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Abstract 

Evaluating the thermal environment and thermal comfort in an air-conditioned room is an essential for estimating 
the performance of air-conditioning systems. However, multiple component structures and control-related param-
eters often lead to a long test cycle and large number of tests, significantly affecting the testing efficiency and speed. 
To address these problems, in this study, a data-mining method was proposed to predict and evaluate the thermal 
environment of an air-conditioned room. Owing to the limited amount of experimental data, the sample data were 
expanded by the simulation data of a collaborative platform between the air-conditioning system and air-condi-
tioned room. Data-mining models, including the support vector regression (SVR), backpropagation (BP), and multiple 
linear regression (MLR) models, were developed and achieved good accuracy in evaluating the thermal environ-
ment by considering air-conditioning systems with various structures and control parameters. In the multiple-input 
single-output evaluation method, the prediction accuracy of the SVR model was higher than those of the BP and 
MLR models with respect to the vertical air temperature difference, temperature uniformity, temperature drop rate, 
and draft rate, while the result was the opposite in terms of the predicted mean vote indices. In the multiple-input 
multiple-output evaluation method, there was a decline in prediction accuracy and an increase in efficiency predic-
tion compared with multiple-input single-output evaluation.

Keywords  Data mining, Thermal environment evaluation, SVR model, BP model, MLR model

1  Introduction
Evaluating the thermal environment and thermal com-
fort in an air-conditioned room is vital for estimating 
the performance of air-conditioning systems. At present, 
the thermal environment testing of a room with an air 
conditioner follows GB/T 33658 [1] in China. However, 

multiple structure- and control-related parameters affect 
the performance of air-conditioning systems as well as 
the thermal environments of air-conditioned rooms. To 
improve the testing efficiency and speed, it is important 
to identify an efficient method for predicting and evaluat-
ing the indoor thermal environments of air-conditioned 
rooms.

1.1 � Classical methods for thermal comfort evaluation
Thermal comfort evaluation indexes are used to quantify 
thermal sensation of human beings in an indoor environ-
ment. The indicators are closely related to the variations 
and distributions of the room temperature, humidity, 
air speed, and some human related factors, such as the 
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activity level and clothing insulation. Commonly used 
indexes include thermal sensation vote (TSV), which 
reflects a person’s description of how hot or cold the sur-
rounding environment is; thermal comfort vote (TCV), 
which indicates a state of consciousness of a person to 
express satisfaction with the thermal environment; pre-
dicted mean vote (PMV), which reflects the feelings of the 
vast majority of people in the same environment; draft 
rate (or named as draught rate, DR), which describes the 
percentage of dissatisfaction of the measured population 
with the sense of the blowing air; and standard effective 
temperature, which reflects the heat exchange pattern 
between the human body and the external environment 
on the basis of simulating the physiological regulation 
of the human body. In addition, thermal comfort related 
indicators, such as the cooling rate (or heating rate), tem-
perature deviation, temperature uniformity, temperature 
fluctuation, vertical air temperature difference, percent 
dissatisfied (PD), and predicted percentage of dissatisfied 
(PPD) are normally considered in the thermal comfort 
test of air-conditioning devices and standards [2, 3].

Indoor thermal comfort and its related indicators can 
be evaluated by conventional methods, such as onsite 
measurements or field surveys, laboratory tests with 
human beings or with a thermal manikin, and simula-
tions. Through 1632 questionnaires containing thermal 
comfort indicators such as TSV and TCV, Yin et  al. [4] 
concluded that TSV and TCV are highly correlated in 
high-density blocks in Harbin; the correlation between 
transitional seasons and winter is stronger than that in 
summer. Using manikins, Gao et  al. [5] experimentally 
demonstrated the clothing insulation of eight garment 
combinations at different air speeds and wind directions; 
it is concluded that the airflow may lead to a decrease 
on the clothing insulation and lowered the values of 
the PMV and new standard effective temperature. Yang 
et  al. [6] studied the effects of air velocity, air tempera-
ture, and average radiation temperature on PMV through 
4 months of experiments in a 2000 m3 test building and 
concluded that it is more energy efficient to achieve the 
same thermal comfort by adjusting the air speed than 
by adjusting the temperature. Wu et  al. [7] studied the 
vertical temperature differences, PMV, and DR of differ-
ent hybrid systems in the occupied zone and reported 
that the supply air temperature had a slight impact on 
the PMV-PPD for the studied hybrid systems. Tawacko-
lian et  al. [8] experimentally studied the effect of wind 
speed and intermittent ventilation cycles on DR and 
proposed a method to reduce DR in a neutral environ-
ment. CFD tools and PMV models are often used in the 
prediction of thermal indoor comfort. Embaye et  al. [9] 
simulated radiators at different flow rates and evaluated 
the indoor thermal environment by analyzing the indexes 

DR, percentage experience draught (PED), and PD which 
are used to evaluate indoor draught. Using a PMV model 
considering radiation, San et  al. [10] analyzed the tem-
perature, velocity, and PMV fields by CFD and performed 
a comprehensive assessment of the thermal comfort of 
the tested cooling system. Furthermore, energy con-
sumption is often considered when using CFD methods 
to study thermal comfort. Aryal et  al. [11] analyzed the 
PMV and the cooling load of supplementary air effected 
by partitions in an air-conditioned building by CFD and 
concluded that the installation of partitions resulted in 
a decrease in thermal comfort and an increase in energy 
consumption and proposed corresponding improvement 
measures. Shan et al. [12] coupled CFD with the building 
energy model to analyze the PMV field and energy con-
sumption of cooling; it is found that the coupled method 
is more accurate than the separated calculations by com-
paring with experimental data.

1.2 � Data mining methods applied for thermal comfort 
evaluation

With the development of interdisciplinary subjects, many 
studies on thermal comfort evaluation have been con-
ducted by applying data-mining methods. These methods 
have a unique advantage in the processing of nonlinear 
and complex data [13, 14]. At current stage, they are 
widely applied to predict thermal sensations based on 
indoor thermal environment parameters or used for sys-
tem optimization control based on thermal comfort indi-
cators. Among the data-mining methods, the multiple 
linear regression (MLR) model has a simple structure and 
has obtained satisfactory results in the prediction of PMV 
[15]. Based on the PMV predictive model of MLR, Hang 
et al. [16] proposed an enhanced predictive control prac-
tical system, which is able to optimize thermal comfort 
conditions according to the season. Comparing to some 
other methods, MLR has the benefit of reducing comput-
ing time and improving prediction accuracy. Brik et  al. 
[17] used MLR algorithm to build a prediction model for 
thermal comfort indicator PMV of occupants throughout 
entire year and conducted that MLR has faster calcula-
tions and more accurate results compared to polynomial 
regression, random forest regression, and multi-layer 
perceptron. Broday et  al. [18] used the conventional 
method and MLR method to calculate the PMV and 
compare the two methods with TSV from experiments to 
obtain that the PMV calculated by MLR is more accurate. 
In addition to the MLR model, a backpropagation (BP) 
neural network has been built with dry bulb temperature, 
wind speed, relative humidity, and average radiation tem-
perature as the input variables and PMV indices as the 
output variables. The prediction results are consistent 
with the experimental data of a human thermal comfort 
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study. Liu et  al. [19] built a neural network evaluation 
model which connected personal thermal comfort with 
air-conditioning control based on BP method. Yao et al. 
[20] established a BP neural network model with air tem-
perature, relative humidity, mean radiant temperature, 
air velocity, metabolic rate, and clothing index as inputs 
and PMV as output; compared to the experiment data, 
the prediction accuracy is within in 95%, which indicates 
high reliability and accuracy. Wan et  al. [21] integrated 
BP neutral network algorithm in an optimization model 
for ventilation system; by optimizing thermal comfort 
indexes of PMV and DR, the system control strategy 
is improved to enhance the ventilation performance. 
The support vector regression (SVR) model can also be 
applied to the prediction of PMV indices, and the results 
indicate good agreement between the SVR predicted val-
ues and those obtained from the conventional thermal 
comfort evaluation. Chaudhuri et al. [22] proposed a pre-
dicted thermal state model that used the peripheral skin 
temperature and its gradient characteristics of a single 
body position to assess thermal state and concluded that 
support vector regression has higher prediction accuracy 
than extreme learning machines. Viani et al. [23] utilized 
SVR algorithm to study the indoor thermal comfort of 
an intelligent building to predict indoor temperature and 
adjust PMV value in advance; the input parameters are 
outdoor air temperature and outdoor air humidity, and 
the output is indoor air temperature; the results indicate 
that the error after 48 h is within 1 °C, which has shown 
good performance. Based on the collected environmental 
parameters, Qin et al. [24] applied a SVR model to realize 
online optimization of control strategies in air-condition-
ing unit to maintain the thermal comfort of the indoor 
environment. In addition, there are many other data 
mining methods used to study thermal comfort, and the 
accuracy of different methods may vary. Luo et  al. [25] 
compared the values of PMV calculated by nine machine 
learning methods and found that the PMV calculated by 
the algorithms dealing data with high dimensions such 
as random forest, artificial neural network, and gradi-
ent boosting machine behave better accuracy than other 
studied machine learning methods. Mustafaraj et al. [26] 
used a linear parametric autoregressive model with exter-
nal inputs (ARX) and a nonlinear autoregressive model 
with external inputs (NNARX) to predict dry-bulb tem-
peratures and relative humidity in offices using climate 
data from interior and exterior regions of the building; it 
is concluded that NNARX had better accuracy than ARX 
by comparing the prediction results with the measured 
data. Wu et  al. [27] proposed an intelligent ensemble 
machine learning method for predicting thermal sensa-
tion and concluded that the method is more accurate by 
comparing the calculated thermal comfort indexes such 

as PMV and SET with artificial neural network and SVR. 
Data mining methods are also used to simplify the calcu-
lation of thermal comfort indexes. Buratti et al. [28] used 
artificial neural networks to develop a new algorithm for 
PMV calculation that only uses the monitored outdoor 
and indoor air temperature and relative humidity as input 
parameters for training and concluded that the result 
derived from the new algorithm is closer to the PMV 
value of the questionnaire. By using wet-bulb tempera-
ture and global temperature instead of relative humidity 
and mean radiation temperature in the original model, 
Atthajariyakul et al. [29] proposed a neural-PMV model 
based on a feedforward neural network to calculate real-
time PMV. Castilla et  al. [30] used artificial neural net-
work and 7-order polynomial to calculate PMV and 
concluded that the artificial neural network has improved 
accuracy comparing with the original PMV model.

1.3 � Can the thermal comfort indices directly correlate 
with structure/control‑related parameters?

Although data-mining methods have been widely applied 
in the prediction of PMV indices and system control 
strategies, they have not been used to investigate the 
mapping relationship between both structure and con-
trol related parameters of an air-conditioning unit with 
indoor thermal environment evaluation indices of an 
air-conditioned room. The structures of the main com-
ponents in the air-conditioning devices may highly affect 
the supply air status and further affect the indoor ther-
mal comfort. To solve this problem, in this study, data-
mining methods were used to explore the possibility of 
correlating structural parameters (such as evaporator 
tube diameter, fin spacing, and tube spacing) and con-
trol parameters (such as set temperature and air supply 
mode) of the air-conditioning system with the thermal 
environment evaluation indices in the room, as shown 
in Fig. 1. This approach provides an alternate method for 
simplifying the procedures of the thermal comfort test of 
air conditioners and improving the overall test efficiency.

2 � Data acquisition
The dataset is important for data mining. The data 
sources in this study were a thermal environmental com-
fort test and a collaborative simulation platform between 
the air-conditioning system and air-conditioned room. 
Both experimental data and simulation data compose 
the data set used for data-mining techniques. The experi-
mental data were derived from the thermal comfort test 
and four types of air conditionings systems with different 
structure parameters were tested under multiple con-
ditions. The simulation data were obtained based on a 
collaborative simulation method which help expand the 
amount of sample data.
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2.1 � Thermal comfort test
The thermal comfort test was conducted in a thermal 
environment testing laboratory of an air conditioner, as 
illustrated in Fig.  2. The laboratory included an inner 
room, which was the main thermal test laboratory, a 
controlled outer environment, and a control system. 
The indoor unit of the air conditioner was placed in the 

inner room, and the outdoor unit was placed in the outer 
chamber. To simulate various outdoor conditions, envi-
ronmental control units were also installed in the outer 
chamber. Based on the requirements of the standard, 
147 measuring points were arranged in the test room, as 
depicted in Fig.  2. The working conditions of the outer 
chamber are presented in Table 1. Under the refrigeration 

Fig. 1  Schematic of the objective in this study

Fig. 2  Schematic of air conditioner testing laboratory

Table 1  Working conditions of outer chamber

Item Environmental parameters Setting values

Working condition of 
refrigeration

Working 
condition of 
heating

1 External chamber dry bulb temperature /°C 35 ± 0.5 7 ± 0.5

2 Outer chamber wet bulb temperature /°C 24 ± 0.5 6 ± 0.5

3 Heat load /W 70% of the rated capacity
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condition, the dry bulb temperature of the outdoor air is 
35 ± 0.5 °C, the wet bulb temperature of the outdoor air 
is 24 ± 0.5 °C, and the setting temperature of the air con-
ditioner is 23, 24, 25, 26, and 27 °C, respectively. Under 
the heating condition, the corresponding environmental 
parameters are 7 ± 0.5 °C, 6 ± 0.5 °C, and 20 °C, respec-
tively. However, in this study, only the data derived in the 
cooling condition, including the temperature and veloc-
ity fields, were added in the sample data set used for data 
mining. The thermal load of the laboratory is 70% of its 
rated capacity. A total of 147 temperature measurement 
points was arranged in the room space. During the test-
ing periods, the ambient temperature and humidity of 
the outer chamber were maintained at the required con-
ditions. Data collection was initiated after the tested air 
conditioner began operating, and the interval of data col-
lection was 1 min with a total collection time of approxi-
mately 3 h.

2.2 � Collaborative simulation platform
Data derived from the collaborative simulation platform 
between the air-conditioning system and air-conditioned 
room helped expand the dataset used for the data min-
ing. The collaborative simulation platform comprised an 
air-conditioning system model and a three-dimensional 
numerical model of an air-conditioned room [31]. The 
working principle of the collaborative simulation is illus-
trated in Fig. 3. The air-conditioning system model passes 
the air supply state data to the inlet boundary of the 
three-dimensional numerical room model, and the room 
thermal environment model feeds back the correspond-
ing calculation results of the room temperature field as 
an input to the air-conditioning system model, which is 
expected to occur in real time. Therefore, the supply air 
parameters of the indoor unit can be provided by the 
air-conditioning system model, and the operation mode 
of the air-conditioning system can be adjusted accord-
ing to the return air parameters. The three-dimensional 

numerical model can consider the temperature fluc-
tuations in the outdoor chamber and the heat transfer 
through the building envelope. Through a collaborative 
calculation platform, 150 groups of thermal environ-
mental evaluation indices under different parameters 
were obtained. In this study, the structural parameters, 
i.e., tube spacing, tube outer diameter, and fin spacing, 
were mainly concerned with the evaporator, which rep-
resents the indoor unit of the air conditioner during the 
cooling stage. The control parameters of air conditioners 
included the set temperature, air supply method, and air 
supply speed.

3 � Model development
Based on both experimental and simulated results, the 
set of data was provided by considering variations in 
structure and control parameters of the air-conditioning 
system, as shown in Fig.  4. The process of constructing 
the data-mining model is illustrated in Fig. 5. By testing 
different types of air conditioners, the thermal comfort 
tests mainly output air temperature distributions (few 
of them output velocity variations) in the tested room. 
These data are first used to validate the results predicted 
by the Simulink/Fluent collaborative simulation model. 
With the validated platform, more types of air condition-
ers with different structural parameters are simulated 
to predict the temperature and velocity distributions in 
the same tested room. Thermal comfort indices are com-
puted based on the distribution profiles. Both the test 
data and simulated data derived on multiple types of air 
conditioners are collected to form the data set which will 
be used for data learning. With the dataset used for the 
data-mining study preprocessed, the input variables were 
determined based on feature selection. They included 
the tube spacing of the evaporator, tube outer diameter 
of the evaporator, fin spacing of the evaporator, set tem-
perature, air supply angle, and air supply speed. The data-
set was divided into a training set and a test set in a ratio 

Fig. 3  Working principle of collaborative simulation
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Fig. 4  Schematic of the methodology

Fig. 5  Process of constructing data-mining model
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of 7:3, and the optimal output model was obtained after 
adjusting the parameters.

3.1 � Data‑mining method
Based on the literature review, three types of data-min-
ing methods, namely the BP neural network model, MLR 
model, and SVR model, were selected.

3.1.1 � BP neural network model
The BP neural network model [32] represents a multi-
layer feedforward network. It has the classification ability 
of arbitrary complex systems and the excellent mapping 
ability of multivariate functions. The basic component 
units of the BP neural network are the neurons. Neurons 
constitute the input layer, hidden layer, and output layer 
of the BP neural network, and neurons between layers are 
directly connected by weights and thresholds. The values 
of the layers are calculated using Equations (1) and (2).

where vBbdenotes the output value of the bth neuron in 
the hidden layer, vCc  denotes the output value of the cth 
neuron in the output layer, f is the activation function, ωmb 
and ωbc denote the values of the weights, and θmb and θbc 
denote the values of the thresholds. The activation func-
tions adopted by the BP neural network are the rectified 
linear unit and sigmoid function in the hidden and output 
layers, respectively. The values of the weights and thresh-
olds are calculated using the gradient descent method.

3.1.2 � MLR model
The MLR model is used to describe the relationship 
between multiple input variables and dependent vari-
ables. This model is widely used in regression prediction 
problems owing to its simple structure. In general, it is 
calculated using Eq. (3):

Here, yi denotes the ith value of the dependent variable 
y (i = 1,2,3,··· ·,n), n denotes the number of dependent 
variables, k denotes the number of independent vari-
ables,  xki denotes the ith sample value of the kth inde-
pendent variable, b0 is a constant, and bk represents the 
regression coefficient of each independent variable.

(1)vBb = f

M

m=1

ωmbxkm − θmb

(2)vCc = f

(

B
∑

b=1

ωbcv
B
b − θbc

)

(3)yi = b0 + b1x1i + b2x2i + · · · + bkxki

3.1.3 � SVR model
The SVR model [33] is used for small samples, high 
dimensions, nonlinear regression, and classification 
problems. The SVR method is described in Eqs. (4)–(8). 
Considering a sample set 

{(

xi, yi
)}N

i=1
∈ RN×D , through 

the nonlinear mapping function φ(xi), the input data xi in 
the original sample are mapped to the high-dimensional 
space, and the linear regression equation is constructed 
in the high-dimensional feature space. Its expression can 
be transformed into Eq. (4), and the coefficients ω and b 
are estimated by minimizing Eq. (5).

where C is the regularization constant, and θi and θ∗i  
denote the positive and negative relaxation constants, 
respectively. The constraint conditions for Eq. (5) are 
given in Eq. (6).

The final nonlinear regression equation can be obtained 
as shown in Eq. (7), for which the constraint conditions 
are shown in Eq. (8).

where αi and α∗
i  are Lagrange multipliers, and K(xi, x) 

denotes the kernel function. Among the various ker-
nel functions, the Gaussian radial basis kernel function 
is commonly used in the analysis of nonlinear data. Its 
expression is given by Eq. (9).

where xi denotes the ith sample point, x is an independ-
ent variable, and g represents the tolerance coefficient.

3.2 � Data preprocessing
3.2.1 � Data normalization
In the process of model training, the prediction accuracy 
is reduced because of the dimensionality of variables. The 
purpose of normalization is to eliminate the dimensional 
effects in the sample data. Normalization is used to scale 

(4)y =
∑n

i=1
ωϕ(xi)+ b

(5)min
1

2
�ω�2 + C

N
∑

i=1

(

θi + θ∗i
)

(6)
{

yi − [ωϕ(xi)+ b] ≤ ε + θi
[ωϕ(xi)+ b]− yi ≤ ε + θ∗i

(7)f (x) =
∑N

i=1

(

αi − α∗
i

)

K (xi, x)+ b

(8)
∑N

i=1

(

αi − α∗
i

)

= 0
0 ≤ αi,α

∗
i ≤ C

(9)K (xi, x) = exp
(

−g |xi − x|2
)
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the values of all variables in the sample data between 0 
and 1 to reduce the amount of calculation and improve 
the prediction accuracy of the model. The data normali-
zation method adopted was the maximum–minimum 
normalization method; the calculation formula is shown 
in Eq. (10).

where x denotes the original value of a variable; xmin and 
xmax denote the minimum and maximum values of the 
variable, respectively; and xnorm denotes the value of x 
after normalization.

3.2.2 � One‑hot encoding
One-hotencoding is used for nonordered variables, 
which convert categorical dataattributes into numerical 
data attributes. A list is used to present thecategorical 
attributes. The list assigns a value of 1 in cases match-
ing theattribute to be represented; otherwise, it assigns 
a value of 0. The air supplymode in this study was a 

(10)xnorm =
x − xmin

xmax − xmin

nonordered discrete-type feature, and therepresentation 
status of each air supply method after one-hot encoding 
ispresented in Table 2.

3.3 � Experimental settings
A greedy strategy was used to adjust the simulation set-
tings, which refers to the process of adjusting the hyper-
parameters. The result obtained by the greedy strategy 
may not be the global optimal solution, but it can sim-
plify the calculation procedure and save training time. 
The optimal combination of the hyperparameters of the 
thermal environment evaluation model is presented in 
Table 3.

4 � Results and discussion
The original values of the 45 sample points and the pre-
dicted values obtained using the three data-mining meth-
ods in the test datasets were plotted and compared in the 
multiple-input single-output models. Then, the best data-
mining method was selected to construct the multiple-
input multiple-output models. In this section, the results 
are presented and discussed.

4.1 � Multiple‑input single‑output evaluation
4.1.1 � Vertical temperature difference
The vertical temperature difference was used to evalu-
ate the thermal discomfort of the human body. The 
temperature values of the measuring points at the head 
(the height was assumed to be 1.6 m) and ankle (the 
height was assumed to be 0.1 m) in the same vertical 

Table 2  One-hot coding of air supply method

Air supply method State 1 State 2 State 3 State 4

Upper air supply 1 0 0 0

Lower air supply 0 1 0 0

Vertical air supply 0 0 1 0

Left air supply 0 0 0 1

Table 3  Experimental settings of thermal environment evaluation model

Evaluation method Prediction data Model Hyperparameters

Iteration Number of hidden-
layer neurons

C Gamma

Multiple-input single-output evaluation Vertical temperature difference SVR / / 100 0.6

BP 20 400 / /

MLR 200 / / /

Temperature uniformity SVR / / 100 0.1

BP 15 300 / /

MLR 100 / / /

Temperature drop rate SVR / / 5 0.1

BP 15 250 / /

MLR 300 / / /

Draft rate SVR / / 280 0.25

BP 15 200 / /

MLR 300 / / /

PMV SVR / / 380 0.25

BP 15 300 / /

MLR 350 / / /

Multiple-input multiple-output evaluation / / 100 0.06
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line direction were obtained. Figure  6 depicts that the 
predicted values of some sample points differ signifi-
cantly from the raw values, such as sample points 10, 
18, and 34. At these points, the predicted values derived 
from the three models were all greater than the raw val-
ues. The predicted values obtained by the three models 
for sample point 29 were lesser than the raw values. For 
the other sample points, the predicted values obtained 
by the SVR model were closer to the raw values, and its 
prediction accuracy was the best. The predicted values 
obtained by the MLR model were far from the raw val-
ues, and its prediction accuracy was the worst. The pre-
diction accuracy of the BP neural network model ranked 
second among the three models. The evaluation indices 
of the test dataset are listed in Table  4. The root mean 
square error (RMSE) and mean absolute error (MAE) of 
the SVR model were 0.059 and 0.034, respectively, while 
the RMSE and MAE for the BP model were 0.09 and 
0.058, respectively, and those for the MLR model were 
0.105 and 0.082, respectively. The R2 of the SVR model 
was 0.936, which was considerably higher than those of 
the BP and MLR models. The SVR model was the best in 
predicting the vertical temperature difference.

In Table 4, the RMSE represents the square root of the 
squared deviation between the real and predicted data 

and is used to describe the degree of deviation between 
the predicted and real data, which is calculated using Eq. 
(11). The MAE represents the average value of the devia-
tion between the real and predicted data, which is calcu-
lated using Eq. (12). The goodness of fit (R2) indicates the 
degree of fit with the true value, and the calculation for-
mula is shown in Eq. (13).

where yi represents the real data, yi′ represents the pre-
dicted data, n represents the total number of predicted 
data, and yi represents the average value of the predicted 
data in Eqs. (11)–(13).

4.1.2 � Temperature uniformity
Temperature uniformity was utilized to evaluate the 
difference in air temperature among all the measuring 
points at the same time. The instantaneous temperature 
uniformity at a certain moment was represented by the 
standard deviation of the instantaneous air temperature 
of all 147 measuring points at this time. A scatter plot 
of the predicted temperature uniformity is depicted in 
Fig.  7. The prediction results of the three models were 
close to the raw values. The individual differences were 
larger; for instance, the predicted value obtained by the 

(11)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − yi′
)2

(12)MAE =
1

n

n
∑

i=1

∣

∣

(

yi − yi
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Fig. 6  Prediction results of vertical temperature difference

Table 4  Test dataset evaluation indices of vertical air 
temperature difference

Model Evaluation indices

RMSE MAE R2

SVR model 0.059 0.034 0.936

BP model 0.090 0.058 0.853

MLR model 0.105 0.082 0.799
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SVR model was smaller than the raw value at sample 
point 4, and the relative error was close to 10%. The pre-
dicted values of the BP and MLR models at sample point 
29 were greater than the raw values, and the relative error 
was close to 15%. The evaluation indices of the test data-
set are listed in Table 5. The RMSE and MAE of the SVR 
model were 0.013 and 0.008, respectively, which were 
the smallest among the three models. The R2 of the SVR 
model was 0.962, which was considerably higher than 

those of the BP and MLR models. In general, the SVR 
model yielded the best prediction accuracy, followed by 
the BP and MLR models.

4.1.3 � Temperature drop rate
The temperature drop rate is defined as the rate at which 
the thermal environment of the room reaches a steady 
state. As illustrated in Fig. 8, the predicted results of the 
temperature drop rate derived from the proposed three 
models were all close to the raw values. The maximum 
relative error of the sample points was approximately 
2%. In comparison with the previous prediction of the 
vertical air temperature difference and temperature uni-
formity, the errors between the raw values and predicted 
results were all minor. Therefore, the prediction accura-
cies of the three models for the temperature drop rate 
were relatively high. The evaluation indices of the three 
data-mining models on the output of the temperature 
drop are presented in Table  6. The RMSE and MAE of 
the three models were all less than 0.01, and the R2 values 

Fig. 7  Prediction results of temperature uniformity

Table 5  Test dataset evaluation indices of temperature 
uniformity

Model Evaluation indices

RMSE MAE R2

SVR model 0.013 0.008 0.962

BP model 0.015 0.011 0.943

MLR model 0.016 0.013 0.936

Fig. 8  Prediction results of temperature drop rate
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were greater than 0.98, indicating that all the three mod-
els exhibited high predictive precision for the tempera-
ture drop rate, while the SVR model was slightly better 
than the other two models.

4.1.4 � Draft rate
The draft rate represents the percentage of occupants 
who are dissatisfied because of the loss of heat from the 
human body due to air flow. The magnitude of such an 
index depends on the indoor temperature, air speed, tur-
bulence intensity, physical activity level, and clothing of 
the person, among other factors. The local draft rate indi-
ces of measuring point i during the collection time can 
be calculated using Eq. (14), where the draft rate in the 
air-conditioned room is the average of all the measured 
points.

where ua denotes the local wind speed and IT denotes the 
local turbulence intensity, which is 40%.

The simulation results for the draft rate are depicted 
in Fig. 9. The relative error of the three models at sam-
ple point 3 with the largest error was approximately 10%. 
The predicted value of the SVR model was closer to the 
raw value, and the prediction effect was the best. Table 7 
indicates that the R2 of the SVR model was slightly higher 

(14)
DRi = (34 − ta)(ua − 0.05)0.62(0.37uaIT + 3.14)

than those of the BP and MLR models (approximately 
0.970), while the RMSE and MAE were lower, with values 
of 0.230 and 0.111, respectively. In general, the predicted 
value of the SVR model was the closest to the raw value, 
and the prediction accuracy was higher than those of the 
BP and MLR models.

4.1.5 � PMV
PMV is an internationally recognized comprehensive 
evaluation index that considers many factors related to 
human thermal comfort. In the specification, the PMV 
considers the seven-level thermal sensation evaluation 
standard by a large sample of people as the thermal com-
fort indices. The PMV evaluation and human thermal 
load calculation models are given by Eqs. (15) and (16).

where M denotes the metabolic rate of the human 
body; W denotes the heat consumed by external work; Pa 
denotes the partial pressure of water vapor; ta denotes the 
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− fclhc
(

tcl − ta
)

Table 6  Test dataset evaluation indices of temperature drop rate

Model Evaluation indices

RMSE MAE R2

SVR model 0.0048 0.0028 0.995

BP model 0.0062 0.0048 0.981

MLR model 0.0054 0.0035 0.986

Fig. 9  Prediction results of draft rate

Table 7  Test dataset evaluation indices of draft rate

Model Evaluation indices

RMSE MAE R2

SVR model 0.230 0.111 0.970

BP model 0.282 0.200 0.955

MLR model 0.266 0.148 0.960
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air temperature; fcl denotes the clothing area coefficient, 
which is related to the thermal resistance of clothing; tcl 
denotes the surface temperature of clothing; tr denotes 
the average radiation temperature; and hc denotes the 
convective heat transfer coefficient.

The plot of the PMV index prediction is depicted in 
Fig.  10. The predicted values of the BP and MLR mod-
els were close to the raw values, while the predicted value 
of the SVR model was different from the raw value to 
some extent. Therefore, the BP and MLR models were 
better than the SVR model in predicting the PMV indi-
ces. The evaluation indices of the PMV prediction model 
test set are listed in Table 8. The RMSE and MAE of the 
BP and MLR models were both less than 0.26, and the 
R2 values of these two models reached 0.974 and 0.975, 
respectively, which were slightly higher than that of the 
SVR model. The relative error of the optimal PMV index 
prediction model was maintained within 20%, which 
was larger than that of the other models. This is mainly 
because the values of the PMV indices were distributed 
around 0; in other words, the denominator was close 
to 0 when calculating the relative error of some sample 
points, thus causing the overall relative error to be larger.

4.2 � Multiple‑input multiple‑output evaluation
All the models built were multiple-input single-output 
thermal environment assessments for a single thermal 

environment evaluation index. According to the analysis, 
among the three data-mining methods, the SVR model 
performed well in prediction, with a relatively small error 
and a relatively high goodness of fit. To save calculation 
time and improve the prediction efficiency of the model, 
a multiple-input multiple-output thermal environment 
evaluation model was built using the SVR model, through 
which five thermal environment evaluation indices could 
be predicted simultaneously. The results of the test set of 
the multiple-input multiple-output SVR models are listed 
in Table 9. Except for the vertical air temperature differ-
ence, the R2 values for predicting other evaluation indi-
ces were all greater than 0.93, which are acceptable to a 
certain extent. However, as illustrated in Fig. 11, the pre-
diction accuracy of the multiple-input multiple-output 
evaluation methods was reduced.

5 � Conclusions
In this study, three data-mining methods—the MLR 
model, BP neural network model, and SVR model—were 
utilized to build the thermal environment evaluation 
model. The evaluation indices of the thermal environ-
ment, including the vertical air temperature difference, 

Fig. 10  Prediction results of PMV

Table 8  Test dataset evaluation indices of PMV

Model Evaluation indices

RMSE MAE R2

SVR model 0.030 0.0250 0.968

BP model 0.026 0.0209 0.974

MLR model 0.025 0.0166 0.975

Table 9  Test dataset evaluation indices of the multiple-input 
multiple-output evaluation

Prediction data Evaluation indices

RMSE MAE R2

Vertical temperature difference 0.084 0.043 0.811

Temperature uniformity 0.016 0.009 0.951

Temperature drop rate 0.003 0.002 0.990

Draft rate 0.341 0.155 0.932

PMV 0.027 0.015 0.974
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temperature uniformity, temperature drop rate, draft 
rate, and PMV indices, were evaluated.

The simulation results indicated that the prediction 
accuracy of the SVR model was higher than those of the 
BP and MLR models with respect to the vertical air tem-
perature difference, temperature uniformity, temperature 
drop rate, and draft rate in the multiple-input single-out-
put evaluation method. In terms of PMV index predic-
tion, the prediction accuracies of the BP and MLR models 
were slightly higher than that of the SVR model, and the 
relative error could be maintained at approximately 20%. 
The performance of the SVR model in predicting a sin-
gle indoor thermal environment evaluation index was 
good, and it was thus selected for the multiple-input 
multiple-output evaluation method. The R2 of the predic-
tion results was greater than 0.93, except for the predic-
tion of the vertical air temperature difference, which was 
0.81. In comparison with the multiple-input single-out-
put evaluation method, the prediction accuracies of the 
corresponding indices were reduced; however, replacing 
five multiple-input single-output evaluation models with 
one multiple-input multiple-output evaluation model 
could simplify the complexity and save computation 
time. Therefore, the multiple-input single-output evalua-
tion method is recommended for high-precision predic-
tion, while the multiple-input multiple-output evaluation 
method is recommended for high-efficiency prediction.
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