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Abstract
Using speech data, it is difficult to learn through machine learning how to diagnose Parkinson's disease (PD) and evaluate the 
effects of treatment. For this issue, the article has developed a three-stage PD discovery method. The base classifiers used in 
the initial stage are logistic regression (LR), K-nearest neighbor (KNN), naive bayes (NB), support vector machine (SVC), 
and decision tree (DT). The second stage, or stack model, is a meta-model that combines all of the classifiers mentioned 
earlier. The third stage ensemble model consists of Bagging, AdaBoost, Random Forest (RF), and Gradient Boosting (GBC) 
components. The RF and GBC classifiers are utilized to estimate the most important features from the PD dataset. The mod-
els' validation has been evaluated using the confusion matrix and validation metrics like precision, recall, and F1 score. Out 
of all the ensemble models, the GBC—the third model—had the highest accuracy with testing data—97.43%. KNN from 
the base model and stacking from the meta-model, on the other hand, had the highest accuracy, with 94.87% each. Out of 
all the models mentioned in this manuscript, the GBC is the only ensemble model classifier with the highest accuracy. The 
proposed classifier appears to be an extremely useful model for the discovery of Parkinson's disease, as demonstrated by the 
exploratory findings and factual analyses.
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Introduction

PD is the second most common neurodegenerative disorder 
worldwide, after Alzheimer's. PD is a common, moderate 
neurodegenerative condition primarily affecting the central 
sensory system and the body's structure [1]. Shaking, firm-
ness, difficulty talking and walking, and other common body 
side effects are included. The dopamine-producing neu-
rons in a particular part of the human brain are profoundly 
affected by PD. A significant number of the side effects are 
caused by the body's lack of dopamine. The majority of Par-
kinson's disease patients over the age of 60 first experience 
symptoms, but 5 to 10% of cases begin earlier [2]. Most of 
the time, the side effects start off slowly and get worsen over 
time. Non-body side effects, such as mental and behavioral 

issues, memory issues, sleep issues, discouragement, fatigue, 
and so on, may arise as the disease progresses.

As previously stated, PD diagnosis has been challenging 
due to the absence of reliable tests. However, PD patients 
exhibit voice and speech impairments, according to recent 
research. However, medical professionals are unable to 
identify these voice defects in clinics. As a result, in order 
to identify PD in its earliest stages and capture these voice 
impairments, automated signal processing tools are required 
[3]. Recent studies demonstrate that automated risk factor 
extraction and classification using machine learning and 
signal processing algorithms is effective for disease detec-
tion. There have been more AI-based PD treatment trials 
in recent years [4]. Even though previous studies looked 
at how AI could be used to find and evaluate PD, they only 
looked at motor side effects, kinematics, and data from 
wearable sensors. As a result, the application of AI to non-
clinical and clinical information from a variety of modali-
ties has frequently resulted in high symptomatic exactness 
in human members. This may make it possible to use novel 
biomarkers and AI calculations in clinical settings to sup-
port more precise and informed direction. A number of 
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artificial intelligence methods have recently been utilized 
to identify Parkinson's disease indicators [5]. Among them, 
stacking models that combine at least two independent clas-
sifiers with a meta-model to improve accuracy can reduce 
the propensity accuracy of a single AI model. In addition, it 
has been demonstrated to predict the outcome factors with 
greater precision. It achieves better expected execution than 
individual computation demonstrations by employing stack-
ing ensemble computations [6].

In this paper, we also attempt to develop a PD detection 
strategy based on machine learning and signal processing 
algorithms, inspired by these studies. Using signal process-
ing algorithms for feature extraction from voice signals and 
machine learning algorithms for classification, we developed 
an automated model to detect Parkinson's disease (PD). This 
was inspired by the automated disease detection methods 
discussed above.

The literature review and background are presented in 
"Literature Review" and "Background" sections of the 
remaining manuscript. "Experimental Methodology" sec-
tion is discussion of the experimental approach. The experi-
mental setup is shown in "Experimental Setup" Section. The 
proposed model's results are presented in "Results" section. 
"Discussion" section is representation of the discussion and 
"Conclusion" section is conclusion.

Literature Review

Many analysts already do their part in forecasting, more 
importantly, the investigation of Parkinson's disease. Partial 
exploration of this article analyzes the work.

The model is proposed by Joshi et al. [7] There are 12 
ML-based models, including NB, KNN, LR, MLP, DT, 
SVM (linear, Poly, and RBF), and RF classifiers, as they can 
even find relapse signs of altered ranges to identify Parkin-
son's Infect individuals and able-bodied individuals. The 
proposed model is a bunch of RF, SVM, and KNN and ET 
and Extreme GBC; the model is performed with mean 
square error (MSE) and mean absolute error (MAE). Over-
all, the proposed model achieves (90–91) % testing accuracy 
and (98–100) % training accuracy, and the proposed model 
likewise utilizes PCA and LDA for better accuracy. Behroozi 
and Sami [8] obtained the dataset from the UCI AI store. 
Using the voice feature set, there are two design of CNNs 
are proposed to PDs. They used CNN. While mainly organ-
ized methods have many capabilities before using them to a 
nine-layer contour CNN as a data source, the subsequent 
structure confers feature sets on similar data layers closely 
related to convolutional layers. ANN and SVM are standard 
computations in this PD permutation KNN when preparing 
RF and SVM. CNNs want to secure an MLP for CNN. The 
central framework is a nine-layer convolutional neural 

network consisting of a data layer, six convolutional layer 
contour expansion and max pooling layers, a fully correlated 
layer edge, and a yield layer contour. The structure consists 
of adjoint layers: a data layer with n feature sets, an equiva-
lent layer with n branches, a solidification layer, and four 
medium convolutional layer contours. The accuracy is 82%, 
the F score is 88%, and the MCC is approx 50%. An article 
is presented by Lucijano et al. about the remote monitoring 
of PD [9]. TQWT was used to investigate the vocal signs in 
PD patients. For merge extraction, a configurable q-factor 
waveform offset is coordinated with the Pd's victim sound 
sign. When the MFCC and TQWT coefficients are added to 
the PD request question, they provide reciprocal information 
that further informs the accuracy of the plan. Once again, 
TQWT has steady repeat greetings. The calculated limits are 
enforced for the adjustable q-factor channel to more accu-
rately delineate the perceptibility ends. TQWT guarantees 
short-lived confinement of important subcomponents in the 
process. TQWT method by cultivating an important field of 
remote monitoring engineering, it can be used to determine 
the true joint PD review standard level for PD patients. 
Using quantitative methods, the maximum accuracy of sup-
plies picked with minimal redundancy to the classifier was 
0.86, with an F1 score of 0.84 and an MCC of 0.59. Sarkar 
et al. [10] presents an exploratory article on "Parkinson 
Dataset with Reproduced Acoustic Elements Informational 
index." Specifically, 45 sound modules corresponding to the 
assessment were set, including Parkinson's disease patients 
and ordinary subjects. Scientists have found evidence that 
leverages several scientific methods, such as Xgboost, RF, 
SVM, KNN, and basically backwards. At that time, a vari-
able importance examination was also performed to under-
stand the key elements delineating PD patients. A total of 80 
people are expected: 40 people with Parkinson's disease and 
40 able-bodied people. LGB was used by the best perform-
ing model, achieving an AUC of 95.1% in fourfold CV with 
only seven audible parts, with a 95% certainty range of 
0.946–0.955. They achieved 84% accuracy. Gunduz [11] 
utilized a speech test dataset to discriminate PD patients. 
Scientists hope to use strait & recursive recurrence records 
to dissect the localization of merged Parkinson's. Efforts 
have been made to gain a thorough understanding and con-
nection between these two components and ensure that Pds 
scores are calculated using global Insights due to the dili-
gence followed by change testing and processing of data into 
SVM classifiers with selected features. Most notable Rele-
vant minimal repeats. To avoid trends, the analyst model's 
cross-validity system has been eliminated. The scientists' 
program achieved 92.75% precision. They used KNN, SVM, 
SVM with RBF, and NB. The accuracy was 88%, the sensi-
tivity was 90%, and the specificity was 85%. Based on the 
highlights extracted from 26 different speech tests, Akshay 
and Kiran [12] developed PD diagnosis in the study subjects. 
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The optimal sequential method for Pd analysis without a 
method for selecting elements has been shown to be several 
ANNs. The test accuracy reached 86.47% after calibrating 
the neuronal tissue. A 1D ANN is used to achieve 100% 
preparation accuracy and inspection accuracy. In addition to 
using additional hidden layers, additional neurons are added 
to the existing layers. It has been demonstrated that the 
appropriate ANN response depends on the ANN design, as 
the ability to alter the outcome has been established. The 
correlation coefficient component selection method outper-
formed PCA, although their detection percentages were 
similar. Sztah and Hemmerling [13] used speech signals as 
biosignals to identify PD patients and serve as a reliable 
baseline set, represented by a set of provisions taken from 
temporal, recursive, and cepstral spaces, and applied to PCA 
and nonlinear SVM. The results guarantee an ensemble 
accuracy of 93.43%. They utilized various AI algorithms 
such as DNN, SVM, Naive Bayes, DT, Regression, and RF 
to identify PD. The study discusses how to use parallel dis-
tributed NN classifiers with backpropagation to learn com-
putation and majority voting. Studies have shown that the 
search accuracy of PD can reach 90%. During the investiga-
tion, the following descriptions were used: Regression, NN, 
DT, and DM Neural Computation. The neural network had 
the highest representation rate at 92.9%. SVM produced the 
best results with 89.3% accuracy. For PD, the accuracy is 
95% and the accuracy is 93%. Karabayir et al. [14] combine 
network research, ensemble learning, deep neural networks, 
ANN, DL, C-SVM back, NN, and DNN. ANN and KNN are 
used together with PSO algorithm to evaluate PD speech. 
After normalizing speech and applying FFT computation, 
speech data are cleaned and separated from unpleasant 
speech in surrounding area. The PSOANN model is particu-
larly effective when easily predicting PD at population 300. 
The accuracy of the PSOANN model is 93.25%. Dasari et al. 
[15] leveraged ensemble learning, autoencoders, and SVMs. 
In addition, many computations, such as SVM, RF, and 
ANN, are frequently used in various applications, including 
the characterization of PD by counting LR and Voting with 
a computational accuracy of 97.22%. Such studies show that 
example representation models outperform other deep learn-
ing strategies. By combining LR and voting the researchers 
asserted that Parkinson’s patients could be accurately identi-
fied usingthe regression model combined with the output of 
the classifier, GBC, MLP, and RNN classification tech-
niques. In the end, the researchers asserted that Parkinson's 
patients could be accurately identified using the regression 
model combined with the output of the classifier, GBC, 
MLP, and RNN classification techniques. These findings 
were confirmed by a min–max normalized fivefold CV tech-
nique. In the early stages, they used ML classifiers such as 
SVM, XGBoost, and MLP to evaluate PD from speech fea-
tures. Afterward, they instruct the auto-encoder to transfer 

useful components to the classifier, in this case, an SVM or 
a single sigmoid neuron. Jankovic [16] was used to differen-
tiate between people with PD and those who did not use the 
test (N = 195). The MLP classification accuracy for informa-
tion collection was 93.22%, while the RBF classification 
accuracy was 86.44%. Harding et al. [17] proved Genetic 
Algorithm-RF, Genetic Algorithm-SVM, SVM, and RF. 
Accuracy (69–94) %, influence ability (60–92) %, and speci-
ficity (70–95) % all pass the GASVM classifier. Hughes 
et al. [18] found the earthquake onset motion is correctly 
predicted by RBFNN, PCA, RBFNN, PCA, PSO, and 
RBFNN based on PSO and PCA using local field potential 
data obtained through incitement terminal acquisition, 
respectively. By combining a similarity classifier with 
entropy-based composition determination, Goetz et al. [19] 
improved information metrics and reduced computation 
time. Informative metrics were created using various voice 
assessments from healthy and PD individuals. Using Parkin-
son's information, the mean alignment accuracy was 85.03%. 
Warrior et al. [20] suggested the use of wavelet analysis to 
extract component vectors from speech tests and contributed 
to three-layer feed-forward multilayer neural networks.

Background

There are a number of options for analyzing PD in the field 
of research on information technology. In this section, 
we talk about how some of the methods that the majority 
of researchers use are taken into account by some of the 
methods that are already in use. This work analyzes PD 
data using existing methods such as LR, KNN, NB, SVM, 
and DT [21]. This study proposes an ensemble approach of 
RF, GBC, Bagging, and AdaBoost algorithms, inspired by 
previous ensemble work. In this study, the stacked model 
(LR + KNN + NB + SVM + DT) is used to improve the pre-
diction accuracy.

Classifiers

The process of identifying, understanding, and organiz-
ing concepts and things into predetermined categories or 
"subgroups" is called classification. Pre-classified training 
datasets are used by various machine learning algorithms to 
classify the subsequent datasets [22]. Classification algo-
rithms in machine learning predict whether subsequent data 
will fall into a predetermined set of categories by using the 
input training data. Using classification to classify Parkin-
son's disease into "with PD" and "non-PD" is one of the most 
common uses. To put it simply, classification is a type of 
"pattern recognition" in which a classification algorithm is 
used on training data to find patterns that are similar to those 
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in subsequent datasets [23]. Five of the most common clas-
sification algorithms are used in this article to distinguish 
between patients with and without Parkinson's disease, as 
described above in the Background section.

Ensemble Method

In machine learning, ensemble methods combine insights 
from multiple learning models to make better and more 
accurate decisions. Noise, variance, and bias are the majority 
of errors in learning models. The accuracy and stability of 
machine learning algorithms are guaranteed by ensembles of 
methods used to reduce these error-causing factors. Predic-
tions about each data point are made using multiple models 
in an ensemble technique of machine learning. Therefore, 
most of the model's predictions are considered final predic-
tions. When using the mean ensemble technique to make the 
final forecast, the data analyst considers the average fore-
cast made by all the models. By the using of the weighted 
average ensemble method to make predictions, giving each 
model a different weight that tells how important it is.

Stacked model

In model stacking, we don't make predictions with just one 
model; rather, we make predictions with multiple models 
and use those predictions as features for a meta-model at a 
higher level. It can be particularly effective with a variety of 
lower-level learners, each of whom brings unique strengths 
to the meta-model [24]. There is no one "correct" way to use 
stacking, and there are many different ways to build model 
stacks. With multiple levels, weights, averaging, and other 
features, it can be made more complicated than the example 
presented here. We will use a series of intermediary models 
to make non-leaky predictions on our train data in our stack. 
These models will then be used as features alongside the 
original training features on a meta-model.

k‑Fold Model

This model is a statistical technique for estimating the skill 
of a ML model [25]. Because it is easy to understand, easy 
to implement, and produces skill estimates that are gener-
ally less biased than other methods, learning is often used in 
applied machines to compare and select models for specific 
predictive modeling problems. The single parameter k in 
the procedure specifies the number of groups into which a 
given data sample will be divided. Therefore, this method 
is often called k-fold cross-validation. When choosing a 
specific value of k, replace k in the model reference, such 
as k = 10 for tenfold cross-validation. When making predic-
tions using data not used in model training, we use small 
samples to estimate the overall performance of the model. It 

is important to note that each observation in the data sample 
is placed into a specific group and remains in that group 
throughout. This shows that the model is trained k times 
with each sample and once with the holdout set.

Experimental Methodology

The authors of this paper conducted experiments aimed at 
creating a targeted diagnostic system that can use machine 
learning algorithms to create objective classifications of 
patient voices. During a machine learning examination, such 
a system would enable physicians to initiate treatment and 
monitor its efficacy, providing technical support for their 
subjective assessment of PD speech impairment. First, this 
paper demonstrates how multiple base classifiers can be used 
to identify voices in PD patients. The ability of base classi-
fiers to solve numerous recognition problems without using 
experts to locate relevant features is the main reason for their 
application [26]. This approach may be significant without 
sufficient domain knowledge. The meta-model, ensemble 
model, and k folded model are then discussed in the study 
for comparison. Over the past few years, there has been an 
incorporate to interest in ensemble models and meta-models. 
To the best of our knowledge, this architecture is a novel 
problem in speech-based Parkinson's disease diagnosis. 
However, there is not enough room for comparison between 
the PD recognition results of the duet approach and tradi-
tional feature engineering.

Further feature engineering requires locating a set of 
parameters that can be used as a basis for generating fea-
ture vectors for modeling the patient's voice, including 
those derived from the physician's expertise. This study 
evaluates nonlinear speech signal analysis while also taking 
into account the perceptual frequency scale. The classifica-
tion scheme utilizing speech signals is based on traditional 
RF and GBC methods, utilizing vectors of selected speech 
descriptors [27]. However, it is still difficult to compare the 
PD identification results of various models. The comparison 
in this article will help readers better understand the advan-
tages and disadvantages of each strategy. The experimental 
method of the proposed model is shown in Fig. 1.

Experimental Setup

Biomedical speech measurements of 195 objects, 147 of 
whom had Parkinson's disease, constituted the PD dataset 
used in this study. The person's name is the first of 24 attrib-
utes in the dataset, and the person's status is the 18th. This 
dataset is taken from UCI machine learning repository [28]. 
Biomedical speech measurements that characterize recorded 
speech are found in the remaining 22 attributes. Each person 
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Fig. 1   Proposed methodology 
for diagnosing the PD Patients

Table 1   Description of 
attributes

Features name Description

Name Subject name and recoding number
MDVP:Fo(Hz) Average vocal fundamental frequency
MDVP:Fhi(Hz) Maximum vocal fundamental frequency
MDVP:Flo (Hz) Minimum vocal fundamental frequency
MDVP:Jitter (%) Measures of variation in fundamental frequency
MDVP:Jitter (Abs) Measures of variation in fundamental frequency
MDVP:RAP Measures of variation in fundamental frequency
MDVP:PPQ Measures of variation in fundamental frequency
Jitter:DDP Measures of variation in fundamental frequency
MDVP:Shimmer Measures of variation in amplitude
MDVP:Shimmer(dB) Measures of variation in amplitude
Shimmer: APQ3 Measures of variation in amplitude
Shimmer: APQ5 Measures of variation in amplitude
MDVP:APQ Measures of variation in amplitude
Shimmer: DDA Measures of variation in amplitude
NHR Measures of ratio of noise to tonal components in the voice
HNR Measures of ratio of noise to tonal components in the voice
RPDE Nonlinear dynamical complexity measures
DFA Signal fractal scaling exponent
spread1 Nonlinear measures of fundamental frequency variation
spread2 Nonlinear measures of fundamental frequency variation
D2 Two nonlinear dynamical complexity measures
PPE Nonlinear measures of fundamental frequency variation
Status Health status of the subject:

1. Parkinson’s disease
0. Healthy
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has 6 recordings made of their voice. Jitter, low light, ratio 
of noise to tonal components, scaling components, and vari-
ous fundamental frequency measurements are included. The 
actual classification will be based on measurements of the 
sound. The dataset does not contain any missing values. 
Table 1 gives a description of each attribute.

Results

Four models have been proposed in this study to catego-
rize PD in the selected dataset. Base Model, Meta-Model, 
Ensemble Model, and K-fold Model are the names given to 
these models. One of these four models produces the best 
outcomes, which can be visualized for disease prediction. 

Table 2 and Fig. 2 displays the results from the first three 
models—the Base model, the Meta-model, and the Ensem-
ble model—as well as their architecture. The obtained 
results are analyzed in light of these models' evaluation 
criteria.

Estimates for the model's training and testing accuracy, 
as well as its validation scores—Precision, Recall, and F1 
score—are provided in Table 2 [29]. The following formulas 
are used to calculate these scores:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Table 2   Accuracies acquired by 
different models

Results from based-mode

Model name Model accuracy Validation score

Training (%) Testing (%) Precision 
(%)

Recall (%) F1 score 
(%)

0 1 0 1 0 1

Logistic regression 84.61 87.17 86 88 60 97 71 92
K neighbors 100 94.87 100 94 80 100 89 97
Naive bayes 69.87 64.10 41 94 90 55 56 70
Support vector machine 89.74 87.17 86 88 60 97 71 92
Decision tree 100 92.30 82 96 90 93 86 95
Results from meta-model
 Stacking CV classifier 

(LR + KNN + NB + SVM + DT)
100 94.87 100 94 80 100 89 97

Results from ensemble model
 Random forest 85.25 84.61 83 85 50 97 62 90
 Gradient boosting 100 97.43 100 97 90 100 95 98
 Bagging 98.71 92.30 89 93 80 97 84 95
 AdaBoost 100 89.74 75 96 90 90 82 93

84.61
100

69.87

89.74
100 100

85.25
100 98.71 100

87.17
94.87

64.1

87.17 92.3 94.87
84.61

97.43 92.3 89.74

Model Accuracy Training (%) Model Accuracy Testing (%)

Fig. 2   Graphical representations of model’s score
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Accurate classification is described by TP (true posi-
tive) and TN (true negative), while inaccurate classification 
is defined by FP (false positive) and FN (false negative).
The number of cases correctly identified as having Parkin-
son's disease (PD) is referred to as TP, while the number of 
healthy cases is referred to as TN. The number of healthy 
patients who were mistakenly identified as having Parkin-
son's disease (PD) is shown in FP, while the number of PD 
cases is shown in FN [30]. The accuracy of a test is deter-
mined by its capacity to accurately differentiate between 
healthy and sick individuals. The ability of a test to cor-
rectly identify the healthy instances and the sensitivity of 
the test to correctly identify the patient instances are two 
different terms.

In the base model, the KNN classifier has the highest test 
accuracy of 94.87%; in the meta-model, the stacking CV 
classifier has the highest accuracy of 94.87%; and in the 
ensemble model, the Gradient Boosting (GBC) classifier has 
the highest accuracy of all three models with 97.43%.

In contrast, inthe fourth model, the k-fold is depicted 
in Fig. 3, where cross-validation employs a tenfold scale. 
Again, KNN has the highest accuracy, 95% higher than the 
base mode1. The mean values of classifiers as a graphical 
representation are depicted in Fig. 3.

Recall =
TP

TP + FN

F =
2 × precision × recall

precision + recall

In machine learning, features are distinct, independent 
variables that serve as system inputs. In fact, these features 
are utilized by models when making predictions. In ML, 
new features can also be created from existing ones by 
employing the process of feature engineering. On the PD 
dataset, RF and GBC classifiers are used to determine the 
importance of features. There are 22 features in the fea-
ture set, 16 of which are (MDVP:MDVP, Fo(Hz):MDVP, 
Fhi(Hz):MDVP, Flo(Hz):MDVP, Jitter (Abs):MDVP, 
RAP:PPQ, Thrill:MDVP, DDP:MDVP, shimmering:(dB) 
Shimmer, Shimmer:APQ3, Glare:MDVP, APQ5:Shimmer: 
APQDDA, spread1, spread2, and PPE) have a significant 
impact when the RF classifier finds a value greater than 
1.Similarly, 14 important features of the GBC classifier 
are (MDVP:MDVP, Fo(Hz):MDVP, Fhi(Hz):MDVP, 
Jitter (Abs):RAP, Thrill:MDVP, DDP:(dB) Shimmer, 
Shimmer:MDVP, APQ5:spread1, spread2, D2, and PPE) 
depicted in Fig. 4.

The performance of ML classifiers whose output can 
be two or more classes is measured using the Confusion 
Matrix. There are four distinct combinations of predicted 
and actual values in this table. True positive (TP), true 
negative (TN), false positive (FP), and false negative 
(FN) are the four divisions of the combinations table in 
the confusion matrix. The accuracy or falsehood of the 
predictions made by the classifiers regarding PD patients 
is measured in Table 3.

A classification model's true positive rate (TPR) and 
false positive rate (FPR) performance are depicted on 
a graph called a receiver operating characteristic curve 
(ROC). Here, recall is referred to as the TPR [31]. Figure 5 

Fig. 3   Maximum accuracy of 
classifier in k-fold model
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shows that GBC has the highest accuracy (AUC) of 95%, 
followed by DT with 92%. Figure 5 demonstrates that 
GBC serves as an important ensemble classifier in the 
diagnosis of Parkinson's disease patients.

Discussion

Python software was used to apply classification, stacking, 
ensemble, and k-fold model (considering mean value of accu-
racy) techniques to the dataset in this investigation. Each clas-
sifier model was trained with eighty percent of the dataset and 
tested with twenty percent. Four distinct models for antici-
pating Parkinson's infection have been created for this study. 
Using these four models, we can make predictions about PD 
patients. The confusion matrix as well as the ROC curve has 
been created for these models' validation. The experiment's sci-
entific proof can be found in the validation result. The PD data-
set was categorized by the first and most fundamental model, 
which used LR, KNN, NB, SVM, and DT classifiers as its base 
model. We have evaluated each classifier's Validation score 
(precision, recall, and F1 score) and model accuracy (Training 
and Testing) in Table 2. K-nearest neighbors outperformed LR, 
NB, SVM, and DT in terms of training and testing accuracy, 
scoring 100% in training and 94.87% in testing. Therefore, 
considering the PD conclusion in the field of ML for a specific 
dataset, we might consider KNN to be a significant classifier. 
Stacking is an ensemble machine learning algorithm in model 
2 that uses meta-learning to learn how to combine predictions 
from two or more basic machine learning algorithms. The 
META model, which combines the predictions of two or more 
base models, is included in stacking model architecture. The 
accuracy of the model and the validation score of the stack-
ing model (LR + KNN + NB + SVM + DT) are both shown in 
Table 2. In term of accuracy, for instance, training and testing 
which score 100% and 94.87% independently. Precision, recall, 

and the F1 score all reached their usual maximum scores in 
the validation score. The RF, GBC, Bagging, and Adaboost are 
taken as ensemble model is the third model. The goal of using 
this ensemble strategy was primarily to lower the error rate. An 
ensemble can make better predictions and deliver better results 
than a single contributing model. In terms of testing accuracy, 
the GBC performed better than any other classifier (97.43%), 
like RF, Bagging, and Adaboost. As can be seen in Table 2, 
its accuracy has increased in additional metrics like precision, 
recall, and the F1 score. In reality, ensemble model is outstand-
ing model in all models in general. Finally, in the fourth model, 
the accuracy of the classifiers at k = 10 scale is estimated using 
k-fold cross-validation. The KNN classifier is the most accu-
rate of all classifiers, with 95% accuracy. In the end, each of the 
above-mentioned four models generates testing accuracy and a 
variety of training. With a prediction accuracy of 97.43%, the 
ensemble model (Gradient Boosting) outperforms all of those 
trainings. After that, the K-Neighbors K-fold cross-validation 
model has the highest prediction accuracy—95%. In addition, 
the accuracy of the base model—K-Neighbors—and the meta-
model—LR + KNN + NB + SVM + DT—is tie at the end.

Last but not least, when it comes to validation metrics 
like the confusion matrix and the ROC curve, GBC is the 
only classifier as model 3 (Ensemble model) that validates 
our experimental findings. Overall, we can conclude that 
the base model (Model 1) and the k-fold model (Model 
4) both use KNN as a highly effective classifier. The pro-
posed ensemble method is contrasted with other existing 
approaches for performance evaluation, demonstrating its 
superior implementation. Based on the data presented in 
Table 4, it is abundantly clear from the results of this experi-
ment that the proposed approach, particularly GBC ensem-
ble model, outperforms all of the other methods in terms of 
performance metrics.
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Table 3   Validation score of 
different classifiers through 
confusion matrix 

Logistic Regression 
 

KNeighbour 

Naïve Bayes 
 

Support Vector Machine 

 
Decision Tree 

 
StackingCVClassifier 

 
Random Forest 

 
GradientBoosting 

 
Bagging 

 
AdaBoost 
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Conclusion

Today, medical data analysis employs a variety of methods 
for disease diagnosis. The majority of current strategies 
combine different methods. One approach suggested in 
this study is to predict and classify Parkinson's disease 
based on the publicly available dataset. Only voice-based 
parameters were used for disease prediction. Although 
it has been demonstrated that voice-based Parkinson's 
disease classification is effective, the capability to eval-
uate speech samples, which is necessary for effectively 
improving Parkinson's disease classification, is lacking in 
the methods currently in use. It is essential to propose a 

simple, cost-effective method for quickly and accurately 
diagnosing Parkinson's disease due to its prevalence and 
difficulty in medical diagnosis. Comparing the frequency 
of voice in controlled environments among people with 
Parkinson's disease is a reliable method for diagnosing 
the condition. In this study, four model frameworks were 
utilized. The ensemble model outperforms the most recent 
cutting-edge work by a significant margin. According to 
the other metrics, the model was able to identify the dis-
eases of patients with 97.43% accuracy. In future, our work 
on using imaging biomarkers to train a model using deep 
learning techniques will improve this method, which could 
be used to find additional diseases.

Fig. 5   ROC curves of different classifiers
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