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Abstract
Microplastics have received more and more attention worldwide as an emerging persistent pollutant. Soil microplastic pol-
lution can cause serious environmental problems and potentially endanger the soil ecosystems and human health. Currently, 
most available studies of microplastics have been performed in aquatic environments. However, soil environments have 
been less studied, and our understanding of microplastic pollution in soil is still lacking. Therefore, based on the existing 
knowledge, this review firstly focuses on the current situation of microplastic pollution in soil, basically including sources, 
distribution characteristics, degradation, and migration. Furthermore, analytical methods are briefly discussed, and ecologi-
cal effects of microplastics in soil are summarized. Soil is a reservoir of microplastics. Microplastics have a wide distribu-
tion and high abundance in environmental media, and their distribution in soil exhibits spatial heterogeneity. Microplastics 
affect soil physicochemical properties, soil microorganisms, soil fauna, and plants through several mechanisms, leading to 
different ecological effects. Finally, future research directions of soil microplastic pollution are proposed to provide novel 
ideas for follow-up research.
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Abbreviations
ARGs  Antibiotic resistance genes
PA  Polyamide
PBS  Polybutylene Succinate
PE  Polyethylene
PES  Polyester
PET  Polyethylene terephthalate

PHAs  Polyhydroxyalkanoates
PHB  Polyhydroxybutyrate
PHBV  Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)
PLA  Polylactic acid
PP  Polypropylene
PS  Polystyrene
PSNP  Polystyrene nanoplastics
PU  Polyurethane
PVC  Polyvinyl chloride
SBR  Synthetic Blend Rubber
TRWP  Tyre and road wear particulates
UV  Ultraviolet

Introduction

Plastics are durable, multi-functional, and cost-efficient 
polymer materials, which mainly include polyethylene 
(PE), polypropylene (PP), polystyrene (PS), polyvinyl 
chloride (PVC), polyester (PES), polylactic acid (PLA), 
and polyamide (PA) (Duis and Coors 2016). Plastics are 
widely used in all industries, and their waste generation 
has increased over time on global scale. Lau et al. (2020) 
estimated that 710 million metric tons of plastic waste 
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cumulatively entered aquatic and terrestrial ecosystems 
till 2040, if governments took immediate environmental 
actions.

The plastics in the environment are usually cracked into 
plastic fragments or particles by physical, chemical, and 
biological processes (Barnes et al. 2009). The concept of 
microplastic was firstly coined in 2004 (Thompson et al. 
2004). Microplastics are typically considered plastic frag-
ments or particles with a diameter of below 5 mm with 
ranges that vary between studies (Law and Thompson 
2014). Microplastics are characterized with small par-
ticle size, wide distribution, high abundance, and stable 
chemical properties (Bergmann et al. 2019; Li et al. 2020a; 
Padervand et al. 2020; Revell et al. 2021). They can easily 
adsorb various types and enrichment of toxic chemicals 
or microorganisms on the surface and be ingested by soil-
dwelling biota, thereby interfering with environmental 
behavior of soil organisms (Law and Thompson 2014; 
Rillig 2012).

Our cognition of microplastics in soil is still fragmented 
(Fig. 1). Hence, based on recent studies, this review com-
prehensively summarizes the current situation and eco-
logical effects of microplastic pollution in soil.

Current Situation of Microplastic Pollution 
in Soil

Sources of Microplastics in Soil

It is widely accepted that plastic film mulching, sewage 
sludge, compost, and irrigation are the main sources of 
microplastics in soil (Li et al. 2022b; Qadeer et al. 2021; 
Ragoobur et al. 2021; Yang et al. 2021a, 2022). Although a 
number of studies have quantified the composition of micro-
plastics in soil, it is still not possible to accurately identify 
the proportion from different sources (Zhang et al. 2020).

The sources of microplastics in soil are diverse and 
extensive because of the different land use types (Rillig and 
Lehmann 2020). Most research on sources of soil micro-
plastics has focused on agricultural soil to date. Rillig and 
Lehmann (2020) expected that agricultural soil contained 
the largest amount of microplastics compared with other 
terrestrial soil. Many studies indicated that sewage sludge 
(Hamidian et al. 2021; Weber et al. 2022), organic fertilizer 
(Weithmann et al. 2018), and plastic film mulching (Li et al. 
2022b) were vehicles for the entry of microplastics into agri-
cultural soil. Huang et al. (2020) found a highly significant 
linear correlation (R2 = 0.61) between the consumption of 
plastic film mulching and the plastic residue in soil. Agricul-
tural soil exhibited high microplastic abundance and most of 
the identified microplastics were PE films (Piehl et al. 2018; 
Wang et al. 2021a).

The wetland soil has more diverse sources of microplas-
tics because of the exposition to various pollution sources. 
The common types of microplastics in wetlands are PE, 
PP, and PS (Kumar et al. 2021). Kumar et al. (2021) per-
ceived that primary sources of microplastics in wetlands 
were dumped directly by industries, household activities, 
and treatment plants. Ouyang et al. (2022) found that fib-
ers were the dominant form of microplastics particles in 
coastal wetlands, implying that sewage was a primary source 
of microplastics in coastal wetlands. In Qinzhou Bay, the 
major sources of microplastics in wetland soil are attributed 
to aquaculture (e.g., woven bags, fish nets) (Li et al. 2018b).

Considering microplastic pollution in agricultural soil, 
that in roadside soil has been relatively neglected. The 
microplastic contamination of roadside soil due to traf-
fic-related activities have been a severe issue. Tyre and 
road wear particulates (TRWP) are an important source 
of microplastics in roadside soil. The TRWP production 
contributes to more than half of the total microplastics 
produced in North European countries (Campanale et al. 
2022), and most of TRWP (74%) are deposited on roadside 
soil (Sieber et al. 2020). Muller et al. (2022) determined 
that 155 to 1.16E + 04 mg  kg−1 TRWP were detected in 
soil along a German motorway.

Fig. 1  Co-occurrence network analysis of keywords in microplastic 
publications. The VOSviewer software (version 1.6.15) was selected 
for co-occurrence network analysis. The retrieval strategy was 
“topic = (microplastic) or (microplastics)”. The literature data were 
obtained from the Web of Science at the retrieval time of 4/05/2022. 
After removing the irrelevant keywords, 17 keywords related to natu-
ral environment were selected for bibliometrics. The size of a node is 
positively correlated with the occurrence frequency of the keywords. 
The thickness of a link is positively correlated with the correlation 
between the keywords
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Altogether, there are multiple routes through which 
microplastics can enter soil. This may cause great pressure 
on the soil microplastic pollution and prevention. Preventing 
microplastics from entering the environment also become a 
major problem faced by all countries so far.

Distribution Characteristics of Microplastics in Soil

Wide Distribution and High Abundance

Microplastics have strong persistence in natural environ-
ments due to their durability, corrosion resistance, and 
anti-biodegradable properties (Xu et al. 2020). As a newly 
emerging type of environmental persistent complex pollut-
ant, microplastics can be migrated over long distances and 
reach inaccessible places by external forces such as rivers, 
tides, and winds (Cozar et al. 2014; Wang et al. 2019c). 
Consequently, microplastics are ubiquitous from the land 
surface to the depths of the ocean, from city centers to polar 
glaciers, and from the equator to the north and south poles 
(Barnes et al. 2010; Eriksen et al. 2014; Kanhai et al. 2017; 
Peeken et al. 2018; Zhang et al. 2018b).

Compared with marine microplastic pollution, soil micro-
plastic pollution has been largely overlooked, even when 
the soil holds higher volumes of microplastics (van Sebille 
et al. 2015). Horton et al. (2017) showed that the plastics 
released to the terrestrial environments annually were esti-
mated at 4–23 times higher than that released to marine 
environments. It is estimated that 6.30E + 04–4.30E + 05 
and 4.40E + 04–3.00E + 05 tons per year of microplastics 
are released into European and North American farmlands 
through sludge, respectively, which exceed the cumulative 
count of microplastics in the global ocean surface water 
(Nizzetto et al. 2016b; van Sebille et al. 2015). The average 
concentration of microplastics in agricultural soil covered 
by a plastic film for 30 years is as high as 83.6 kg  hm−2 in 
China (Huang et al. 2020). Mo et al. (2021) estimated that 
68 tons of microplastics had been annually released into soil 
from plastic gauze. In conclusion, microplastics in soil have 
a wide distribution and high abundance.

Presenting Spatial Heterogeneity

Nowadays, there is still a lack of knowledge about the occur-
rence and distribution of microplastics in soil. Table 1 shows 
the distribution and abundance of soil microplastics in parts 
of world and displays obvious spatial heterogeneity. Of 
microplastics in soil, PP, PE, and PET are common polymer 
compositions, and the abundance is below 5000 particles 
 kg−1 in the great majority.

Currently, the studies of soil microplastic distribution in 
global scale are shown in Fig. 2, and most of them focus on 
China. Spatial distribution and abundance of microplastic in 

soil are uneven in China (Fig. 2 and Table 1). As shown in 
Table 1, agricultural soil possesses high microplastic abun-
dance, and PP and PE are dominant. The possible reason for 
this result is the extensive use of mulch. Zhou et al. (2020a) 
demonstrated that the mulching field contained more than 
twice the non-mulching field on the coastal plain of Hang-
zhou Bay, which was averagely 571.2 particles  kg−1 dry 
weight and 262.7 particles  kg−1 soil with dry weight basis, 
respectively. Huang et al. (2020) investigated 384 soil sam-
ples collected from 19 provinces across China and reported 
that the abundance of microplastics in western China was 
higher than that in eastern China, possibly due to the higher 
use of mulching film.

Among soil microplastic research reported outside China, 
few of which focus on microplastic distribution (Büks and 
Kaupenjohann 2020). Rezaei et al. (2019) investigated the 
presence of low-density microplastics in soil and wind-
eroded sediment of Fars Province, which was the first study 
on the transport of soil microplastics by wind erosion. They 
found that microplastic concentration ranged from 67 to 
1133 particles  kg−1, and wind-eroded sediment was enriched 
with microplastics with a ratio of 2.83 to 7.63. In Amster-
dam, peat soil has abundant microplastics, with a mean of 
4825.31 ± 6513.85 particles  kg−1 (Cohen et al. 2021). In 
Central Germany, Weber et al. (2022) investigated loads of 
0.00 to 56.18 particles  kg−1 dry weight for agricultural soil 
after 34 years without sewage sludge application.

However, existing investigation data as mentioned above 
lack comparability because of the diversification methods 
for microplastics in soil. The distribution and abundance of 
microplastics in soil are closely relative to the natural geo-
graphical characteristics, human activity intensity, popula-
tion density, gross domestic product (GDP), and industrial 
production. However, there are scarce reports on the sys-
temic distribution of microplastics in soil up to date, and 
further research should better focus on specific influencing 
factors of microplastics.

Size Effect on Microplastic Distribution

The abundance of microplastics with different particle sizes 
is various in soil environments. In general, the abundance 
of microplastics is negatively correlated with their sizes. 
Microplastics in small sizes have relatively high number 
abundance overall (Hu et al. 2022; Zhou et al. 2016). Liu 
et al. (2018) found the fraction below 1 mm had the largest 
proportion, which occurred 48.79% of the microplastics in 
shallow soil (0–3 cm) and 59.81% of the microplastics in 
deep soil (3–6 cm). Zhang and Liu (2018) suggested that 
the microplastics with 0.25–0.05 mm particle size accounted 
for the highest proportion in the topsoil of each plot. This 
finding matches with the result that small and medium-sized 
microplastics dominate considerably in marine environments 
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Table 1  Distribution characteristics of soil microplastics in several parts of the world

Location Soil type Abundance 
(particles  kg−1 dry 
weight)

Size range Component Reference

Turkey (Adana/Karataş) Agricultural soil 16.5 ± 2.4 55 μm-5 mm – Gundogdu et al. (2022)
Korea (Yeoju) Traffic soil 1108  < 5 mm SBR, PP, PE Choi et al. (2020)
Korea (Yeoju) Agricultural soil 664  < 5 mm SBR, PP, PE Choi et al. (2020)
Korea (Yeoju) Residential soil 500  < 5 mm SBR, PP, PE Choi et al. (2020)
Korea (Yeoju) Forest soil 160  < 5 mm SBR, PP, PE Choi et al. (2020)
Pakistan (Lahore) Agricultural soil 3712 ± 2156 50 μm-5 mm – Rafique et al. (2020)
Pakistan (Lahore) Roadside soil 3915 ± 1499 50 μm-5 mm – Rafique et al. (2020)
India (Karnataka) Riverside soil 84.45 0.3–5 mm PE, PET, PP Amrutha and Warrier (2020)
Spain (Eastern) Agricultural soil 2030 50 μm-5 mm – van den Berg et al. (2020)
Australia (Sydney) Plastic industrial area soil 7764.7  < 1 mm PVC, PE, PS Fuller and Gautam (2016)
Chile Agricultural soil 1100–3500  < 1 mm – Corradini et al. (2019)
Germany (Lahn River) floodplain soil 1.88 ± 1.49 2–5 mm PE, PP, PA Weber and Opp (2020)
Germany (Southeast) Agricultural soil 0.34 ± 0.36  < 5 mm PE, PP, PS Piehl et al. (2018)
Germany (Central) Agricultural soil 0.00–56.18  < 5 mm – Weber et al. (2022)
Germany (Northern) Agricultural soil 0.00–217.8 1 mm-5 mm PE, PP Harms et al. (2021)
Netherlands (Amsterdam) Peat soil 4825.31 ± 6513.85  < 5 mm PE, PAC, PA Cohen et al. (2021)
Mexico (Southeast area) Agricultural soil 870 ± 1900  < 5 mm PE, PS Lwanga et al. (2017b)
Iran (Fars province) Agricultural soil 205 ± 168 40 μm-740 μm – Rezaei et al. (2019)
Switzerland Floodplain soil 593  < 2 mm PE, PS, PVC Scheurer and Bigalke (2018)
Singapore Coastal mangrove sediment 36.8  < 5 mm – Nor and Obbard (2014)
China (Guizhou Plateau) Agricultural soil 3000–8640 5 μm-5 mm – Zhang et al. (2022a)
China (Xinjiang) Plastic film mulched soil 2.13E + 04 ± 7200 10 μm-5 mm PP, PVC, PE Jia et al. (2022)
China (Qinghai) Agricultural soil 240–3660 0.45 μm-5 mm – Lang et al. (2022)
China (Guangxi) Coastal mangrove sediment 875.3 50 μm-5 mm PP, PS Zhou et al. (2020b)
China (Fujian) Coastal mangrove sediment 198.4 50 μm-5 mm PP, PS Zhou et al. (2020b)
China (Hainan) Coastal mangrove sediment 146.0 50 μm-5 mm PP, PS Zhou et al. (2020b)
China (Zhejiang) Coastal mangrove sediment 116.7 50 μm-5 mm PP, PS Zhou et al. (2020b)
China (Guangdong) Coastal mangrove sediment 98.7 50 μm-5 mm PP, PS Zhou et al. (2020b)
China (Shihezi) Green-belt soil 287–3227 20 μm-5 mm PS, PE Liu et al. (2022b)
China (Tibet) Plateau soil 47.21 2 mm-5 mm PVC, PP, PE Yang et al. (2022)
China (Yangtze plain) Riparian soil 3877 ± 2356 0.45 μm-5 mm PE, PP Zhou et al. (2021b)
China (Inner Mongolia) Agricultural soil 2526–6070 0.45 μm-5 mm – Wang et al. (2020)
China (Yangtze plain) Agricultural soil 4.94–252.7  < 5 mm PP Cao et al. (2021)
China (Jiangxi) Agricultural soil 16.4 ± 2.7  < 5 mm PP, PES, PE Yang et al. (2021b)
China (Shanxi) Agricultural soil 1430–3410 0.45 μm-5 mm PS, PE, PP Ding et al. (2020b)
China (southwest area) Agricultural soil 40–100 50 μm-10 mm PE, PP Zhang and Liu (2018)
China (Shanghai suburbs) Agricultural soil 78.00 ± 12.91 20 μm-5 mm PP, PE Liu et al. (2018)
China (Yunnan) Agricultural soil 1.97E + 04 50 μm-10 mm PP, PE Zhang and Liu (2018)
China (Northwest area) Agricultural soil 550–1.19E + 04 3 μm-5 mm – Cheng et al. (2020)
China (Shandong) Agricultural soil 1444 ± 986  < 5 mm PP, PE Yu et al. (2021b)
China (Wuhan) Agricultural soil 986 20 μm-5 mm PP, PA, PS Chen et al. (2020b)
China (Yunnan) Wetland soil 1.50E + 04 50 μm-10 mm PP, PE Zhang and Liu (2018)
China (Yunnan) Gully soil 2.41E + 04 50 μm-10 mm PP, PE Zhang and Liu (2018)
China (Hebei) Coastal tidal flat soil 158.5  < 5 mm PE, PP, PVC Zhou et al. (2016)
China (Shandong) Coastal tidal flat soil 1.3–14.7125  < 5 mm PE, PP, PS Zhou et al. (2018)
China (Shanghai) Rice-fish co-culture soil 10.3 ± 2.2 20 μm-5 mm – Lv et al. (2019)
China (Daliao River) Loam soil 60–980 5 μm-5 mm PP, PE Han et al. (2020)
China (Shanghai suburbs) Solonchak 256.67 ± 62.20  < 5 mm PP, PE Liu et al. (2018)
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(Jayasiri et al. 2013; Martins and Sobral 2011). Currently, 
the microplastics below 1 μm size have attracted the atten-
tion of scholars, which are easier to penetrate the cell mem-
brane and enter biological tissues and cells, as a result, more 
attention is demanded in further studies (Lusher et al. 2013; 
von Moos et al. 2012).

Land Use Patterns Affect the Distribution Characteristics

Different land use patterns are influenced by human activi-
ties of varying intensity, resulting in distinct microplastic 
sources and distributions (Haixin et al. 2022). In general, 
there is a positive correlation between microplastic concen-
trations and human activities, suggesting that microplastic 
contaminations become more severe with more frequent 
human activities (Scheurer and Bigalke 2018). Choi et al. 
(2020) found that the highest abundance of microplastics 
was found in soil adjacent to transportation systems (1108 
particles  kg−1), which was dominated by black styrene-
butadiene rubber fragments, and the least abundance of 
microplastics was found in forest soil (160 particles  kg−1). 

The results were attributed to soil adjacent to transportation 
systems being more directly affected by human activities, 
but forest soil was the opposite. Several studies identified the 
differences in microplastic shapes and sizes among differ-
ent land use types of soil. For example, in China, fibers and 
large particle sizes (1–5 mm) of microplastics were abun-
dant in cereal crops soil, and fragment shapes and pony-size 
microplastics (below 0.2 mm) were dominated in economic 
forest soil (Wang et al. 2021a). In Mu Us Sand Land, the 
abundance of fragments and fibers in woodland soil was 
significantly higher than that of grassland (Ding et al. 2021).

Migration and Degradation of Microplastics in Soil

Migration of Microplastics in Soil

The migration behavior of microplastics in soil is highly 
complicated (Fig. 3). The microplastics in surface soil are 
migrated through surface runoff and wind (Guo et al. 2020; 
Nizzetto et al. 2016a). The microplastics in the deeper soil 
are horizontally or vertically moved in soil pores with soil 

Table 1  (continued)

Location Soil type Abundance 
(particles  kg−1 dry 
weight)

Size range Component Reference

China (Shanghai suburbs) Paddy soil 190 ± 31.22  < 5 mm PP, PE Liu et al. (2018)
China (Shanghai suburbs) Loam soil 155 ± 95.17  < 5 mm PP, PE Liu et al. (2018)
China (Shanghai suburbs) Fluvo-aquic soil 136.67 ± 41.67  < 5 mm PP, PE Liu et al. (2018)
China (Mu Us Sand Land) Sandy soil 2696.5  < 5 mm PP, PE, PS Ding et al. (2021b)
China (Hangzhou Bay) Plastic film mulched soil 571.2 60 μm-5 mm PE, PP, PS Zhou et al. (2020a)
China (Hangzhou Bay) Non-mulched soil 262.7 60 μm-5 mm PE, PP, PS Zhou et al. (2020a)
China (Xinjiang) Plastic film mulched soil 80.3–1075.6 7 μm-5 mm PE Huang et al. (2020)
China (Northwest) Plastic film mulched soil 388.92  < 2 mm PE Meng et al. (2020)
China (Shenyang) Plastic film mulched soil 7183–1.06E + 04  < 5 mm – Li et al. (2022b)

Fig. 2  Global view of micro-
plastics in soil (Based on 
Table 1)
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water (Rillig et al. 2017a), soil animal transport (Rillig et al. 
2017b), plant roots bioturbation (Gabet et al. 2003), farm-
ing activities (Rillig et al. 2017a), etc. The current research 
mainly focuses on soil pores and bioturbation. The environ-
mental behavior of microplastics in soil and their effects on 
food chain and ecosystems should be investigated intensively 
on global scale in the future.

Soil is a porous media, and microplastics can migrate to 
the lower layer along with the soil pores. Liu et al. (2019b) 
used the Derjaguin-Landau-Verwey-Overbeek (DLVO) 
theory to explain the migration behavior of microplastics 
in porous media and found that the migration and adsorp-
tion processes of microplastics could be enhanced with the 
aging of microplastics. Wang et al. (2022b) found a strong 
affinity for the attachment behavior of microplastics onto 
soil, and the dominant mechanisms of attachment behavior 
were electrostatic interaction and physical trapping. In addi-
tion, microplastic properties (such as particle size, shape, 
type, and surface chemistry) and physicochemical properties 
of soil (such as soil pH, ionic strength, mineral composi-
tion, cation type, organic matter type and concentration, soil 
mechanical composition, liquid velocity, and surface rough-
ness) have been proven to play critical roles in determining 
the migration behavior of microplastics (Hou et al. 2020; 
Ren et al. 2021; Tan et al. 2021). In general, large porous 
medium particle sizes, small-sized microplastics, high soil 
pH, low ionic strength, high flow rates, the addition of ful-
vic acid, and wet-dry cycles can facilitate the transport of 
microplastics in porous media (Gao et al. 2021b; Hou et al. 
2020; O'Connor et al. 2019; Ren et al. 2021).

Microplastics are used as carriers of heavy metals and 
organic pollutants to co-transport in porous media. On the 
one hand, co-transport contaminants affect the mobility of 
microplastics. On the other hand, microplastics also affect 

the migration of co-transport contaminants in porous media 
(Ren et al. 2021). Hu et al. (2020) conducted the co-trans-
port of naphthalene with polystyrene nanoplastics (PSNP) 
in saturated sand columns and found that the existence of 
PSNP markedly enhanced the mobility of naphthalene at low 
ionic strength, but the existence of naphthalene decreased 
the mobility of PSNP, which was attributed to the charge-
shielding effect. Li et al. (2019) investigated the co-transport 
behavior of goethite and hematite particles with different-
sized PS latex microplastics in porous media. They found 
that the transport behavior depended upon the sizes of PS 
latex microspheres with no effects by 2 μm microplastics, 
moderately increased transport by 0.2 μm microplastics, and 
dramatically enhanced transport by 0.02 μm microplastics.

These studies provide new insights into the migration of 
microplastics in environments and afford important refer-
ences for the control of microplastics in soil ecosystems. 
There are many transport potential ways of microplastics 
in soil, determining the proportion of each pathway is thus 
crucial for predicting their ecological risks in soil, which 
favors optimizing risk models and implementing more tar-
geted monitoring and programs (Qi et al. 2020a).

Degradation of Microplastics in Soil

The degradation of microplastics can be divided into abiotic 
degradation and biological degradation (Fig. 3). Abiotic deg-
radation mainly includes photodegradation, chemical deg-
radation, and thermal degradation (Liu et al. 2022a), which 
leads to chain scission and crosslinking of plastics (Gewert 
et al. 2015; Malešič et al. 2005). Most plastic degradation 
studies have been conducted in the laboratory because of 
the slow degradation rate in natural environments. Cai et al. 
(2018) indicated that UV irradiation and oxygen were the 
important factors that affected the photo-oxidative degra-
dation of plastic pellets. According to Jiao et al. (2020), 
plastic litters (such as PE, PP, and PVC) were successfully 
photo-converted into  CH3COOH based on the mechanism 
of photoinduced cleavage and coupling of C–C bond. A 
new study found that PS aging could be accelerated at high 
temperatures, and the adsorption capacity of PS increases 
significantly with the increment of aging degree (Ding et al. 
2020a). Furthermore, the degradation rate of smaller micro-
plastics was faster than that of medium and large plastics, 
due to the higher surface to volume ratio.

Conventional non-degradable microplastics with high 
chemical stability are extremely slow in natural degrada-
tion. Commercial PP film is cultured in soil for 12 months 
and weight loss only 0.4% (Arkatkar et al. 2009). More than 
1 year is required to completely degrade biodegradable plas-
tic mulching residues in the wild environments (Ghimire 
et al. 2020). In addition, many anthropogenic influences also 
affect the degradation of microplastics in soil. For instance, 

Fig. 3  Migration and degradation of microplastics in soil environ-
ments
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a new broad-spectrum fungicide prothioconazole has a 
positive effect on the degradation of microplastics, which 
promotes the degradation of the microplastics and inhibits 
the adsorption of Cr, As, Pb, and Ba by microplastics and 
augments the adsorption of Cu (Li et al. 2020b). Moreover, 
composting treatment is an effective disposal method for 
biodegradable plastics because of higher microbial enrich-
ment and higher temperature in the composting process 
(Sintim et al. 2020).

Plastics are well known to be degraded slowly and thus 
persist in environments. According to the current production 
rate and degradation level of plastics, scholars estimated that 
the weight of plastics in marine environments would exceed 
that of fish in 2050 (Hong and Chen 2019). Moreover, harm-
ful volatile organic compounds can be released from oxi-
dative photo-degraded plastic fragments (Lomonaco et al. 
2020). Therefore, biodegradation with ecofriendly nature 
and mild reaction conditions has become the most optimal 
degradation method and a hotspot in agricultural environ-
ments in recent years. Soil is rich in microorganisms because 
it gives the microbes more available energy and better effi-
ciency in temperature retention. Therefore, biodegradation is 
the most important degradation mechanism in soil (Liao and 
Chen 2021). Several studies have revealed the biodegrada-
tion of plastics by soil animals (Song et al. 2020; Yang et al. 
2020). For example, land snails Achatina fulica were capa-
ble of biodegrading PS (Song et al. 2020), and earthworms 
Eisenia fetida could break down PLA (Wang et al. 2022a). 
Microorganisms also have the ability to degrade plastics, 
and most of the plastic-degrading microorganisms are iso-
lated from soil (Orr et al. 2004; Pranamuda et al. 1997). 
Genera Enterobacter, Bacillus, and Pseudomonas are the 
common bacteria for the biodegradation of plastics (Mohan 
et al. 2016; Shah et al. 2016, 2013). Apart from microor-
ganisms, enzymes for degrading plastic are also an impor-
tant research direction in plastic biodegradation, and some 
enzymes have been isolated and identified. Lu et al. (2022) 
successfully developed a robust and active PET hydrolase 
using a machine learning algorithm, and some PET products 
were all fully degraded by PET hydrolase within 24 h.

Analysis Methods of Microplastics in Soil

To date, the investigations on microplastics are considerable 
in aquatic environments, but relatively few in soil environ-
ments. The analysis methods of microplastics in soil mainly 
reference the relevant methods for analyzing microplastics in 
sediment (Chae and An 2018). Nevertheless, the research of 
soil microplastics proves more difficult and complex because 
the soil texture and aggregate structure have a significant 
effect on the flotation to a certain extent, and the organic 
matters and refractory compounds in soil interfere with the 
identification of microplastics (Du et al. 2020). Indeed, no 

standardized measurement guidelines for quantifying soil 
microplastics have been developed and enacted (Zhang et al. 
2022b).

The routine analysis protocol for soil microplastics 
includes sample collection, sample drying and sieving sepa-
ration, extraction, and quantitative and qualitative analysis of 
microplastics in soil (Fig. 4). A typical process of analysis 
of microplastics in soil is summarized as follows: (i) the 
pretreatment of soil samples; (ii) density separation; (iii) 
digestion of organic matter attached to the microplastics; 
(iv) visual identification of potential microplastics under a 
microscope, and then verified by infrared spectrometry and 
Raman spectroscopy (Masura 2015; Razeghi et al. 2021).

Along with the progress of related technologies, several 
advanced analysis methods appeared in the analysis proto-
col for soil microplastic analysis. Fluorescence staining is a 
quantification method for microplastic analysis using fluo-
rescence dyes. Fluorescence dyes preferentially adsorb onto 
plastic particle surfaces and emit fluorescence. After render-
ing them distinguish from natural materials, scholars can 
easily identify potential microplastics through fluorescence 
microscopes (Maes et al. 2017). However, some common 
biological materials can also be fluorescence stained by fluo-
rescence dyes but fail to be eliminated by digestion (Stanton 
et al. 2019). Consequently, using fluorescence staining alone 
results in a maximum 100% overestimation of microplastics, 

Fig. 4  Schematic diagram of analysis and detection methods for 
microplastics in soil
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and a combined method of μ-FT-IR and fluorescence stain-
ing is encouraged in future studies (Li et al. 2018a). Thermal 
analysis is a straightforward, validated, and rapid method of 
microplastic identification that identifies polymer accord-
ing to its degradation products. Besides, each polymer has 
characteristic degradation products and indicator ions that 
can be used to identify and quantify (Dumichen et al. 2017). 
Unfortunately, these techniques are limited by particle sizes 
and interfering substances, which destroy the color, size, 
and shape information of the microplastics, thus, subsequent 
analyses are inadvisable (Penalver et al. 2020). Metal labe-
ling technique is an advanced analytical technique that ena-
bles the tracing of microplastics in any environmental media. 
Although metal labeling technique cannot directly measure 
microplastics already present in natural environments, it can 
define as key parameters for microplastic interactions and 
transfers in environments (Mitrano et al. 2019).

Ecological Effects of Microplastics in Soil

Impacts of Microplastics on Soil Physical 
and Chemical Properties

As well known, considerable plastics in soil can destroy 
soil construction and harm soil physical and chemical prop-
erties. Plastics change the water-holding capacity of soil, 
reduce the infiltration of rainwater and irrigation water, seri-
ously hinder soil water and solute transport, and may lead 
to hypoxia (Wang et al. 2015). Furthermore, plastics also 
destroy soil aggregate structure, and reduce the soil aeration 
and water permeability, resulting in soil degradation, such 
as the increase in soil compaction and the decrease in soil 
porosity, finally affecting the growth of plants and micro-
organisms (Jiang et al. 2017; Zeng et al. 2013; Zhang et al. 
2018a). Global meta-analysis showed that the plastic mulch 
had multiple negative impacts on soil properties, including 
soil water evaporation capacity (at the mean rate of − 2% 
for every additional 100 kg  hm−2 of film residue), soil water 
infiltration rate (− 8%), soil organic matter (− 0.8%), and 
soil available phosphorus (− 5%) (Gao et al. 2018).

In contrast to macroplastics, microplastics can be inte-
grated into soil aggregates and have a significant impact on 
the structure and function of soil (Machado et al. 2018b; Qi 
et al. 2020b). In farmland soil of lakeshore in the Dianchi 
Lake basin, 72% of the microplastics are combined with 
soil aggregates, and the remaining 28% are dispersed in the 
soil (Zhang and Liu 2018). Due to the influence of envi-
ronmental components, microplastic types, and abundance, 
the relationship between soil aggregates and microplastics 
is complex. Zhang et al. (2019a) showed that PES microfib-
ers (average length of 2.65 mm) increased the formation 
and stability of water-stable large macroaggregates (above 

2 mm) in the pot experiment but not in the field experiment, 
and the water stability of soil aggregation induced by micro-
plastics was enhanced after 6 dry–wet cycles. This finding 
is not in line with a previous study reporting that soil con-
taining polyacrylic fibers (average length of 3756 μm) and 
PES fibers (average length of 5000 μm) displayed a marked 
decrease in water stable aggregates content with increasing 
microplastic concentrations (Machado et al. 2018b). A study 
in the Dian Lake basin suggested that the microplastic con-
tent in soil water stable microaggregates of 0.05–0.25 mm 
was significantly higher than that of water stability of aggre-
gates with above 2 mm and 0.25–2 mm sizes (Zhang and 
Liu 2018). This implies that microaggregates with high 
microplastic content are difficult to be agglomerated into 
large agglomerates and microplastics may harm soil struc-
ture formation. Moreover, microplastics also affect soil bulk 
density and pore size distribution. Microplastics reduce soil 
bulk densities which put down to the lower density of micro-
plastics compared with soil particles (Machado et al. 2019). 
Zhang et al. (2019a) found that the PES microfibers signifi-
cantly decreased volumes below 30 μm pores and inversely 
increased the volume above 30 μm pores.

Under the long-term action of soil environments, the sur-
face of microplastics is gradually rough, the specific surface 
area increasing, and the adsorption capacity significantly 
enhancing (Horton et al. 2017). On the one hand, the process 
of nutrient cycling in soil ecosystems can be affected by the 
adsorption of microplastics. Microplastic addition increases 
the nutrient contents of soil dissolved organic matter, and 
thus stimulates the enzymatic activity, activates the pools 
of organic C, N, and P, and promotes the accumulation of 
dissolved organic C, N, and P. Moreover, the presence of 
microplastics promotes the migration of nutrient elements 
between plants and soil (Liu et al. 2017). On the other hand, 
microplastics act as a carrier for the transport and transfor-
mation of pollutants. Presently, persistent organic pollutants 
(Huffer et al. 2019; Liu et al. 2019a; Rachman 2018; Wang 
et al. 2019b), heavy metals (Wang et al. 2019a; Yang et al. 
2019), additives (Groh et al. 2019; Hahladakis et al. 2018), 
and antibiotics (Li et al. 2018c; Sun et al. 2018) have been 
detected on the surface of microplastics in soil. They are 
absorbed by microplastics and spread in the soil with the 
migration of microplastics, and have a synergistic effect with 
microplastics thus posing a greater risk to soil safety and 
health. Although some studies already show the effect of 
microplastics on the migration and degradation of soil pol-
lutants, the related issues such as their promotion or inhibi-
tion of soil material circulation and their action mechanism 
are still unclear and need to be resolved urgently.

There is still a limited number of studies addressing the 
effects of microplastics on soil structure and function, and 
the behavior and mechanism of microplastics in soil are still 
essentially unknown at this time. Moreover, the structure 
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of soil aggregates is complex, in-depth studies are required 
to verify whether the effect of microplastics on soil can be 
negative or not.

Impacts of Microplastics on Soil Microorganisms

Soil microorganisms are one of the most active factors in 
soil. Some studies have paid attention to the responses of 
soil microorganisms to microplastics (Table 2). As shown in 
Table 2, we found that microplastics influenced negatively, 
neutrally, or positively on soil microorganisms. The impact 
of microplastics on soil microbial communities is shown to 
be selective (Zhang et al. 2021). Several previous studies 
have shown that PE increased the abundance of Actinobac-
teriota but decreased that of Proteobacteria (Li et al. 2022a; 
Ren et al. 2020). Fei et al. (2020) reported that PE increased 
the abundance of nitrogen cycling bacteria (Betaproteo-
bacteriales and Pseudomonadales), which confirmed that 
PE probably affected soil nitrogen cycling (Li et al. 2022a; 

Ren et al. 2020). These conflicting results suggest that the 
impacts of microplastics on soil microorganisms have not 
yet been a uniform conclusion.

Microorganisms can be adsorbed on the surface of 
microplastics for a long time to form biofilms and produce 
a unique bacterial community (Harrison et al. 2014; Zettler 
et al. 2013). This indicates that microplastics are a distinct 
habitat for soil microorganisms (Ya et al. 2021; Zhang et al. 
2019b). Zhang et al. (2019b) demonstrated that microplas-
tics in cotton fields were colonized by numerous microorgan-
isms, which significantly differed in structure from those in 
ambient soil and plant litter. Bacterial community diversity, 
composition, and structure are also affected by microplas-
tic amounts and types (Li et al. 2022a; Seeley et al. 2020). 
Unique bacterial communities were found on microplastics, 
which could provide potential hosts of antibiotic resistance 
genes (ARGs). Compared to the waterbody, fewer studies 
have limited comprehensive understanding of ARGs on soil 
microplastics (Liu et al. 2021). Zhu et al. (2022a) found 

Table 2  Effects of microplastics on soil microorganisms

Note: “–” represents unknown

Polymer type Concentration Size Effects Reference

PE 18% (w/w) – Actinobacteria and fungi abundance increased; soil bacterial diver-
sity decreased

Gao et al. (2021a)

PE 0.2% (w/w) 0.03 mm Pathogenic microorganisms abundance increased; microbial diver-
sity decreased

Li et al. (2021a)

PS, PLA 1% (w/w) 150–180 μm The alpha diversity increased Sun et al. (2022)
PU 1% (w/w) 4.28 mm Firmicutes, Bacteroidetes, Verrucomicrobia, and Fibrobacteres 

abundance increased
Lian et al. (2021)

PVC 1% (w/w)  < 0.9 mm Ramlibacter, Bradyrhizobium, and Luteimonas abundance increased Yan et al. (2021)
PE 2% (w/w) 150–250 μm Acidobacteria abundance increased; Shannon index increased Rong et al. (2021)
PE 7% (w/w) 150–250 μm Acidobacteria abundance increased; Shannon index decreased Rong et al. (2021)
PHAs 10% (w/w) – Acidobacteria and Verrucomicrobia abundance increased; the alpha 

diversity increased
Zhou et al. (2021a)

PVC 6.75, 33.75 (g  m−2) 20 mm Shannon–Weaver and Simpson indices decreased Wang et al. (2016)
PE 1% (w/w) 678 μm Sphingomonadaceae and Xanthobacteraceae abundance declined; 

Burkholderiaceae abundance increased;; bacterial diversity 
decreased

Fei et al. (2020)

PE, PS, PP 1% (w/w) 180–200 μm Shannon and Chao indices decreased Yu et al. (2021a)
PE, PS, PA, 

PLA, PBS, 
PHB

0.2%, 2% (w/w) 39–80 µm Ktedonobacterales abundance declined; Rhizobiales abundance 
increased; the alpha diversity of bacterial decreased

Feng et al. (2022)

PS 2% (w/w) 32.6 nm Soil microbial biomass decreased Awet et al. (2018)
PE 28% (w/w)  < 100 μm Actinobacteria replaced Proteobacteria as the dominant phylum; 

Shannon indices decreased
Hou et al. (2021)

PE 5% (w/w)  < 150 μm Acidobacteria, Nitrospirae and Bacteroidetes abundance declined Ren et al. (2020)
PS, 0.5% (w/w) 330–640 µm No significant effect in Shannon and Simpson index Xu et al. (2021)
PE, PVC, PET 1% (w/w)  < 2 mm No significant effect in soil microbial function Judy et al. (2019)
PLA 2% (w/w) 20–50 μm No significant effect in bacterial communities Chen et al. (2020a)
PE, PP 1% (w/w) 200–630 μm No significant effect in microbial community Blocker et al. (2020)
PE 2, 10, 15 (g  m−2) 37.13 µm No significant effect in microbial communities Lin et al. (2020)
PE 0.1%, 1%, 10% (w/w) 100–154 µm No significant effect in Arbuscular mycorrhizal fungal diversity Yang et al. (2021d)
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that ARGs were enriched in the biofilm compared to the 
soil, which suggested soil biofilms were hotspots of ARGs. 
Wang et al. (2021b) also found that microplastics were the 
hotspot of intl1 gene in soil and significantly increased the 
total relative abundance of ARGs.

Furthermore, microplastics can indirectly affect the life 
activities of soil microorganisms by altering soil physical, 
chemical, and aeriferous properties (Bandopadhyay et al. 
2018; Veresoglou et al. 2015; Zhang et al. 2021). Many stud-
ies have demonstrated that there was a positive and negative 
correlation between soil physicochemical properties and the 
abundance of various bacteria (Li et al. 2022a; Song et al. 
2018). Hou et al. (2021) showed that PE addition increased 
the relative abundance of Actinobacteria and reduced the 
relative abundance of Proteobacteria through soil bulk 
density.

Impacts of Microplastics on Soil Fauna

Microplastics accumulate in soil fauna through feeding 
behavior and have a certain toxic effect on soil fauna (Zhu 
et al. 2019). Studies on earthworms have shown that micro-
plastics could affect the growth, reproduction, and survival 
rate of earthworms, and after entering the body. They will 
destroy male reproductive organs, inhibit spermatogenesis, 
cause intestinal damage, and affect eating and excretion. 
(Kwak and An 2021; Lwanga et al. 2016, 2017a; Rodri-
guez-Seijo et al. 2017). Studies on nematode Caenorhabditis 
elegans showed that microplastics inhibited survival rates, 
body length, and reproduction (Le et al. 2018). Moreover, 
exposure to microplastics reduces calcium levels of nema-
tode Caenorhabditis elegans but increases expression of 
the oxidative stress response genes gst-4 and causes intes-
tinal damage and oxidative damage (Lei et al. 2018). Yu 
et al. (2020) showed that the toxicity of PS microplastics on 
nematode Caenorhabditis elegans might result from oxida-
tive stress and intestinal injury. Notably, the existing studies 
mainly focus on model animals, and other soil fauna is rather 
limited and warrants further research.

The toxic and harmful substances attached to the micro-
plastic surface harm soil fauna and result in pathological 
changes and even death of soil fauna. Chemicals leaching 
from microplastic additives, such as phthalates and bis-
phenol A, may also damage the endocrine system of verte-
brates through estrogenic activity (Machado et al. 2018a). 
Huang et al. (2021) demonstrated that the joint toxicity of 
microplastics and cadmium on earthworms caused oxida-
tive stress and sperm damage and inhibited the growth and 
reproduction of earthworms. Furthermore, microplastics can 
indirectly affect the life activities of soil fauna by altering 
soil physical and chemical properties (Rillig 2012). Com-
plex systems and wide distribution of soil fauna restrict 
the further study of soil animal groups. However, a deeper 

exploration is prerequisite for evaluating the overall impact 
of microplastic pollution on the soil ecosystems.

Impacts of Microplastics on Plants

Microplastics brought out negative effects on the growth 
of wheat (Triticum aestivum L.) (Bandmann et al. 2012; 
Kalcikova et al. 2017; Qi et al. 2018; Ren et al. 2022a), 
barley (Hordeum vulgare L.) (Li et al. 2021b), broad bean 
(Vicia faba) (Jiang et al. 2019), common bean (Phaseolus 
vulgaris L.) (Meng et al. 2021), cabbage (Brassica chinen-
sis L.) (Yang et al. 2021c), water celery (Lepidum sativum 
L.) (Bosker et al. 2019; Pignattelli et al. 2020), perennial 
ryegrass (Lolium perenne L.) (Boots et al. 2019), pumpkin 
(Cucurbita pepo L.) (Colzi et al. 2022), onion (Allium fis-
tulosum L.) (Machado et al. 2019), and rice (Oryza sativa 
L.) (Wu et al. 2020). Phytotoxicity caused by microplas-
tics may depend upon many variables, including polymer 
type, presence of additives, surface charge of plastics, and 
dose (Larue et al. 2021). For instance, Ren et al. (2022a) 
indicated that PLA fragments and PS beads significantly 
reduced plant height and base diameter, which adversely 
affected the growth of wheat seedlings. In another study, 
PES fibers induced the strongest effects on Allium fistu-
losum traits compared to PA beads and microparticles of 
high density PE (Machado et al. 2019). Sun et al. (2020) 
addressed that positively charged nanoplastics were uptaken 
less than negatively charged nanoplastics in root tips, but a 
higher accumulation of reactive oxygen species induced by 
these nanoplastics and more toxic to Arabidopsis thaliana. 
Besides, leaching of additives from plastics can also cause 
toxicity to plants (Gunaalan et al. 2020). However, micro-
plastics can also affect different plants positively or non-
significantly (Chen et al. 2022). For example, microplastics 
increase soil enzyme activity and nutrient turnover, and then 
affect plant growth (Zhou et al. 2021a). In the study of Liu 
et al. (2022c), the PE microplastic addition improved the 
nutrient uptake  (NH4

+-N and  NO3
−-N) by wheat.

The impacts of microplastics on plants are generally 
indirect. As mentioned above, microplastics have vari-
ous impacts on the carbon cycling processes, rhizosphere 
microbial community, and soil physicochemical properties, 
thus affecting the growth and development of plants (either 
positive or negative or nonsignificant) (Chen et al. 2022; 
Rillig et al. 2021). For example, Bacteroidetes of wheat 
rhizosphere used PHBV as a source of carbon resulting in 
a stimulation of nutrient efficiency (Zhou et al. 2021a); PS 
beads and degradable mulching film fragments enhanced 
abundance of the pathogen (Fusarium and Alternaria) to 
wheat, which was the dominant genus in the rhizosphere and 
adversely affected the crop (Ren et al. 2022b); PE powders 
decreased the diversity of rhizosphere soil bacterial commu-
nities (Zhu et al. 2022b). Lozano and Rillig (2020) indicated 
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that the positive effect on shoots and root containing PES 
microfibers was related to the reduction of soil bulk density 
and the improvement of aeration.

Conclusion and Perspectives

This paper reviews the current situation and ecological 
effects of microplastic pollution in soil. We have come to 
the following conclusions: (1) soil is a reservoir of micro-
plastics, exhibiting a wide distribution and high abundance; 
(2) distribution of microplastics in soil displays spatial het-
erogeneity, which may be affected by land use patterns and 
human activity intensity; and (3) microplastics can affect 
soil physical, chemical, and biological properties through 
several mechanisms, leading to different ecological effects.

More recently, research on soil microplastics has been 
gradually carried out, and some progress has been achieved, 
but the relevant research is not sufficient and systematic, and 
still requires filling the knowledge gap. The investigation of 
soil microplastics in the future might be carried out from the 
following aspects:

Microplastics have a wide distribution and high abun-
dance in soil. Therefore, there is an urgent need for large-
scale effective monitoring projects to evaluate the source and 
distribution of microplastics around the globe, and quantify 
the contribution of various natural processes and human 
activities to soil microplastic pollution. Metal labeling tech-
nique is an effective means of defining key parameters for 
microplastics transfer in environments. However, there is a 
lack of standardized processes and methods for analyzing 
and detecting microplastics in soil. To further investigate 
and comparably analyze the results, it is urgent to establish 
a set of standardized processes and methods for the analysis 
and detection of microplastics in soil, and a new systematic 
classification of microplastics with different shapes, sizes, 
and components.

The impact of microplastics on soil is complex, but 
related research is still scarce, and fails to draw a valid result 
at present. In the future, the categorized studies should be 
carried out from the aspects of soil types, microplastic types, 
and abundance to explore the effects of microplastics on 
soil physicochemical properties and nutrient cycling. Micro-
plastics also have compound pollution on soil when micro-
plastics act as vectors for other toxic pollutants (e.g., heavy 
metal ions, organic pollutants, antibiotics). However, the 
mechanism of synergetic or antagonistic effects of micro-
plastics and pollutants on soil needs to be elucidated. Fur-
thermore, future research should determine biological tox-
icity and dosage effects of microplastics on soil organisms 
and plants. The complexity of soil environments is critical 
to the no-sole action of microplastics, thus, it is necessary to 

systematically study the compound effects of microplastics 
and additives or other substances on soil.

The long-term accumulation of microplastics in soil will 
negatively affect plants. In particular, nanoplastics (micro-
plastics with a diameter of below 1 μm) are more prone 
to enter biological cells and demonstrate stronger ecologi-
cal and toxic effects. We know little about their pollution 
sources, transport trajectories, and bioaccumulation. Future 
studies should explore in-depth the microplastic-plant inter-
actions and migration mechanisms of microplastics in the 
soil–plant system. The rare-earth-metal labeling strategy is 
an effective means of quantifying and visualizing micro-
plastics within the plants and should be widely used in the 
future.

Biodegradation is an ideal removal way of microplastic in 
soil. On the basis of existing biodegradation studies, further 
studies are required to illustrate the effects of microplastic 
degradation in soil ecosystems and its mechanism. High-
throughput sequencing technology is an effective means of 
exploring the effects of microplastics in soil ecosystems. 
Future research should cover how biodegradable microplas-
tics affect soil ecosystems.
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