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Abstract 
The principal objective of the present paper is to meticulously review the family of biomaterials used in implants. A spec-
trum of applications of biomaterials in the perspective of prosthesis is also presented. This paper also emphasises on the 
review of the recent advancements in the field of biomedical implants with respect to mechanical engineering perspective. 
The latest technologies such as finite element modelling of prosthetic implants, additive manufacturing of implants and 
certain experimental methods adopted in the field of prosthesis are discussed. Moreover, various models were modelled 
using SOLIDWORKS® 2022 modelling software and analysed using ANSYS® 2021 R2 finite element analysing software 
and implant models were additive manufactured to make this review more interesting and for better understanding. Overall, 
the latest technology in the field of mechanical engineering that fuels its impact in life-saving biomedical engineering has 
been discussed briefly.
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Introduction

A prosthesis or prosthetic implant is a manmade medical 
device that replaces a missing body part, which might be lost 
through injury, malady, or a condition present during child-
birth. Prostheses are meant to re-establish the specific func-
tions of the missing body part. The world of innovation [1] 
has led to the development of smart prosthetic implants with 
enhanced aesthetic and functional fronts. The utilisation 
of prosthesis has become significantly important recently, 
driven by increasing aging population.

In the present medical research, different configurations 
of implants have been studied and implemented for various 
applications in the human body. The main objective of these 
implants (knee implant, hip implant, dental implant, bone 
plate, pacemaker, etc.) is focused towards the protection 

of human lives [2]. These applications differ in terms of 
their placement and positions subject to the biocompatibil-
ity of the human body. These implants are put in areas of 
high mechanical pressure, for example in the joints during 
bone replacement or in areas of high synthetic and elec-
trical movement, for example the use of neuroprosthetics 
[3]. Normally, the implants join the fractured bone as well 
as deliver good strength to the human body as a principal 
load-bearing member. Prostheses are broadly classified into 
external and internal prosthesis; the former deals with the 
artificial limbs and is employed externally; the latter deals 
with internal body implants (Fig. 1).

The perfect prosthesis should possess the characteristic 
features, viz. biocompatible to the human biological environ-
ment, corrosion resistance and wear resistance, acceptable 
solidarity to continue fatigue loading encountered by the 
joint and low moduli to limit bone resorption [4]. Modern 
composite materials like carbon fibre are making prosthetics 
both lighter and more grounded. Modern mechanical engi-
neering tools play a vital role in the field of prosthesis. The 
modern tools include finite element analysis of implants, 
modern fabrication processes like additive manufacturing 
and experimentation techniques. Progressions in additive 
manufacturing and biometrics have upgraded the lives of 
amputees. In the field of biomechanics, mechanical testing is 
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a very helpful tool. Mechanical testing is used in traditional 
biomechanics for a variety of purposes. For example, test-
ing may be used to identify the mechanical characteristics 
of bone under various loading modes and diverse circum-
stances, such as age and disease status [5, 6]. Testing can 
also be used to evaluate fracture fixation methods and sup-
port clinical techniques. Implants and biomaterials can be 
tested mechanically to verify their strength and suitability 
for therapeutic applications. There are several fundamentals 
that must be understood in order to do mechanical testing 
correctly, even though the information from a mechanical 
test will vary [7–9].

The nexus of biomedical innovations and mechanical 
engineering has grown more and more significant in recent 
years, providing a bright future for implants. A break-
through method in mechanical engineering called addi-
tive manufacturing (AM) is essential to creating complex, 
tailored structures that meet the particular requirements 
of biomedical applications. In order to help with design 
optimisation, finite element analysis (FEA) offers a potent 
tool for simulating the intricate mechanical behaviour of 
implants and biomaterials. In addition to these simula-
tions, experimental techniques offer useful empirical 
data that helps to validate and improve the models. The 
combination of mechanical engineering perspectives and 
biomedical engineering knowledge not only improves the 
accuracy and productivity of implant development, but 

it also creates new opportunities for innovation and the 
application of state-of-the-art technologies in healthcare. 
The potential for ground-breaking discoveries and game-
changing solutions in the field of implants is becoming 
more and more apparent as these two disciplines come 
together. This review deals with an introduction to differ-
ent biomaterials used for fabrication of internal prosthesis 
and their recent advancement technologies in the field of 
mechanical engineering (Fig. 2).

Biomaterials

Biomaterials are engineering materials which are compat-
ible to the human body. Every biomaterial is triggered to 
execute the assigned specific function for versatile applica-
tions [10]. Additionally, biomaterials possess the proper-
ties, viz. nontoxic, biocompatible, biotough, and ease in 
manufacturing. Biomaterials are either naturally available 
or synthesised in the research facility using metallic parts, 
polymers, ceramics or composite materials. Biomaterials 
are regularly utilised or potentially adjusted for clini-
cal applications and in this way include part of a human 
body or biomedical devices which performs, increases, 
or replaces a characteristic capacity [11]. The family of 
biomaterials is indicated in Fig. 3.

Fig. 1  Types of prosthesis
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Metals and alloys

Metallic biomaterials are mainly used in situations where 
maximum amount of load-bearing acts. Metallic bioma-
terials can be widely used in the field of prosthesis as they 
possess very good mechanical properties. But their bio-
compatibility is low; corrosion is possible in the physi-
ological environment and mechanical properties differ 
from human tissues [12]. Stainless steel, cobalt-chromium 
alloys and titanium alloys are the metals and alloys mostly 
used in the field of prosthesis [13–15]. In joint prosthesis, 
metallic implants are used in the knee, hip and shoulder. 
Metals are mainly used hip replacement as they are capa-
ble of bearing load [16, 17]. A hip implant assembled 
model of acetabular component, plastic liner, femoral head 

and femoral stem has been attempted in the present paper 
using SOLIDWORKS® 3D modelling software version 
2022 (Fig. 4a).

In knee replacement, metallic implants replace the load-
bearing surfaces of the knee joint to cure the pain and dis-
ability [18, 19]. A knee implant assembly model of femoral 
component, plastic spacer and tibia component has been 
undertaken in the present paper using SOLIDWORKS® 
2022 3D modelling software (Fig. 4b). In fracture fixation 
plates, metallic bone plates are used to heal the fractured 
bone [20, 21].

A distal femur locking bone plate model has been endeav-
oured  in the present paper using SOLIDWORKS® 2022 3D 
modelling software (Fig. 4c). In dental implants, metals are 
used as tooth replacement [22, 23]. In heart valves, implants 

Fig. 2  Schematic representation of the work
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are used to replace damaged heart valves. Metallic implants 
are used in caged disc and hinged leaflet valves [24].

Ceramics

Ceramic biomaterials are highly biocompatible, corrosion 
resistant, good compression resistant and low to thermal 
conductivity. Ceramics show numerous applications as 
biomaterials due to their physicochemical properties. They 
have the advantage of being inert in the human body, and 
their hardness and resistance to abrasion make them use-
ful for bones and tooth replacement. But ceramic compos-
ites possess low impact resistance and have difficulties in 

manufacturing and fabrication. Aluminium oxides, zirconia, 
calcium aluminates and calcium phosphates are the good 
candidate materials for ceramic materials in prosthesis 
[25, 26]. Zirconia is used in dental implants. It is bioinert, 
which means that it will never trigger chemical reactions, 
migrate to other sites in the body or corrode. However, if 
properly cared for, they are expected to last for 15–20 years 
or more, similar to titanium implants [27, 28]. A dental 
implant assembled model of crown, abutment and screw has 
been explored in the present paper using SOLIDWORKS® 
20223D modelling software (Fig. 4d).

As ceramics can lessen wear and corrosion, they are 
employed as a covering material for other implants. 

Fig. 3  Types of biomaterials

Fig. 4  Implants modelled using 
SOLIDWORKS modelling 
software
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Orthopaedic and dental implants are increasingly being 
coated with ceramic materials to increase their wear resist-
ance and promote tissue integration, which will increase 
the implant’s stability over time. Ceramics are used as bone 
grafts to replace a missing bone by trauma. Ceramic-based 
bone grafts are synthetic products that have been widely uti-
lised to reduce the need for iliac crest bone grafting. Ceramic 
matrices are inorganic, ionically bonded preparations that 
comprise a large collection of bone graft substitutes [29, 
30]. Ceramics are also used as endoprobe for endoscopy 
treatments to examine a person’s digestive tract without 
surgery [31, 32]. Ceramics are used as otologic implants 
to treat injuries related to ear. It is a surgically implanted 
electronic device that is placed in the temporal bone, which 
is located behind the ear. This is connected to an electrode 
array that has been inserted into the cochlea (inner ear) [33, 
34]. Ceramics are used in tissue engineering to replace the 
biological tissue. Bioceramics can be manufactured into a 
range of forms such as powder, coating, and bulk to serve 
various purposes in the repair or replacement of human tis-
sue [35, 36].

Polymers

Polymeric biomaterials are easy to synthesise and possess 
low density. Application of polymers is unlimited when 
compared to metallic and ceramic polymers. Since they may 
be made to suit a variety of uses, polymers are frequently 
employed in the manufacturing of implants. They are simple 
to manufacture and customise [37]. Biodegradable polymers 
[38] start to degrade inside the body in certain time when 
their work is complete. Polypropylene, polyethylene, Teflon, 
polymethyl methacrylate, silicone, and nylon are the mostly 
used prosthetic polymers. Polymeric biomaterials are used 
for making contact lenses for the enhancement of vision. The 
contact lenses lie on the cornea and they are a replacement 
for eyeglasses [39, 40]. A contact lens model has been intro-
duced in the present paper using SOLIDWORKS® 2022 3D 
modelling software (Fig. 4e).

Silicone is used in breast implants. These implants are 
used to change the size and shape of the breasts and also 
used to cure congenital defects and deformities of the chest 
wall. Most silicone and saline implants are FDA approved 
for 10–20 years, but this does not mean that you have to 
get them replaced every 10–20 years. You can safely go 
beyond these time frames, and most patients only have to 
have 1–2 replacements in their lifetime [41, 42]. Polymers 
are used in nasal implant which supports lateral cartilage in 
the nose. One implant may be used to correct one side, or 
two may be used to correct both sides of the nose to open 
the nasal passages. The material is gradually absorbed over a 
period of about 18 months. Supporting the cartilage reduces 
nasal airway obstruction [43, 44] and helps breathe better. 

Polymers are used as a coating material in cochlear implants 
that is used for improving the hearing [45]. Teflon is used for 
vascular implants, where they substitute an infected artery. 
Teflon has an excellent patency rate, is simple to apply, and 
has acceptable interactions with tissues. It also tolerates 
pressure and flows in medium and large arteries [46, 47]. 
An artificial stent model has been modelled in this paper 
using SOLIDWORKS® 2022 software (Fig. 4f).

Composite

Biomaterial using composites has a main advantage of flex-
ibility in design, as their properties are direction dependant 
and can be optimised [48]. Composites possess greater spe-
cific strength, greater specific stiffness, and greater fatigue 
strength with lesser weight. Due to these advantages, com-
posites replace other biomaterials in various prosthetic 
implants [49, 50]. In dental implants, composites are used in 
fixing the missing or damaged teeth. Different types of com-
posite used since its introduction include macrofill compos-
ites, microfill composites, hybrid composites, and nanofill 
composites [51, 52]. Composites and hybrid composites are 
used in tissue engineering [53, 54]. The usages of compos-
ite materials in the orthopaedics field have been increased 
drastically in the recent years. Composites are used for joint 
prosthesis in hip, knee and shoulder replacement [55, 56]. 
Composites are used in bone plates for curing the fractured 
bone. Composites are also used for making artificial bones 
for scientific analysis. Due to their capacity to precisely 
mimic the properties of real bone when compared to first-
generation and second-generation bone substitute materi-
als, composites are currently regarded as third-generation 
orthopaedic biomaterials. Due to the higher stiffness and 
strength of the inorganic material’s intrinsic qualities, the 
combination of polymers and ceramic phases results in com-
posite materials with superior mechanical capabilities [57, 
58]. Composites are used in artificial tendons which connect 
muscle to bone and are capable of holding the pressure. To 
mimic the compliance of a natural anterior cruciate tendon, 
an artificial ligament must meet stringent specifications and 
possess at least three crucial characteristics, such as high 
tensile strength, high elongation, and the suitable stiffness 
[59, 60].

Advancements in the field of implants: 
mechanical engineering perspective

Finite element simulation in implants

The finite element analysis (FEA) is the simulation of a sys-
tem utilising the numerical procedure so called finite ele-
ment method (FEM). The idea of breaking intricate items 
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down into smaller ones or building complicated objects 
out of simpler ones is the foundation of the finite element 
approach, also known as finite element analysis. Mathemat-
ics frequently does not provide sufficiently strong techniques 
for discovering the exact answer, and frequently not even 
an approximate one, to a practical problem. So, the funda-
mental principle behind the finite element approach is to 
use discrete components or pieces whose behaviour is com-
pletely known in order to solve a complex problem. In order 
to calculate and analyse complicated resistance construc-
tions with more specialised qualities, such as biomechanical 
ones, for which analytical calculation methods are no longer 
useful, the finite element analysis approach is also evidently 
necessary [61–63].

In the present paper, the finite element analysis of hip 
implant and femur bone has been carried out in ANSYS® 
2021 R2 (Fig. 5). Both were first modelled using SOLID-
WORKS® 2022. Then, this 3D model is imported into 
ANSYS® 2021 R2 environment and simulated. FEA has 
numerous applications in the field of implants; some are 
mentioned in Table 1 [64–72].

Additive manufacturing in implants

Additive manufacturing is an emerging area in the field of 
medical prosthesis which is a revolutionary manufacturing 
process that involves building three-dimensional objects 
layer by layer from digital models. Unlike traditional sub-
tractive manufacturing methods that involve cutting or 
shaping materials to create the desired object, additive 

manufacturing adds material gradually to create the final 
product. The process typically begins with the creation of a 
digital model using computer-aided design (CAD) software. 
This digital model is then sliced into thin cross-sectional 
layers. During the printing process, these layers are succes-
sively deposited, solidified, or fused to build up the final 
three-dimensional object. Various materials can be used in 
additive manufacturing, including plastics, metals, ceramics, 
and even biological materials. Different technologies exist 
within the realm of additive manufacturing, each with its 
own set of advantages and applications. Common techniques 
include fused deposition modelling (FDM), stereolithog-
raphy (SLA), selective laser sintering (SLS), and electron 
beam melting (EBM). Additive manufacturing offers sev-
eral benefits, such as the ability to produce complex and 
customised geometries, reduce material waste, and facilitate 
rapid prototyping and on-demand production. It has found 
applications across various industries, including aerospace, 
healthcare, automotive, and consumer goods [73]. Addi-
tive manufacturing is engineered to create both internal 
and external prosthesis. Additive manufactured prosthetics 
offer an economically and genuinely necessary assistance 
for the amputees. Additive manufacturing is becoming a 
major technique for the manufacturing of implants. It is a 
developing technology that creates a real-world 3D item 
from a 3D digital model. In 2012, a hand prosthesis known 
as “Robohand”—the first upper limb prosthesis to be 3D 
printed—was created. Since then, more additive manu-
factured prosthetic devices have become accessible, and 
the technology has continued to advance but is still in its 

Fig. 5  Finite element analysis. 
a Hip implant stem. b Femur 
bone
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early stages in several areas. In fact, more advancement is 
needed to enhance the comfort, strength, and functionality 
of additive manufactured prosthetics as well as to increase 
their anthropomorphism and cosmesis. The most creative 
and printable prosthesis is the hands. Also, the majority of 
additive manufactured upper limb prosthetics are made for 
kids. Their growth, which necessitates a recurring change 
in prosthesis, is the primary cause of this trend. For many 
families, having to continually buy new commercial equip-
ment is a burden. Hence, prosthesis serves as a temporary 
or permanent solution for this population. Furthermore, the 
abandonment rate can be reduced compared to traditional 
commercial prostheses since additive manufactured prosthe-
ses can be customised with patterns selected by the young 
receivers and some of the devices are lightweight and simple 
to activate [74–76]. Figure 6a is an additive manufactured 
hip implant stem, and Fig. 6b is a bone plate both additive 
manufactured using FDM technology. Table 2 [5, 77–84] 
explains the additive manufactured implants for biomedical 
applications Fig. 7 [85, 86].

Experimental methods for testing implants

Experimental validation plays a pivotal role in ensuring the 
accuracy, reliability, and real-world applicability of finite 

element analysis (FEA) simulations for implants. While 
FEA provides a powerful virtual platform to predict and 
analyse the mechanical behaviour of implants under various 
conditions, experimental validation serves as a crucial step 
in bridging the gap between simulation and reality. Experi-
mental testing of prosthesis is a challenging task. Setup for 
testing the implants is crafted based upon the requirements.

When these orthopaedic implants are mechanically tested, 
the rigidity of the implant, the number of cycles it can with-
stand before breaking, how the implant affects the rest of the 
body around it, and a variety of other requirements may be 
examined. Regardless of the situation or requirement, it is 
crucial to understand that an implant’s testing process should 
always aim to simulate how it would be mechanically loaded 
in the body during clinical use. The anatomy around the 
implant, the biomechanics of the implant, the body, and the 
interaction between the body and implant must all be con-
sidered during appropriate testing of orthopaedic implants. 
At every stage, one should be aware of the implant’s design 
and its intended use in patients.

Testing implants involves a range of setups to evalu-
ate their performance, durability, and safety. The specific 
setups can vary depending on the type of implant and the 
desired characteristics to be assessed. Mechanical testing 
rig is used in evaluating the mechanical strength, stability, 

Table 1  Application of finite element simulation in the field of prosthesis

Software used Prosthetic implant analysed Procedure followed Results obtained Ref

ABAQUS Hip prosthesis Material—titanium alloy
Loading—fixed in the bottom, load in 

the top

Von Mises stress [64]

ANSYS 11.0 Knee prosthesis Material—polyethylene chopped 
carbon fibre

Material—composite
Loading—compressive load

Distribution of shear stress, von Mises 
stress

[65]

SOLIDWORKS Shoulder prosthesis Material—cobalt-chrome
Loading—compressive and shear

Stress, displacement [66]

ANSYS Bone plate Material—SS, titanium, alumina, poly-
methyl methacrylate, nylon

Mesh—fine mesh
Loading—fixed in the bottom, com-

pression load from the top

Stress, directional deformation
Inference—titanium is said to be the 

better material for bone plates based 
on results

[67]

ANSYS Dental implant Material—cobalt-chrome
Loading—vertical load

Von Mises stress [68]

ABAQUS 6.12 Breast implant Material—silicone
Loading—static and dynamic load

Stress [69]

Inventor Professional 2017 Contact lenses Material—polymethyl methacrylate, 
polycarbonate

Loading—compressive

Von Mises stress, displacement [70]

ANSYS Maxillary implant Material—acrylic
Element type—isotropic and linearly 

elastic
Loading—buckle load

Von Mises stress [71]

ABAQUS Vascular implant (stent) Material—cobalt alloy
Mesh—four node membrane element

Deformation [72]
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and fatigue resistance of the implant. Instron or similar 
testing machines are often used to apply controlled forces, 
torque, or cyclic loading to simulate the physiological con-
ditions the implant may experience [5]. Wear and friction 
testing apparatus is used in examining the wear resistance 
and frictional properties of materials used in the implant. 
Tribometers or pin-on-disk setups simulate the relative 
motion between implant components to assess wear rates 
and friction coefficients [87, 88]. Electrochemical corro-
sion testing is used for evaluating the corrosion resist-
ance of metallic implants in physiological environments. 

Electrochemical cells are used to subject the implant to 
corrosive conditions, measuring parameters like corro-
sion potential and corrosion current [89, 90]. In vitro and 
in vivo testing chambers are used for assessing biological 
responses to implants in controlled environments. Cells 
or tissues are cultured in vitro on the implant surface or 
implanted into animal models to study factors like tissue 
integration, host response, and long-term stability [91, 92]. 
Radiographic testing setup is used for examining the struc-
tural integrity and positioning of implants. X-ray or CT 
imaging is used to visualise the implant within the body, 

Fig. 6  Additive manufactured. a 
Hip implant stem. b Bone plate

Fig. 7  Experimental testing 
[85]. a Hip prosthesis. b Femur 
model [86]
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allowing for assessment of its placement, alignment, and 
any potential issues [93, 94].

These setups collectively provide a comprehensive under-
standing of an implant’s performance, ensuring that it meets 
safety and efficacy standards before being introduced for 
clinical use. The combination of in silico (computational), 
in vitro (laboratory), and in vivo (animal or human) test-
ing allows for a thorough evaluation of implant behaviour 
in different contexts. Many of these experimental methods 
followed in testing the implants by the past researchers 
(Table 3) [85, 95–100].

Future directions and challenges

Exploration of the potential of 4D printing and advanced 
biofabrication techniques for creating dynamic and self-
assembling implants [101]. Investigation on the integration 
of nanotechnology for developing nanocomposite biomateri-
als with enhanced mechanical properties and targeted drug 
delivery capabilities. The introduction of nanoscale materi-
als can improve the performance and longevity of implants 
[102, 103]. Usage of patient-specific data, such as medical 
imaging and genetic information, to create custom-designed 
implants that fit patients’ unique anatomical and biome-
chanical characteristics [104, 105]. The development of 
smart implants equipped with sensors and actuators that can 

monitor their own performance and respond to physiologi-
cal changes [106, 107]. The advancement of biodegradable 
materials that can provide temporary mechanical support 
or drug delivery and then naturally degrade, reducing the 
need for additional surgeries for implant removal [108, 109]. 
Biomimetic design principles that mimic natural structures 
and mechanisms to create highly efficient and mechanically 
robust implants [110, 111]. The development of non-inva-
sive or minimally invasive techniques for assessing implant 
performance in vivo, allowing for real-time monitoring and 
early detection of potential issues [112, 113].

The challenge of implants is ensuring the long-term dura-
bility and reliability of implants, especially in high-stress 
environments. Exploring the strategies for improving the 
mechanical stability of implants over their lifespan [114, 
115]. Ongoing challenges related to biocompatibility, includ-
ing the immune response to implants and potential allergic 
reactions. Investigating the novel surface modifications and 
coatings to enhance biocompatibility [116, 117]. Addressing 
regulatory challenges related to the approval and standardi-
sation of new biomaterials and implant technologies [118, 
119]. Examining balance between developing advanced 
biomaterials and implants and ensuring cost-effectiveness 
for widespread adoption. Exploring strategies to make 
cutting-edge technologies accessible and affordable [120, 
121]. The challenges related to the integration of implants 
with the host tissue, such as minimising the risk of infection, 

Table 2  Application of additive manufacturing in the field of prosthesis

Prosthetic implant Material Technique Key points Ref

Hip prosthesis Polylactic acid Fused deposition modelling Polylactic acid hip prosthesis for medical 
demonstration

[77]

Knee prosthesis Polycarbonate Fused deposition modelling Wear and strength analysis was performed [78]
Shoulder prosthesis Polylactic acid Fused deposition modelling Additive manufacturing is useful for 

planning with accurate reproduction of 
transverse check anatomy

[79]

Bone plate Polylactic acid Extrusion bot filament extruder Additive manufacturing of plates, screw 
was done and additionally plates were 
loaded for localised drug delivery

[80]

Prosthetic teeth Methacrylate-based photo 
polymerised resin

Stereolithography technology Prosthetic teeth were additive manufac-
tured and chipping and indirect tensile 
fracture tests were conducted until frac-
ture. The results suggested that the used 
resin material is good for prosthetic teeth

[81]

Contact lenses Silicon and epoxy resin Print optical technology Lens made by this method of 3D printing 
can help optics designs at low cost

[82]

Nasal implant Alkali soluble photopolymer Projection-based micro stereo lithography Nasal cartilage implant was manufactured 
and hydrogel containing human stem 
cells were injected into the implant

[83]

Vascular implant Propylene fumarate Digital stereo lithography Additive manufacturing of a biodegradable 
polymeric vascular graft

[5]

Artificial tendon Polycarbonate Electro-hydrodynamic jet printing This method of tendon manufacturing has 
the effectiveness to be an alternative 
tendon regeneration tool

[84]
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promoting tissue regeneration, and preventing implant rejec-
tion [122]. Considering the ethical implications of implant-
able technologies, such as issues related to privacy, informed 
consent, and equitable access to advanced treatments [123, 
124]. Examining the environmental impact of biomaterials, 
implant production, and implementing sustainable practices 
and materials to reduce the ecological footprint of the field 
[125, 126].

Conclusion

This review paper enumerates the internal prosthetic implant 
in the view of materials, applications, additive manufactur-
ing, numerical and experimental modelling. The researches 
of biomaterials in synthesis of prosthesis are rapidly increas-
ing day by day in the scope of optimising the best devices as 
it is being reinforced in the human body. On the other hand, 
composite material plays a vital role in prosthetic implants 
due to their excellent characteristic features. Finite element 
simulation gives the freedom of choosing the best light-
weight materials, good mechanical behaviour and desired 
directional properties of the implants before being applied 
inside the human body. An attempt has been made in this 
paper for modelling hip implant, shoulder implant, bone 
plate, dental implant, contact lens, artificial stent models 

using SOLIDWORKS® 2022. A finite element model of 
a hip implant and femur bone is also explored in this paper 
using ANSYS® 2021 R2. 3D printing has been a remark-
able technology in the prosthetic field as it has reduced the 
time and cost in the manufacturing implants. 3D printing of 
a hip implant stem has been fabricated in this paper. Differ-
ent experimental setups are also being used for validating 
the performance of prosthesis. Various advancements are 
being made in the prosthetic field for the betterment of the 
properties of the biomaterials based on the desired applica-
tions. Thus, biomaterials are the future for the medical and 
engineering researchers for the design and development of 
optimal, sustainable, efficient and lightweight implants.
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Table 3  Experimental methods in prosthesis

Prosthetic implant Material Experimental technique Key points Ref

Hip prosthesis Polyether ether ketone and cobalt–
chromium–molybdenum

Hip simulator Cobalt–chromium–molybdenum 
taper sleeve inserted into the neck 
of the polyether ether ketone artifi-
cial hip prosthesis can significantly 
lower the micromotion of the head-
neck interface

[85]

Knee prosthesis Cobalt–chromium–molybdenum Leeds ProSim pneumatic six station 
knee simulator

This experiment helps in understand-
ing the wear properties of the 
implant and enhancing the wear 
property

[95]

Shoulder prosthesis Polyurethane Rocking-horse test This experiment is done to glenoid 
loosening in shoulder prosthesis 
and improves its design

[96]

Bone plate Carbon flax epoxy hybrid composite Tensile, shear and flexural test The experimentation overviews the 
material properties of carbon flax 
epoxy hybrid composite for bone 
plate fabrication

[97]

Bone plate E-glass fabric reinforced epoxy 
composite

Three-point bend roller spans A new bone plate model has been 
designed with the stiffness value 
nearer to that of the bone

[98]

Dental implant Zirconia and PMMA Laser subtractive process The fabrication of dental prosthe-
sis by this method improves the 
surface finish

[99]

Breast implant Poly implant prosthesis Scanning electron microscope analy-
sis and fatigue test

This experiment helps in demonstrat-
ing the rupture behaviour of breast 
implants

[100]
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