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Abstract 

Machine learning algorithms are widely used in management systems in different fields, such as employee recruit-
ment, loan provision, disease diagnosis, etc., and even in some risky decision-making areas, playing an increasingly 
crucial role in decisions affecting people’s lives and social development. However, the use of algorithms for auto-
mated decision-making can cause unintentional biases that lead to discrimination against certain specific groups. In 
this context, it is crucial to develop machine learning algorithms that are not only accurate but also fair. There is an 
extensive discussion of algorithmic fairness in the existing literature. Many scholars have proposed and tested defini-
tions of fairness and attempted to address the problem of unfairness or discrimination in algorithms. This review aims 
to outline different definitions of algorithmic fairness and to introduce the procedure for constructing fair algorithms 
to enhance fairness in machine learning. First, this review divides the definitions of algorithmic fairness into two 
categories, namely, awareness-based fairness and rationality-based fairness, and discusses existing representative 
algorithmic fairness concepts and notions based on the two categories. Then, metrics for unfairness/discrimination 
identification are summarized and different unfairness/discrimination removal approaches are discussed to facilitate 
a better understanding of how algorithmic fairness can be implemented in different scenarios. Challenges and future 
research directions in the field of algorithmic fairness are finally concluded.
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1 Introduction
Machine learning algorithms have been widely used 
and have become increasingly important in automated 
decision-making systems in business and government 
(Zhang 2018; Lambrecht and Tucker 2019; Teodorescu 
et  al. 2021; Kallus et  al. 2022). With the advantage of 
processing massive information and seemingly fair out-
put, algorithms were believed to be successful in sup-
porting decision-making. However, this is unfortunately 
not the case since machine learning algorithms are not 
always as objective as we would expect. Algorithms are 
vulnerable to biases that render their decisions “unfair” 
(Verma 2019). A biased model may inadvertently encode 
human prejudice due to biases in data (Mehrabi et  al. 
2021). Specifically, the algorithm may be discriminatory 

when it learns incorrect patterns, like stereotypes, from 
the observed data to make predictions and affect peo-
ple’s lives (Kallus et al. 2022). Furthermore, the algorithm 
itself may also lead to algorithm unfairness/discrimina-
tion (Danks and London 2017). The algorithm may sac-
rifice high performance on minority groups to achieve 
higher accuracy on overall samples while putting minor-
ity groups in a disadvantageous position. A typical case 
of algorithm discrimination is that COMPAS measures 
the risk of a person recommitting another crime and 
falsely links African-American offenders with high-risk 
recidivist scores (Chouldechova 2017). Besides, similar 
problems have been found in employment, insurance, 
and advertising. In another case of a hiring application, it 
was recently exposed that Amazon discovered that their 
automated hiring system based on machine learning was 
discriminating against female candidates, particularly 
for software development and technical positions. One 
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suspected reason for this is that most recorded historical 
data were for male software developers1.

Fairness means dealing with things reasonably and not 
taking sides. Fair machine learning algorithms refer to no 
bias or preference for individuals or groups due to their 
inherent or acquired attributes in the decision-making 
process (Saxena et al. 2019). Since many automated deci-
sions (including which individuals will receive jobs, loans, 
medication, bail, or parole) can significantly impact peo-
ple’s lives, there is great importance in assessing and 
improving the ethics of the decisions made by these auto-
mated systems (Carey and Wu 2022). The fairness of the 
outputs is not only the evaluation of the algorithm per-
formance but also affects the benefit distribution in the 
real decision-making situation. Thus, building a reason-
able model to ensure fair decision-making of algorithms 
is of great theoretical significance and application value. 
ACM (the American Computer Society) started to set 
up a FAccT conference that discussed the issues of fair-
ness, accountability, and transparency in cross-domain 
fields including computer science, statistics, law, social 
science, and humanities in 2018. In addition, several 
important international conferences on artificial intelli-
gence, including ICML, NeurIPS, and AAAI, specially set 
up research topics to discuss fair machine learning (Niu 
et al. 2021; Yang et al. 2020).

This review aims to sort out the current state of the 
art of fairness in machine learning and to provide refer-
ence ideas for follow-up research. The key questions of 
fair machine learning research are how to establish a fair 
definition guided by law, ethics, and sociology, and how 
to design a fair machine learning algorithm driven by the 
fairness definition (Teodorescu et al. 2021; Carey and Wu 
2022). Although various fairness definitions have been 
proposed, they are incompatible and cannot be used 
together. This article outlines different definitions of algo-
rithmic fairness and provides a framework for construct-
ing fair algorithms.

The main contributions of this article are as follows: 
we categorize definitions of fairness in the existing lit-
erature into two streams: awareness-based fairness and 
rationality-based fairness, where the latter contains most 
of the prevailing fairness notions that are categorized in 
the existing literature as “statistical-based awareness” 
and “causality-based awareness”. We suggest viewing dif-
ferent definitions of fairness from both rationality and 
awareness perspectives, to avoid the conflict of different 
fairness metrics, inspiring researchers to explore fair-
ness issues in both technical application and ethical 

aspects. We also summarize the process of the algorith-
mic fairness task into four stages: initialization, fair-
ness definition, fairness identification, and unfairness/
discrimination removal, which provides a feasible refer-
ence for constructing fair models in various application 
domains. Finally, we emphasize causal fairness definitions 
and present emerging trends in most recent research to 
guide subsequent researchers to research and explore 
algorithmic fairness.

The rest of this paper is structured as follows. Section 2 
presents a roadmap of fairness in machine learning algo-
rithms and introduces the processing flow of the fair-
ness task of the algorithm from the overall perspective. 
Section  3 introduces stage 1 in the roadmap. Section  4 
discusses the criteria of fairness and its feasibility in prac-
tical implementation. Section  5 describes unfairness or 
discrimination detection approaches. Section  6 reviews 
possible solutions to remove unfairness in different sce-
narios. Several mechanisms are compared and their 
strengths and weaknesses are emphasized. Section 7 pro-
vides concluding remarks and sketches several open chal-
lenges for future research.

2  Roadmap for algorithmic fairness
Automated methods of algorithmic fairness analysis 
come from the field of bias analysis. The relationship 
between bias analysis and fairness analysis is analogous to 
that of physics to engineering. That is, bias analysis, at its 
core, emphasizes advancing statistical theory and often 
focuses on the fitness or the accuracy of estimation as an 
end in itself (Cheng et  al. 2021). Computer-assisted or 
automated fairness analysis, on the other hand, refers to a 
set of techniques that use computing or statistical power 
to answer questions of fairness in market and business 
(Lambrecht and Tucker 2019; Zhang 2018; Zhang et  al. 
2019; Kallus et  al. 2022), politics and law (Teodorescu 
et al. 2021; Chen et al. 2021), and public affairs (Editorial. 
2016; Barocas and Selbst 2016; Caton and Haas 2020). 
In these fields, fairness represents some focal structure 
of interests, and computers are used to measure fair-
ness, provide efficient and systematic comparisons, and 
sometimes detect unfairness/discrimination that neither 
practitioners nor researchers can be easily aware of. In 
other words, while bias analysis is a research topic that 
is primarily concerned with bias in the data, for manage-
rial researchers and social practitioners, fairness analysis 
is merely a lens through which to view human’s thought, 
behavior, and even the conflict of interest. Analyzing fair-
ness, in many contexts, is not the ultimate goal of the 
practitioners and the researchers, but is instead a precur-
sor for making socially responsible decisions where the 
stakeholders are involved.1 https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/

amazon-scraps-secretai-recruiting-tool-that-showed-bias-against-women-
idUSKCN1MK08G.
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Therefore, we use the term “fairness analysis” over “bias 
analysis” and “algorithmic unfairness/discrimination” 
over “algorithmic bias” in this paper. Although we follow 
convention by using the term “automated”, this should 
not imply that human intervention is absent. In fact, 
many of the tasks-particularly the definition of fairness-
are iterative processes that require human design, modi-
fication, and interpretation. In the following sections, we 
discuss the design and execution of automated fairness 
analysis in detail, beginning with selection of initializa-
tion and connecting statistical and causal aspects to peo-
ple’s perceptions about fairness in different contexts of 
this society.

Without ambiguity, we use “vulnerable group (non-vul-
nerable group)”, “protected group (unprotected group)”, 
and “unprivileged group (privileged group)” interchange-
ably, and “sensitive attribute” and “protected attribute” 
interchangeably in this review.

3  Initialization
It is ubiquitous in the real world that the prediction/
decision outcomes are sensitive to the stakeholders from 
different groups. Under these circumstances, an unignor-
able task is to judge whether the outcomes are fair, and 
is especially true when the prediction/decision is made 
by automated methods like machine learning algo-
rithms (Zhang et  al. 2016b). Intuitively, the stakehold-
ers in a specific group (e.g., people with certain gender 
or race) would probably make comparisons to ones in 
other group(s), in such a way as to be aware of whether 
they are treated the same. The result of such comparisons 
belong to a perceptual cognition of fairness. It commonly 
appears in informal scenarios or impromptu situa-
tions involving the distribution of benefits, or the cases 
where individual feelings play an important role. We call 
this kind of fairness “awareness-based fairness”, which 
mainly involves fairness through unawareness (i.e., totally 
excluding sensitive variables like gender or race that 
affect fairness judgments) and fairness through aware-
ness (Kusner et al. 2018; Zhang 2018).

In contrast, some techniques for rational analysis, 
e.g., statistical tools or causal analytical ones, would be 
applied in fairness analysis to pursue more scientific and 
reasonable judgments and the subsequent solutions. Fair-
ness notions defined using such techniques are mostly 
group-oriented, and the conclusions drawn tend to have 
a global meaning and are often more appropriate for 
management of society, market, and law. However, the 
deficiency of them is the ignorance of individual percep-
tions which makes them sometimes conflict with indi-
vidual perceptions of fairness (Teodorescu et  al. 2021). 
We call this type of fairness “rationality-based fairness”, 
which mainly includes two main camps: statistical-based 

fairness and causality-based fairness (Kusner et al. 2018; 
Carey and Wu 2022).

The choice of definition of fairness depends entirely 
on the specific situation at hand (different positions and 
roles, individual- or group-oriented, formal or informal, 
etc.). In a legal situation, for example, if you feel you have 
been treated unfairly, the content of your claim may be 
that someone similar to you has been treated quite differ-
ently. But for a judge to decide whether a decision maker 
has made a discriminatory decision, he/she often needs 
to conduct a thorough and careful investigation from the 
perspective of the group. To some extent, the relation-
ship between awareness-based fairness and rationality-
based fairness is like that of scientific decision-making 
and decision-making behavior which is characterized by 
finite rationality or even irrationality. As we write this 
review, researchers are now developing new fairness 
notions in an attempt to reconcile the conflicts/contra-
dictions among multiple aspects (rational and emotional, 
group and individual, etc.), where we believe the fairness 
notion via causality is the one that has the most potential 
to come close to this goal.

In the following sections, we will go through the rest 
stages shown in Fig. 1, to review the representative work 
from the perspective of the whole process of algorithmic 
fairness, including fairness definition, fairness identifica-
tion, unfairness/discrimination removal (if necessary), 
and finally obtaining fair prediction/decision outcomes.

4  Fairness definition
In the real world, different machine learning tasks focus 
on different issues, so it is difficult to determine a gen-
eral definition of fairness. This section summarizes the 
definitions of fairness proposed in the existing literature. 
For awareness-based fairness, according to whether sen-
sitive attributes are considered, it can be categorized as 
fairness through awareness and fairness through una-
wareness. For rationality-based fairness, according to the 
role of protected attributes as well as the mathematical 
paradigm applied in the process of building fair machine 
learning algorithms, it can be roughly divided into two 
categories: statistical-based fairness and causality-based 
fairness. Table 1 concludes all kinds of fairness measure-
ments discussed in this paper. Detailed definitions will be 
illustrated in the following subsections.

4.1  Awareness‑based fairness
4.1.1  Fairness through unawareness
Fairness through unawareness is an intuitive definition of 
fairness. It is a perception- (rather than rationality-) ori-
ented definition. Fairness through unawareness focuses 
on how to directly deal with sensitive attributes to obtain 
fairness. If sensitive attributes are not explicitly used in 
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the decision-making process, then the algorithm achieves 
fairness through unawareness (Zhang 2018; Chen et  al. 
2019; Kallus et al. 2022). Let F(·) be the learning process 
of the algorithm, X be the attributes in the dataset, S be 
the sensitive attribute, and Ŷ (Y ) be the predicted out-
come (the ground truth) S /∈ X ( x, s , and ŷ are the value 
assignments of X, S,and Ŷ  , respectively), then

(1)ŷ = F(x), S /∈ X

implies that the learning process neglects the sensi-
tive attribute and the outcome ŷ is perceived fairness. 
Although fairness through unawareness is simple and 
intuitive, it may introduce indirect unfairness when other 
attributes are highly related to the protected attribute 
(e.g., street and zipcode). If these attributes are used by 
the algorithms, the outcomes may still be unfair while 
giving the impression that the algorithms act fairly 

Stage 2: Definition

Stage 4: Removal

Stage 3: Detection

Stage 1: Initialization

Rationality-based 
fairness 

Awareness-based 
fairness

Statistical-based 
fairness

Causal-based 
fairness

Demographic 
parity

Equal 
opportunity

Equalized 
odds

Intervention-
based fairness

Path-specific 
fairness

Counterfactual 
fairness

Question: Is it (perceived) fair for the
prediction/decision outcomes?

How to define fairness

Does unfairness / discrimination exist?

Pre-processing Sensitive attribute(s) 
removal

In-processing Post-processing

Yes
No

Fair 
prediction/decision 

task

Fairness through 
awareness

Fairness through 
unawareness

Sensitive attributes considered?
Yes No

Fig. 1 Stages of automated algorithmic fairness analysis

Table 1 A summary of typical algorithmic fairness notions

Category Notion Definition References

Awareness-
based fairness

Fairness through unawareness ŷ = F(x), S /∈ X Chen et al. (2019); Brown 
et al. (2016); Zhang 
(2018); Kallus et al. (2022)

Fairness through awareness d1((xi , si), (xj , sj)) ≤ d2(ŷi , ŷj) Zhang et al. (2016b)

Rationality-
based fairness

Statistical-based Fairness Demographic parity P(ŷ|s = 0) = P(ŷ|s = 1) Dwork et al. (2012)

Equalized odds P(ŷ = 1|s = 0, y = 0) = P(ŷ = 1|s = 1, y = 0) Hardt et al. (2016)

Equality of opportunity P(ŷ = 1|s = 0, y = 1) = P(ŷ = 1|s = 1, y = 1) Hardt et al. (2016)

Test Fairness P(y = 1|s = 0, ŷ) = P(y = 1|s = 1, ŷ) Chouldechova (2017)

Causal-based Fairness Intervention-based fairness P(ŷ|do(s = 0)) = P(ŷ|do(s = 1)) Loftus et al. (2018); Kha-
demi et al. (2019)

Path-specific fairness P(ŷs=0|π) = P(ŷs=1|π) Wu et al. (2019b); Chi-
appa (2019); Zhang et al. 
(2019)

Counterfactual fairness P(ŷs=0|s = 0, x) = P(ŷs=1|s = 0, x) Kusner et al. (2018); Wu 
et al. (2019a)
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(Teodorescu et  al. 2021). It would only be applicable in 
the unlikely scenario of no correlation between the sensi-
tive attribute and the rest attributes used to predict out-
comes (Teodorescu et al. 2021).

4.1.2  Fairness through awareness
Fairness through awareness defines fairness via the view-
point of individuals (Zhang et  al. 2016b). If individuals 
with similar value assignments of the attributes including 
the sensitive attribute (which means they are similar to 
each other, e.g., with similar preferences, characteristics, 
experiences, etc.) are treated similarly, then the algorithm 
achieves fairness through awareness/individual fair-
ness (Dwork et al. 2012; Luong et al. 2011). To effectively 
measure the similarity of the attributes as well as the out-
come, two corresponding similarity/distance functions 
should be elaborately defined to make this fairness notion 
practical. Let Z be the attributes in the dataset, X ⊂ Z is 
a subset of attributes excluding S, fairness through aware-
ness can be formally expressed as

where d1(·, ·) and d2(·, ·) denote the distance functions, 
and subscripts i and j denote two individuals (samples in 
the dataset). Eq.(2) implies the perceived differentiation 
of the outcomes of two individuals should not be greater 
than the discrepancy in their attributes.

Although this definition sounds reasonable, it is dif-
ficult to realize because it is challenging to measure 
the distance between individuals under specific tasks. 
Because it is almost impossible to obtain enough fine-
grained features of individuals in real situations, i, j are 
more likely to appear in the form of groups in the data. 
Thus, Eq. (2) cannot guarantee the protected and unpro-
tected groups are being treated fairly, which requires 
more rational notions of fairness to be proposed.

4.2  Rationality‑based fairness
4.2.1  Statistical‑based fairness
Statistical-based fairness requires that the protected 
group be treated similarly to the non-vulnerable group 
or the whole group (Lum and Johndrow 2016). Taking 
the famous algorithm COMPAS as an example, the race 
is regarded as a protected attribute, and the algorithm’s 
performance across different race groups can be a sign 
to determine when the output is fair. ProPublica2 reveals 
the differences in the false positive rate and false negative 
rate of the risk assessment results between the European-
American defendant group and the African-American 

(2)d1((xi, si), (xj , sj)) ≤ d2(ŷi, ŷj)

defendant group. Specifically, the European-American 
defendant group is less (more) likely to be marked as high 
(low) risk even when they actually have the same prob-
ability of recommitting crimes. This violates statistical-
based fairness. Statistical fairness does not need to make 
additional assumptions on the data (Pessach and Shmu-
eli 2023) and is easy to verify, but this definition can-
not guarantee fairness at the individual level (Makhlouf 
et al. 2022). According to the different contexts of usage, 
the existing statistical-based fairness can be divided into 
demographic parity and statistical fairness given the 
ground truth, and the latter can further be divided into 
equalized odds (Hardt et  al. 2016; Mehrabi et  al. 2021), 
equality of opportunity (Hardt et  al. 2016; Zafar et  al. 
2017a), and test fairness (Kleinberg et  al. 2016; Choul-
dechova 2017; Caton and Haas 2020).

Demographic parity Demographic parity (Corbett-
Davies et al. 2017; Feldman et al. 2015; Kamishima et al. 
2012), also known as statistical parity, requires protected 
and unprotected groups to obtain the same output pre-
diction results with the same probability. If the output Y 
is independent of the protected attribute S in any case, 
then Y satisfies statistical parity, namely

This definition requires different groups to obtain the 
same output results with the same probability.

However, the effectiveness of the above definition will 
be weakened when S and Y are highly related. The dis-
tributions of other attributes are different between the 
protected group and other groups, and the final decision-
making results associated with this definition may vio-
late common sense in reality. To this end, the statistical 
fairness given the ground truth Y is introduced below, 
which additionally considers data marking on the basis of 
demographic fairness.

Statistical fairness given the ground truth Statisti-
cal fairness based on the ground truth (Caton and Haas 
2020) measures the difference of error rate and correct 
rate of output results of each group and requires the dif-
ference to be minimized. As mentioned previously, it 
generally consists of equalized odds, equality of opportu-
nity, and test fairness.

Equalized odds (Hardt et  al. 2016) looks at the inde-
pendence of the score and the sensitive variable con-
ditional on the value of the target variable Y (i.e., the 
outcome). It computes the difference between the false-
positive rates (FPRs), and the difference between the 
true-positive rates (TPRs) of the two groups. Equalized 
odds enforces equality of error rates across the sensitive 
attribute and the outcome, providing a stronger group 
fairness metric than demographic parity. Equalized odds 
has the following form

(3)P(ŷ|s = 0) = P(ŷ|s = 1)

2 https://www.propublica.org/article/machine-bias-risk-assessments-in-crim-
inal-sentencing
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The above definition of Equalized odds implies that each 
sensitive attribute requires an additional test of the cri-
terion. This would be challenging for cases containing 
more than one sensitive attribute.

Equality of opportunity (Hardt et al. 2016; Zafar et al. 
2017a) is similar with Equalized Odds but focuses on 
TPRs only. It is a weaker version of equalized odds, which 
can be described as

Similar to equalized odds and equality of opportunity, 
treatment equality is achieved when the ratio of false 
negatives and false positives is the same for both pro-
tected group categories.

Test fairness Test fairness (Chouldechova 2017) is a 
representative definition of calibration statistical fairness 
(Kleinberg et al. 2016; Chouldechova 2017). It states that 
for any predicted probability score ŷ , people in both pro-
tected and unprotected groups must have an equal prob-
ability of correctly belonging to the positive class:

Notably, following the equality in terms of only one type 
of error (e.g., true positives) will increase the disparity in 
terms of the other error (Pleiss et  al. 2017). Arguments 
about statistical fairness recognize that these criteria are 
based purely on probabilistic independence. Potential 
spurious relations between sensitive attributes and out-
comes may lead to misunderstanding of unfairness (Kus-
ner et al. 2018).

4.2.2  Causality‑based fairness
Statistical-based fairness notions are correlation-based 
(Wu et  al. 2018; Zhang et  al. 2017, 2019) and attempt 
to pursue “literal equity” in the outcome only accord-
ing to the protected attribute, e.g., demographical par-
ity requires that the proportion of positive outcome (e.g. 
admission) is the same for all sub-populations (e.g. male 
and female groups), and equal opportunity requires that 
the true positive rate (TPR) is the same for all sub-pop-
ulations. They ignore the fact that “equity” is actually a 
result of the equilibrium of interest relations (Beretta 
et al. 2019; Gelfand et al. 2002). Causality-based fairness 
is different from statistical-based one in that it defines 
the causal effect of sensitive attribute on outcome as 
unfairness/discrimination (Carey and Wu 2022). Besides, 
it is not completely driven by the observational data, but 
requires additional causal relationships that reflect the 
principles of the socio-economic system and the knowl-
edge of behaviors of the stakeholders.

(4)
P(ŷ|s = 0, y) = P(ŷ|s = 1, y) ŷ = 0, 1, y = 0, 1

(5)P(ŷ = 1|s = 0, y = 1) = P(ŷ = 1|s = 1, y = 1)

(6)P(y = 1|s = 0, ŷ) = P(y = 1|s = 1, ŷ)

To the best of our knowledge, most of the causality-
based fairness notions are defined in the context of 
structural causal model [(SCM, (Judea 2009)], aiming 
to discover and eliminate the causal effect of sensitive 
attributes on outputs by intervening SCM (Kilbertus 
et al. 2020; Kusner et al. 2018; Zhang et al. 2016a; Nabi 
et  al. 2018). SCM includes causal structure equations 
and a corresponding causal graph (Pearl 2009). Causal 
graph is a directed acyclic graph that represents causal-
ity among attributes. Nodes in a causal graph represent 
attributes, arrows indicate causality, and attribute nodes 
representing causes point to attribute nodes representing 
effects. Do-calculus is a technique of SCM to obtain the 
causal diagram after the intervention via only the obser-
vational data (Pearl et  al. 2016). For example, the inter-
vention on protected attribute S means to delete all the 
arrows pointing to S in the causal graph and assign a spe-
cific value to S, thus obtaining the causal graph after the 
intervention. Usually, do(s = 0) is used to indicate inter-
vention on S, and attribute S is assigned a value of 0. This 
is very useful for fairness analysis using only observa-
tional data (i.e., like the paradigm of the statistical-based 
fairness analysis) in which sensitive attributes like gender 
and race are difficult to manipulate.

Causality-based fairness focuses on the causal relation-
ship between sensitive attributes and results,  and  can 
specifically eliminate unfair effects in the system, while 
retaining fair parts. Causality-based fairness will use sym-
bols  like ys=0  to represent the counterfactual predicted 
label (i.e., the counterfactual outcome) if s had been 
assigned a specific value 0 (which implies s = 1 in the 
real-world)3. This notation is equivalent to y|do(s = 0) 
if S is still undetermined (i.e., P(ys=0) = P(y|do(s = 0)) . 
Fairness notions proposed from a causal perspective 
include intervention-based fairness (Loftus et  al. 2018; 
Huang et  al. 2020), path-specific fairness (Wu et  al. 
2019b; Chiappa 2019), and counterfactual fairness (Kus-
ner et al. 2018; Garg et al. 2019; Wu et al. 2019a; Niu et al. 
2021).

Intervention-based fairness Intervention-based fair-
ness is the most natural definition of causality-based 
fairness (Loftus et  al. 2018; Huang et  al. 2020; Khademi 
et  al. 2019). It is also referred to as fairness based on 
total causal effect (Huan et al. 2020). The only difference 
between intervention fairness and statistical parity is that 
it relies on intervening rather than the given  sensitive 
attributes values. It requires that the output result Y sat-
isfy (Loftus et al. 2018):

3 The concept is somewhat non-straightforward to understand and readers 
may refer to Pearl et al. (2016) for more details.
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Note that it is quite different from Eq. (3) though it can be 
estimated only on the observational data via some tech-
niques (e.g., the frontdoor criterion from Judea (2009)) 
from SCM or the matching methods under the potential 
outcomes framework (Khademi et al. 2019; Huang et al. 
2020). In addition, effectively using such techniques to 
implement Eq. (7) will require additional knowledge or 
assumptions of the causal structure of the attributes, in 
that some key information from the random controlled 
trial which is a direct way for do-calculus to conduct 
intervention is missing in observational data. Unfortu-
nately, some specific structures containing confounders 
or mediators make it difficult to implement do-calculus 
from the observational data.

Path-specific fairness
To tackle the barrier mentioned above, fairness notions 

based on path-specific effect of SCM are proposed 
recently (Wu et al. 2019b; Chiappa 2019). It involves the 
knowledge of the causal structure of the attributes  and 
labels and test whether it is unfair, i.e., measure the dif-
ference in the distribution of the prediction results of the 
same group after intervention, from the perspective of 
specific paths of the causal structure (Zhang et al. 2017).

where ŷs=0 is the counterfactual notion and π denotes 
the specific path in the causal structure. Compared with 
“literal fairness” observed from the data by statistical-
based fairness notions, path-specific fairness is superior 
in some cases because it tries to distinguish different 
effects associated with various situations. For example, 
it can effectively identify the cause of gender discrimina-
tion from the example of graduate admissions at Berkeley 

(7)P(ŷ|do(s = 0)) = P(ŷ|do(s = 1))

(8)P(ŷs=0|π) = P(ŷs=1|π)

(Bickel et  al. 1975), where gender discrimination disap-
pears when department choice that mediates the influ-
ences of gender on the admissions decision is considered.

In fact, the causal effects of S on Y through π1 and π2 
shown in Fig.2 include direct and indirect effects, some 
of which indicate the unfairness/discrimination but some 
may not [(e.g., the explainable effect (Zhang et al. 2019)]. 
And whether it is associated with fairness depends on the 
interpretations that may represent different positions of 
the stakeholders.

However, since the counterfactual notion is intractable 
in most cases, even the direct effect from path-specific 
fairness, e.g., the natural direct effect (Pearl 2012b; Pearl 
and Mackenzie 2018) defined as

where M denotes the mediator between S and Y, is iden-
tifiable under some strong assumptions (Avin et al. 2005; 
Pearl 2012; Pearl et  al. 2016). This restricts the applica-
tions of path-specific fairness notion in fairness analysis.

Counterfactual fairness  Kusner et  al. (2018) recog-
nized that fairness should be regulated by explicitly mod-
eling the causal structure of the world and thus proposed 
counterfactual fairness. The counterfactual fairness 
notion (Wu et al. 2019a; Garg et al. 2019; Niu et al. 2021) 
is based on the intuition that a decision is fair towards an 
individual if it is the same in both the actual world and 
a counterfactual world where the individual belonged to 
a different demographic group. It can be described as 
follows:

where x is value assignments of X and we have X ⊂ Z ( Z 
is the attribute set excluding S).

The strength of this notion lies in that it can satisfy not 
only the awareness-based fairness analysis for individuals 
(it focuses on the counterfactual case for individuals) but 
also the rationality-based fairness analysis (it is defined in 
the context of SCM). However, it also faces the difficulty 
of intractability since it is conditioned on s = 1 and at the 
same time depends on the counterfactual s = 0 , which is 
contradictory in practice.

The above Causality-based fairness notions rely mostly 
on SCM that may not be unique would encounter the 
problem of unidentifiability (Avin et al. 2005; Galles and 
Pearl 2013). To this end, there is a line of research (Zhang 
et al. 2019; Shpitser and Pearl 2007, 2012) trying to find 
the approximations instead of exact probabilities to make 
these notions applicable in practice.

(9)P(ŷM=m|do(s = 0)) = P(ŷM=m|do(s = 1))

(10)P(ŷs=0|s = 0, x) = P(ŷs=1|s = 0, x)

Fig. 2 A toy example of path-specific effects
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5  Fairness identification
In the task of fairness identification, the output of the 
algorithm needs to be judged according to the fairness 
notions discussed in stage 2.

5.1  Awareness‑based fairness
For fairness through unawareness, neglecting sensitive 
attributes may not tackle the unfair problems because 
the rest attributes may have residual information about 
sensitive attributes, which may even exacerbate unfair-
ness while giving the impression that the algorithms act 
fairly (Teodorescu et al. 2021). To address this challenge, 
some methods heuristically use proxy-based approaches, 
and optimization-based methods to predict and impute 
neglected sensitive attribute labels (Elliott et  al. 2009; 
Hasnain-Wynia et  al. 2012; Brown et  al. 2016; Zhang 
2018), although the validity of such methods still remains 
controversial (Kallus et al. 2022; Chen et al. 2019).

An identification approach that is widely used in fair-
ness through awareness is to calculate the distances 
of samples or the distributions in the input and out-
put spaces, requiring that similar individuals (similar 
input distances) receive the same treatment (similar 
output distances). Classifiers like k-nearest neighbor 
(kNN) can be applied to find the similar tuples (Luong 
et al. 2011). Recall that the notions of awareness-based 
fairness:

where d1(·, ·) and d2(·, ·) denote the distance functions. 
To define the distance function, a distance metric is 
established to measure the per-attribute distance and 
the joint effect is obtained by summing up all the per-
attribute distances. The normalized Manhattan distance 
and overlap measurement are widely used as the distance 
metrics (Luong et al. 2011; Zhang et al. 2016a).

5.2  Rationality‑based fairness
As for rationality-based fairness, pursuing the probabil-
ity distributions of the two groups to be exactly equal is 

d1((xi, si), (xj , sj)) ≤ d2(ŷi, ŷj)

unrealistic. A tractable method in practice is to calcu-
late the difference or ratio of the outcome probabilities 
of the subgroups and consider that there is no (signifi-
cant) unfairness/discrimination if it is less than a cer-
tain threshold (Caton and Haas 2020). Denote �(s) as 
the probability notations given the sensitive attribute 
S = s , the threshold-based identification approach for 
rationality-based fairness can be shown as

or the fraction style

where ǫ denotes the fairness threshold. Formula (11) and 
(12) show an operational way for determine unfairness 
in practice, where ǫ = 0.8 corresponds to the “four-fifths 
principle” in law (Adel et al. 2019; Zafar et al. 2017b) and 
thus is often selected in the identification process (Wu 
et al. 2019a).

6  Unfairness/discrimination removal
After any unfairness/discrimination has been detected 
in stage 3, it comes to the removal process to make 
the algorithms (or their outputs) discrimination-free. 
Mechanisms used to remove unfairness/discrimination 
is essentially interfering with algorithms, which can be 
categorized into pre-processing, in-processing, and post-
processing ones. Table 2 compares different mechanisms 
for eliminating unfairness.  Pre-processing mechanism 
aims to obtain unbiased datasets. In-processing mecha-
nism achieves fairness by modifying the algorithms. 
Post-processing mechanism adjusts the outputs of the 
algorithms to make the decision fair. All these mecha-
nisms will be further discussed in the following sections.

6.1  Pre‑processing
Pre-processing approaches (Calmon et  al. 2017; Feld-
man et al. 2015; Kamiran and Calders 2009, 2012) focus 
on   dataset pre-processing, trying to adjust the data-
sets to eliminate the biases introduced by attributes S. 

(11)|�(s = 0)−�(s = 1)| ≤ ǫ

(12)
�(s = 0)

�(s = 1)
≥ 1− ǫ

Table 2 Unfairness/Discrimination removal methods

Method Strength Challenge

Pre-processing Flexible to adapt to downstream tasks; Do not need to 
access the protected property when testing

The accuracy of that result needs to be guaranteed.

In-processing It can balance the trade-off between algorithm accuracy 
and fairness; No access to protected properties

Dependent machine learning algorithm

Post-processing Adapt to all kinds of algorithms Need to access the protected attributes when test-
ing the machine learning algorithm.
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The unbiased datasets or processed original datasets 
conduce to improve the fairness of algorithms’ outputs 
without modifying the machine learning algorithm. 
Pre-processing approaches can easily adapt to vari-
ous downstream tasks, but may sacrifice accuracy and 
interpretability.

Feldman et  al. (2015) modified all the non-protected 
attributes to ensure that protected attribute S cannot 
be predicted from the non-protected attributes. As a 
result, decision Y is determined by the non-protected 
attributes. Žliobaite et al. (2011) proposed the use of log-
linear modeling to capture and measure discrimination 
and developed a method for discrimination prevention 
by modifying significant coefficients of the fitted log-
linear model and generating unbiased datasets. Xu et al. 
(2020) proposed conditional fairness, which means out-
come variables should be independent of sensitive attrib-
utes conditional on these fair variables. They proposed 
a Derivable Conditional Fairness Regularizer (DCFR), 
which can be integrated into any decision-making model, 
to track the trade-off between precision and fairness 
of algorithmic decision-making. Kamiran and Calders 
(2009) proposed a method based on massaging the data-
set by making the least intrusive modifications which was 
used to build a Classification with No Discrimination 
(CND). Specifically, they used a ranking function learned 
on the biased data and modified training data based on 
this function.

6.2  In‑processing
In-processing approaches (Bellamy et  al. 2018; Calders 
and Verwer 2010; d’Alessandro et  al. 2017; Kamishima 
et  al. 2012) aims to change the training process of the 
algorithm (i.e., adding some fairnees constraints).  Usu-
ally, one or more fairness metrics are incorporated into 
the model optimization functions to maximize both 
accuracy and fairness, providing a good view for the 
trade-off between fairness and accuracy. However, in-
processing mechanism depends on specific algorithms. 
That is, different adjustment methods need to be pro-
posed for different algorithms. For example, Kamiran 
et  al. (2010) developed a strategy for relabeling the 
leaf nodes of a decision tree to make it discrimination-
free. Zafar et al. (2017a) added the measure of fairness 
into the classification learning formulation as the con-
straint so that the classifier learned satisfies the fairness 
requirement. Chen et al. (2022) proposed an in-process-
ing model for discrimination mitigation in natural lan-
guage processing. Garg et  al. (2019) proposed a model 
training scheme that can employ fairness constraints, 
which engaged fairness in cyberbullying detection 
algorithm.

6.3  Post‑processing
Post-processing mechanism (Danks and London 2017; 
Hardt et  al. 2016; Kamiran et  al. 2010) concerns the 
fairness of decision results and tries to modify the algo-
rithms’ outputs. The advantage of the post-processing 
mechanism is that it does not interfere with the train-
ing process of the algorithms, which makes it appli-
cable to different algorithms. However, modifying the 
outputs may reduce the accuracy of the algorithms, 
and it is still necessary to test whether the modified 
results are fair.  Hardt et  al. (2016) simply flipped out-
comes of some samples so that the decision can meet 
equalized odds. But it will sacrifice the performance of 
algorithms. To solve this problem, Corbett-Davies et al. 
(2017) and Jung et  al. (2017) imputed algorithm bias 
to its different performance on minority groups and 
majority groups. They similarly suggest selecting sepa-
rate thresholds for each group separately, in a manner 
that maximizes accuracy and minimizes demographic 
parity. Dwork et al. (2012) proposed a decoupling tech-
nique to learn a different classifier for each group. They 
additionally combine a transfer learning technique with 
their procedure to learn from out-of-group samples.

A distinct advantage of pre- and post-processing 
approaches is that they do not modify the machine 
learning method explicitly. This means that (open 
source) machine learning libraries can be leveraged 
unchanged for model training. However, they do 
not directly control the optimization function of the 
machine learning model itself. Yet, modifying origi-
nal data and/or model output may have legal implica-
tions (Barocas and Selbst 2016), and models still lack 
interpretability (Lepri et  al. 2018; Lum and Johndrow 
2016), which may be at odds with current data protec-
tion legislation with respect to interpretability. Only in-
processing approaches can optimize notions of fairness 
during model training. However, this requires the opti-
mization function to be either accessible, replaceable, 
and/or modifiable, which may not always be the case.

7  Conclusion
7.1  Summary
Algorithmic fairness has significance at the legal and 
social levels and is more of an interdisciplinary subject 
of social science and computer science. Fairness is a rel-
ative social concept and there is no fairness in an abso-
lute sense. Fair machine learning algorithms gradually 
improve the fairness of machine learning algorithms 
by exploring the mechanisms to eliminate unfairness 
or discrimination. In this review, we have outlined dif-
ferent definitions of algorithmic fairness and provided 
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a framework for constructing fair algorithms. We sug-
gest viewing different definitions of fairness from both 
rationality and awareness perspectives, to avoid the 
conflict of different fairness metrics. We summarize the 
process of the algorithmic fairness task into four stages: 
initialization, fairness definition, fairness identification, 
and unfairness/discrimination removal. In future work, 
there is a need to deploy advanced fairness machine 
learning algorithms in various application domains 
and to develop unified and complete fairness metrics. 
Therefore, exploring fairness issues in both technical 
application and ethical aspects is necessary.

7.2  Future directions
7.2.1  Exploring the causal structure of data to strengthen 

fairness definitions
The causes of unfairness in machine learning algo-
rithms are various and complex, and different biases 
have different influences on realistic applications. The 
very first challenge in fair machine learning is to pro-
vide a comprehensive definition of fairness. Whether 
an algorithm is fair not only depends on the model and 
data but also the task requirements.

As we mentioned above, various fairness notions 
are proposed in existing research. In addition, there is 
a lack of comprehensive and multi-dimensional algo-
rithm fairness evaluation metrics and assessment sys-
tems to effectively quantify the fairness risk faced by 
machine learning algorithms, which makes it impossi-
ble to guarantee the fairness of machine learning mod-
els employed in different decision-making scenarios.

On the other hand, ignoring the causal structure in 
data may lead to the misuse of the definition of fair-
ness. In the well-known Berkley example, the admis-
sion result of this college is considered unfair to 
females because the overall admission rate of males is 
higher than that of females. However, the situation is 
reversed when we compare the admission rates of dif-
ferent genders from the perspective of departments. 
The admission rate of women in almost every depart-
ment is higher. In this example, the admission results 
are falsely related to gender due to personal choices, 
which leads to superficial discrimination. In many simi-
lar situations, the pseudo correlation between sensitive 
variables and results will affect the detection of dis-
crimination. Thus, there is a causal structure that must 
be taken into account when detecting discrimination.

We deem that it is an important research trend to 
explore the causal structure of data exploiting causal 
inference techniques in the field of algorithm fairness. 
Introducing causal inference methods into algorithmic 
fairness can assist in building more convincible fairness 
notions. In the unfairness detection stage, it is crucial 

to understand the root causes of the problem when 
tackling the discrimination problem. In other words, 
it is necessary to determine whether sensitive attrib-
utes have an impact on the outcome, and how to elimi-
nate the such impact. Causal inference can play a part 
in analyzing which types of discrimination should be 
allowed and which should not. Causal fairness notions 
and discrimination detection approaches, such as PSE 
and intervention-based fairness, are proposed to help 
solve these problems and more effort is needed in 
causal fair learning to improve fairness.

7.2.2  Bridging the gap between fairness notions and real 
applications

The application scenarios of machine learning models are 
multiple, and there may be difficulties in data collection 
in practical applications, which bring challenges to fair 
machine learning.

There are several barriers when applying fair machine 
learning in real scenarios. The significance of machine 
learning algorithms lies not only in fitting the distribu-
tion of the training set but also in fitting the distribution 
of the real world. Sensitive attributes are often inaccessi-
ble and difficult to test in real applications. The situation 
gets even worse when the training dataset is selection 
biased, which means it does not contain samples appear-
ing in real world. Existing work uses proxies to solve the 
problem of inaccessible sensitive attributes. However, 
whether the proxy is fair enough is still worth talking in 
terms of training fair and accurate models.

Another obstacle is that existing fairness definitions 
may be inefficient and cannot adapt to the complex real-
ity of human-machine learning interactions. We note that 
embedding prior experience into automatic algorithm 
bias detection and analysis techniques is significant. The 
definition of fairness needs to be integrated with the laws 
and regulations of each country and the concept of social 
equity to avoid narrow technical solutions. Furthermore, 
the prior experience of different managers should be 
integrated into algorithms.

In addition, multi-domain collaborative algorithmic 
fairness is of significance for constructing socially respon-
sible AI. Efforts should be made for understanding the 
root causes of unfairness and alleviate the cross-domain 
problem based on algorithm fairness.  For example, the 
difference in loan amount between different gender 
groups may be considered discriminative, but it may orig-
inate from different treatments (i.e., salary) in the work-
place, which may be related to the discrimination they 
experience at the time of enrollment. When solving the 
problems of discrimination in banking and recruitment 
seperately, different institutions may govern discrimi-
nation  in terms of different fairness definitions to avoid 



Page 11 of 13Wang et al. Management System Engineering              (2022) 1:7  

possible losses, whereas these definitions may conflict 
with each another. Therefore, unified cross-disciplinary 
and inter-institutional algorithmic fairness techniques 
should be developed to build a better socio-economic 
ecosystem.

Another possible research direction in algorithmic fair-
ness is to develop dynamic algorithmic fairness strategies. 
Current fairness studies are  of limited help in real-world 
fairness governance   because they  mostly focus on pas-
sive and static fairness without considering the dynamic 
nature of fairness in reality. In fact, fair algorithms will 
influence the decision-making directions in the future 
applications, and consequently will affect the bias level 
of the subsequent input data.   Therefore, it is required 
to dynamically adjust algorithmic fairness metrics and 
unfairness removal mechanisms, and to enhance the fair-
ness of the algorithm from a long-term perspective.

7.2.3  Balancing the trade‑off between performance 
and fairness

Building fair and reliable algorithms is the foundation of 
trustworthy machine learning algorithms. However, sat-
isfying fairness notions may decrease the accuracy of the 
model. When protected attributes are associated with pre-
dictions, such as recidivism, it is difficult to achieve high 
accuracy if predictive attributes like race, poverty, unem-
ployment, and social marginalization are excluded. There 
is extensive research discussing the trade-off between 
algorithms’ performance and fairness. It is an inher-
ent problem because the fair machine learning model is 
required to satisfy extra constraints: fairness metrics. In 
addition, as fairness notions vary with situations, it’s nec-
essary to adjust the trade-off strategy in different scenar-
ios. Therefore, building a fair and still accurate model is a 
promising field in algorithmic fairness.
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