and k(&) = &, then Theo-
rem 10 and 11reduce to classical first and second HH-Fejér
inequality for convex function, see [31].

Example 3.5. We consider h(§) =¢ and the FIVF
¥ : [1,4] - Fo(R) defined by,

==,0 € [€,267],

¥(2)(0) =4 =2,

0, otherwise.

Then, for each pe€[0,1], we have
W;(2) = [(1 + p)e*, 2(2 — p)e]. Since end point functions
Y. (z, ), ¥*(z, p) are h-convex functions, for each g € [0, 1],
then W(z) is h-convex FIVF. If

1

5
z—1,0 € 3
5
5.4].

V(z) = [
(

4—-z,0€

Then, we have
4 4
WAV = 1 [ WG AV
1 1

=3[ Y@V [ Y. Vs,
1

2

4
3 1/\11 (z, HV(2)dz = = f ¥*(z, /)V(2)dz

1/ Wiz, f)V()dz + / ¥ (2, f)V(2)dz,

2

1
3

g 4
=1a +ﬁ)lfez(z — Ddz + (1 +h) [ €@ -2dz

2

~ 11(1
2 (1+p) 4 29
=5Q-p )= Dd+52-p) [et-ads
~ 2212 - P), ’
and
1
[, (1, B) + ¥, (v, )] [ EV((L = &V + Ev) dE
0
1
[P (u, B) + (v, B)] [ EV((1 = E)u + Ev) dé
0
3 1
=(1+p)e+et]| [ 3&2dz+ [ &3 - 3&)de
0 1
~ B
o a+p (30)

3 1
=22 - P)e+et]| [ 3&2dz+ [ £ - 3§)d§]
0 1

~ 432 - p). 2
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From (31) and (30), we have
ma+p.2e-p < [2a+p.ae-p).

for each # € [0, 1]. Hence, Theorem 3.5 is verified.
For Theorem 3.6, we have

(42 p) ~ L+ p),

31
'P*(M;rv ﬂ) N 122(2 N
/V(z)dz—/(z—1)dz/(4_z)dz_ 9
4
m [ . AV @z~ 21+ p)
(32)

/ V(2 fVRdz ~ 222 - p)

f V(z)dz

From (31) and (32), we have

[ 293

[Sa+psse-p] <, [Ba+p.Ze-p)

Hence, Theorem 11 is verified.

4 Conclusion

This study introduced the class of s-convex FIVFs and estab-
lished some new H-H inequalities by means of fuzzy order
relation on fuzzy-interval space. Moreover, we established
strong relationship between H-H-Fej er type inequality and
h-convex FIVF. We provided relevant examples to demon-
strate the application of the theory produced in this research.
To construct fuzzy-interval inequalities of FIVFs, we plan to
use a variety of convex FIVFs. We hope that this notion will
assist other authors in remunerating their contributions in
other sectors of knowledge. In future, we try to explore this
concept using different fuzzy fractional integral operators.
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