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Abstract
Dendrimers are viewed as hyperbranched, three-dimensional, monodisperse globular macromolecules with branches emanat-
ing from each monomeric unit. For improving the solvability of hydrophobic drugs and raising their bioactivity accompanied 
by a persistent release action, dendrimeric nanoparticles are customarily employed as latent drug delivery devices. PAMAM 
dendrimers have been broadly investigated as new approaches for restrained drug delivery; nevertheless, the computational 
analysis of the dendrimer-drug complex is an intricate phenomenon ascribable to the conformational flexibility of dendrim-
ers and the distinct characteristics of the interactions existing within the dendrimer-drug system. Traditional procedures for 
analyzing drug interaction have been intended mainly for protein-derived substrates and, thus, there is a necessity to create 
novel conventions to handle special views of dendrimers. In the present research investigation, cavities in generation-2 and 
generation-3 Polyamidoamine (PAMAM) dendrimers have been developed, followed by the employment of fully atomistic 
molecular dynamics (MD) simulations to analyze the interactions of dendrimer with multitudinous model drugs, encompass-
ing Tricaprin, Cinnamide, and Chloramphenicol palmitate (CAP-P). The binding energies, along with the energies associated 
with highest occupied molecular orbital, lowest unoccupied molecular orbital, and energy gap values have been assessed for 
various dendrimeric (PAMAM)-drug complexes and it was ascertained that it was energetically feasible for the drug moieties 
to bind with the dendrimeric system. Among the multitudinal model drugs examined, it was found that CAP-P exhibited the 
greatest binding energy (− 13.09 kcal/mol), and lowest energy gap values of 6.32 eV toward G2 dendrimer, thereby signify-
ing that PAMAM G2 was a suitable vehicle to carry CAP-P drug possessing greater reactivity, with reduced system stability.
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Introduction

Instead of emphasizing the production of novel drugs, the 
current trend in the pharmaceutical industry has focused 
on the amelioration of various characteristics of drugs that 
are presently utilized in diverse therapies, consequently 
preventing the investment of additional funding, resources, 
and time in the R&D of new chemical essences [1]. Signifi-
cant advancements in this domain are essential to mitigate 
the side effects associated with drugs. Various nanobearers 
like nanospheres [2, 3], CNTs [4], polymersomes [5–7], and 
micelles [8] tend to impart a solution to this concern through 
aimed and restrained discharge without altering the chemical 
framework of drugs [9–19]. Considering their unusual mor-
phological characteristics and biocompatibility with other 
macromolecular entities, “dendrimers” are contemplated 
to be emerging flexible nanoscopic structures bestowing 
several merits over the conventional linear chain polymers 
[20, 21], thereby leading to an exquisite polymeric system 
for catalysis [22], disease diagnosis [23], gene [24–26], and 
drug delivery [27], 28.

Dendrimers are spherical, three-dimensional, hyper-
branched frameworks encompassing core, repetitive 
branches, and peripheral functional groups [21, 24, 27–29], 
as illustrated in Fig. 1. To improve the delivery of specific 
drugs, they possess hydrophobic or hydrophilic internal 
gaps and alterable peripheral molecules, thereby resulting 
in enhanced bioavailability and reduced cytotoxicity [30, 
31]. There are two efficient means of forming dendrimer-
drug complexes namely (1) the utilization of linkers via 
covalent interactions existing between the surface functional 
groups and (2) physical encapsulation of drug molecules 
within the interior hydrophobic gaps or periphery of the den-
drimer using ionic, electrostatic interactions, hydrophobic or 
hydrogen bonding interactions [32, 33]. Poly(amidoamine) 
(PAMAM) was one of the predominantly investigated den-
drimers for curtailing the impediments associated with drug 

delivery, as promulgated by Tomalia et al. [34, 35]. PAMAM 
dendrimer possesses some inherent advantages over other 
dendrimeric systems in the drug delivery domain inclusive 
of protecting normal cells from cytotoxic agents, lowering 
the dose-dependent side effects, and overcoming the drug 
resistance of infected cells [36].

Novel perceptions of the dendrimer-drug complex are 
denoted by both theoretical and computational approaches, 
which could not be accomplished through employing experi-
mentations alone [37–41]. Various analyses have been con-
ducted on the transportation of several model drugs (and 
other organic molecules) with dendrimers which certainly 
proves the esoteric concern of research circles in this direc-
tion [42–46]. For the design and enhancement of dendrimer-
based systems, computational studies play an essential role 
[39]. MD simulations were conducted by Goddard and 
colleagues to investigate the capsulation of Bengal Rose 
moieties within the Meijer dendrimer box constructed by 
the incorporation of tert-butyloxycarbonyl-l-Phe cap moie-
ties to sixty-four preliminary amines of a fifth-generation 
Poly(propyleneimine) dendrimer [47]. MD simulations 
[48–50] of naphthyridine-based dendrimers to analyze bind-
ing energies were investigated by Posocco and co-workers 
using Molecular Mechanics Poisson–Boltzmann Surface 
Area (MM-PBSA) [51]. A recent investigation was based 
on the calculation of interaction energies using the Metrop-
olis Monte Carlo algorithm and semi-empirical quantum 
mechanical methods [52]. To find the mechanism behind 
the solubility of weak acid drugs in dendrimers, Lewis and 
Ganesan implemented a self-consistent field theory model 
[53].

Two main overtures of drug delivery schemes are (1) 
either to bind covalently to form dendrimer-drug conjugates 
or (2) to form complexes by interacting non-covalently. Even 
though it is not suitable if dendrimers discharge drugs too 
early before arriving at the aimed cells, drug molecules 
can be discharged more easily in dendrimer-drug com-
plexes compared to conjugates. To achieve that goal, it is 
crucial to comprehend the underlying mechanisms govern-
ing interactions within the dendrimer-drug systems. In this 
regard, the present computational research emphasizes the 
analysis of the binding energy of these complexes via fully 
atomistic classical molecular dynamics (MD) simulations 
employing the PAMAM-drug complexes with three model 
drugs, namely, Tricaprin, Cinnamide, and Chlorampheni-
col palmitate (CAP-P). These three model drugs are used 
widely for different therapies (Table 1). In this investiga-
tion, we analyzed the binding strength of these drugs in 
the PAMAM dendrimer of different generations through 
the study of their binding energy (Eb) values. Furthermore, 
this research also accentuates the enumeration of the corre-
sponding EHOMO (energy associated with highest occupied 
molecular orbital), ELUMO (energy accompanying the lowest Fig. 1  Structure of a dendrimer
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unoccupied molecular orbital), and Eg (energy gap) values 
of various dendrimer-drug complexes.

Computational Analysis

Molecular Dynamics Simulation Procedure

To examine the binding strength of dendrimers, we created 
fully atomistic models of non-covalently bound drug-den-
drimer complexes, designated as  DN@PAMAM for the den-
drimeric structures of different generations.  DN represents 
drug molecules, where N = number of drug molecules that 
are incorporated within PAMAM dendrimer (Here N = 2, 
3). Three types of model drug moieties were examined in 
the present research work namely, Tricaprin (TCAPIN10) 
 (C66H124O12), Cinnamide  (C36H36N4O4), and Chlorampheni-
col palmitate (CAP-P)  (C108H168N8O24Cl8), encompassing 
G2  (C62H144N42O12) and G3  (C142H320N90O28) PAMAM-
based dendrimers.

The binding of PAMAM with different drugs was exam-
ined by utilizing molecular dynamic simulation through 
Biovia Materials Studio Software (Fig. 2). The simulation 
method is composed of molecular mechanics and dynam-
ics computations. The chemical structures of the drugs 
were imported from the Materials Studio Software library 
(Fig. 3). An ab initio force field, condensed phase optimized 

molecular potentials for atomistic simulation studies (COM-
PASS), was utilized for the computational simulation. 
Drugs were subjected to geometry optimization followed 
by an energy minimization step. Amorphous cells were con-
structed as per the relative densities of the chosen PAMAM 
dendrimer of specific generations. The dendrimeric mac-
romolecule was then enclosed with the drug molecules 
through a layer builder. The layer formed was subjected to 
geometry optimization (5000 iterations) and dynamics (500 
iterations) calculations, and the MD simulation was run.

We studied binding energy for the quantitative analysis 
of the binding strength of the dendrimer-drug complex. The 
binding strength of  DN@PAMAM was enumerated using the 
following mathematical expression [Eq. (1)] [54]:

where Eb is the average binding energy associated with 
 DN@PAMAM system; EP–D is the overall energy of  DN@
PAMAM complex constituting dendrimer and drug mol-
ecules; EP is the overall energy concomitant with PAMAM 
dendrimer, devoid of any drug molecules; and ED is the 
comprehensive energy of sequestered drug moiety, without 
dendrimer system.

The frontier molecular orbitals referred to as the lowest 
unoccupied molecular orbital (LUMO) and highest occu-
pied molecular orbital (HOMO) exhibited a prominent role 

(1)Eb =

(

EP−D

)

−

(

ED + EP

)

,

Table 1  Uses of Tricaprin, 
Cinnamide, and CAP-P

Drug Uses

Tricaprin Improve insulin sensitivity and decrease androgen production
Cinnamide Antiepileptic, antidepressant, neuroprotective, analgesic, 

anti-inflammatory
Chloramphenicol palmitate (CAP-P) Antibiotic

Fig. 2  Structure of A G2-PAMAM and B G3-PAMAM sketched using Biovia Materials Studio Software
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in optical, electrical characteristics, and quantum chemistry. 
HOMO refers to the outmost greater energy orbital encom-
passing electrons and therefore, it functions as an electron 
donor and exemplifies the propensity of the molecules against 
electrophilic attack. On the other hand, LOMO is associated 
with the lowest energy orbital serving as an electron acceptor, 
while characterizing susceptivity of molecules toward nucleo-
philic attack. The energy gap existing between the HOMO 
and LUMO orbitals assists in delineating kinetic stability and 
chemical reactivity of molecular systems [55]. In the present 
research work, Biovia Materials Studio Software was also uti-
lized to enumerate the partial density of states and ascertain 
the involvement of PAMAM dendrimer and various drug mol-
ecules toward the HOMO–LUMO band gap energy changes 
(Eg), contingent with the following mathematical expression 
[Eq. (2)] [56]:

where EHOMO is the energy associated with the highest occu-
pied molecular orbital; ELUMO is the energy inextricably 
linked to the lowest unoccupied molecular orbital; and Eg is 
the HOMO–LUMO energy gap value.

(2)Eg = ELUMO − EHOMO,

Results and Discussion

Binding energy (Eb), outlined in Eq. (1), was utilized to 
evaluate the binding strength of the  DN-PAMAM system 
encompassing the interaction energies of drug molecules, 
PAMAM dendrimer, and dendrimer-drug moieties, with the 
aid of Forcite Modules employing Biovia Materials Studio 
software encompassing the COMPASS force field. Negative 
binding energy values were ascertained for the dendrimer-
drug systems for both generations of dendrimers, signify-
ing interactions between the drug molecules and dendrimer 
system in a manner stabilizing the complex. This can be 
attributed to the reduction in the overall system energy due 
to dendrimer-drug complex formation, indicating favorable 
interactions within the system thereby imparting stability 
to the generated system. Negative interaction energy values 
often associated with electronic and shape interactions of 
system indicate effectual molecular recognition, which is 
essential for the dendrimer to efficaciously encapsulate or 
deliver the drug.

Better binding is shown by the complex with a smaller 
Eb with a larger absolute value. The calculated Eb of the 

Fig. 3  Chemical structures of A Tricaprin, B Cinnamide, and C CAP-P imported from the library of Biovia Materials Studio software
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investigated model drug moieties reduces as per the fol-
lowing order: CAP-P (−  13.09  kcal/mol) > Tricaprin 
(− 3.46 kcal/mol) > Cinnamide (− 2.83 kcal/mol) in the 
 D1@G2 complex and Cinnamide (− 5.68 kcal/mol) > Tri-
caprin (− 4.04 kcal/mol) > CAP-P (− 2.81 kcal/mol) in the 
 D1@G3 complex (Table 2). We concluded that incorpo-
rating the drug molecules into the PAMAM dendrimeric 
system was energetically favorable owing to the attainment 
of negative binding energy values suggesting an interaction 
between the former and the latter for all the systems being 
investigated. Among the obtained binding energy values, 
CAP-P demonstrated maximum binding energy toward 
G2-PAMAM  (Eb: − 13.09 kcal/mol), thereby substantiating 
that G2 dendrimer served as a good carrier for the drug moi-
ety. Furthermore, it was noted that systems with more nega-
tive interaction energy values demonstrated stronger binding 
affinities within the dendrimer-drug system. This insinuates 
that the developed complexes possessed thermodynamic 
favourability, which is imperative in drug delivery systems 
where strong binding interactions can ameliorate the effi-
caciousness of selective drug molecules. It should be noted 
that a straightforward correspondence exists between the 
concepts of surface stability, and surface energy, manifesting 
that surfaces possessing lower overall surface energy values 
exhibit greater stability, and vice-versa [57]. In the present 
research work, CAP-P drug possessing the maximal bind-
ing energy value of − 13.09 kcal/mol toward G2-PAMAM 
dendrimer system was most stable, while the same drug 
molecule demonstrated the lowest binding energy value of 
− 2.83 kcal/mol toward G3-PAMAM dendrimer, thereby 
signifying lesser stability of the simulated drug-dendrimer 
complexes.

Furthermore, the corresponding ELUMO, EHOMO, and 
Eg values computed for the various dendrimer-drug com-
plexes using the partial density of states theory are enlisted 
in Table  2. From the table, it was ascertained that the 
G2-PAMAM dendrimer system demonstrated the low-
est energy gap (Eg) value of 6.32 eV toward CAP-P drug, 
with corresponding ELUMO and EHOMO values of − 2.35 and 
− 8.67 eV, respectively. On the other hand, the G3-PAMAM 
dendrimer manifested the greatest energy gap (Eg) value of 
7.62 eV toward CAP-P drug molecules with corresponding 

ELUMO and EHOMO values of − 4.67 and − 12.29 eV, respec-
tively. The test results obtained signify that the dendrimer-
drug complex exhibiting lowest energy gap value possessed 
least stability with higher reactivity, compared to the sys-
tems possessing larger energy gap values [55]. This could 
be attributed to greater reactivity promoting facile electron 
transfer reactions that are crucial for interactions like bind-
ing of drug molecules with dendrimer systems. A lower 
energy gap value can result in robust binding interactions 
when the interactions between the dendrimer-drug systems 
are associated with transfer of electrons or substantial orbital 
overlap.

Conclusion

Dendrimers are considered to be a versatile nano-carrier 
for effective drug delivery due to their accurate molecular 
weight, polyvalent nature, biocompatibility, and greater 
water solubility. Both theoretical and computational stud-
ies are required for the investigation of these nano-carriers. 
This work is based on the molecular dynamics analysis of 
dendrimer-drug delivery complexes emphasizing the binding 
strength as a function of different types of drug molecules. 
The investigated dendrimer-drug delivery systems include 
G2 and G3 PAMAM dendrimers loaded with three model 
drugs: Tricaprin, Cinnamide, and CAP-P, respectively. Bet-
ter binding is shown by the complex with a negative Eb 
(binding energy) with a larger absolute value as noticed 
from the Eg (energy gap) value of − 13.09 kcal/mol toward 
the G2-PAMAM dendrimer-CAP-P drug complex. Fur-
thermore, this system also exhibited the lowest Eg value of 
6.32 eV toward CAP-P drug signifying greater reactivity, 
with reduced stability of the dendrimer-drug system. Thus, 
it can be contemplated that incorporating drug molecules 
within PAMAM dendrimer was an energetically favora-
ble phenomenon ascribable to the negative binding energy 
values obtained. Our research investigations manifest fac-
ile interaction of drug moieties with PAMAM dendrimer 
presuming that the design of PAMAM dendrimer is crucial 
to ameliorate its drug loading efficiency. The data deduced 

Table 2  Binding energy values, 
along with corresponding 
ELUMO, EHOMO, and Eg values 
obtained for various drug 
systems with G2 and G3 
PAMAM dendrimer

S. no PAMAM 
generation

Drug used Binding energy 
obtained (Kcal/mol)

ELUMO (eV) EHOMO (eV) Eg (eV)

1 G2 Tricaprin − 3.46 − 4.98 − 12.41 7.43
2 G2 Cinnamide − 2.83 − 3.43 − 10.93 7.5
3 G2 CAP-P − 13.09 − 2.35 − 8.67 6.32
4 G3 Tricaprin − 4.04 − 2.89 − 10.27 7.38
5 G3 Cinnamide − 5.68 − 4.08 − 11.45 7.37
6 G3 CAP-P − 2.81 − 4.67 − 12.29 7.62
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from this research work imparts valuable proof to evolve 
highly efficient dendrimer-drug delivery complexes.
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