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Abstract 

Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lacta-
tion is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of com-
prehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput 
techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy 
goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before par-
turition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted 
lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabo-
lites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identi-
fied phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered 
pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty 
acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) 
and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased 
during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum lev-
els. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the satura-
tion and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and 
metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted 
adaptations of transition dairy goats.
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Introduction
Milk production in the dairy goat industry has more 
than doubled in the last 50  years (Pulina et  al. 2018). 
The metabolic status of dairy goats in the perinatal 
period is extremely important for milk production and 
quality (Stelletta et  al. 2008; Matthews 2016). Similar 
to cows, dairy goats experience dramatic changes in 
energy demands during the transition into lactation and 
are highly-susceptible to negative energy balance (NEB) 
(Bell 1995; Simões and Gutiérrez 2017). The metabolic 
pressure can trigger common metabolic diseases such 
as hypocalcemia (milk fever), fatty liver syndrome, and 
ketosis in dairy cows (Adewuyi et  al. 2005; McCarthy 
et  al. 2015; Ringseis et  al. 2015). Our previous study 
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also detected a sustained state of oxidative stress in 
dairy goats during the around parturition (Huang et al. 
2021). Metabolic diseases that occur in the peripar-
tal period might affect milk production, quality, and 
animal welfare, all of which delay the resumption of 
estrous cyclicity, and even milk production in the sub-
sequent lactation (McArt et al. 2012; Ribeiro et al. 2013; 
Sordillo and Raphael 2013; Raboisson et al. 2014). Thus, 
peripartal health management programs for dairy goats 
are critical for animal welfare and economic outcomes.

Although excessive lipolysis is presently recognized 
as an important factor for developing ketosis and fatty 
liver, the molecular basis of successful or impaired 
adaptations to the metabolic challenges in early lacta-
tion dairy goats remains incomplete (Ceciliani et  al. 
2018). In recent years, metabolomics has become a 
useful tool for understanding the disease pathophysiol-
ogy and contributing to identify disease biomarkers for 
use in preventive protocols (Saleem et  al. 2012; Haile-
mariam et  al. 2014; Ceciliani et  al. 2018; Wang et  al. 
2020). Untargeted metabolomics involves the quali-
tative determination of chemical signatures in a bio-
logical sample such as blood (Schrimpe-Rutledge et al. 
2016). In contrast, targeted metabolomics analyzes spe-
cific metabolite clusters associated with certain meta-
bolic pathways such as lipid species. Using untargeted 
metabolomics, a recent study identified variations in 
the metabolome, indicated enrichment in pathways 
such as lipid, glucose (GLU), and nucleotide metabo-
lism after calving along with a decrease in amino acid 
metabolism (Luo et  al. 2019). Some studies have also 

identified changes in acylcarnitines (ACs), glycerophos-
pholipid, and sphingomyelin in the blood of peripartal 
dairy cows (Kenez et  al. 2016). However, very little is 
known about metabolome profiles in peripartal dairy 
goats.

The present study used untargeted metabolomics and 
targeted lipidomics for analyzing plasma metabolite pro-
files in peripartal dairy goats at seven crucial time points 
(d 21, 14, 7 before parturition, on the kidding day, and d 
7, 14, 21 postpartum). The objectives of this investigation 
involved (1) clarifying the metabolic changes in small 
molecule metabolites during the peripartal period; and 
(2) identifying potential biomarkers for characterizing 
new pathways that might be perturbed under metabolic 
stress.

Results
Plasma biochemical indices
An overview of the experimental design is shown in 
Fig.  1. Table  1 presents a summary of the biochemical 
data. Observations indicate significant changes in the 
plasma biochemical indices (non–esterified fatty acids 
[NEFA], β-Hydroxybutyrate [BHB], aminotransferase 
[AST], alanine aminotransferase [ALT], lactate dehy-
drogenase [LDH], total protein [TP], triglyceride [TG], 
total cholesterol [TC], urea, P < 0.05) during the peri-
partal period. Antepartum, plasma NEFA levels showed 
an increase, followed by a significant decrease postpar-
tum. Plasma BHB levels displayed a significant increase 
at P-14 d and displayed an upward trend throughout the 

Fig. 1 Overview of the experimental design. Ninety-six multiparous healthy Guanzhong dairy goats (primiparous, Shaanxi, China) of similar age, 
BCS, and due date were selected. The subset of goats used was selected to include only healthy animals with a gap between expected and real 
kidding day of two days or less. Subsequently, A subset of 9 clinically-healthy dairy goats were used
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perinatal period. The goats exhibited low levels of plasma 
AST and LDH at P-7 d, subsequently reaching maximum 
levels at P + 7 d. Plasma ALT and TG levels presented a 
significant decrease at P-7 d with a sustained low level 
thereafter. Plasma TP levels indicated a decrease at 
P + 14 d and reached minimum levels at P + 21 d. Plasma 
TC levels showed a significant decrease at P 0 d and 
remained low over the observation period. Meanwhile, 
the plasma urea levels displayed a statistically significant 
increase at P + 7 d (P < 0.05) and persisted at high levels 
until the observation period’s end.

Table  1 summarizes the biochemical data. The bio-
chemical indices (NEFA, BHB, AST, ALT, LDH, TP, TG, 
TC, urea, P < 0.05) in plasma changed significantly dur-
ing the peripartal period. The plasma NEFA levels was 
increased antepartum and then rapidly decreased post-
partum. The plasma BHB levels increased significantly at 
P-14 d and maintained an upward trend over the perina-
tal period. The goats exhibited low plasma AST and LDH 
levels at P-7 d, and reached maximum levels at P + 7 d. 
The plasma ALT and TG levels decreased significantly at 
P-7 d and remained low thereafter. The plasma TP lev-
els decreased at P + 14 d and reached the minimum levels 
at P + 21 d. The plasma TC levels were found to decrease 
significantly at P 0 d and remained low thereafter. The 

plasma urea levels increased significantly at P + 7 d and 
remained high until the end of the experiment (Fig. 1).

Untargeted metabolomics analysis
A total of 156 different metabolites were identified and 
quantified after quality control (QC). The principal 
component analysis (PCA) score plot (Fig.  2A) shows 
the distribution of samples from the 7-time points. 
Three groups before kidding and the other three groups 
after kidding were clustered together separately with no 
intersection and were separated from the P 0 d group. 
The orthogonal partial least squares discriminant anal-
ysis (OPLS-DA) analysis and the permutation tests 
(Fig.  2C and E) showed that based on the OPLS-DA 
models, the P-21 d and P 0 d groups were discriminated 
with  R2Y = 0.963 and  Q2 = 0.925. On the other hand, 
the P + 21d and P 0 d groups were discriminated with 
 R2Y = 0.948 and  Q2 = 0.88. There was a clear separation 
with no overlap for the OPLS-DA plots of the plasma 
metabolomics data. The stability and reliability of the 
OPLS-DA model were confirmed by the satisfactory 
explanatory and predictive values for the intercepts  (R2, 
 Q2) of the permutation testing (Fig. 2D and F).

Table 1 Biochemical data of dairy goats during the perinatal  period1

1 Data are expressed as mean ± SE (n = 9/group). Mean values with different letters (a–c) in rows show statistically significant differences (P < 0.05). *ANOVA 
P-value < 0.05. P-21 d, P-14 d, P-7 d (d 21,14 and 7 before the due date), P 0 d (the day of kidding), and P + 7 d, P + 14 d, P + 21 d (d 7, 14, and 21postpartum)
2 GLU Glucose, AST Aspartate aminotransferase, ALT Alanine aminotransferase, CHE Cholinesterase, GGT  γ-glutamyl transpeptidase, LDH Lactate dehydrogenase, ALP 
Alkaline phosphatase, TP Total protein, ALB Albumin, GLB Globulin, HDL High density cholesterol, LDL Low density cholesterol, TG Triglyceride, TC Total cholesterol

Day relative to kidding

Biomarker2 P-21 d P-14 d P-7 d P 0 d P + 7 d P + 14 d P + 21 d

NEFA* (mmol/L) 0.273 ± 0.068b 0.200 ± 0.046b 0.438 ± 0.048ab 0.691 ± 0.182a 0.162 ± 0.066b 0.183 ± 0.028b 0.146 ± 0.031b

BHB* (mmol/L) 0.253 ± 0.017c 0.323 ± 0.012 bc 0.305 ± 0.022 bc 0.401 ± 0.032b 0.455 ± 0.044ab 0.520 ± 0.041ab 0.544 ± 0.037a

GLU (μmol/L) 3.22 ± 0.087 3.76 ± 0.186 3.3 ± 0.392 4.04 ± 0.586 4.16 ± 0.301 4.18 ± 0.190 3.76 ± 0.129

AST* (U/L) 80.6 ± 4.28ab 86.2 ± 5.97ab 67.4 ± 10.0b 81.8 ± 10.9ab 99.8 ± 5.20a 85.6 ± 5.00ab 77.2 ± 4.19ab

ALT* (U/L) 18.2 ± 1.01ab 19.8 ± 1.21a 13.6 ± 2.19b 16.2 ± 1.02ab 17.2 ± 1.67ab 14.4 ± 1.51ab 13.6 ± 1.07b

AST/ALT 4.51 ± 0.26 4.40 ± 0.26 4.63 ± 0.62 5.28 ± 0.67 6.18 ± 0.53 6.57 ± 0.77 5.90 ± 0.41

CHE (U/L) 124 ± 5.83 134 ± 7.31 107 ± 13.9 114 ± 9.20 141 ± 10.3 129 ± 7.85 119 ± 7.07

GGT (U/L) 54.8 ± 2.93 59.4 ± 3.58 46.0 ± 7.44 52.2 ± 3.63 61.0 ± 3.75 65.8 ± 4.93 62.8 ± 4.553

LDH* (U/L) 289 ± 11.2ab 259 ± 29.1ab 226 ± 23.5b 287 ± 19.2ab 319 ± 18.2a 290 ± 12.1ab 307 ± 22.9ab

ALP (U/L) 263 ± 39.2 292 ± 59.5 149 ± 30.6 159 ± 26.9 127 ± 28.3 150 ± 27.6 162 ± 39.0

TP* (g/L) 45.6 ± 1.36ab 52.2 ± 3.02a 46.6 ± 3.69ab 47.8 ± 3.27ab 47.4 ± 2.55ab 41.2 ± 2.74ab 37.2 ± 1.77b

ALB (g/L) 26.5 ± 0.786 29.5 ± 1.37 26.8 ± 2.74 27.1 ± 1.61 29.7 ± 1.34 27.5 ± 1.47 25.5 ± 0.758

GLB (g/L) 67.2 ± 1.47 74.9 ± 3.34 66.7 ± 6.82 68.7 ± 3.68 81.7 ± 4.05 75.6 ± 3.07 69.1 ± 2.05

HDL (mmol/L) 1.17 ± 0.065 1.48 ± 0.087 1.32 ± 0.157 1.25 ± 0.089 1.38 ± 0.086 1.23 ± 0.077 1.13 ± 0.051

LDL (μmol/L) 628 ± 44.2 742 ± 71.3 642 ± 71.5 540 ± 50.1 734 ± 73.9 518 ± 41.4 542 ± 39.7

TG* (mmol/L) 2.06 ± 0.090b 2.52 ± 0.141a 1.84 ± 0.281b 1.92 ± 0.141ab 2.41 ± 0.151ab 1.88 ± 0.126ab 1.85 ± 0.083ab

TC* (μmol/L) 288 ± 30.0abc 362 ± 38.2a 334 ± 49.3ab 154 ± 18.4c 162 ± 14.4c 164 ± 40.3c 196 ± 29.3bc

urea* (μmol/L) 4.66 ± 0.233b 5.29 ± 0.361b 4.23 ± 0.315b 5.25 ± 0.530b 7.78 ± 0.399a 7.08 ± 0.390a 7.62 ± 0.507a
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The high variable importance in projection (VIP) 
scores indicated the metabolites contributed greatly 
to the group separation. Based on the VIP value in the 
OPLS-DA model (VIP > 1) and P-value in the student’s 
t-test (P < 0.05), 23 and 20 differential metabolites 
were identified in P 0 d vs. P-21 d and P 0 d vs. P + 21 
d groups, respectively (Table  2 and Fig.  2B). The VIP 

score plot highlighted the 15 top-scoring metabolites 
(Fig. 3). Most metabolites were more abundant in the P 
0 d group, such as pyruvic acid, cholic acid, oxoglutaric 
acid, L-acctylcarnitine, indolelactic acid, stearoylcarni-
tine, oleic acid, compared to P + 21 d and P-21 d group, 
respectively. There were also changes in the differential 

Fig. 2 Metabolite profiles of perinpartal dairy goats: A principal component analysis (PCA) score plot for the seven groups, B Venn diagram analyses 
for differential metabolites, C and D orthogonal partial least squares discriminant analysis (OPLS-DA) score plot and permutation test plots for P-21 
d vs. P 0 d, E and F OPLS-DA score plot and permutation test plots for P 0 d vs. P + 21d. t[1], first principal component. to[2], second orthogonal 
component. The intercept limit of  Q2, calculated by the regression line, is the plot of Q.2 from the permutation test in the OPLS-DA model. P-21 d, 
P-14 d, P-7 d (d 21,14 and 7 before the due date), P 0 d (the day of kidding), and P + 7 d, P + 14 d, P + 21 d (d 7, 14, and 21postpartum)
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Table 2 List of VIP scores of OPLS-DA and P-value for the non-targeted metabolomics  modelsa

a VIP Variable importance in projection, OPLS-DA Orthogonal partial least squares discriminant analysis, P values refer to paired t‐test. P-21 d (d 21 before the due 
date), P 0 d (the day of kidding), and P + 21 d (d 21postpartum)

P-21 d vs. P 0 d P + 21 d vs. P 0 d

Metabolites VIP P value Metabolites VIP P value

Pyruvic acid 4.956 0.0196 p-Cresol sulfate 5.667 0.0165

Cholic acid 4.388 0.0064 Phenylacetylglycine 3.709 0.0003

Oxoglutaric acid 4.266  < 0.0001 Hippuric acid 3.499 0.0140

L-Acetylcarnitine 2.868 0.0003 Glycocholic acid 3.376 0.0478

Glycocholic acid 2.615 0.0110 Pyruvic acid 3.159 0.0373

Indolelactic acid 2.586  < 0.0001 Proline betaine 2.627  < 0.0001 

Stearoylcarnitine 2.480  < 0.0001 Oxoglutaric acid 2.556  < 0.0001 

Oleic acid 2.453 0.0015 Betaine 2.302  < 0.0001 

Uric acid 2.122  < 0.0001 Oleic acid 2.276  < 0.0001 

L-Palmitoylcarnitine 1.947  < 0.0001 Cholic acid 2.269 0.0171

Oleoylcarnitine 1.867  < 0.0001 Phenol sulphate 2.188 0.0006

2-Hydroxybutyric acid 1.849 0.0003 L-Acetylcarnitine 2.106 0.0002

Hydroxyphenyllactic acid 1.395  < 0.0001 Stearoylcarnitine 2.055  < 0.0001 

L-Tyrosine 1.346 0.0042 Citric acid 1.925 0.0265

L-Tryptophan 1.276  < 0.0001 Indolelactic acid 1.783 0.0001

2-Ethylhydracrylic acid 1.275 0.0001 L-Palmitoylcarnitine 1.593  < 0.0001 

L-Carnitine 1.270 0.0002 Oleoylcarnitine 1.542  < 0.0001

C17-carnitine 1.257 0.0006 Uric acid 1.406  < 0.0001

L-Valine 1.240 0.0012 Indoxyl sulfate 1.388 0.0428

Proline betaine 1.148 0.0001 Linoleic acid 1.075  < 0.0001

L-Methionine 1.139 0.0128

L-Threonic Acid 1.135 0.0015

Linoleic acid 1.135 0.0005

Fig. 3 Rank order of the top 15 discriminating metabolites by variable importance in projection (VIP) scores: A P-21 d vs. P 0 d, B P 0 d vs. P + 21d. 
P-21 d, d 21 before the due date; P 0 d, the day of kidding; P + 21 d, d 21postpartum
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metabolites during the peripartal period as demon-
strated in Fig. S2 as box plots.

Functional annotation and pathway enrichment
Differentially altered metabolites were analyzed 
through the KEGG Metabolome Database and Meta-
boAnalyst. They were marked based on published arti-
cles and KEGG analysis (Fig.  4). The relative variation 
of differentially altered metabolites during the peri-
partal period was displayed in the form of heat maps 
in the metabolic network. To gain further insight into 
the changes in metabolic processes during the peripar-
tal period, the pathway enrichment was analyzed using 
significantly-altered metabolites (Fig. 5). Here, phenyla-
lanine metabolism, aminoacyl-tRNA biosynthesis, and 
citrate cycle (TCA cycle) were identified as significant 
pathways.

Targeted lipidomics analysis
Numerous fatty acids and ACs related to beta-oxidation 
and mobilization of fat storage were identified as sta-
tistically significant. Thus, high-coverage lipidomics 
was performed for elucidating changes in lipid metab-
olism during parturition in dairy goats. The lipidomic 
analysis quantitated 466 lipids spanning 20 lipid classes 
(Fig. 6A). The TAG (n = 104) followed by PC (n = 89), PE 
(phosphatidylethanolamines, n = 55) and SM (Sphingo-
myelins, n = 29) had the highest diversity of individual 
lipid molecular species. Changes in each lipid subclass 
during the peripartal period are shown in Fig. S3. The 
differentially expressed lipids were screened by deter-
mining |log2FC|> 1 and FDR < 0.05 from Limma model 
(Fig.  6C and D). There were 101 and 54 differentially 
expressed lipids in P 0 d vs. P-21 d and P 0 d vs. P + 21 d 
groups, respectively (Table 3 and Fig. 6B). Compared to 
P-21 d, 12 TAG were significantly reduced (log2FC < -2) 

Fig. 4 Differentially altered metabolites in lipid metabolism, energy metabolism, and amino metabolism pathways. The colors of the cells indicate 
the relative change during the peripartal period. P-21 d, P-14 d, P-7 d (d 21,14 and 7 before the due date), P 0 d (the day of kidding), and P + 7 d, 
P + 14 d, P + 21 d (d 7, 14, and 21postpartum)
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at P 0 d, while PS 40:5, PS 40:6 and PE 40:6 were sig-
nificantly increased (log2FC > 2). Compared to P 0 
d, there was significant reduction in 4 ACs and 7 PS 
(log2FC < -2) at P + 21 d, while LPI 18:0, LPI 20:3, Cer 
d(18:0/25:1), TAG 52:5(16:1), and TAG 56:4(18:1) were 
significantly increased (log2FC > 2) (Table 4).

Hierarchical clustering heatmap plots for PC and 
FFA were generated using hierarchical clustering anal-
ysis (Fig.  7). PC38:6(18:0/22:6), PC40:6(18:0/22:6), 
PC40:5(20:1/20:4) were clustered together (Fig.  7A, 
group2) and did not change significantly in the peripar-
tal period (Fig.  8A). However, the PC species with fatty 
acyl chains of 20:3 (Fig.  7A, group4) were clustered 
on the other side and decreased significantly at P 0 d 
(Fig.  8B). The polyunsaturated fatty acids (PUFA) with 
more than 20 carbons and other fatty acids were divided 
into two categories using hierarchical clustering (Fig. 7B, 
group1, and group2). The PUFA (C20:4, C22:4, C22:5, 
C22:6) increased at P-7 d, and then declined or remained 
unchanged at P 0 d (Fig.  8C). The SFA (saturated fatty 
acid, C16:0, C18:0) and MUFA (monounsaturated fatty 
acid, C16:1, C18:1) were significantly elevated at P 0 d 
(Fig.  8D). Lastly, there were interrelationships among 
the differential metabolites, screened by lipidomics and 

untargeted metabolomics, and biochemical markers 
(Fig. S4).

Discussion
The untargeted metabolomics measurements revealed 
that metabolic profiles of goats in the antepartum and 
postpartal periods were different from those on the day 
of kidding. The resilience to metabolic stress is crucial for 
determining subsequent health, production, and repro-
ductive performance (Matthews 2016). Thus, the present 
study aimed to investigate the changes and interactions 
of various small-molecular-weight metabolites in the 
plasma of dairy goats during the peripartal period.

Fatty acids derived from adipose tissue lipolysis are 
oxidized for providing energy primarily through mito-
chondrial β-oxidation. An increase in fatty acid oxida-
tion induces excessive oxidative stress, and the observed 
increases in 2-hydroxybutyrate and uric acid reflected an 
imbalance between prooxidants and antioxidants (Ames 
et  al. 1981; Gall et  al. 2010; Fahrmann et  al. 2015). Our 
previous study demonstrated a sustained state of oxi-
dative stress in dairy goats during the peripartal period 
(Huang et al. 2021). Oxidative stress has the potential to 
restrict the functioning of α-ketoglutarate dehydrogenase 
in mitochondria, thus resulting in the accumulation of 

Fig. 5 Metabolic pathway analysis using MetaboAnalyst 4.0. Circles represent metabolic pathways. Darker circles indicate more significant changes 
for metabolites in the corresponding pathway, whereas the size of the circle corresponds to the pathway impact score
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α-ketoglutarate (Tretter and Adam-Vizi 2005). Uric acid 
inhibits mitochondrial aconitase activity, but activates 
ATP citrate lyase (Lanaspa et  al. 2012). A reduction in 
the activity of aconitase inhibits the formation of citric 
acid, leading to lower citric acid on the day of kidding. 
As important intermediates of the TCA cycle, changes in 
α-ketoglutarate and citric acid indicate TCA cycle flow 
interruption. A study of clinical ketosis in cows demon-
strated that defects in TCA cycle flux can aggravate the 
severity of ketosis (Zhang et  al. 2013). Therefore, the 
increase in the capacity of the TCA cycle is important to 

prevent energy metabolism disorders in transition dairy 
goats. Pyruvate not only enters the TCA cycle through 
the action of pyruvate dehydrogenase, but also gener-
ates glucose through the action of pyruvate carboxylase 
and phosphoenolpyruvate carboxylase (PEPCK). Altera-
tions in the TCA cycle could account for the accumula-
tion of pyruvate, channeling it to the gluconeogenesis 
pathway (Yoshimi et  al. 2016). Greenfield et  al. (Green-
field et al. 2000) speculated that an increase in abundance 
of pyruvate carboxylase and PEPCK mRNA during the 
early transition period was indicative of an increase in 

Fig. 6 Plasma target lipidomic analysis of transition dairy goats: A Percentage of lipid species, B Venn diagram analyses of differentially altered 
lipids, C Volcano plot showing differentially altered lipids between P-21 d (d 21 before the due date) and. P 0 d (the day of kidding), D Volcano 
plot showing differentially altered lipids between P 0 d and P + 21d (d 21postpartum). Differential altered lipids (|log2FC|> 2) are highlighted 
with lipid names. The two dashed vertical lines indicate log2FC of -1 (left) and 1 (right). The dashed horizontal line indicates a false discovery rate 
(FDR) of 0.05. ACs, acylcarnitine; CE, cholesteryl esters; Cer, ceramides; DAG, diacylglycerols; FFA, free fatty acids; GM3, monosialogangliosides; PA, 
phosphatidic acids; PC, phosphatidylcholines; LPC, lyso-PC; PE, phosphatidylethanolamines; PG, phosphatidylglycerols; PI, phosphatidylinositols; PS, 
phosphatidylserines; S1P, sphingosine-1-phosphate; SM, sphingomyelins; TAG, triacylglycerols
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Table 3 List of differentially altered lipids in P-21 d vs. P 0 d 
(|log2FC|> 1, FDR < 0.05)a

Lipidb Log2FC FDR Lipid Log2FC FDR

12:0-carnitine 1.04 0.0014 TAG50:1(18:1) -1.14 0.0003

14:0-carnitine 1.14 0.0001 TAG50:2(16:1) -1.78  < 0.0001

14:1-carnitine 1.51 0.0001 TAG50:2(18:1) -1.55  < 0.0001

16:0-carnitine 1.26  < 0.0001 TAG50:3(16:0) -1.21 0.0001

16:1-carnitine 1.66  < 0.0001 TAG50:3(16:1) -1.66  < 0.0001

16:2-carnitine 1.30 0.0106 TAG50:3(18:1) -1.15  < 0.0001

17:0-carnitine 1.39 0.0001 TAG50:3(18:2) -1.21 0.0003

18:0-carnitine 1.48  < 0.0001 TAG50:4(16:2) -1.76 0.0461

18:1-carnitine 1.72  < 0.0001 TAG51:0(17:0) -1.32  < 0.0001

FFA18:1 1.06 0.0024 TAG51:2(15:0) -1.76  < 0.0001

FFA18:2 1.08 0.0001 TAG51:2(17:0) -1.33 0.0002

FFA22:6 1.00 0.0057 TAG51:2(17:1) -1.75  < 0.0001

PE40:6 2.06 0.0106 TAG51:3(17:1) -1.73  < 0.0001

PS 38:4(18:0/20:4) 1.07 0.0057 TAG52:0(18:0) -1.32 0.0017

PS 40:4 1.34 0.0004 TAG52:1(16:1) -1.52 0.0001

PS 40:5 3.00 0.0002 TAG52:1(18:1) -1.24 0.0020

PS 40:5(18:0/22:5) 1.96  < 0.0001 TAG52:2(16:0) -1.09 0.0003

PS 40:6 2.67 0.0061 TAG52:2(16:1) -1.24 0.0004

PG38:3(18:0/20:3) -1.11 0.0117 TAG52:2(18:1) -1.06 0.0011

LPI16:0 -1.14  < 0.0001 TAG52:2(18:2) -1.02 0.0111

LPI16:1 -1.41  < 0.0001 TAG52:3(16:1) -1.47  < 0.0001

LPI18:0 -1.65  < 0.0001 TAG52:4(16:1) -1.44 0.0001

LPI20:3 -1.99  < 0.0001 TAG52:4(16:2) -2.23 0.0120

LPI20:4 -1.65  < 0.0001 TAG52:5(16:1) -3.15 0.0053

LPI22:4 -1.41  < 0.0001 TAG52:5(18:2) -1.04 0.0188

LPS18:0 -1.28 0.0002 TAG53:2(17:0) -1.28 0.0001

LPS18:1 -1.14 0.0031 TAG53:2(19:1) -1.13 0.0044

LPC20:3 -1.00 0.0005 TAG53:3(17:1) -1.09 0.0031

LPC20:5 -1.24 0.0009 TAG53:4(17:0) -1.36 0.0050

LPC22:3 -1.57 0.0004 TAG53:4(17:1) -1.01 0.0049

PA32:1 -1.25 0.0004 TAG54:0(18:0) -1.56 0.0017

PA32:2 -1.23 0.0150 TAG54:1(18:0) -1.70 0.0017

PC40:6(20:3/20:3) -1.21 0.0022 TAG54:1(18:1) -1.55 0.0022

DAG32:1(14:0/18:1) -1.14 0.0001 TAG54:2(18:0) -1.14 0.0091

DAG32:1(16:1/16:0) -1.61  < 0.0001 TAG54:2(18:1) -1.18 0.0062

DAG36:1(18:1/18:0) -1.18  < 0.0001 TAG54:2(18:2) -1.11 0.0111

DAG36:2(18:1/18:1) -1.35  < 0.0001 TAG54:3(16:0) -2.09  < 0.0001

TAG46:1(16:0) -1.88  < 0.0001 TAG54:4(16:0) -1.91  < 0.0001

TAG46:1(16:1) -2.63  < 0.0001 TAG54:4(18:3) -1.23 0.0041

TAG46:2(16:1) -2.69  < 0.0001 TAG54:5(16:0) -1.05 0.0072

TAG48:1(16:0) -1.92  < 0.0001 TAG54:5(20:4) -1.15 0.0004

TAG48:1(16:1) -2.03  < 0.0001 TAG56:3(18:1) -1.15 0.0053

TAG48:1(18:0) -1.69 0.0001 TAG56:3(20:1) -1.79 0.0026

TAG48:1(18:1) -1.55  < 0.0001 TAG56:4(18:1) -3.11 0.0009

TAG48:2(16:0) -2.07  < 0.0001 TAG56:5(18:1) -1.73  < 0.0001

TAG48:2(16:1) -2.43  < 0.0001 TAG56:5(18:2) -2.78 0.0008

TAG48:2(18:1) -2.20  < 0.0001 TAG56:5(20:3) -2.28  < 0.0001

TAG48:2(18:2) -1.24 0.0017 TAG56:6(20:3) -1.39 0.0009

TAG50:1(16:0) -1.17 0.0002 TAG56:6(20:4) -1.07 0.0062

TAG50:1(16:1) -1.66  < 0.0001 TAG56:7(20:5) -1.18 0.0113

Table 3 (continued)

Lipidb Log2FC FDR Lipid Log2FC FDR

TAG50:1(18:0) -1.39 0.0004

a Fold changes (FC) were calculated as the average levels in the P 0 d (the day of 
kidding) group relative to those in the P-21 d (d 21 before the due date) group. 
The Log2FC greater than 0 indicates a relatively higher concentration in the P 0 
d group, whereas the Log2FC of less than 0 indicates a concentration lower than 
that in the P-21 d group. FDR False discovery rate
b FFA Free fatty acids, PE Phosphatidylethanolamines, PS Phosphatidylserines, PG 
Phosphatidylglycerols, LPI Lyso-phosphatidylinositols, PC Phosphatidylcholines, 
LPC Lyso- phosphatidylcholines, PA Phosphatidic acids, DAG Diacylglycerols, TAG  
Triacylglycerols

Table 4 List of differentially altered lipids in P 0 d vs. P + 21 d 
(|log2FC|> 1, FDR < 0.05)a

a Fold changes (FC) were calculated as the average levels in the P + 21 d (d 
21postpartum) group relative to those in the P 0 d (the day of kidding) group. 
The Log2FC greater than 0 indicates a relatively higher concentration in the 
P + 21 d group, whereas the Log2FC of less than 0 indicates a concentration 
lower than that in the P 0 d group. FDR, false discovery rate
b Cer Ceramides, LPI Lyso-phosphatidylinositols, PA Phosphatidic acids, 
PC Phosphatidylcholines, TAG  Triacylglycerols, SM Sphingomyelins, PE 
Phosphatidylethanolamines, PS Phosphatidylserines, FFA Free fatty acids

Lipidb Log2FC FDR Lipid Log2FC FDR

Cer d18:0/25:1 7.03  < 0.0001 PS 38:4 -2.43  < 0.0001

LPI16:0 1.34  < 0.0001 PS 38:4(18:0/20:4) -2.21  < 0.0001

LPI16:1 1.54  < 0.0001 PS 38:5 -3.04 0.0185

LPI18:0 2.10  < 0.0001 PS 40:4 -2.01  < 0.0001

LPI20:3 2.06  < 0.0001 PS 40:5 -2.19 0.0066

LPI20:4 1.89  < 0.0001 PS 40:5(18:0/22:5) -1.48 0.0001

LPI22:4 1.36  < 0.0001 PS 40:6 -2.35 0.0202

LPC20:5 1.22 0.0014 12:0-carnitine -1.88  < 0.0001

PA32:1 1.63  < 0.0001 14:0-carnitine -1.92  < 0.0001

PA32:2 1.11 0.0387 14:1-carnitine -2.66  < 0.0001

PC42:6(22:6/20:3) 1.32 0.0002 14:2-carnitine -1.46  < 0.0001

TAG52:5(16:1) 2.70 0.0206 16:0-carnitine -1.36  < 0.0001

TAG54:3(16:0) 1.01 0.0385 16:1-carnitine -2.21  < 0.0001

TAG56:4(18:1) 2.02 0.0399 16:2-carnitine -2.01 0.0001

TAG56:4(18:2) 1.04 0.0311 17:0-carnitine -1.66  < 0.0001

TAG56:5(18:2) 1.82 0.0349 17:1-carnitine -1.92  < 0.0001

TAG56:5(20:3) 1.17 0.0081 18:0-carnitine -1.84  < 0.0001

TAG56:6(20:3) 1.17 0.0062 18:1-carnitine -2.48  < 0.0001

SM d18:1/15:1 1.24 0.0015 18:2-carnitine -1.49  < 0.0001

SM d18:1/26:1 -1.25 0.0025 6:0-carnitine -1.48  < 0.0001

PE36:2p -1.14 0.0062 FFA17:0 -1.02  < 0.0001

PE38:4p -1.12 0.0110 FFA18:1 -1.80  < 0.0001

PE38:4p(18:0/20:4) -1.01 0.0005 FFA18:2 -1.40  < 0.0001

PS 34:1 -2.07  < 0.0001 FFA18:3 -1.26  < 0.0001

PS 36:2 -1.47  < 0.0001 FFA20:4 -1.00 0.0001

PS 38:3 -1.96  < 0.0001 FFA22:5 -1.07 0.0016

PS 38:3(18:0/20:3) -1.56 0.0010 FFA22:6 -1.13 0.0023
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gluconeogenesis. The plasma glucose concentration dur-
ing lactation was greater compared with late-pregnancy 
in Saanen goats (Sadjadian et al. 2013). Thus, alterations 
in the TCA cycle support gluconeogenesis during lacta-
tion in dairy goats.

To date, there is very little published information on 
amino acid metabolism in dairy goats during the transi-
tion period. In present sudy, multiple amino acid levels 
decreased after calving. The decrease in some amino 
acids (Trp, Tyr, and Val) can profoundly affect the overall 
rate of protein synthesis and contribute to lower plasma 
TP especially in the postpartum. Furthermore, some 
studies reported that fluctuations in the plasma amino 
acid levels are associated with ketosis in dairy cows 
(Zhang et  al. 2013; Li et  al. 2014). Changes in phenyla-
cetylglycine and hippuric acid levels on the phenylalanine 
metabolic pathway were observed. Both the aromatic 
amino acids Trp and Tyr were also reduced on the day 
of kidding. All these observations point to the pertur-
bation of phenylalanine metabolism. Phenylalanine is 
metabolized to tyrosine by phenylalanine hydroxylase 
and is involved in synthesizing various hormones (thy-
roid hormone, melanin, catecholamine, epinephrine, 
norepinephrine, and dopamine) and glycolipid metabo-
lism (Lemmon and Schlessinger 2010). Deficiencies of 
Phe and Tyr reportedly impaired immune responses in 

chickens; Dietary supplementation of amino acids could 
enhance the immune response (Konashi et  al. 2000). 
Changes in the phenylacetylglycine levels are associated 
with disorders of phospholipid metabolism (Delaney 
et al. 2004). The ratio of phenylacetylglycine to hippuric 
acid can serve as a biomarker for phospholipid disease 
(Kamiguchi et al. 2017; Malek et al. 2020). The increase 
in phenylacetylglycine and the decrease in hippuric after 
parturition in the present study suggested the possibil-
ity of altered phospholipid metabolism in dairy goats. 
Because phospholipids are important lipids involved in 
the cellular inflammatory response and immune regula-
tion, the observed changes could be important to under-
stand the occurrence and development of inflammation 
and disease in transition goats.

Indole sulfate (IS) and p-cresol sulfate (PCS) are 
metabolites of aromatic amino acids originating from 
protein fermentation in the intestine (Evenepoel et al. 
2009; Opdebeeck et  al. 2020). In clinical investiga-
tions, IS and PCS have been found to induce vascu-
lar toxicity followed by upregulation of inflammatory, 
coagulation, and oxidative stress pathways (Opdebeeck 
et  al. 2020). There is a report that PCS in urine can 
predict nitrogen intake and efficiency of use (Bertram 
et  al. 2011). Thus, the increase in the IS and PCS in 

Fig. 7 Hierarchical clustering heatmap of the phosphatidylcholines (PC, A) and free fatty acids (FFA, B) in plasma. P-21 d, P-14 d, P-7 d (d 21,14 and 7 
before the due date), P 0 d (the day of kidding), and P + 7 d, P + 14 d, P + 21 d (d 7, 14, and 21postpartum)
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early lactation might indicate a similar involvement for 
these compounds.

Phosphatidic acids, a central intermediate in synthe-
sizing PS, PC, PE, and PI (Coleman and Mashek 2011), 
was reduced by nearly 40% on the day of kidding. The 
quantity of glycerophospholipids particularly PS and 
PE, which are important components of biofilm, were 

elevated postpartum (Cole et  al. 2012). Multiple studies 
have shown that lysophospholipid (LPL), one of the phos-
pholipid metabolites, is associated with fatty liver, steato-
hepatitis, diabetes, obesity, and even cancer (Grzelczyk 
and Gendaszewska-Darmach 2013). Thus, elevated levels 
of LPL in this study suggested a similar involvement in 
the peripartal period. Phosphatidic acid is hydrolyzed by 

Fig. 8 Peripartal changes in phosphatidylcholines (PC) and free fatty acids (FFA) with differences in carbon chain saturation and length: A PC with 
22:6 and 20:4 carbon chains, B PC with 22:3 carbon chains, C PUFA, D SFA and MUFA. Mean values with different letters (a–c) show statistically 
significant differences (LSD, P < 0.05). P-21 d, P-14 d, P-7 d (d 21,14 and 7 before the due date), P 0 d (the day of kidding), and P + 7 d, P + 14 d, P + 21 
d (d 7, 14, and 21postpartum)
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phosphatidic acid phosphatase to DAG, the penultimate 
step in TAG biosynthesis (Coleman and Mashek 2011). 
An increased use of PA for synthesis of DAG and TAG 
might account for the decrease in PA and LPA at the day 
of kidding.

It is known that the changes of FFA were significant 
during the peripartal period. However, it was noteworthy 
that the distinctions have been identified with regards to 
alterations in SFA and PUFA. Whereas SFA are consid-
ered to negatively affect human health (Hu et  al. 2001), 
PUFA are linked to anti-inflammatory events (Calder 
2006) as well as improved immune system function 
(Srednicka-Tober et  al. 2016). Supplemental PUFA in 
goat diets increases the number of follicles and ovula-
tion rate, shortens the estrus cycles, and improves the 
immune response (Agazzi et al. 2004; Mahla et al. 2017; 
Stergiadis et  al. 2019) Goat milk contains higher levels 
of PUFA compared to cow milk (Stergiadis et  al. 2019). 
Hence, initiating lactation may be responsible for part 
of the lowered PUFA at the day of kidding. We observed 
that oleic acid and linoleic acid levels in the plasma 
increased significantly at the day of kidding. Consist-
ently, in a study with dairy cows, the oleic acid levels were 
found to increase at the day of calving and in individuals 
with subclinical mastitis (Dervishi et al. 2016; Luo et al. 
2019). Rukkwamsuk et  al. (1999) found that cows on 
high-energy diet experienced a deeper negative energy 
balance compared to controls, and also showed a higher 
proportion of oleic acid in the plasma NEFA after partu-
rition. Thus, dietary supplements rich in PUFA may be a 
better choice for dairy goats after parturition.

Carnitine is converted to ACs when fatty acids are 
shuttled into the mitochondria via carnitine palmitoyl-
transferase-1 (McGarry and Brown 1997). Increased 
fatty acid oxidation in liver and skeletal muscle is one of 
the reasons for carnitine’s continued decline during the 
perinatal period (Krajcovicova-Kudlackova et  al. 2000; 
Yang et al. 2019). Correspondingly, the level of ACs will 
increase (Ismaeel et al. 2019; Yang et al. 2019). We have 
focused on the long-chain ACs (C16, C17, C18) as it is 
associated with the increased fatty acid load (Schoone-
man et  al. 2013; McFadden 2020; Schren et  al. 2021). 
Rapidly changing fatty acid and ACs levels reflect the 
high energy demands during parturition. Neutral lipid 
depots are mobilized to provide energy for parturition, 
which perhaps saturates the mitochondrial capacity to 
cope with the fatty acid surplus and results in the tempo-
ral elevation of circulating ACs, dropping to the prenatal 
level soon after parturition.

Peripartal changes in the circulating NEFA and BHB 
have been reported in Surti goats and Saanen goats (Sad-
jadian et al. 2013; Manat et al. 2016; Huang et al. 2021). 

A rapid drop in NEFA levels at P + 7 d was also observed 
in dairy goats with a high energy diet (Celi et  al. 2008). 
Circulating ACs and NEFA levels are rapidly reduced 
postpartum, suggesting that both the production and 
oxidation of NEFA were reduced postpartum in present 
study. Thus, increasing the dry matter intake of dairy 
goats during the peripartal period can effectively reduce 
the impact of negative energy balance.

Excess fatty acids promote the increase in TAG syn-
thesis in the liver, known as re-esterification. The export 
of this part of the TAG from the liver depends on very-
low-density lipoproteins (VLDL). The ability of the liver 
to synthesize cholesterol is also significantly increased 
in early lactation to ensure the VLDL synthesis (Schlegel 
et al. 2012; Kessler et al. 2014). Cholesterol and TAG syn-
thesized by the liver are secreted into the circulation as 
VLDL. In ruminants, however, the ability of the liver to 
assemble and secrete VLDL is inherently lower than that 
in other mammals, and the accumulation of free fatty 
acids further impairs VLDL secretion (Bobe et al. 2004). 
Thus, the reduction in postpartum plasma TAG and CE 
might be due to restricted hepatic VLDL export and an 
increase in the clearance of circulating TAG by lipo-
protein lipase in the mammary gland (Zang et al. 2019). 
The low levels of TAG and CE were maintained until the 
end of the experiment, which reflected the rate of VLDL 
secretion from liver maintained at lower levels, similar to 
a study in dairy cows (Van den Top et  al. 2005; Kessler 
et al. 2014). Multiple studies in dairy cows have demon-
strated that reduced hepatic TAG output leads to TAG 
accumulation, especially in cows with ketosis (Gross et al. 
2013; Zang et al. 2019; Vogel et al. 2020).

Phosphatidylcholines is a major structural component 
of the cellular membranes, and is essential for synthesiz-
ing VLDL (Yao and Vance 1988; McFadden et al. 2020). 
Betaine and methionine drive the production of the uni-
versal methyl donor S-adenosylmethionine, supporting 
the production of PC through the phosphatidylethanola-
mine N-methyltransferase (PEMT) pathway (Pinotti et al. 
2002). In addition, PC can be synthesized from choline 
through the cytidine-5′-diphosphate (CDP) choline path-
way (McFadden et  al. 2020). In nonruminants, Zeisel 
(Zeisel 1992) suggested choline deficiency (particularly 
PC) as the main reason for impaired secretion of VLDL. 
In some instances, supplementation with dietary methyl 
donors reduces lipid accumulation in the liver of dairy 
cows (Zang et al. 2019). Choline is an important methyl 
donor, existing in mammals in various forms such as ace-
tylcholine, betaine, methionine, phosphatidylcholine, and 
sphingomyelin. Early lactating cows have a high demand 
for methyl compounds, but exogenous methyl donor sup-
ply is reduced due to lower DMI and extensive rumen 
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degradation (Xue and Snoswell 1986). Hence, ruminants 
must adapt their metabolism of methyl groups during the 
transition into lactation. In this study, betaine (a product 
of choline oxidation) and methionine were observed to 
be at their highest levels around kidding. Feeding rumen-
protected choline and methionine improves metabolic 
status, reduces oxidative stress, and enhances immune 
function (Shahsavari et al. 2016; Zhou et al. 2016; Batistel 
et al. 2018). Moreover, betaine-supplemented diets tend 
to improve production performance of dairy cows (Mon-
teiro et al. 2017).

Mouse studies show that the CDP-choline pathway is 
biased toward the use of DAG-rich saturated or mono-
unsaturated fatty acids (i.e., palmitic and oleic acids, 
respectively) as substrates; In contrast, the PEMT path-
way prefers the use of long-chain and very-long-chain 
rich phosphatidylethanolamines of the PUFA as sub-
strates, including eicosatetraenoic acid and docosahex-
aenoic acid (DHA) (DeLong et al. 1999). The circulating 
PC containing DHA has been identified as a biomarker 
of PEMT pathway activation in humans (da Costa et  al. 
2011). Our results suggest that inhibition of the CDP-cho-
line pathway might be caused by choline deficiency and 
a compensatory increase of the PEMT pathway in early 
lactation. Quantification of VLDL secretion from primary 
bovine hepatocytes by ELISA showed that the VLDL 
output increased with choline supplementation (Chan-
dler and White 2017). Cows with severe hepatic steato-
sis have lower serum PC levels compared to the clinically 
healthy cows (Imhasly et al. 2014). Thus, considering that 
the changes in choline metabolism might reflect the state 
of hepatic lipid metabolism in dairy goats, it can be sug-
gested that dietary choline supplementation might reduce 
the pressure of hepatic lipid accumulation.

Circulating Cer levels were elevated postpartum, 
especially Cer(d18:0/25:1). Similar results of increased 

Cer levels in the transition from gestation to lactation 
were observed in dairy cows (Rico et al. 2015). Elevated 
Cer might be associated with hepatic fat accumulation, 
inflammation, and hydrolysis of SM (Peraldi et al. 1996; 
Rico et al. 2018). More interestingly, the increase in Cer 
often coincides with the decrease in insulin sensitivity 
(Rico et  al. 2015). During early lactation, insulin resist-
ance was found to enhance adipose tissue mobilization 
and promote the preferential allocation of glucose to the 
mammary gland, thereby increasing the synthesis of milk 
fat and lactose and milk production (Bell 1995; Zachut 
et al. 2013; Rico et al. 2015). However, there are no previ-
ous studies that have clarified the role of Cer(d18:0/25:1) 
in peripartal ruminants, limiting our understanding of 
the bioactivity of Cer(d18:0/25:1).

Materials and methods

Animals and study design
The experiments were conducted in accordance with the 
university’s guidelines for animal research at the experi-
mental farm of Northwest A&F University (Shaanxi Prov-
ince, China) in Western China (106°55′57″E, 34°48′41″N) 
in January–March 2019.

Ninety-six primiparous Guanzhong dairy goats (rang-
ing in age from 1 to 2 years; body weight: 60 ± 5.2 kg; DMI: 
1.45 ± 0.05  kg/d; mean ± standard deviation) were used as 
initial experimental animals. Goats were housed in a shaded 
open barn under natural lighting conditions and had free 
access to freshwater. Goats were fed the same diet offered 
twice daily at 0730 and 1530 ad  libitum as a TMR. Diets 
were formulated to meet nutrient requirements of dairy 
goats according to the Nutrient Requirements of Small 
Ruminants (National Research Council, 2007). Ingredients 
of the diets are listed in Table 5.

Table 5 Ingredients and chemical composition of the antepartum and postpartum diets on a DM  basisa

a The mineral-vitamin premix provided the following per kg of diets: vitamin A 250,000 IU, vitamin D 23,250 IU, vitamin E 1500 IU, manganese 800 mg, zinc 1800 mg, 
copper 370 mg, iron 2200 mg, cobalt 50 mg, iodine 30 mg, selenium 30 mg

Ingredient (% of DM) Antepartum Postpartum Nutrient composition Antepartum Postpartum

Alfalfa hay 15.36 18.42 DM (% of fresh) 45.10 48.20

Corn 20.72 23.16 Neutral detergent fiber (NDF, %) 42.20 37.70

Wheat bran 7.20 8.37 Acid detergent fiber (ADF, %) 18.50 17.40

Soybean meal 4.89 9.02 Crude protein (CP, %) 14.20 16.40

Wheat straw 7.57 0.00 Starch (%) 24.3 25.40

Corn Silage 35.35 30.66 Ether extract (%) 3.00 3.20

Corn germ meal 2.80 3.26 Calcium (Ca, %) 0.48 0.66

Cottonseed meal 4.40 5.12 Phosphorus (P, %) 0.36 0.37

Calcium hydrophosphate 0.44 0.51 Magnesium (Mg, %) 0.14 0.19

Limestone 0.40 0.46 Sulfur (S, %) 0.20 0.20

Sodium carbonate 0.32 0.38 Chloride (Cl, %) 0.47 0.25

Sodium chloride 0.40 0.45 DCAD (mEq/kg of DM) -164  + 733

Mineral and vitamin  premixa 0.15 0.19 NEL (Mcal/kg) 1.53 1.62
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Notably, in September, the farm goats included in 
this study were estrous synchronized such that kidding 
occurred in February. Blood samples collection was per-
formed every other week from 21 d before kidding (22 
to 20 d before the expected kidding date0) to 21 d post-
partum. The subset of goats used was selected to include 
only healthy animals with a gap between expected and 
real kidding day of two days or less. Additionally, 7 goats 
were excluded for their litter size being 2 or 3. Finally, the 
final experimental sample size was 9. Over the period 
of the trial, the average milk yield per dairy goat was 
1.8 ± 0.3  kg/d (mean ± standard deviation). The samples 
were divided into 7 groups according to sampling time: 
d 21,14 and 7 before due date (P-21 d, P-14 d, P-7 d), the 
day of kidding (P 0 d), and d 7, 14, and 21 postpartum 
(P + 7 d, P + 14 d, P + 21 d).

Blood samples collection
Blood was collected (10  mL) at 0600  h over seven time 
points (d 21, 14, 7 before and d 7, 14, 21 postpartum). In 
addition, Sample at P 0 d was collected within 1 h after 
kidding. Plasma was collected using EDTA as an antico-
agulant, then centrifuged at 1,500 × g for 10  min at 4℃, 
and subsequently stored at − 80 °C until analysis.

Biochemical analyses
The concentrations of GLU, aminotransferase (AST), 
alanine aminotransferase (ALT), cholinesterase (CHE), 
γ-glutamyl transpeptidase (GGT), lactate dehydrogenase 
(LDH), alkaline phosphatase (ALP), total protein (TP), 
albumin (ALB), high-density cholesterol (HDL), low-den-
sity cholesterol (LDL), triglyceride (TG), total cholesterol 
(TC), urea in plasma were determined with a chemical 
autoanalyzer (Hitachi 7060, Hitachi, Tokyo).

The levels of non–esterified fatty acids (NEFA, kit no. 
FA115, enzymatic method) and β-hydroxybutyrate (BHB, 
kit no. RB1007, colorimetric method) were determined 
with the commercial kits (Randox Laboratories, Crumlin, 
UK).

Metabolome extraction
Samples were prepared according to a previous method 
(Song et al. 2020). Briefly, a 50 µL sample was mixed with 
200 µL ice-cold 80% methanol in water, and incubated for 
30  min at 1500  rpm and 4℃ followed by centrifugation 
for 10  min at 16,260 × g and 4℃. The supernatant was 
then removed into a clean 1.5  mL centrifuge tube, and 
dried using a SpeedVac. The dried extracts were redis-
solved with 1% acetonitrile in water, and the liquid in the 

upper layer was collected for liquid chromatography tri-
ple quadrupole mass spectrometry (LC–MS) analysis.

Untargeted metabolomics analysis
Untargeted metabolomics was conducted by LipidALL 
Technologies as previously described (Song et al. 2020). 
Metabolites were separated on an ACQUITY UPLC 
HSS T3 1.8  μm, 2.1 × 100  mm column (Waters, Dublin, 
Ireland) using ultra-performance liquid chromatogra-
phy (Agilent 1290 II, Agilent Technologies, Germany) 
and analyzed on a Quadrupole-TOF MS (5600 Triple 
TOF Plus, AB SCIEX, Singapore). The MS parameters 
for detection were: ESI source voltage − 4.5  kV; vapor-
izer temperature, 500℃; drying gas  (N2) pressure, 50 psi; 
nebulizer gas  (N2) pressure, 50 psi; curtain gas  (N2) pres-
sure, 35 psi; the scan range was m/z 60–800. The infor-
mation-dependent acquisition mode was used for MS/
MS analyses of the metabolites. The collision energy was 
set at 35 ± 15 eV and the data acquisition and processing 
were performed using the Analyst® TF 1.7.1 Software 
(AB Sciex, Concord, ON, Canada). All detected ions were 
extracted using MarkerView 1.3 (AB Sciex, Concord, ON, 
Canada) into Excel in the format of a two-dimensional 
matrix, including mass to charge ratio (m/z), retention 
time, and peak areas. Then, the isotopic peaks were fil-
tered. The MS/MS data were extracted, and a comparison 
was performed with the Metabolites database (AB Sciex, 
Concord, ON, Canada), HMDB, METLIN using the 
PeakView 2.2 (AB Sciex, Concord, ON, Canada), and the 
standard references were used for annotating the ion ID.

Targeted lipidomics analysis
Lipids were extracted from the plasma (20 µL) using a 
modified Bligh and Dyer’s extraction procedure (dou-
ble rounds of extraction) and dried in a SpeedVac under 
OH mode (Song et  al. 2020). Before analysis, the lipid 
extracts were resuspended in chloroform: methanol 1:1 
(v/v) spiked with appropriate internal standards. The lipi-
domic analyses was carried out on an Exion UPLC sys-
tem coupled with a QTRAP 6500 PLUS system (Sciex) 
under an electrospray ionization mode as described 
previously unless otherwise stated (Lam et  al. 2021). All 
the quantification experiments were conducted using an 
internal standard calibration. The lipid types measured 
include, acylcarnitines (ACs), cholesteryl esters (CE); 
ceramides (Cer); diacylglycerols (DAG); free fatty acids 
(FFA); monosialogangliosides (GM3); phosphatidic acids 
(PA); phosphatidylcholines (PC); lyso-PC (LPC); phos-
phatidylethanolamines (PE); phosphatidylglycerols (PG); 
phosphatidylinositols (PI); phosphatidylserines (PS); 
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sphingosine-1-phosphate (S1P); sphingomyelins (SM); 
triacylglycerols (TAG).

In brief, the polar lipids were separated on a Phenom-
enex Luna Silica 3 µm column (i.d. 150 × 2.0 mm) using 
the mobile phase A (chloroform: methanol: ammonium 
hydroxide, 89.5:10:0.5) and mobile phase B (chloroform: 
methanol: ammonium hydroxide: water, 55:39:0.5:5.5) 
at a flow rate of 270 µL/min and column oven temper-
ature at 25℃. The individual polar lipid species were 
quantified by referencing to spiked internal standards 
including PC-14:0/14:0,PE14:0/14:0, d31-PS-16:0/18:1, 
PS-17:0/20:4, PA-17:0/17:0, PG-14:0/14:0,GluCer-
d18:1/8:0, Cer-d18:1/17:0, C14:0-BMP, S1P-d17:1, Sph-
d17:1,SM-d18:1/12:0, LPC-17:0, LPE-17:1, LPI-17:1, 
LPA-17:0, LPS-17:1 obtained from Avanti Polar Lipids 
and PI-8:0/8:0 from Echelon Biosciences, Inc. The mono-
sialogangliosides (GM3) species were quantified using 
GM3d18:1/18:0-d3 from Matreya LLC.

The glycerol lipids including DAG and TAG were quan-
tified using a modified version of reverse phase HPLC/
MRM (Song et  al. 2020). Neutral lipids were separated 
on a Phenomenex Kinetex-C18 2.6  µm column (i.d. 
4.6 × 100  mm) using an isocratic mobile phase contain-
ing chloroform: methanol:0.1  M ammonium acetate 
100:100:4 (v/v/v). Levels of short-, medium-, and long-
chain TAGs were calculated with reference to the spiked 
internal standards of TAG(14:0)3-d5, TAG(16:0)3-
d5, and TAG(18:0)3-d5 obtained from the CDN iso-
topes, respectively. The DAG were quantified using 
the d5-DAG16:0/16:0 and d5-DAG18:1/18:1as internal 
standards (Avanti Polar Lipids). The free cholesterols and 
CE were quantitated with d6-cholesterol and d6-C18:0 
cholesteryl ester (CDN isotopes) as the internal standards 
under atmospheric pressure chemical ionization. Plasma 
lipid levels are expressed in nanomoles per L (nmol/L).

Data processing and statistical analyses
Data obtained from the biochemical analyses were sta-
tistically analyzed using GraphPad Prism 8.0 (GraphPad 
Software Inc., USA). Changes in the data from the bio-
chemical analysis were analyzed using repeated measures 
ANOVA followed by Tukey’s multiple comparisons test. 
The repeated measures on each goat were considered 
(repeated factor: time during the peripartal period) and 
the results were expressed as means ± SEM.

Untargeted metabolomics data were pareto-scaled 
and pattern recognition analysis was performed using 
the SIMCA-P software (version 14.1, Umetrics, Umea, 
Sweden), comprising the unsupervised principal compo-
nent analysis (PCA) and the supervised orthogonal par-
tial least squares discriminant analysis (OPLS-DA). The 
intra-group aggregation and inter-group separation ten-
dencies were determined using PCA and the inter-group 

differences were further determined using OPLS-DA. 
The OPLS-DA models were validated based on the inter-
pretation of variation in Y  (R2Y) and the forecast ability 
based on the model  (Q2) in cross-validation and permu-
tation tests by applying 200 iterations. The differential 
metabolites were screened using variable importance 
in projection (VIP) scores (VIP > 1) obtained from the 
OPLS-DA model and P-values (P < 0.05) from the paired 
t-test. Pathway analyses were performed using Meta-
boAnalyst 4.0 (http:// www. metab oanal yst. ca) and the 
clustering was further performed using the R heatmap 
package (version 4.1.3, http:// www.R- proje ct. org).

Lipidomics data were analyzed in R using the Limma 
statistical package. The limma model compared the vari-
ation in lipidome within-subjects over time by treating 
the goats as random effect and estimated the correla-
tion between measurements made on the same goat. The 
differentially-expressed lipids based on false discovery 
rate (FDR) and fold-change (FC) were considered statisti-
cally significant (FDR < 0.05 and |log2FC|> 1). A volcano 
plot was used for visualizing the differentially-expressed 
lipids. The boxplot was generated via the boxplot func-
tion in R and the differences was analyzed using R (LSD.
test function in the “agricolae” package). A correlation 
matrix was produced using the corrplot function with 
the R package. To avoid false positives, correlations with 
adjusted P < 0.01 were selected. For visual simplicity, only 
significant correlations were shown.
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CDP  Cytidine-5′-diphosphate
DHA  Docosahexaenoic acid
SFA  Saturated fatty acid
MUFA  Monounsaturated fatty acid
PUFA  Polyunsaturated fatty acids
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Additional file 1: Fig. S1. Metabolite profiles of peripartal dairy goats: (A 
and B) orthogonal partial least squares discriminant analysis (OPLS-DA) 
score plot and permutation test plots for P-14 d vs. P 0 d, (C and D) OPLS-
DA score plot and permutation test plots for P-7 d vs. P 0 d. P 0 d, (E and F) 
OPLS-DA score plot and permutation test plots for P 0 d vs. P+7d. P 0 d, (G 
and H) OPLS-DA score plot and permutation test plots for P 0 d vs. P+14d. 
t[1] = first principal component. to[2] = second orthogonal component. 
The intercept limit of  Q2, calculated by the regression line, is the plot of  Q2 
from the permutation test in the OPLS-DA model. P-14 d, P-7 d (d 14 and 
7 before the due date), P 0 d (the day of kidding), and P+7 d, P+14 d (d 7 
and 14 postpartum). Fig. S2. Box-plot (middle bar = median, box limit = 
upper and lower quartile, extremes = Min and Max values) depicting the 
peripartal changes in differentially altered metabolites detected via non-
targeted metabolomics. P-21 d, P-14 d, P-7 d (d 21,14 and 7 before the due 
date), P 0 d (the day of kidding), and P+7 d, P+14 d, P+21 d (d 7, 14, and 
21postpartum). Mean values with different letters (a–d) show statistically 
significant differences based on least significant difference (LSD) (P < 0.05). 
Fig. S3. Line graph depicting the peripartal changes for all lipid species 
levels in dairy goats. P-21 d, P-14 d, P-7 d (d 21,14 and 7 before the due 
date), P 0 d (the day of kidding), and P+7 d, P+14 d, P+21 d (d 7, 14, and 
21postpartum). Results are expressed as means ± SEM. ACs = acylcarni-
tine; CE = cholesteryl esters; Cer = ceramides; DAG = diacylglycerols; FFA 
= free fatty acids; GM3 = monosialogangliosides; PA = phosphatidic acids; 
PC = phosphatidylcholines; LPC = lyso-PC; PE = phosphatidylethanola-
mines; PG = phosphatidylglycerols; PI = phosphatidylinositols; PS = phos-
phatidylserines; S1P = sphingosine-1-phosphate; SM = sphingomyelins; 
TAG = triacylglycerols. Fig. S4. Correlations between plasma biochemical 
indices, differentially altered metabolites, and lipid levels at all time points 
combined. The left margin shows a dendrogram from hierarchical cluster 
analysis by which rows and columns are ordered.
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