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Abstract

From 2019 to 2060, the amount of plastic accumulated in the aquatic environment is expected to increase from 140 mil-
lion tons to 493 million tons. The continuous release of microplastics (MPs) into the environment has negatively impacted
aquatic ecosystems. MPs tend to develop biofilms on their surface in natural waters, and this new micro-ecosystem created
by man-made plastic pollution is called plastisphere. The biofilm modifies the migration, transformation and fate, biologi-
cal effects, and degradation processes of MPs. Although there have been numerous studies on MP biofilm, most focus on
microbial diversity and structure. In addition, there are relatively few comprehensive descriptions of biofilm formation and
research methods. In this paper, we review the recent works on microbes in the plastisphere, describe microbial interac-
tions in the plastisphere, and examine the research methods, their benefits, and drawbacks concerning MP biofilms, and the
four primary environmental factors (nutrient conditions, water temperature, the flow state of water, salinity) that influence
microbial colonization. Next, we illustrate the whole process of how microorganisms colonize the MP surface. Finally, we
study the microbial community of plastisphere in freshwater, marine, and wetland environments, and provide an outlook for
future biofilm research on MPs.
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Introduction

Plastic use is expected to increase from 460 million tons
in 2019 to 1231 million tons in 2060. Plastic waste is
expected to nearly tripling, from 353 million tons in 2019
to 1014 million tons in 2060 (OECD 2022). Less than 10%
of plastic is recycled, 12% is incinerated in solid waste
treatment, and most of the remainder leaks directly into the
environment (Lebreton et al. 2017). The amount of plastic
introducing into the environment is expected to double to
44 million tons per year, thus exacerbating environmental
and health impacts (Chelsea et al. 2013). The accumula-
tion in rivers and oceans is expected to increase more than
threefold (Law andThompson 2014), from 140 million
tons in 2019 to 493 million tons in 2060. In 2004, Richard
Thompson et al. (2004b) first proposed defining micro-
plastics (MPs) as plastic fragments with a particle size of
less than 5 mm. Since then, research on MPs has garnered
increasing interest, particularly in aquatic environments.
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MPs have generally been detected in lakes, rivers, and
oceans. The middle and lower reaches of the Yangtze River in
China (Su et al. 2016), the Hudson River in the United States
of America (Miller et al. 2017), the Saigon River in Vietnam
(Lahens et al. 2018), and the Auckland City River in New
Zealand (Dikareva and Simon 2019) contained 500-3100
particles/m® (p/m?), 625-2450 p/m®, 1.72x10°-5.19 x 10
p/m?, and 625-2450 p/m?, respectively. The suspended MPs
can enter inland lakes and reservoirs, resulting in an enrich-
ment of MPs. The levels of MP abundance in Taihu Lake,
China (Su et al. 2016), Kusugul Lake, Mongolia (Free et al.
2014), and Winnipeg Lake, Canada (Anderson et al. 2017),
were 3.4 x 10°-25.8 x 10° p/m>, 20.26 p/m?, and 53-748 p/
m?, respectively. Currently, ocean is the largest source and
sink for pollutant circulation. There are approximately 5.25
trillion plastic fragments in the surface seawater of the world,
with at least 3540 tons being MPs (Eriksen et al. 2014). The
relative abundances of MPs in the Pacific Ocean (Desforges
et al. 2014), the Atlantic Ocean (Lusher et al. 2014), the Indian
Ocean (Koongolla et al. 2018), and the Northern Ice Oceans
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(Morgana et al. 2018) were 8-9200 p/m°, 1.5 p/m?, 0-29 p/
m?, and (2.4 +0.8) p/m>, respectively.

The aquatic ecosystem is one of the most microbially
diverse ecosystems on the planet. Microorganisms play
crucial roles in plant growth and nutrient cycling, carbon
cycling and biomass maintenance, as well as biodiversity
conservation (Calbet and Landry 2004; Moore et al. 2013).
In the aquatic environment, most microorganisms exist as
complex communities attached to surfaces, named as bio-
films (Qian et al. 2022). There are different types of microbes
in biofilm such as bacteria, fungi, algae, archaea (Battin et al.
2016). The colonization of microorganisms happens not just
on natural substrates but also on artificial ones like MPs
(Miao et al. 2019), creating ‘plastisphere’ communities com-
prising heterotrophic and autotrophic microbes (Zettler et al.
2013). Researchers are becoming increasingly interested in
the formation process. According to Fig. 1A, research topics
in biofilm formation included bacteria (Qinghui Sun et al.
2022c), resistance genes (Lu et al. 2022), and pathogens (Li
et al. 2022). The attention shifted from MPs and bacteria to
plastisphere and biodegradation as time passed (Fig. 1B).
The shift in research hotspots is primarily driven by the
recognition of the importance of utilizing microorganisms
for plastic degradation. The MP biofilms have been studied
for more than 10 years. There are various methods to study
the formation of biofilms. The main experimental methods
include direct extraction, in situ incubation, and laboratory
incubation, while the main testing tools are confocal laser
scanning microscope, Fourier transform infrared spectrom-
eter, high-throughput sequencing techniques, among others
as depicted in Fig. 2. However, biofilm research conducted
in the past lacks a unified standard. Therefore, it is necessary
to summarize the aquatic plastisphere based on published
work to provide direction for future studies.

In this review, we first summarize the commonly used
methods for studying MP biofilm in aquatic ecosystems and
highlight the advantages and disadvantages of each method.
Then, we discuss the five stages of microbial colonization
on the surface of MPs, the interactions between different
microorganisms during the colonization process, and the fac-
tors that influence the biofilm on the surface of MPs. The
major components of the surface microbial communities of
MPs in freshwater, marine, and wetland environments are
subsequently described. Lastly, perspectives on MP biofilm
research are provided.

Research Methods for Microbial
Colonization of MP Surface

There are numerous methods for studying microbial coloni-
zation of the MP surface in aquatic environments. Currently,
three primary methods are recognized and adopted by most

scholars: (1) direct extraction, (2) in situ incubation, (3)
laboratory incubation. This chapter primarily reviewed the
advantages and disadvantages of three experimental designs
(Fig. 2).

Direct Extraction from the Environment

In the early studies on MPs in aquatic environments, empha-
sis was placed on the relative abundance, type, color, shape,
and spatial distribution characteristics of MPs. Few studies
focused on biofilms attached to MP surfaces. In addition
to the study of MPs itself, subsequent experimental stud-
ies began to investigate the biofilm on the surface of MPs.
Direct extraction, a practical and straightforward method for
studying biofilms, involves the utilization of trawl, in situ
pump, and manual direct collection techniques to collect
microplastics (MPs) from water, extract biofilms, and ana-
lyze the microbial community.

Most studies on the bacterial and fungal community com-
position of biofilms employed direct extraction. Di Pippo
et al. (2020) evaluated MPs and surface biofilms in seven
Italian lentic lakes and found that the polymer types were
mainly polyethylene (PE), Expanded polystyrene (Expanded
PS), polypropylene (PP), and a small amount of polyamide.
The core groups of biofilms on their surfaces mainly belong
to Sphingomonadaceae, Rhodobacteraceae, Burkholde-
riaceae, and Ilumatobacteraceae. PP and PE were detected in
two urban rivers in Jiaxing, Zhejiang, China. Proteobacteria,
Cyanobacteria, and Bacteroidetes were the main microor-
ganisms on the surface of MPs (Wang et al. 2020a). Li et al.
(2021) found that Ascomycota, Chytridiomycota, Basidio-
mycota, Rozellomycota, Mortierellomycota, and Cercozoa
dominated the fungal communities on MPs in three urban
rivers and one bay in Qingdao and Yantai.

Since MPs collected by the direct extraction method
are mainly found in surface water, the types of polymers
are PP (0.89-0.91 g/cm?®), PE (0.926-0.940 g/cm?), and
high-density polyethylene (HDPE, 0.941-0.960 g/cm?),
all of which are slightly less dense than water (Zhang et al.
2022b). Martinez-Campos et al. (2022) collected the MPs
for biofilm analysis at a depth of 2 m below the sea’s sur-
face. The microbial community composition varied among
different types of MPs (Peng et al. 2022). Most experiments
have utilized direct extraction to investigate biofilms only in
the surface layer of the water column, resulting in a limited
understanding of biofilms at varying depths in aquatic envi-
ronments (e.g., middle and bottom layers).

In conclusion, compared to the other two methods, the
direct extraction method potentially offers a more accurate
reflection of the actual situation of microorganism coloni-
zation on MPs in aquatic ecosystems. Furthermore, it can
streamline biofilm cultivation and reduce experiment dura-
tion. While biofilm formation typically spans a considerable
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Fig.1 Visualization of biblio-
metrics based on MP biofilms.
A High-frequency keywords co-
occurrence map by VOS viewer
of plastic and biofilm in last
decade, B temporal changes in
research hotspots for keywords,
and C a timeline of research
development in the MP biofilms
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Fig.2 Roadmap for the research of plastisphere. Experimental
methods and the analysis method of plastisphere were summarized.
FTIR Fourier transform infrared reflection, SEM scanning electron
microscope, BET Brunauer—-Emmett-Teller specific surface area

timeframe, the direct extraction method allows for the sam-
pling and investigation of MP surface biofilms within a sin-
gle day. This method lacks observation on the time scale and
therefore, cannot provide a comprehensive understanding
of the details of the biofilm formation process. In addition,
most of the MP biofilm investigations were conducted at
one specific depth in a particular aquatic ecosystem, and no
differential analysis of MP biofilms at different depths in a
particular aquatic ecosystem was done. Subsequent studies
may compare MP biofilms from different vertical depths of
the water column.

Microbiological Cultivation of MP Biofilm

Apart from collecting MPs directly from aquatic environ-
ments and extracting biofilms, laboratory incubation and
in situ incubation are two of the most common methods
to investigate MP surface biofilms. They both have a com-
mon feature that requires MPs to be immobilized in aquatic

test method, CLSM confocal laser scanning microscope, FCM flow
cytometry, 16/18S rRNA, ITS, and metagenome microbial sequencing
method

environments for biofilm culture. The difference between
laboratory culture and in situ incubation is that laboratory
culture can control the experimental conditions, while in situ
incubation relies mainly on natural environmental effects
with many uncertainties. The advantages and disadvantages
of the two experimental procedures will be examined.

Laboratory Incubation

Natural water samples from oceans, lakes, or rivers are col-
lected and transported back to the laboratory, and the water
samples and pre-treated sterile MPs are added to experi-
mental vessels to construct an aquatic microcosm system
for biofilm cultivation. This process is known as laboratory
incubation. Compared to direct extraction methods and
in situ incubation, laboratory incubation can provide a better
understanding of the factors that shape MP biofilms in water.

The factors affecting biofilm have been investigated by
a number of scholars over recent years. Liu et al. (2022)

@ Springer



15 Page 6 of 32

Reviews of Environmental Contamination and Toxicology

(2024) 262:15

discovered that microbial adhesion on the surface of aged
MPs was found to be more difficult than that of pure MPs.
Through microcosm experiments, the researcher demon-
strated that along the river gradient, biofilms are primar-
ily influenced by geographical location and salinity (Qiang
et al. 2021). Song et al. (2022) added 500 ml of lake water,
tap water, and two types of plastics, PE and polyethylene
terephthalate (PET), to a 1 1 carbon-free glass bottle for
biofilm incubation, and found that the biofilm structure of
the lake water samples was more stable than that of the tap
water; Usually, for the laboratory incubations, water samples
(ranging from a few tens of milliliters to a few liters) and
pretreated MPs (PP, PET, PE, PS, etc.) are directly added
to a container (beakers, conical flasks, glass bottles, self-
designed containers, etc.), to incubate the biofilm from 48
h (Parrish and Fahrenfeld 2019) to 27 months (Vannini
et al. 2021). Although laboratory incubation can be used to
investigate the factors affecting the biofilm, certain limita-
tions have been spotted. First, it is essential to regularly add
nutrients to water samples. Miao et al. (2019) used Woods
Hole culture solution periodically to promote biofilm forma-
tion. Second, the lake and ocean are moving bodies of water.
However, many experiments are conducted in a completely
static state. This approach defeats the original purpose of
simulating the aquatic environment. Instead, it results in
lower dissolved oxygen levels and anaerobic conditions at
the bottom of the vessel. These conditions hardly reflect the
actual environment found in natural aquatic systems. We
need to make water flow in the laboratory incubation, Wang
et al. (2021b) used a self-made experimental device to main-
tain the water flow at 3 m/s. They regularly replenished the
water source to compensate for evaporation loss and recreate
the real environmental conditions.

Briefly, the advantage of laboratory culture over in situ
culture and direct extraction methods is that variables can
be controlled, and experiment reproducibility is higher than
that of in situ culture. The drawback is that many current
laboratory cultivations require improved environmental con-
ditions, such as maintaining water flow and supplementing
nutrients when conducting laboratory culture to investigate
the factors that influence biofilm, as much of the natural
water environment must be simulated as possible to obtain
more convincing experimental results.

In Situ Environmental Incubation

The laboratory-prepared MPs were fixed in the water body
with containers (e.g., nylon bags, stainless steel mesh) so
that microorganisms in the aquatic environment gradually
attached to the surface of the MPs and formed biofilms—in
situ incubation. In situ cultivation experiment is a popular
plastisphere incubation method.

@ Springer

The duration of in situ incubation ranges from 48 h to 719
days, and it is now widely accepted. Parrish and Fahrenfeld
(2019) conducted a biofilm incubation for 48 h to assess the
effects of water quality and MP types on the biofilm com-
munity. To investigate biofilm composition in a deep-sea
environment, Agostini et al. (2021) selected four types of
MPs for 719 days of biofilm incubation: HDPE, PP, HDPE
with the oxo-biodegradable additive (HDPE-OXO). They
discovered that bacteria could degrade hydrocarbons on the
surface of MPs. In addition to the total incubation period, it
is essential to have appropriate intervals for biofilm detection
and observation throughout the cultivation process. Bacte-
roidetes are the pioneers of microbial attachment to the plas-
tic surface in the early stages of MP microbial colonization
(from minutes to hours), which are replaced over time by
other microorganisms such as Proteobacteria (Latva et al.
2022). Biofilm culture experiments still need to be set with
appropriate detection time according to the average time of
each stage of biofilm formation to ensure the accuracy of the
experiment. In situ incubation requires containers to hold the
MPs in the natural water column, and the choice of contain-
ers varies from stainless steel mesh cages, nylon mesh boxes
(Wen et al. 2020), incubation tubes (Steinman et al. 2020),
etc. Nylon as a plastic can be attached by microorganisms
in water, and it is commonly used as the container to fix
MPs in biofilm culture experiments, although it may inhibit
microbial growth on the MP surface. Therefore, when con-
ducting an in situ incubation experiment, it is more rigorous
to choose container made from a non-plastic material. The
recent in situ incubation experiments covered diverse aquatic
environments, including rivers, lakes, and oceans at different
depths (Kelly et al. 2022; Miao et al. 2021).

To sum up, in situ incubation is the most prevalent experi-
mental method for MP biofilm research. In comparison to
laboratory incubation, it is possible to reproduce the entire
MP biofilm formation process to the greatest extent, and the
data are more convincing when the biofilm is formed under
the influence of the natural water environment. In recent
years, there has been an increase in the types of MPs that
leak into the aquatic environment, including not only PE,
PP, and PS, which are difficult to degrade, but also many
biodegradable plastics, such as PLA, poly (butylene suc-
cinate) (PBS), poly (butylene adipate-co-terephthalate)
(PBAT), polycaprolactone (PCL), and polyhydroxyal-
kanoates (PHA). In contrast to the direct extraction method,
in situ incubation provides the selection of different types
of MPs and a thorough understanding of the MP biofilms.
Although in situ experiments are more selective in terms
of location and depth, they are susceptible to hydrological
conditions and weather disturbances (e.g., river floods and
typhoon weather), potentially leading to the loss of experi-
mental samples and impacting results. For in situ incuba-
tion, the experimental vulnerability must be minimized by
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focusing on the selection of MPs fixation containers and the
time of regular biofilm extraction and testing, as mentioned
previously.

Microbial Colonization of MP Surface

When MPs enter the aqueous environment, they rapidly form
a coating of multiple substances mixed on the surface of the
plastic. Then, aquatic microorganisms quickly gather on the
plastic surface to form biofilms, and the microcosm com-
posed of MPs and biofilms is called the plastisphere (Zettler
et al. 2013). Microorganisms in biofilms have an advantage
over planktonic microorganisms regarding survival strate-
gies and competition. Within biofilms, microorganisms form
stable alliances that enhance gene exchange, nutrient accu-
mulation, and defense against toxins and harsh conditions,
illustrating the complex interactions that support microbial
resilience. However, there is also a strong competition for
nutrients among microorganisms in biofilms, whereas a
single microbe is free to uptake nutrients from the water.
Microorganisms attach to the surface of MPs and prolifer-
ate, forming biofilms that completely alter the water—-MPs
interface properties. Furthermore, understanding the bio-
film formation process on the surface of MPs, its micro-
bial composition, and intramembrane microbial interaction
mechanisms is essential for predicting MPs’ environmental
behavior and fate in diverse aquatic environments.

Formation of MP Biofilms

MP is a new habitable substrate for microbial colonization.
Within seconds after MPs entering the water, they quickly
develop a conditioning layer/eco-corona (Junaid and Wang
2022; Rummel et al. 2021) at the plastic/water interface by
attracting numerous organic and inorganic matters, and the
organic matters reduce the hydrophobicity of the MPs and
promote microbial colonization (Wright et al. 2020). The
strong hydrophobicity, allows the MP particles to readily
adsorb hydrophobic organic substances such as humic acid,
protein, and bisphenol compounds in the aquatic environ-
ment (Abdurahman et al. 2020; Galloway et al. 2017; Wu
et al. 2019). In the aquatic environment, MPs are always
negatively charged (Li et al. 2018) and easily combined with
positively charged cations such as Na* and Ca** (Yu et al.
2019). Biofilms slowly begin to develop, after a conditioning
layer/eco-corona is formed on the surface of the MPs. Ini-
tial microbial adhesion, secretion of extracellular polymeric
substances (EPS), microbial community formation, biofilm
maturation, and biofilm detachment are the five phases of
biofilm formation (Fig. 3).

Initial microbial adhesion is the first step (Fig. 3A).
Algae, including diatoms, golden algae and green algae,

have been identified as the pioneer microorganisms that
colonized plastic debris (Hitchcock 2022; Nava and Leoni
2021). Recent research has demonstrated that there is an
electrostatic interaction between PS and Cyanobacteria, in
which charge neutralization reduces the photosynthetic effi-
ciency of Cyanobacteria (de Oliveira et al. 2020). Although
the organic matter in the surface conditioning layer of MPs
serves as a carbon source, it can only sustain microorgan-
isms for a few days; for long-term survival, microorganisms
need photosensitizing substances produced by phototrophs
(Du et al. 2022). Most studies have shown that phototrophs
are the sole source of nutrients and energy for microbial
communities on the surface of MPs. In contrast, if MPs are
incubated in the dark, the community must rely on avail-
able organic matter from the surrounding waters. The initial
colonizers of MPs, such as Proteobacteria and Bacteroidetes,
are also bacteria. Bacteroidetes have been shown to be the
first bacteria to colonize the surface of MPs. This result con-
tradicts previous research, which considered Proteobacteria
as the first colonizing organisms (Wright et al. 2021). The
main reasons may be the few data on the earliest time points
(such as 15 min/4 h) and the inappropriate microbial extrac-
tion and detection methods. Schlundt et al. (2020) found that
during the pre-microbial adhesion period, the bacterial com-
munity was initially dominated by Bacteroidetes, followed
by the emergence of Proteobacteria, which became the core
group. In addition, obligate hydrocarbon-degrading bacteria
are present during the early stage of microbial attachment,
but their relative abundance decreased over time as the bio-
film matured (Erni-Cassola et al. 2020).

EPS is closely associated with the ability of microorgan-
isms to successfully colonize the surface of MPs and the
formation of stable biofilms (Fig. 3B). Typically, micro-
organisms in biofilms produce EPS. Most biofilms consist
of less than 10% microbial mass and more than 90% EPS
(Flemming and Wingender 2010). EPS is secreted by bac-
teria, fungi, and phytoplankton (Galloway et al. 2017), and
it consists mainly of polysaccharides and proteins (Naveed
et al. 2019). In the initial adhesion phase, microorganisms
secrete EPS to immobilize themselves, facilitating attach-
ment to the MP surface. Tu et al. (2021) detected blanket-
like EPS on the top of the bacteria incubated for 10 days on
a PE surface, speculating that bacteria used PE as carbon
source and energy to promote biofilm formation. A study
of the North Atlantic plastisphere indicated that by the third
week, EPS began to appear and immobilize microorganisms
on the plastic surface (Schlundt et al. 2020). EPS anchors
cells within the biofilm, maintaining close contact essential
for cell-to-cell communication. Paula et al. (2020) found that
EPS maintained biofilm stability by wrapping cells together
to form structured clusters or micro-colonies. Furthermore,
EPS also prevents the shedding of clusters and micro-col-
onies that grow under water flow. During the early stage
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Fig.3 The whole process of MP surface biofilm formation in aquatic
environment. MP biofilms are divided into five phases: A The ini-
tial microbial colonization under light and dark conditions. B The
microbes secrete different types of EPS. C The main microbes con-

of biofilm formation, EPS secreted by algae is essential for
subsequent attachment of bacteria, fungi, and other micro-
organisms in the water. Ye et al. (2021) showed that MPs
restrained the growth of Microcystis aeruginosa, but the
content of EPS gradually increased. Algae EPS flocs mainly
consisted of loosely bound EPS (LB-EPS) and tightly bound
EPS (TB-EPS), where the organic fractions in LB-EPS and
TB-EPS had different variation responses, with the poly-
saccharide-to-protein ratio in TB-EPS increasing otherwise
the polysaccharide-to-protein ratio in LB-EPS decreasing.
A recent study demonstrated that Ca>* bridged with EPS to
promote bacterial growth and thickened biofilms on the MP
surface (Xiong et al. 2023). Interestingly, bacteria allocated
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a portion of their early colonization resources to the produc-
tion of EPS, resulting in a lower bacterial colonization rate
(Oliveira et al. 2021). Moreover, EPS-producing bacteria
are superior to non-EPS-producing bacteria, because their
offspring are embedded in the top layer of the nutrient and
oxygen-rich biofilm (Schlundt et al. 2020).

The number of cells and their species will increase
after the initial colonization (Fig. 3C). The microbes on
the surface of MPs are bacteria, fungi, algae, and some
Metazoa. These fungi include Ascomycota, Basidiomy-
cota, Chytridiomycota, and Rozellomycota. There are
Cyanophyta, Chlorophyta, and Bacillariophyta in the algae.
Rhizaria, Opisthokonta, Stramenopiles are several common
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metazoans. The bacterial community primarily comprises
Proteobacteria, Bacteroidetes, Cyanobacteria, and Actino-
bacteria (Li et al. 2021). On the third day of the in situ cul-
ture experiment at Baltimore’s Inner Harbor, Proteobacteria,
Bacteroidetes, Planctomycetes, and Firmicutes were present
on the polylactic acid (PLA) surface. At the same time, the
relative abundance of Firmicutes was higher on the PP sur-
face than on the PLA surface (Sosa and Chen 2022). The
microorganisms on the biofilm were mainly Proteobacteria,
Bacteroides, Actinobacteria, Firmicutes, and Cyanobacteria
in 2 weeks of incubation (Feng et al. 2020). Coons et al.
(2021) demonstrated that regardless of MP type or in situ
culture location, Proteobacteria and Bacteroidetes are always
the most central members of the bacterial community. Burk-
holderiales, Sphingomonadales, Rhizobiales, and plant chlo-
roplasts dominate the surface of MPs incubated in situ in
German rivers (Weig et al. 2021). Ascomycota, Basidiomy-
cota, and Chytridiomycota were the most dominant fungal
organisms on the surface of MPs in the aquatic environment
(Kettner et al. 2017). Lacerda et al. (2020) discovered no
significant geographic differences in plastic epizootic fungi
at the community level, in contrast to bacterial community
patterns. After the microbial community had substantially
formed, algae (diatoms, Cyanobacteria) and some zooplank-
ton began to decline, and Schlundt et al. (2020) speculated
the cause of diatom mortality was caused by bacteria. With
the formation of microbial communities, the density of the
biofilm grew as the incubation time increased (Tu et al.
2021). Tu et al. (2020) revealed that during growth, surface
biofilms of MPs predominantly exhibited planar bulking and
3D thickening. Until biofilm maturation, community stabil-
ity increased over time (Wang et al. 2021b). Interestingly,
there was a correlation between the plastic particle size and
the stability of the surface biofilm. The larger the MPs, the
higher the complexity of the microbial community, and the
biofilm can better resist environmental perturbations and
maintain the stability of the microbial community (Schlundt
et al. 2020).

After irreversible adhesion and the formation of a micro-
bial community of bacteria, algae, fungi, and other microor-
ganisms, the biofilms gradually mature (Fig. 3D). A circula-
tory system is formed within the mature biofilm, which has
a highly organized structure and various channels between
communities of bacteria, algae, and fungi that can transport
nutrients, enzymes, and metabolites (Flemming et al. 2016).
At the maturity stage of biofilms, the relative abundance of
phototrophs such as diatoms and Cyanobacteria, is low in
the maturity stage of biofilms. Miao et al. (2023) found that
the complexity of microbial community diversity decreased
during the maturation stage due to increased interspecies
competition and ecological niche differentiation of micro-
organisms. Moreover, the biofilms on the surface of biode-
gradable plastics were more complex (Miao et al. 2023). The

maturation of biofilms on natural or artificial substrates in
the ocean will fluctuate with the seasons (Miao et al. 2023;
Qian et al. 2022).

Due to the paucity of literature on the biofilm separation
process of the surface of MPs, we hypothesize that MPs in
aquatic ecosystems, like biofilms on other natural substrates.
Microbes will detach from biofilms actively or passively
(Kaplan 2010). Passive detachment is generally due to the
erosion of the biofilm by external disturbances, resulting
in the detachment of microorganisms, while active detach-
ment involves the gradual transition of cells from the biofilm
form to the free. Nutrient limitation, oxygen depletion, and
temperature variation can drive microbes out of their current
environment to find a new one (Flemming and Wingender
2010; Rumbaugh and Sauer 2020) (Fig. 3E).

Microbial Interactions in Biofilm

Few studies have focused on the interactions between micro-
organisms within MP biofilms at present. The purpose of
this section was to provide a theoretical foundation for future
research on MP biofilms by reviewing the progress of micro-
bial interactions in stream/marine biofilms and the scarce
literature on microbial interactions within the plastisphere
(Battin et al. 2016; Qian et al. 2022; Wyatt et al. 2019). In
biofilms, microbial interactions influence the formation of
the spatial structure within the biofilm. According to the
classification of the interaction relationship, the primary
interactions within biofilms are cooperation, competition,
and signaling (quorum sensing) (Kaur et al. 2022; Qian et al.
2022); in terms of classification between different microbes,
algae—bacteria, and bacteria—bacteria are the two types of
systems that have been investigated within MP biofilms to
date.

The interactions between algae and bacteria are parasitic,
competitive, and synergistic (Li et al. 2023c). Algal photo-
synthesis provided oxygen to aerobic bacteria and promoted
bacteria to reduce organic pollutants, while bacterial respira-
tion released CO, and enhanced algal photosynthesis (Kube
et al. 2020). Algae provide nutrients by liberating organic
compounds or breaking down algal cells, promoting bacte-
rial growth. During the initial stages of microbial coloniza-
tion (Wright et al. 2020), algae serve as a secondary habitat
for bacteria, protecting them from adverse environmental
conditions. Bacteria can produce iron carriers that bind iron
and vitamin B, thus promoting algal growth. Schlundt et al.
(2020) demonstrated that numerous bacterial communi-
ties congregated around diatoms on the surface of biofilms
incubated for 2 weeks, indicating that algae are an impor-
tant habitat for bacteria in the pre-biofilm formation phase.
The bacteria directly in contact with diatoms were primar-
ily Bacteroidetes, Rhodobacteraceae, and y-Proteobacteria.
As for the bacteria—bacteria interactions, bacteria in a
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community compete with each other for nutrients, space,
and oxygen. Schlundt et al. (2020) demonstrated different
associations between bacteria within MP biofilms, such as
a-Proteobacteria and Bacteroidetes, Rhodobacteraceae, and
Cyanobacteria.

Habitat heterogeneity, habitat fragmentation, environ-
mental adversity, and resource scarcity reduce species inter-
actions, reduce network complexity, strengthen competitive
links, and promote ecological niche differentiation (Mo et al.
2021). Compared to aquatic environments, the microbial net-
work complexity of the plastisphere is lower and competi-
tion links are more frequent in freshwater ecosystems, while
the opposite is true for marine ecosystems (Li et al. 2021).
Due to the plastisphere’s filtration, the ecological niches of
plastisphere surfaces overlapped in freshwater ecosystems,
intensifying competition among species, while in marine
ecosystems, the biomass and activity of microbes on plas-
tisphere surfaces were lower and mainly affected by high
salinity and low nutrient concentration (Li et al. 2021). Fur-
ther research can combine CLASI-FISH and metagenomics
to investigate the mechanism of microbial interaction, which
may provide a comprehensive understanding of microbial
activities within the plastisphere micro-ecosystem.

Effect of Environmental Factors on Microbial
Colonization

Biofilm formation on the surface of MPs is known to be a
complex multifactor process. It is primarily modified by the
MP properties and hydro-biochemical characteristics. The
polymer type (Feng et al. 2020; Miao et al. 2019), size (Hou
et al. 2021), and degradation (Roager and Sonnenschein
2019), all influenced the initial attachment of the pioneer
microbes. And the hydro-biochemical characteristics, such
as water temperature, pH, nutrients, and planktonic micro-
organisms determined the biofilm growth trends (Li et al.
2020; Oberbeckmann et al. 2018; Wang et al. 2020b). Since
many review articles (Wang et al. 2021a; Wright et al. 2021)
have summarized the factors that affect biofilm formation
(substrate properties, exposure time, geographical location),
the most dominant impact factors: nutrient conditions, salin-
ity, temperature, and water flow rate are analyzed and dis-
cussed in this chapter.

Nutrient status is one of the critical factors affecting
biofilm development, and the growth rate of the biofilm
is typically positively correlated with the concentration of
nutrients. The concentration of total nitrogen (TN) and total
phosphorus (TP) are conducive to biofilm formation and
promote the formation of microbial-specific communities
(Frere et al. 2018). An investigation revealed that nutrients
influenced the average growth rate of biofilm communities
in the Haihe River watershed, and TP and TN concentra-
tions were positively correlated with the average biofilm

@ Springer

growth rate (Li et al. 2019). Miao et al. (2021) discovered
that the carbon metabolism function was influenced by TN
and TP. When more nutrients were available, primary bio-
film formation accelerated, allowing the biofilm to mature
more quickly (Oberbeckmann et al. 2018). It indicated (Stan-
ley and Lazazzera 2004) that oligotrophic condition would
trigger bacterial attachment to the MP surface, and it was
hypothesized that some bacteria that can degrade polymers,
such as Mycobacteriaceae (Sun et al. 2022a) would use MPs
as a carbon source for decomposition and digestion. Because
the MPs themselves would leach DOM into the aquatic envi-
ronment, making it accessible to microorganisms (Sun et al.
2022b). While a hypertrophic environment can limit micro-
bial attachment to MPs, large amounts of organic matter
are more easily accessible to planktonic microbes, thereby
decreasing the likelihood of microbial colonization of the
MP surface. Remarkably, diatoms and green algae are the
main autotrophs on the biofilm surface in lakes with low to
medium trophic levels, and MPs are transferred to higher
trophic levels when the autotrophs are fed on by water preda-
tors (heterotrophic ciliates) (Arias-Andres et al. 2018).

Salinity is a crucial factor for biofilm formation on the
MP surface in aquatic environments. Salinity influenced the
phytoplankton diversity in MP biofilms more than any other
environmental factor (pH, temperature, DO) (Xu et al. 2019).
Salinity was negatively correlated with the growth rate of
MP biofilms, positively correlated with the diversity of the
bacterial community, and altered the distribution of specific
bacteria within biofilms (Oberbeckmann et al. 2018). Carson
et al. (2013) demonstrated a negative correlation between
salinity and the density of bacteria and algae on the surface
of MPs. Li et al. (2019) discovered that the abundance of
Vibrio spp. on the surface of MPs in estuaries with salinity
above 26% was 2—10 times higher than that in seawater and
sediments. De Tender et al. (2017) observed that as seawater
salinity decreased, the bacterial community’s structure on
the MP surface shifted from Proteobacteria to Bacteroidetes.
Jiang et al. (2018) discovered higher bacterial abundance
and diversity on the surface of MPs at Chongming Island
(located at the Estuary of the Yangtze River), presumably
due to the higher particle settling rates and sediment resus-
pension resulted in a stronger exchange between water and
sediment bacterial communities, leading to higher microbial
diversity on microplastic surfaces at this site.

Temperature is a common factor that affects microor-
ganisms’ metabolic and intracellular enzymatic reaction
processes. Long-term exposure to MP biofilms in aquatic
ecosystems made them susceptible to temperature changes
(Oberbeckmann et al. 2018). Variation in water temperature
is caused primarily by seasonal turnover and secondly by
the vertical depth at which the plastisphere is located in the
aquatic environment. In general, microbial diversity on the
surface of MPs is positively correlated with temperature,
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whereas microbial density decreases as temperature
increases. During summer, when seawater temperature is
29.08 °C, the microbial community diversity is most abun-
dant on the surface of MPs (Xu et al. 2019). The biofilm
thickness was thicker in summer in comparison to winter
(Oberbeckmann et al. 2014). Carson et al. (2013) revealed a
weak negative correlation between the effect of temperature
on algal and bacterial densities. Tu et al. (2020) showed
that total biofilm decreased with increasing vertical depth
(2-12 m) of the MPs, probably affected by the tempera-
ture difference caused by the depth change. Thompson et al.
(20044a) also found a positive correlation between Vibrio
and temperature. Boyd et al. (2013) found that diatoms grew
with twice the normal growth rate due to increased ocean
temperature. Algae are early colonists of the plastisphere,
and algal proliferation provided a large amount of nutrients
that would accelerate bacterial attachment to the MP surface
and shorter biofilm formation. Dong et al. examined that
pathogenic bacteria on the surface of MPs were positively
correlated with the temperature of the surrounding water
column when they studied the plastisphere in winter and
summer. The low seawater temperature in winter may inhibit
bacterial growth on MPs and thus slow down biofilm forma-
tion (Dong et al. 2021).

The flow state also affects biofilm formation, and micro-
organisms thrive in environment with a low Reynolds num-
ber (a dimensionless number used to characterize the flow
of a fluid) (Re < 107>). With rapid water flow, a high Reyn-
olds number, and obvious inertia, it is difficult for microor-
ganisms to remain on the surface of MPs, resulting in the
smaller size of the biofilm clusters on the MP surfaces. And
the large-scale biofilm communities were hard to develop
(Chen et al. 2023). In comparison to lakes, the plastisphere
has more abundant biomass, but lower algal levels in river-
ine ecosystems, which may be affected by hydrodynamic
conditions. Additional evidence that hydrodynamics may
alter the structure and dynamics of biofilms (Miao et al.
2021). However, there are a few works on hydrodynamic
conditions as physical factors affecting the early coloniza-
tion of initial microorganisms (Chen et al. 2023), and it is
desirable to devote more attention to this aspect in future.
Researchers may consider simulating changes in hydrody-
namic conditions in the laboratory to explore the extent to
which microbial colonization is affected.

In summary, the nutrient conditions of the aquatic envi-
ronment affect the rate of MP biofilm formation. Biofilm
diversity and formation time are controlled by environmental
salinity. Among these indicators, salinity and hydrodynamic
conditions act as the dominant factors, and other factors also
influence biofilm communities. Due to the complexity of
water chemistry parameters in natural water bodies, further
works may consider the combined effects of these indices
(Li et al. 2023a). Currently, relatively few experiments

specifically explore the above environmental factors, and
further work can be conducted to understand the mechanism
of environmental conditions in the biofilm by controlling
environmental variables using the laboratory incubation
method.

Microbial Community Characteristics of MP
Surface in Aquatic Ecology Systems

In order to clarify the mechanism of interaction between
film-forming microorganisms and MPs, it is necessary to
understand the distribution and community composition of
microorganisms on MPs. In general, aquatic ecosystems are
categorized into freshwater ecosystems and marine ecosys-
tems. Wetland is the transitional area between terrestrial and
aquatic environments and forms a unique type of ecosystem
due to land—water interaction. There are some differences
between it and freshwater and marine ecosystems. There-
fore, we divide aquatic ecosystems into freshwater ecosys-
tems, marine ecosystems, and wetland ecosystems. Aquatic
environments vary in freshwater, seawater, and wetland envi-
ronmental conditions, resulting in different biofilms on the
surface of MPs. Currently, there are numerous studies on the
plastisphere in the ocean, fewer studies on the composition
of the plastisphere in freshwater, and almost no investiga-
tions on biofilms in wetland environments. The composition
of MP biofilms in three aquatic ecosystems was summarized.

Microbial Community in the Marine Ecosystem

MPs are widely distributed on the world’s ocean coasts, mar-
ginal seas, open oceans, and even in the deep sea, polar seas,
and marine ecosystems have become the largest sink for MPs
worldwide. At present, the research on MP biofilms in the
ocean is mainly focused on offshore, estuary, and deep ocean
(Table 1). It has been demonstrated that the core members
of the bacterial community on MPs in seawater are Proteo-
bacteria, Bacteroidetes, Cyanobacteria, and Firmicutes, with
the dominant group consisting of Proteobacteria and Bac-
teroidetes. Bacteria on the surface of MPs are mainly from
the surrounding environment (De Tender et al. 2017; Sun
et al. 2020), suggesting that this difference may be caused
by the microbial diversity of the surrounding environment
(Sooriyakumar et al. 2022). Proteobacteria are the most
frequently observed phylum on the surface of MPs in the
ocean, among which a-Proteobacteria and 3-Proteobacteria
are the two relatively higher abundance (Bryant et al. 2016;
Debroas et al. 2017). Plastisphere is more diverse and uni-
form than seawater, and microbial colonization is influenced
by environmental factors, polymer type, and exposure time
(Zhang et al. 2022a). Erythrobacteraceae are also preva-
lent alpha morphogens in marine biofilms and have been
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° =l g identified on PP, PE, PS, and PET surfaces (Dussud et al.
o— Q
= 8 § s g 2018; Oberbeckmann et al. 2018, 2014; Zettler et al. 2013).
o = 2 . .
2 ol gd o % In Bacteroidetes, Tenacibaculum was repeatedly detected
15 80 5 = =Q p y
8 E S % g =z = on the surface of plastic, indicating its potential role as a
5] ~ . . . N
2 O A = % lastic-degrading bacterium (Frere et al. 2018). In PS sam-
<8 P g g
= <2 ples, syranidou was identified as a relatively high abundance
;o . . . .
Lg £z of the genus Bacillaceae among Firmicutes (Syranidou et al.
g = = RS 2017). Cyanobacteria spotted on the surface of a wide spe-
3|3 £ e . b b
A7 cies of MPs in the ocean, and its enrichment on the surface
o o5
= << «;—»‘j = of suspended MPs may result from greater access to light.
< 5 g & i z é 5 -z Planctomycetes are one of the most common bacteria in the
== 17 o > .
£ s g é = % i P % %’ 0 ocean, and they prefer low-oxygen environments (Sosa and
2} » @ 'E = — . qe . g
= 5 = * = % Chen 2022). Ascomycota, Basidiomycota, Chytridiomycota,
24 § g Rozellomycota, and Aphelidiomycota comprised most of the
- = o I . .
=) g S4 g E Z| X EE fungal community. The relative abundance of archaea on
) s B S
= 3 i g =) % £ %é £ % = MPs was low, and some researchers showed that the abun-
= —_— = S (9] . .
é“ E 'S 84 %%w| 855 dance of Crenarchaeota in the Mediterranean Sea (2-5%)
- - 28 3 was higher than that of the MP samples (0-2%), speculatin
S g I g p p g
aé $3 . % % % that the low availability of sulfur in the plastisphere is not
s 2 3 g © T conducive to archaea growth (Sosa and Chen 2022). Bacteria
S 8 5 E < &g &
& S5 0N = and phytoplankton are not homogeneously distributed on
g < = 5 o2 phytop 4 y
) 72} 2 ';\ . . .
% ©n A S3 g the MP surface at any period of time, and diatoms, Cyano-
= o . . k) :
T E bacteria, and microfauna such as bryozoans are ocean’s pio-
g % ze neers of MP colonization (Schlundt et al. 2020). Microbial
E S S . .= communities on MPs in the ocean changed over time, and
g8 E = < *E, g Schlundt found that Rhodobacteraceae and filamentous Bac-
_ = 0 3 . 3 1
.'q‘é = § teroidetes were dominant in the first week, followed by an
[=} [=} = Q . . . . .
S 4 S S ST 3 increase in a-Proteobacteria and y-Proteobacteria until the
= O = = = >
£3 8 2 g $ fifth week (Schlundt et al. 2020). Predators and pathogens
o g = 0 . . . ey
2582 2 S E 2 were also observed in the marine-plastisphere, such as Cili-
o & E é f;} ates, Choanoflagellates, Clostridium, and small flagellates
Q . . .
B .- §Z 252 that feed on bacteria and other microorganisms. Latva et al.
5 £ 5 g 535 g
g = o § ) é 5 (2022) detected the predators Tunicata, Protalveolata, and
= > o . .. . . . .
k=i @3 2 £ = ng Cnidaria in the plastisphere incubated in a seawater envi-
3 ol S K £2Z p P
“ = © 5 £ §_ ronment. In the Mediterranean Sea, Delacuvellerie et al.
3 29 g 3 R (2022) reported the occurrence of flagellates, nematodes,
< y .
:m < = ; . LY % E cnidarians, and chordates in the surface biofilms of two MPs,
it = : == % g» g PP and PE. MP surfaces are capable of harboring a large
E o Sl < é % number of pathogens and can therefore serve as carriers for
o Lz % i3 certain types of bacteria. Multiple human pathogenic bac-
S 4 285 . . . .
SRR s B teria were identified in MP samples from the North Sea and
S o % o & &= p
N ) . . .
§ §° §‘ “aé é‘ North Atlantic Ocean (Kirstein et al. 2016). Large numbers
2 i.g S W E 3 of the pathogenic Vibrio parahaemolyticus were discovered
3 ) IS [ g o p g p y
SO § 5 2 on MPs in the Baltic Sea (Kirstein et al. 2016). The plasti-
I < = 20 p
= - IO £ 3 N sphere in the estuary provided anaerobic conditions favora-
= =2 5 = e . . . og o
% E § § § § § % 9 5 ble to denitrifying bacteria, and the plastisphere exhibited
E £Sg g 2 £E%S SNCR- higher denitrification activity and N,O production than the
ISEECIRT] 3 g = . T . .
=N % §38% § 2 g5 ~EE surrounding water column, indicating that estuarine plasti-
o — kel o — . A
2 | = AR RO am< 575 z sphere was a potential hotspot for N,O production (Su et al.
£ S =2
g ) 2- 2022a). Furthermore, PLA could accelerate Burkholderia sp.
S | — 2z = .
TE o o S22 phosphorus-related metabolism and promote the breakdown
2|t 3 3 258 of methyl phosphate into methane (Li et al. 2023b).
S |2 s g 3 A=A
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In addition to the biofilm composition on MPs in the
ocean, the microbial community assembly mechanism is also
the research hotspot. Sun et al. (2021) used the null model to
analyze and found that the plastisphere bacterial community
is mainly driven by the stochastic processes of drift (58.34%)
and diffusion limitation (23.41%), which played more sig-
nificant effects than the deterministic processes. The diffu-
sion limitation affected the pattern of microbial succession.
In other words, MP surfaces mainly act as rafts for microbial
attachment rather than selectively attracting plastic-specific
microbial colonizers (Sun et al. 2021; Zhang et al. 2022a).

Microbial Community in the Wetland Ecosystem

Wetlands are known to be a central hub for MPs accumula-
tion, and industrial emissions and household dumping are
the main routes of MP sources in wetlands (Su et al. 2022b).
Few studies on MP biofilms in wetland environments have
been conducted in recent years, and most studies have
focused on the environmental concentration, shape, color,
vertical distribution, and transformation processes of MPs
(Ouyang et al. 2022). Kumar et al. (2021) identified fibers
(threads), fragments, filaments, foams, and microbeads as
common shapes of MPs observed in wetland ecosystems.
Currently, few studies have been published about the plas-
tisphere in wetlands.

The MP surface bacterial community in mangrove sedi-
ments mainly consisted of Proteobacteria, Actinobacteria,
Bacteroidetes, Chloroflexi, and Acidobacteria (Table 2).
Deng et al. (2023) incubated MPs in mangrove sediments
for 70 days and discovered that mangrove degradation can
reduce the network complexity and stability of MP-associ-
ated bacteria by shaping the composition of bacterial com-
munities on MPs. The microorganisms on the surface of
PLA were primarily associated with sulfur metabolism, and
those colonizing PE and PP surfaces were mainly involved
in carbon cycle processes. There is no literature on the fun-
gal community on the surface of MPs in wetlands. Fungi
play a primary role in the decomposition of organic matter
in natural water in wetland ecosystems. They can degrade
some unavailable carbon sources (non-degradable plastic)
and contribute to the wetland carbon cycle.

The accumulation of MPs in artificial wetlands reshaped
the co-occurrence patterns of wetland microbial commu-
nities, enhanced the “small-world” properties of wetland
microbes, and substantially altered the ecological niche
of wetland microorganisms. Yang et al. (2022) found that
the accumulation of MPs in artificial wetlands reduced the
removal of ammonia from wastewater and microbial diver-
sity that MPs exposure caused changes in nonrandom spe-
cies assemblages, and that MPs accumulation produced
alternative ecological niches for typical nitrifying and deni-
trifying bacteria. Among MP surface microorganisms in

@ Springer

Table 2 Overview of the literature reporting the plastisphere in wetland

Lab or field References

Depth Method

Sample type

Incubation
time

Incubation
or collec-

tion

Type of plastic Studied area

Microbial type Phylum

Xie et al. (2021)

Field

The V3-V4

1 month and  The mangrove Top 2-3 cm

Incubation

Proteobacteria Pseudooceani- LDPE PS PET Zhanjiang

Bacteria

region of
bacterial

rhizosphere

soil

3 months

Mangrove
National
Nature

PP PA ABS
pPVC

cola
Actinobacteria Ilumatobacter

Bacteroidetes

16S rRNA
genes for
Illumina

deep

Denitromonas
Nitrospira

Nitrospirae

Reserve

sequencing

Wetland water 20 cm beneath The V4-V5

Yang et al.

Lab

300 days

Proteobacteria Uliginosibac- Non-additive  Constructed Incubation
Chloroflexi

Bacteria
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LDPE low density polyethylene, PS polystyrene, PET polyethylene terephthalate, PP polypropylene, PA polyamide, ABS acrylonitrile-butadiene—styrene, PVC polyvinyl chloride
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mangrove sediments, some bacteria such as Actinomycetes
and o/p/d-Proteobacteria accumulate on PLA, desulfovi-
brio, the dominant sulfate-reducing bacteria is associated
with &-Proteobacteria, and PLA promoted the sulfate reduc-
tion process. However, PET and polyvinyl chloride (PVC)
derived from petroleum were less impact on the sulfate
reduction process than PLA (Wang et al. 2023).

In general, there are insufficient microbial studies on the
surface of wetland MPs, and the direction of research tends
to focus on the effects of MPs on wetland microorganisms in
carbon, nitrogen, and phosphorus cycling while neglecting
the microbial colonization process. More attention should be
paid to the fungi community composition of the plastisphere
in wetland environments in future research.

Microbial Community in the Freshwater Ecosystem

Freshwater is the main route for land-based plastic pollut-
ants to enter the ocean and is one of the most significant
MP enrichment regions. At present, studies on biofilm
composition on MPs in freshwater mainly focus on urban
water environments (creeks, rivers, and lakes), and there are
similarities with microbial communities on the surface of
MPs in the ocean (Table 3). The bacterial community in
freshwater is more commonly reported. Furthermore, Pro-
teobacteria, Bacteroides, Actinomycetes, and Cyanobacteria
are found to be the dominant groups (Zhang et al. 2022c).
Wang et al. (2021b) demonstrated that the key taxa on the PE
were Enterobacteriales of y-Proteobacteria and Caulobacte-
rales of a-Proteobacteria. In contrast, the key taxa on the PP
were the Gaiellales of Actinobacteria and Acidithiobacil-
lales of y-Proteobacteria. Several potential PE-degrading
bacteria belonging to Flavobacterium, Rhodococcus, and
Pseudomonas were identified in the freshwater plastisphere
(Di Pippo et al. 2020). Freshwater biofilms also contained
pathogens like Pseudomonas and Acinetobacter (Xue et al.
2020). There are fewer studies of fungi on MPs than bacteria.
Cyanobacteria, green algae, and diatoms are typical algae on
the surface of MPs. Chytridiomycota, Cryptomycota, and
Peronosperales with saprophytic or parasitic lifestyles were
detected in MP surface biofilms in several lakes in northern
and central Italy (Di Pippo et al. 2022). In the Arctic fresh-
water lake, Betamyces, Cryptococcus, Arrhenia, and Par-
anamyces are the most abundant fungi on the surface of MPs
(Gonzalez-Pleiter et al. 2021). Many planktonic microbes in
freshwater can be enriched by MPs. Wen et al. (2020) found
that the relative abundance of Proteobacteria on the surface
of the MPs was higher compared to the aquatic environ-
ment. Bacteroidetes, Verrucomicrobia, and Proteobacteria
are more abundant on the MP surface than on natural sub-
strates (Miao et al. 2019). Fungal community composition
on MPs in freshwater included Ascomycota, Basidiomycota,
Chytridiomycota, Rozellomycota, Blastocladiomycota, and

Mucoromycota (Lacerda et al. 2020; Wang et al. 2021b).
Xue et al. (2021) discovered that Ascomycota and Basidio-
mycota were much more abundant on the plastic surface than
in the surrounding environment and that Blastocladiomycota
and Mucoromycota were plastic-specific fungi that were not
found in the surrounding water. Algae play an important role
in the freshwater plastisphere, where oxygen-rich phototro-
phic microbes such as Cyanobacteria, diatoms, and green
algae can release photosynthetically produced organic car-
bon metabolites and support heterotrophic metabolism with
extracellular polymeric substances (Di Pippo et al. 2020). In
Arctic freshwater lakes, diatoms were found to be attached
to the surface of MPs and cyanobacteria were also present
in MP biofilms (Gonzalez-Pleiter et al. 2021). In addition to
bacteria, fungi, and algae, there are some protozoa on the
biofilm, mainly Spirotrichea, Chaetonotida, and Craspedida
(Weig et al. 2021). It has been shown that the total biofilm
biomass is higher in oligotrophic and undernourished lakes
than in eutrophic lakes, and the functional abundance of
biofilm is higher in oligotrophic lakes than in surrounding
water (Arias-Andres et al. 2018). Interestingly, MP surface
microbes were an additional source of zooplankton in turbid
rivers (Balkic et al. 2022).

Although the biofilm composition in freshwater and
marine is relatively similar, there are still significant dif-
ferences. MPs cultivated in seawater showed a gradual
increase in the number of salt crystals as the incubation time
increased, while this phenomenon was not observed in fresh-
water, presumably due to the difference in salinity between
the two incubation mediums (Ramsperger et al. 2020). The
network complexity of the plastisphere in freshwater eco-
systems is lower, modularity is higher, and there is more
competition among microorganisms, while the contrary in
marine ecosystems. The main reason might be that the bio-
mass and activity of microorganisms on the surface of MPs
was generally low due to the high salinity and low nutrient
concentration of the ocean, and microbes were more coop-
erative than competitive with each other (Li et al. 2021).
Significant alterations in MP biofilm accumulation and het-
erotrophic activity can be caused by varying environmental
conditions (Arias-Andres et al. 2018).

Knowledge Gap and Outlook

The plastisphere consists of biofilms, and MPs can promote
the diffusion of microbes and the transmission of pathogenic
bacteria, posing a potential threat to ecosystems and human
environmental health (Xia et al. 2023). Here, we examine
the formation of MP surface biofilms formation process, the
incubation methods for MP biofilms, and the composition
of MP biofilms in various aquatic environments. In order
to elucidate the MP biofilm formation process and how
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Table 3 (continued)

g biofilms affect the environmental fate of MPs, the following
2 = EY knowledge gaps must be addressed, according to reviews of
. - = .
2 =8 o J 2 the literature:
= RS N =4 :
o = A e
5 S g gg 8
“— =5 N N =
Q =~ 5 — k=] . . .
K — T z (1) Current research has discovered plastisphere in fresh-
= i water and marine environments, but the current under-
5 & standing of MP biofilms in wetland ecosystems remains
< ) ) S limited, requiring future research to investigate plasti-
- - - i
S sphere in wetland environments and clarify the environ-
2}
2 £< kE 1 behavior of plastisphere i tland t
2 g = 5 mental behavior of plastisphere in wetland ecosystems.
> 5 Z o= = 2 (2) Although in situ and microcosm incubation experi-
L = “w a= . .
E £ a2 SSo g5 ments can recreate the biofilm formation process, the
g 2 =% & S &% P! lack of continuity in biofilm sampling in current stud-
= . . .
2 E ies has led to a lack of understanding of the dynamic
2z process of biofilm attachment to MPs in the aquatic
- Q . .
S E environment, as well as the role and function played
5 g by some protozoa (nematodes, ciliates, rotifers, etc.) in
= &3 the plastisphere. Contin itori iment
= S p phere. inuous monitoring experiments
o] Q . . .
A i E are required to gain a more complete understanding of
Q = ) the entire biofilm formation process. In addition, the
> © . .
° == sampling and treatment methods for MP biofilms are
= ShE=! . .
£ g g B o not yet harmonized, and further studies are hoped to
5 2 2 == . .
2 R~ R S & have a set of harmonized methods that will make the
S *E‘ experimental results easier to compare and more reli-
= N5
5 o) able.
1 =]
b= %] @ Q . .
é . 5‘ 5‘ = (3) Natural organic matter is a key component of the
< — . . .
2 E Q %0 = aquatic environment and is frequently adsorbed to the
— 5 O (o] = A A K i
5 surface of MPs, where it can influence biofilm forma-
= = = 8~ . . . .
% B % % o 8 tion by altering the properties of the MPs and supplying
= o . . .
28 .|3 S 2% microbes with a carbon source. Several studies have
) ) Qo = . .
E5E5 |5 = = been conducted on MPs and dissolved organic mat-
R . .
s " S g ter (DOM), but the mechanism of MP-biofilm—DOM
g = . L . .
g 2 5 ED g s 5 %’ interactions in aquatic systems has not received much
3 = § S B g &g attention; metagenomics and environmental transcrip-
] 5 2 3= 5 . . . .
S é & é & Z O 3 % tomics may be required to decipher the mechanism of
n = . . . . .
éﬁ natural organic matter interactions with the aquatic
o}
Q plastisphere.
£ °x . N
5 = S (4) There are some works of literature on the relationships
Q .= . . cy . . .
27 g g g among microorganisms within biofilms in the ocean/
] =¥ S 2 . .
R 2o = = stream/ wastewater. However, little is known about the
S 8 2 interactions between different microorganisms within
- N = o . . .
2 . 8§S.. N 8,3 the plastisphere, such as the relationships between
N SS9 S . .
s § S § § § § E i algae, bacteria, and fungi or between all of them. In
b3y S X8 o R . .
§ = S5 C ::’ = | g o subsequent research, whether these interactions alter
(3] . . .
" " ESS) during the various stages of biofilm development must
1% - .
o 4 B § I _Qi; 24 = E be determined.
g f-g 5 —§ o 28 -‘é o fé’ < 2 S ” f;"% (5) Currently, research on the migration and transforma-
] ] g5 3 S f8gogoQ . . . . . .
= 2555835 £535zs8|S 2 tion of MPs by biofilms in aquatic environments is
=} — Q
A i ale 52 concentrated on in situ and laboratory experiments.
g e Researchers should use a dynamic model of microbial
— = & . .
I < < S= community and other methods to model and predict
o - B = Q . K .
£ g g oy the whole biofilm formation process on MPs combined
. — Q_‘ . ..
=2 & = S under real water environment conditions to further elu-
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cidate the impact of biofilms on the fate of MPs in the
water environment.
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