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Abstract
Seismic damage to building services systems, that is, mechanical, electrical, and plumbing systems in buildings related to 
energy and indoor environments, affects the functionality of buildings. Assessing post-earthquake functionality is useful 
for enhancing the seismic resilience of buildings via improved design. Such assessments require a model for predicting the 
time required to restore building services. This study analyzes the downtime data for 250 instances of damage to building 
services components caused by the 2016 Kumamoto earthquake in Japan, presumably obtained from buildings with minor 
or no structural damage. The objectives of this study are (1) to determine the empirical downtime distribution of building 
services components and (2) to assess the dependence of the downtime on explanatory variables. A survival analysis, which 
is a statistical technique for analyzing time-to-event data, reveals that (1) the median downtime of building services com-
ponents was 90 days and, 7 months after the earthquake, the empirical non-restoration probability was approximately 32%, 
(2) the services type and the building use are explanatory variables having a statistically significant effect on the downtime 
of building services components, (3) the log-logistic regression model reasonably captures the trend of the restoration of 
building services components, (4) medical and welfare facilities and hotels restored building services components relatively 
quickly, and (5) the 7-month restoration probability was observed to be highest for electrical systems, followed by sanitary 
systems, then heating, ventilation, and air conditioning systems, and finally life safety systems. These results provide useful 
information to support the resilience-based seismic design of buildings.
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Introduction

The enhancement of the seismic resilience of buildings is 
increasingly receiving attention in response to the significant 
consequences of large earthquakes [1]. As demonstrated by 
recent large earthquakes [2–6], damage to buildings not only 
results in casualties and direct economic losses but also dis-
rupts functionality, resulting in long-term impacts on com-
munities. Even if there is no serious damage done to the 
structural components, damage to nonstructural components, 
including equipment and systems, affects the functionality 
of buildings [7, 8]. These experiences have encouraged 
performance-based seismic designs of buildings to include 
assessments of the post-earthquake functional loss and 

recovery [1, 9–11]. Such seismic resilience quantifications 
of buildings can ensure the goal of functional recovery, in 
addition to the conventional goal of life and structural safety; 
however, such quantifications are still challenging compared 
with those of infrastructure (lifelines and networks), which 
have been extensively performed [e.g., 12–17].

As nonstructural building components, building ser-
vices constitute systems essential to the continuous use 
of buildings following an earthquake. There are a wide 
variety of building services, including electrical; heating, 
ventilation, and air conditioning (HVAC); sanitary; ver-
tical transport; and life safety (i.e., fire safety in indoor 
environments [18]) systems. Numerous studies [19–23], 
including full-scale experiments, numerical analyses, 
and earthquake damage surveys, have demonstrated that 
building services components are typically vulnerable to 
building shaking, yet they can be protected via improved 
building design [24]. A post-earthquake functionality eval-
uation of the building services is therefore an important 
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element in measuring the seismic resilience of buildings 
[25] to support engineering decision-making.

In post-earthquake functionality analyses, the time to 
recovery of systems, also called the downtime, needs to be 
appropriately estimated and is typically defined as the time 
required to restore a specific system or set of systems to 
a normal level of performance [26]. Accordingly, several 
functional recovery models have been developed for com-
plex systems in buildings [8, 11, 24, 27–31]. Most of these 
models [8, 11, 24, 27, 30, 31] use fault tree approaches 
to consider logical relationships between the damage to 
structural and nonstructural components and the overall 
impact on the building functionality, calculating the proba-
bilistic downtime based on the FEMA P-58 component 
fragility and repair-time database [32, 33] or the REDi 
methodology [34]. However, the downtime of building 
systems includes both rational and irrational components 
[35], with the latter components, which strongly relate to 
decision-making, having a highly uncertain nature. Specif-
ically, the rational components include the time required to 
perform the actual repair of damaged components whereas 
the irrational components include the time required to per-
form inspections, secure funding for repair work, commit 
engineers to develop repair strategies, obtain permits, and 
hire and mobilize repair workers. As a result of the unpre-
dictable nature of this irrational component, the downtime 
can significantly vary depending on the earthquake event 
and region. However, there are insufficient data availa-
ble to discuss such inter-event or regional variability. In 
addition, it is unclear whether the FEMA P-58 and REDi 
methodologies can explain the actual downtime after an 
earthquake, and validation data is needed to discuss this. 
Therefore, conducting empirical case studies is essential; 
that is, the actual downtime distribution for each event 
needs to be investigated individually.

Accordingly, this study investigates the downtime of 
building services components damaged by earthquakes to 
provide information to support the practice of the resil-
ience-based seismic design of buildings. The downtime is 
here defined as the time required following an earthquake 
to restore building services components to pre-earthquake 
conditions or near pre-earthquake conditions via repair or 
replacement. The key objectives of the study are (1) to deter-
mine the empirical distribution of the downtime using data 
from a past large earthquake and (2) to assess the depend-
ence of the downtime on explanatory variables. To achieve 
these objectives, this study focuses on the 2016 Kumamoto 
earthquake in Japan using building services restoration sur-
vey data provided by the Japanese Association of Building 
Mechanical and Electrical Engineers [36]. Survival analysis 
methods, which are commonly used for statistical analyses 
of time-to-event data, are employed. The analysis investi-
gates the effects of four factors on the downtime, i.e., the 

building use, services type, restoration type, and seismic 
intensity.

Note that this study focuses on a specific region and time 
frame and the expected results cannot be generalized to other 
events, because region-specific conditions exist. Specifically, 
a case study specific to the Kumamoto earthquake in Japan 
is conducted in this study. Nevertheless, the methodology 
used here is applicable to different events and may enable 
comparisons among them. In addition, the analysis is limited 
to the total duration of the restoration processes because 
detailed information such as the rational and irrational 
downtime components were not included in the survey data; 
therefore, various uncertainties involved in the restoration 
processes are incorporated into the downtime. Furthermore, 
the survey data include data for which the exact downtime 
is unknown as a result of censoring (i.e., a component was 
not restored until the end of the survey); therefore, the deter-
mined downtime distribution is limited to a specific period 
after the earthquake and the distribution outside this period 
needs to be further investigated. However, even these limited 
survey data are valuable in terms of deepening our under-
standing of the actual situation.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the building services restoration survey data 
and the preprocessing for the survival analysis. Section 3 
describes the survival analysis procedures and the imple-
mented models. Section 4 discusses the analysis results. 
Finally, Section 5 presents the study conclusions and poten-
tial future work.

Data

The building services restoration survey data [36] concerned 
326 instances of damage to building services components 
as a result of the 2016 Kumamoto earthquake, which struck 
Kumamoto, Japan, and its surrounding areas on April 16, 
2016 (1:25 a.m. local time) with a magnitude of 7.3 (Fig. 1). 
The Kumamoto region, situated in the center of Kyushu 
Island in the southwest of Japan, is centered on Kumamoto 
City, the capital of Kumamoto Prefecture, and encompasses 
the surrounding municipalities. The Kumamoto City had 
a population of over 740,000, including urban areas with 
numerous residential and commercial buildings in the 
center and agricultural production areas surrounding the 
urban areas. The data were collected for 84 buildings by 
the Japanese Association of Building Mechanical and Elec-
trical Engineers from October to November in 2016 via a 
questionnaire survey. The association asked its members to 
report on the buildings to which they belonged using self-
administered questionnaires. The author was provided with 
the data in a form that did not include information concern-
ing the building name and location, making it impossible to 
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identify the buildings. As summarized in Table 1, the sur-
vey data included (1) information concerning each instance 
of damage, including the component name, services type, 
damage condition, number of days required for restoration 
(i.e., downtime), and restoration type, and (2) information 
concerning the building in which the instance occurred, 

including the use, construction year and type, number of 
stories, and estimated intensity of ground shaking experi-
enced by the building according to the Japan Meteorological 
Agency (JMA) seismic intensity scale. Note that the JMA 
seismic intensity scale [37], which is commonly used in 
Japan, categorizes the intensity of ground motion caused by 

Fig. 1  Estimated Japan 
Meteorological Agency (JMA) 
seismic intensity distribution 
for the 2016 M7.3 Kumamoto 
earthquake provided by Qui-
Quake [49]

Table 1  Key data items of the building services restoration survey data [36]

Item Type Group Use in analysis

Instance of damage
• Component name Open-ended ― ―
• Services type Categorical Electrical; HVAC; Sanitary; Vertical transport; Life safety Explanatory variable
• Damage condition Open-ended ― ―
• Number of days required for 

restoration
Open-ended ― Response variable

• Restoration type Categorical Part replacement; Equipment repair; Equipment replacement; 
Fixed-part repair; Total system replacement

Explanatory variable

Building in which the instance occurred
• Use Categorical Office; Production; Commercial and entertainment; Hotel; Educa-

tional; Medical and welfare; Hall; Residence
Explanatory variable

• Construction year Categorical In or before 1982; Between 1983 and 1997; In or after 1998 ―
• Construction type Categorical Steel; Reinforced concrete; Steel-framed reinforced concrete ―
• Number of stories Open-ended ― ―
• JMA seismic intensity Categorical 5 lower; 5 upper; 6 lower; 6 upper Explanatory variable
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earthquakes into 10 degrees, comprising 0 (imperceptible), 
1, 2, 3, 4, 5 lower, 5 upper, 6 lower, 6 upper, and 7. For 
seismic stations, this intensity is determined from observed 
three-component acceleration waveforms by applying spe-
cific filters.

Information concerning structural damage to the build-
ings was not included in the survey data because it was not 
requested by the questionnaire. As shown in Fig. 2, steel 
(S) structures and reinforced concrete (RC)/steel-framed 
reinforced concrete (SRC) structures account for approxi-
mately 70% and 24%, respectively, of the buildings sur-
veyed. Approximately 93% of the buildings, excluding those 
with an unknown year of construction, were constructed in 
or after 1983, ensuring seismic performance in line with 
the Japanese building code, which was revised in 1981. 
According to the statistics of the building damage caused 
by the 2016 Kumamoto earthquake [38], even in the area 
around the seismic station with a JMA seismic intensity of 
7, the ratio of the buildings diagnosed as having complete 
or major structural damage to those constructed after the 
building code revision was 8% for S structures (n = 219) and 
0% for RC structures (n = 37). In addition, 60% of the S 
structures and 89% of the RC structures constructed after 
the 1981 revision experienced no structural damage. Con-
sidering that the buildings in the survey data were subjected 
to ground motions with intensities lower than 7 (approxi-
mately 85% corresponded to 6 upper or 6 lower), as shown 
in Fig. 2, minor or no structural damage was highly likely 
for the surveyed buildings. Namely, the results of this study 
are expected to represent the services restoration tendency 
specific to buildings with minor or no structural damage. 
Therefore, the repair of structural components may not have 
had a significant impact on the downtime of the building 
services components.

The component name and damage condition constituted 
open-ended responses in the survey. Response examples 
included “a concealed ceiling-packaged air conditioner and 
surrounding pipes” and “falling as a result of failed ceiling 
suspension support material.” The services and restoration 
types corresponded to such open-ended information. The 
services types were categorized as electrical (including 
power receiving, transforming, storage, emergency genera-
tion, and distribution), HVAC, sanitary (including water sup-
ply, drainage, and plumbing), vertical transport, or life safety 
(including fire protection) systems. The restoration types 
were categorized as part replacement, equipment repair, 
equipment replacement, fixed-part repair, or total system 
replacement; these types can be considered as reflecting 
differences in the level of damage to the building services 
components.

The downtime was adopted as a response variable taking 
the date of the 2016 Kumamoto earthquake as the origin 
and a single day as the minimum unit. As shown in Fig. 3, 
the downtime data included right-censored data, for which 
a component was not restored until a respondent completed 
the questionnaire (i.e., the exact downtime was unknown). 
These censored data were incorporated into the analysis and 
were not treated as missing data because the survival analy-
sis methods described below can deal with censored data.

Specifically, given a sample of n instances of damage to 
building services components, the i -th instance is associ-
ated with the exact downtime T∗

i
 , which is assumed to be a 

non-negative continuous random variable, and the right-cen-
soring time Ci , which is assumed to be a non-negative fixed 
value, for i = 1,… , n . The minimum of the exact downtime 
and the censoring time Ti = min

(
T∗
i
,Ci

)
 can be observed. To 

represent whether the observed time is Ti = T∗
i
 or Ti = Ci , 

the censoring indicator Δi is defined as

Fig. 2  Key building attribute information in the data: frequency distributions of construction year by a construction type and b Japan Meteoro-
logical Agency (JMA) seismic intensity
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and a set of downtime data is therefore expressed as (
Δ1, T1

)
,… ,

(
Δn, Tn

)
.

Downtime data stating “under restoration work,” “under 
suspension,” or “not restored” were treated as right-censored 
data ( Δi = 0 ). For these instances, the censoring time Ci was 
fixed at 210 days, which was the approximate number of days 
until the end of the survey, because the questionnaire com-
pletion date was unknown. Similarly, downtime data stating 
“unknown” or nothing (i.e., empty data), which accounted 
for approximately 28% of all instances, were treated as right-
censored data ( Δi = 0,Ci = 210 ), even though it is possi-
ble that the downtime had not been recorded or recalled 
despite the component being restored before completion of 
the questionnaire. Including these data with different inter-
pretations as right-censored data was a conservative assump-
tion made to avoid an underestimation of the downtime as 
a result of the exclusion of missing data. Data roughly stat-
ing the downtime were converted into unique values, e.g., 
“2 months” was converted to “60 days.”

Four items with categorical data, i.e., the services type, 
restoration type, building use, and JMA seismic intensity, 
were considered as possible explanatory variables. Of the 
remaining items with categorical data, the construction year 
and type were not considered because, as mentioned above, 
these factors are linked to the possibility that the buildings 
considered in this study had similar structural damage states 
(minor or no structural damage). The number of stories, 
which is related to the size of the building, was not consid-
ered because the number of stories alone cannot characterize 
the impact of the building size on the downtime, and essen-
tial information such as the floor area was not included in the 
survey data. Figure 4 summarizes the number of instances 
that were restored and censored for each item considered. 
The censored instances accounted for approximately 36% 
of all instances but their percentages ranged from 0 to 95% 

(1)Δi =

{
1, if Ti = T∗

i
< Ci (uncensored)

0, if Ti = Ci ≤ T∗
i

(censored)

when the instances were grouped by item, even though 
some groups had few instances. The number of instances 
was roughly balanced among the different groups for some 
items, such as the services type and building use, whereas 
instances were concentrated in a specific group for other 
items, such as the restoration type. A total of 250 instances 
were subjected to analysis after excluding groups with 10 
or fewer instances. These groups were excluded in order to 
measure empirical survival functions (described below) on 
the order of 10% or less.

Methods

Survival analysis methods were used to analyze the down-
time data. These methods consist of a collection of statis-
tical methods for investigating the time until an event of 
interest occurs as a response variable and are able to deal 
with censored data. Such methods are often used in clini-
cal trials to analyze time-to-death data and to compare the 
capacities of different treatments. In this study, the event of 
interest was restoration; however, key terminologies used in 
survival analyses, such as the survival function and the haz-
ard function, were adopted as-is in this paper. As described 
in Sect. 2, the response variable T∗ was defined as a non-
negative continuous random variable representing the time 
to the event of an individual instance from a homogeneous 
population. Meanwhile, all explanatory variables considered 
were operationalized as categorical variables; specifically, 
categorical data on a nominal scale were expressed using 
dummy variables of 0 or 1.

The analysis procedures adopted in this study were as fol-
lows. First, the probability distribution of the downtime was 
specified using the survival function, the probability den-
sity function, and the hazard function. Next, the downtime 
data were summarized using the Kaplan–Meier curve [39], 
which is a non-parametric estimate of the survival function. 
To narrow down the explanatory variables, the estimated 

Fig. 3  Downtime data including 
right-censoring
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curves were then compared individually between groups for 
each explanatory variable using the log-rank test, which is 
a non-parametric test widely used in assessing the statis-
tical significance of a difference in survival distributions. 
The dependence of the downtime on the explanatory vari-
ables was then assessed using parametric regression mod-
els, which predefine the form of the survival function and 
allow its parameters to be a function of a single or multiple 
explanatory variables. Finally, the best regression model was 
determined using Akaike’s information criterion (AIC) [40] 
to identify the explanatory variables that had a statistically 
significant effect on the downtime. These procedures were 
performed using R [41], which is a free software environ-
ment widely used for statistical computing and graphics. In 
particular, plotting of the Kaplan–Meier curve and the log-
rank test were performed using EZR [42], which is a modi-
fied graphical user interface for R designed to add statistical 
functions used in biostatistics, and the parametric regression 
was performed using flexsurv [43], which is an R package 
for the fully parametric modeling of time-to-event data.

Key concepts in the analysis are briefly described in the 
following subsections. Additional details can be found in 
the literature [44].

Time‑to‑event distribution

An essential element in survival analyses is the survival 
function, which is commonly used to characterize the time-
to-event distribution. The survival function S(t) is defined by 

the probability of the time to the event T∗ exceeding a given 
value t ; i.e., the probability that the event has not occurred 
before at a given time:

where S(t) is initiated at a probability of 1 and monotonically 
decreases with time. In this study, the survival function gives 
the non-restoration probability at a given time.

The cumulative distribution function of the time to the event 
F(t) is associated with the survival function according to:

where F(t) is initiated at a probability of zero and mono-
tonically increases with time. In this study, the cumulative 
distribution function gives the restoration probability at a 
given time; this is often called the restoration curve in dis-
aster research.

An alternative representation of the time-to-event distri-
bution is the hazard function, which gives the instantaneous 
rate of occurrence of the event. The hazard function �(t) is 
defined as:

where the numerator represents the conditional probability 
that the event will occur in the interval [t, t + dt) , under the 
condition that it has not occurred before, and the denomina-
tor represents the width of the interval.

(2)S(t) = P(T∗ > t)

(3)F(t) = P(T∗ ≤ t) = 1 − S(t)

(4)𝜆(t) = lim
dt→0

P(t ≤ T∗ < t + dt|T∗ ≥ t )

dt

Fig. 4  Number of instances of damage to building services components that were restored and censored
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Using the probability density function f (t) , Eq. (4) is 
rewritten as:

Because the survival function is a differentiable function 
written as S(t) = ∫ ∞

t
f (t)dt , Eq. (5) is rewritten as:

Solving this differential equation, S(t) is expressed using 
�(t) alone as:

Therefore, S(t) , f (t) , and �(t) have a relationship 
whereby, once one is determined, the other two can also be 
determined.

Empirical survival function

The Kaplan–Meier curve [39] is an estimate of the survival 
function without assuming that the time-to-event data follow 
specific distributions. This curve is often used to summarize 
time-to-event data including right-censoring in terms of the 
empirical survival function.

Consider a sample of n instances from a homogene-
ous population with an (unknown) survival function. 
Let T(1) < T(2) < ⋯ < T(Jn) be the event-observed times 
(i.e., Ti given Δi = 1 ) sorted by size excluding ties. Sup-
pose that dj instances are observed at T(j) and that mj 
instances are censored in the interval 

[
T(j), T(j+1)

)
 . Let 

rj =
(
mj + dj

)
+
(
mj+1 + dj+1

)
+⋯ +

(
mJn

+ dJn

)
 denote 

the number of instances at risk at a time just prior to T(j) . 
The Kaplan–Meier curve Ŝ(t) is:

where Tmax = max
(
T1, T2,… , Tn

)
 . Equation  (8) is a step 

function that decreases at each event-observed time and 
never decreases to zero if mJn

> 0 , where the largest time 
recorded Tmax is the censoring time. In this study, the 
Kaplan–Meier curve gives the empirical non-restoration 
probability at a given time.

Parametric regression models

Parametric regression modeling correlates the time to the 
event to explanatory variables using typical probability 
distributions by allowing the model parameters to be a 

(5)𝜆(t) = lim
dt→0

1

dt
P(t ≤ T∗ < t + dt)∕P(T∗ ≥ t) =

f (t)

S(t)

(6)�(t) = −
S
�(t)

S(t)
= −

dlnS(t)

dt

(7)S(t) = exp

(
−∫

t

0

�(x)dx

)

(8)Ŝ(t) =
∏

j∶T(j)≤t

(
1 −

dj

rj

)
, t ≤ Tmax

function of the explanatory variables. In this study, the 
Weibull distribution and the log-logistic distribution, 
which are often used in survival analyses, were considered. 
Both distributions have two parameters taking any positive 
values; one, a , determines the shape of the distribution, 
called the shape parameter, and the other, b , determines 
the location of the distribution, called the location param-
eter. They thereby flexibly model the time to the event. In 
particular, the Weibull distribution can deal with a hazard 
function that is monotonically decreasing for a < 1 , con-
stant over time for a = 1 , and monotonically increasing 
for a > 1 , whereas the log-logistic distribution can deal 
with a hazard function that is monotonically decreasing 
for a ≤ 1 and monotonically increases initially, reaches a 
maximum at a specific time, and then decreases to zero 
(i.e., a unimodal function) for a > 1.

The probability density, hazard, and survival functions 
of the Weibull distribution are respectively expressed as:

The probability density, hazard, and survival functions 
of the log-logistic distribution are respectively expressed as:

(9)f (t|a, b ) = (a∕b)(t∕b)a−1exp
(
−(t∕b)a

)
, t > 0

(10)𝜆(t|a, b ) = (a∕b)(t∕b)a−1, t > 0

(11)S(t|a, b ) = exp
(
−(t∕b)a

)
, t > 0

(12)f (t|a, b ) = (a∕b)(t∕b)a−1∕
(
1 + (t∕b)a

)2
, t > 0

(13)𝜆(t|a, b ) = (a∕b)(t∕b)a−1∕
(
1 + (t∕b)a

)
, t > 0

Fig. 5  Empirical survival function determined without grouping the 
data
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Assume that both the shape and location param-
eters depend on a vector of explanatory variables 
� = (Z1, Z2,… , Z

p
) . Given that the parameters are defined 

to be positive, the logarithm of the parameters is modeled 
by a linear combination of explanatory variables such that

where a0 and b0 are constants, �� = (��1,… , ��
p
) and 

�
��

= (�
��

1,… , �
��

p) are vectors of coefficients, and T denotes 
the transpose.

The parameter values are estimated by maximiz-
ing the log-likelihood lnL with respect to the parameters 
� =

{
a0, b0, �

�, �
��} . The likelihood for the parameters L is

(14)S(t|a, b ) = 1∕
(
1 + (t∕b)a

)
, t > 0

(15)lna = lna
0
+ �T��

(16)lnb = lnb
0
+ �T�

��

where ai and bi relate to � and �i via Eqs. (15) and (16). 
Note that Eq. (17) is applicable when the censoring times are 
fixed. The log-likelihood lnL can also be written concisely 
in terms of hazards [43].

The quality of the regression models is evaluated using 
the AIC [40] defined as:

where lnL∗ is the maximum log-likelihood and k is the num-
ber of parameters. Models with smaller AIC are preferred, 
i.e., the AIC is smaller for models with a larger maximum 
log-likelihood, indicating that the models better fit the data. 
However, models with more parameters increase the penalty 
term because they are more likely to overfit the data.

(17)

L
(
�||T1,… , Tn,Δ1,… ,Δn

)
=

∏

i∶Δi=1

f
(
Ti
||ai, bi

) ∏

i∶Δi=0

S
(
Ti
||ai, bi

)

(18)AIC = −2lnL∗ + 2k

Fig. 6  Empirical survival functions determined by grouping the data and a between-group comparison
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Results and discussion

Overall downtime distribution

First, to grasp the overall picture of the restoration of build-
ing services components, the Kaplan–Meier curve was 
determined without grouping the data (Fig. 5). The obtained 
curve demonstrates that there were appreciable delays in the 
restoration of the building services components relative to 
the restoration of the lifeline infrastructure, such as the resto-
ration of the electrical power, water, and gas supply systems, 
which were almost completely restored within 5–25 days 
following the earthquake [45–47]. The extremely large vari-
ation in the downtime was manifested in the obtained curve. 
The median downtime of the building services components 
was 90 days. The empirical non-restoration probability was 
approximately 32% at the end of the survey, i.e., approxi-
mately one-third of the instances remained unrestored even 
7 months after the earthquake. This prolonged downtime 
may have been related to complex circumstances, such as 
the difficulty of securing funding for repair work, in addition 
to the long time taken to mobilize repair workers. The slope 
of the obtained curve was initially steep and then decreased 
gradually with time, indicating that the empirical probability 
density function peaked at an early time.

Between‑group differences in the downtime 
distribution

Next, to narrow down the explanatory variables, 
Kaplan–Meier curves were determined by grouping the 
data (Fig. 6). There was a clear group difference for the 
services type and the building use, in contrast with the case 
for the restoration type and the JMA seismic intensity. This 
result was statistically supported by the results of a log-rank 
test. That is, p-values determined from the log-rank statistic 
were 0.031 for the services type, 0.558 for the restoration 
type, 1.03 ×  10−12 for the building use, and 0.559 for the 
JMA seismic intensity, indicating statistically significant 
differences between the groups for the services type and 
the building use; however, no statistically significant dif-
ferences between the groups for the restoration type and 
the JMA seismic intensity were observed. Note that the 
log-rank test for the JMA seismic intensity indicates only 
that there was no statistically significant difference between 
the intensities of 6 upper and 6 lower; the possible differ-
ence from even lower intensities or from intensity 7 can-
not be discussed here. The log-rank test for the restoration 
type suggests that the uncertainty in the time components 
related to decision-making may have played a more domi-
nant role in the total duration distribution of the restoration 
processes, compared to the variability in the actual repair 

Table 2  Parametric regression results: maximum likelihood estimates and Akaike’s information criterion (AIC)

Model ID A B C D E F

Probability distribution Log-logistic Weibull Log-logistic Weibull Log-logistic Weibull

Shape parameter a
0

1.5175 1.2123 1.3323 1.0329 2.4254 1.7407
�′ Building use Commercial 0 0 ― ― 0 0

Medical  − 0.3649  − 0.673 ― ―  − 0.4017  − 0.7195
Office  − 0.5175  − 0.4867 ― ―  − 0.6812  − 0.6268
Production  − 0.3376  − 0.3326 ― ―  − 0.6073  − 0.5406

Services type Electrical ― ― 0 0 0 0
HVAC ― ―  − 0.3099  − 0.2542  − 0.3913  − 0.281
Life safety ― ―  − 0.3364  − 0.2762  − 0.0369 0.0895
Sanitary ― ―  − 0.5811  − 0.5872  − 0.7583  − 0.6074

Location parameter b
0

114.7721 161.1643 77.0189 114.9632 75.8525 96.7684
�′′ Building use Commercial 0 0 ― ― 0 0

Medical  − 2.0167  − 1.4577 ― ―  − 2.1141  − 1.6396
Office 0.5388 0.7436 ― ― 0.5622 0.7405
Production  − 0.0636 0.0639 ― ― 0.1393 0.3043

Services type Electrical ― ― 0 0 0 0
HVAC ― ― 0.6028 0.7026 0.7341 0.7942
Life safety ― ― 0.6569 0.7853 0.849 0.8082
Sanitary ― ―  − 0.1599 0.272 0.3975 0.6384

Maximum log-likelihood ln L∗  − 903.7328  − 905.6091  − 918.8914  − 916.309  − 888.1298  − 888.5566
k 8 8 8 8 14 14
AIC 1823.466 1827.218 1853.783 1848.618 1804.26 1805.113
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time of the building services components. However, the 
statistical power, i.e., the probability of the test detecting a 
statistically significant difference between two groups, was 
calculated to be up to 0.35 for the restoration type and 0.13 
for the JMA seismic intensity, focusing on the empirical 
non-restoration probability at the end of the survey, even 
if the significance level is set at 10%. Therefore, the small 
overall sample size is also a possible reason why significant 
differences were not detected.

A notable tendency of the obtained curves for the ser-
vices type was that the curve for the sanitary systems alone 
initially descended remarkably and subsequently did not 
change greatly, whereas the curve for the electrical sys-
tems was above that for the sanitary systems during the 
first 90 days and then subsequently lower, resulting in the 
non-restoration probability of the electrical systems being 

lowest at the end of the survey. This suggests that the high-
est priority in making decisions was the quick restoration 
of only the sanitary systems that were critical to resuming 
business operations, whereas the restoration of the remain-
ing non-essential sanitary systems may have been postponed 
for various reasons.

The group comparison for the building use demonstrates 
that medical and welfare facilities dealt with the restoration 
of the building services components most quickly, indicating 
a high recovery ability in response to healthcare demands. 
Hotels quickly restored their building services components, 
indicating decisions to accommodate incoming disaster 
response workers in the affected areas. Meanwhile, restora-
tion progressed slowly in commercial, entertainment, and 
production facilities and even more slowly in offices and 
educational facilities.

Fig. 7  Parametric regression model predictions (thick line) and their comparison with empirical survival functions determined by stratifying the 
data (thin line)
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Statistically significant factors of the downtime

To comprehensively assess the dependence of the down-
time on the services type and the building use, parametric 
regression models adopting either or both of these factors as 
explanatory variables were tested. The restoration type and 
the JMA seismic intensity were not considered as explana-
tory variables because, as previously stated, the p-values 
obtained via the log-rank test did not indicate statistically 
significant between-group differences. Regarding the build-
ing use, the educational facilities and hotels were excluded 
because of their small sample sizes. The regression results 
summarized in Table 2 show that a log-logistic model adopt-
ing both the services type and the building use as explana-
tory variables was the best model, having the smallest AIC. 
The AIC varied greatly depending on the combination of 
explanatory variables relative to the assumed probability 
distribution. The results reveal that the services type and 

the building use simultaneously had a statistically significant 
effect on the downtime of the building services components 
after the earthquake.

Figure 7 compares the best model predictions with the 
Kaplan–Meier curves. Although the data were not neces-
sarily sufficient for a stratified analysis, the best regression 
model reasonably captured the trend of the restoration of the 
building services components. The model predictions sug-
gest that (1) medical and welfare facilities restore building 
services components much more rapidly than commercial, 
entertainment, and production facilities and offices, (2) the 
restoration of sanitary systems is initially concentrated and 
subsequently stagnates, whereas the restoration of electri-
cal systems is completed most quickly in the long term, and 
(3) decisions concerning the restoration of building services 
components are generally made in the order of priority of 
electrical, sanitary, HVAC, and life safety systems in the 
long term.

Fig. 8  Comparison of the building services component restoration curves with the lifeline infrastructure restoration curves [48]
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Restoration curves

Finally, the developed restoration model for the building ser-
vices components was compared with the existing restora-
tion model for lifeline infrastructure. As described in Sect. 3, 
the survival function determines the cumulative distribution 
function of the downtime F(t) = 1 − S(t) , and F(t) is com-
monly used as the restoration curve. Figure 8 shows that the 
restoration curves of the building services components were 
shifted by many days to the right and had long right tails 
relative to the existing Japanese lifeline infrastructure res-
toration curves (calculated for a JMA seismic intensity of 6) 
[48], which are also regression models based on restoration 
data from past large earthquakes. In contrast to the lifeline 
infrastructure, which is almost completely restored within 
1 month after a large earthquake, there were extremely large 
variations in the downtime in the restoration curves of the 
building services components. These results demonstrate 
that seismic damage to building services components results 
in the long-term functional stagnation of buildings; there-
fore, strategies to prevent damage to building services com-
ponents and shorten the component downtime are important 
to improve the seismic resilience of buildings.

Conclusions

This study investigated the empirical distribution of the 
downtime of building services components damaged by 
the 2016 Kumamoto earthquake in Japan and its depend-
ence on explanatory variables using survival analysis 
methods. The key results of the study were the following. 
(1) The downtime distribution of the building services 
components had extremely large variations, being shifted 
to the right relative to that of the lifeline infrastructure. (2) 
The median downtime of the building services components 
was 90 days and the empirical non-restoration probability 
7 months after the earthquake was approximately 32%. 
(3) The services type and the building use were explana-
tory variables having a statistically significant effect on 
the downtime of the building services components. (4) 
The log-logistic regression model with the services type 
and the building use as explanatory variables reasonably 
captured the restoration trend of the building services 
components. (5) Medical and welfare facilities and hotels 
quickly restored their building services components com-
pared with other building uses. Finally, (6) the 7-month 
restoration probability was observed to be highest for elec-
trical systems, followed by sanitary systems, then HVAC 
systems, and finally life safety systems.

Note that the effect of differences in the structural dam-
age state on the downtime of the building services compo-
nents could not be investigated because the data used in this 

study did not include information concerning the structural 
damage. However, the abovementioned results are highly 
likely to be derived from buildings with similar structural 
damage states, specifically buildings with minor or no struc-
tural damage. This is a result of the following three factors. 
(1) Most buildings covered by the survey data were S or 
RC structures designed based on the 1981 revised Japanese 
building code. (2) The buildings were subjected to ground 
motions with JMA seismic intensities of 6 upper or 6 lower. 
(3) The building damage statistics show that, even in the 
area around the seismic station with a JMA seismic intensity 
of 7, the ratio of buildings diagnosed as having complete 
or major structural damage to those constructed after the 
building code revision was several percent and the major-
ity suffered no structural damage. Therefore, the repair of 
structural components may not have had much impact on 
the downtime of the building services components. Because 
this study could not include structural damage states as a 
parameter in the developed restoration curves of the building 
services components, the generalization of the developed 
restoration curves to models covering more severe structural 
damage states, such as major and moderate structural dam-
age, requires further research.

The results of this study provide practical information for 
advancing the resilience-based seismic design of buildings. 
Particularly, the developed restoration curves of the build-
ing services components serve as a component of a frame-
work for quantifying the seismic resilience of buildings, 
which extends typical seismic performance assessments 
to include assessments of the post-earthquake functional 
recovery. Specifically, the framework typically assumes/
predicts ground motion intensities/waveforms for possible 
earthquakes, evaluates structural responses to obtain engi-
neering demand parameters (e.g., the peak floor acceleration 
and the maximum inter-story drift ratio), evaluates the prob-
ability of damage to nonstructural components (including 
services components) using fragility functions, and links 
the probabilistic damage to restoration curves. The proposed 
restoration curves are available conditional on such damage 
predictions. However, the results were obtained from limited 
data and further investigations are necessary. Specifically, 
the survey data used in this study included data for which the 
exact downtime was unknown as a result of right-censoring 
and the downtime distribution outside a period of 7 months 
after the earthquake could not be investigated. In addition, 
the data included only information on the total duration 
of the restoration processes and the rational and irrational 
downtime components could not be investigated. Their 
dependence on other possible explanatory variables, such 
as the structural damage state and the building size, needs 
to be investigated, in addition to the explanatory variables 
adopted in this study. Potential confounding variables also 
need to be discussed. Furthermore, the data were derived 
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for a specific earthquake event and the results could not be 
generalized to additional earthquake events. Comprehensive 
data collection and analyses need to be conducted as future 
work to overcome these limitations.
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