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Abstract. We study maps between positive definite or positive semi-
definite cones of unital C∗-algebras. We describe surjective maps that
preserve
(1) the norm of the quotient or product of elements;
(2) the spectrum of the quotient or product of elements;
(3) the spectral seminorm of the quotient or product of elements.

These maps relate to the Jordan ∗-isomorphisms between the specified
C∗-algebras. While a surjection between positive definite cones that pre-
serves the norm of the quotient of elements may not be extended to
a linear map between the underlying C∗-algebras, the other types of
surjections can be extended to a Jordan ∗-isomorphism or a Jordan ∗-
isomorphism followed by 2-sided multiplication by a positive invertible
element. We also study conditions for the centrality of positive invertible
elements. We generalize “the corollary” regarding surjections between
positive semidefinite cones of unital C∗-algebras. Applying it, we pro-
vide positive solutions to the problem posed by Molnár for general unital
C∗-algebras.
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1. Introduction

A Jordan ∗-isomorphism plays a crucial role in the study of mappings be-
tween C∗-algebras. It preserves various quantities, sets, and structures of
C∗-algebras. Conversely, we can characterize a Jordan ∗-isomorphism by its
preservation of specific quantities, sets, and structures. Kadison’s theorem
[14] is a celebrated result that states that a surjective complex linear uni-
tal isometry between unital C∗-algebras is a Jordan ∗-isomorphism. Kadison
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also showed that a unital order isomorphism is a Jordan ∗-isomorphism [15].
Therefore, if a unital complex linear bijection preserves positive elements,
then it is a Jordan ∗-isomorphism. If a surjective complex linear map pre-
serves the unitary group, it is a Jordan ∗-isomorphism multiplied by a unitary
[29].

On the other hand, Molnár [24] initiated the study of the so-called
multiplicatively spectrum-preserving maps. A map T : B1 → B2 between Ba-
nach algebras B1 and B2 is called multiplicatively spectrum-preserving if
σ(T (a)T (b)) = σ(ab) for a, b ∈ B1. He presented non-linear characterizations
of automorphisms on algebras of functions and operators. Several further
investigations were obtained in this way. We mention only a few of the corre-
sponding works [7–9,11,16,27,28,30] on commutative Banach algebras and
non-commutative Banach algebras [1–3,5,12,13,17,20,31].

In this paper, we study non-linear characterizations of Jordan
∗-isomorphisms on positive (definite or semidefinite) cones of C∗-algebras.
Here, “non-linear” means that we do not assume that the maps we are con-
sidering are linear in any sense. We investigate surjective maps that preserve
the norm, the spectral seminorm, and the spectrum of the product as well as
the quotient of elements between positive definite cones of C∗-algebras. The
positive (definite or semidefinite) cone has a vibrant structure from algebraic
and geometrical points of view. It has wide-ranging applications in various
areas of mathematics and mathematical physics.

Molnár’s fascinating lectures [18] inspired our research on preserver
problems related to algebras of operators and functions. During these lec-
tures, he presented his and his colleague’s findings about preservers of the
norm of the arithmetic mean and the geometric mean of positive invertible
elements in a unital C∗-algebra (cf. [4,6,21]). He presented non-linear char-
acterizations of Jordan ∗-isomorphisms. He also discussed these maps during
the lectures. All these findings inspired us to study surjective maps between
positive (definite or semidefinite) cones of C∗-algebras.

We will start by clarifying the notation and introducing the necessary
definitions and properties that we will use throughout the paper. In this
paper, we use A, A1, and A2 to denote unital C∗-algebras. We always write
the unit as e. We define

ASA = {a ∈ A : a = a∗},

the Jordan algebra of all self-adjoint elements in A. The positive semidefinite
cone is

A+ = {a ∈ ASA : a ≥ 0},

and the positive definite cone is

A−1
+ = {a ∈ A+ : a is invertible in A}.

The spectrum of a ∈ A is denoted by σ(a), and the spectral seminorm on A
is

‖a‖S = sup{|t| : t ∈ σ(a)}.
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It is worth noting that ‖a‖ = ‖a‖S for a self-adjoint element a, in particular,
a ∈ A−1

+ . A Jordan ∗-isomorphism is a complex linear bijective map between
two unital C∗-algebras that preserves the Jordan product ((ab+ba)/2 for a, b)
and the involution. It preserves squaring, the unit, and the invertibility. It also
preserves commutativity. The same applies for the spectrum. Although a Jor-
dan ∗-isomorphism may not preserve multiplication, it is known to preserve
the triple product: that is, J(aba) = J(a)J(b)J(a), for a, b in the domain. It
is worth noting that a Jordan ∗-isomorphism preserves the norm. Kadison’s
theorem is a celebrated result stating that if a complex linear unital bijection
preserves the norm, it is a Jordan ∗-isomorphism [14, Theorem 7]. A complex
linear unital bijection is a Jordan ∗-isomorphism if it preserves the order in
both directions, as stated in [15, Corollary 5].

Molnár presented the following striking result in [21]. Let φ : A−1
1+ → A−1

2+

be a map. We say that φ is positive homogeneous if the condition φ(ta) =
tφ(a) holds for all a ∈ A−1

1+ and real numbers t > 0. We say that φ is order-
preserving in both directions provided that a ≤ b if and only if φ(a) ≤ φ(b) for
any a, b ∈ A−1

1+. We say that φ is an order isomorphism if φ is a bijection and
order-preserving in both directions. It is worth noting that if φ is a surjection
and order-preserving in both directions, then φ is also an injection. (In fact,
if φ(x) = φ(x′), then φ(x) ≤ φ(x′) and φ(x′) ≤ φ(x). Hence we have x ≤ x′

and x′ ≤ x simultaneously. Thus, x = x′ which means φ is an injection.)
Thus, φ is a bijection, hence an order isomorphism.

Theorem 1.1 (Proposition 13 in [21]). Suppose that φ : A−1
1+ → A−1

2+ is a posi-
tive homogeneous order isomorphism. Then there exists a Jordan
∗-isomorphism J : A1 → A2 such that φ = φ(e)

1
2 Jφ(e)

1
2 on A−1

1+.

After examining the definition of the Thompson metric, we can conclude
that if φ is a positive homogeneous order isomorphism, it is also a Thompson
isometry. By utilizing [10, Theorem 9] and carefully considering the matter
at hand, we can prove Theorem 1.1. Theorem 1.1 is highly applicable in
many situations, including in this paper. Furthermore, it should be mentioned
that [10, Theorem 9] is proven by utilizing a profound result of Kadison [14,
Theorem 7] mentioned above. It is worth pointing out that there is a typo
in [21, Theorem 13], where φ : A → B should read φ : A −1

+ → B−1
+ . Molnár

refers to Theorem 1.1 as “the corollary” in his lectures [18] because several
interesting results follow from it. We also apply “the corollary” several times
in this paper.

In Sect. 2, we present characterizations of bijections between positive
definite cones that preserve the norm of the quotients of positive elements
(Theorem 2.3). These bijections are related to Jordan ∗-isomorphisms as
usual. However, they may not be extended to linear maps. We also provide
a condition pertaining to centrality that allows the underlying bijection to
be extended to a Jordan ∗-isomorphism. Theorem 2.4 is about a bijection
that preserves the spectrum or spectral seminorm of the quotient of positive
invertible elements. This bijection is extended to a Jordan ∗-isomorphism
followed by 2-sided multiplication by a positive invertible element.
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In Sect. 3, we are concerned with multiplicatively norm or spectrum-
preserving bijections. As described in the second paragraph of this section,
Molnár [24] initiated the study of multiplicatively spectrum-preserving maps
between algebras of operators or functions. We study multiplicatively norm-
preserving maps between positive definite cones of C∗-algebras (Theorem
3.6). We are also concerned with maps that preserve the norm of the triple
product.

In Sect. 4, we investigate the conditions of centrality for positive in-
vertible elements. Ogasawara [26] proved that a C∗-algebra is commutative if
and only if squaring preserves the order for all positive semidefinite elements.
Molnár introduced local monotonicity [23]. A function f is said to be locally
monotone at a self-adjoint element a if a ≤ x implies f(a) ≤ f(x) for every
self-adjoint element x. He proved that a self-adjoint element a is central if and
only if the exponential function is locally monotone at a. Finally, Nagy [25]
succeeded in proving that every strictly convex increasing function defined
on an open interval unbounded from above is locally monotone at a if and
only if it is central. Prior to that, Virosztek [32] had proved the correspond-
ing result for a large class of functions. The proofs by Nagy and Virosztek
are universally applicable to a broad category of functions, encompassing the
squaring function. However, it requires a rather extensive computation. It is
noteworthy to present a proof specifically for the squaring function only if it is
sufficiently straightforward. We present a concise and straightforward direct
proof establishing that the squaring function is locally monotone at a positive
invertible element if and only if it is central (Proposition 4.3). Through its
application, we illustrate specific norm conditions that are sufficient for the
centrality of positive invertible elements.

In Sect. 5, we study maps between positive semidefinite cones. We prove
“the corollary” for maps between semidefinite cones (Theorem 5.1). Applying
Theorem 5.1, we exhibit results similar to those in Sect. 4 for the case of pos-
itive semidefinite cones. In particular, we show a generalization of Theorem
2.6 and Corollary 2.9 in [20] for the case of general unital C∗-algebras. Our
results provide positive solutions to the problem posed by Molnár [20, p.194].

2. Maps that preserve the spectrum or norm of the quotients
of elements in positive definite cones

We aim to prove that the map x �→ (ax2a)
1
2 a−1 on A−1

+ preserves the norm
in Proposition 2.1, for any a ∈ A−1

+ . We can extend this map to a linear map
on A if and only if a is central in A (Proposition 2.2). Using this approach,
we prove the main result of this section, Theorem 2.3. We observe that a
bijection between positive definite cones, which preserves the norm of the
quotient of any two elements, is related to a Jordan ∗-isomorphism between
the whole algebras. Nevertheless, this bijection generally cannot be extended
to a linear map between entire algebras.

In the first draft of the paper, we apply the Gelfand-Naimark theorem
to prove the following proposition. However, Lajos Molnár pointed out that



Non-linear characterization of Jordan

direct proof is possible. This adjustment not only streamlines the proof but
also enhances the clarity and accessibility of our paper.

Proposition 2.1. For any trio a, x, y ∈ A−1
+ we have

‖(ax2a)
1
2 a−1‖ = ‖x‖

and

‖(ax2a)
1
2 (ay2a)− 1

2 ‖ = ‖xy−1‖.

Proof. We have

‖(ax2a)
1
2 a−1‖2 = ‖((ax2a)

1
2 a−1)∗((ax2a)

1
2 a−1)‖

= ‖a−1(ax2a)a−1‖ = ‖x2‖ = ‖x‖2.
Thus the first equation holds. For the second equation, we have

‖(ax2a)
1
2 (ay2a)− 1

2 ‖2 = ‖((ax2a)
1
2 (ay2a)− 1

2 )∗((ax2a)
1
2 (ay2a)− 1

2 )‖
= ‖(ay2a)− 1

2 ax2a(ay2a)− 1
2 ‖ = ‖xa(ay2a)− 1

2 ‖2
= ‖(xa(ay2a)− 1

2 )(xa(ay2a)− 1
2 )∗‖

= ‖xa(ay2a)−1ax‖ = ‖xy−2x‖ = ‖xy−1‖2.
�

To prove the main result of this section, Theorem 2.3, we will utilize
the following proposition.

Proposition 2.2. Let a ∈ A−1
+ . Suppose that φ : A−1

+ → A−1
+ is defined as

φ(x) = (ax2a)
1
2 , x ∈ A−1

+ . Then φ is additive if and only if a is a central
element in A. In this case, φ(x) = ax, x ∈ A−1

+ .

Proof. If a is a central element, then by an elementary calculation, we have
φ(x) = ax for every x ∈ A−1

+ , so φ is additive.
Suppose that φ(x) = (ax2a)

1
2 , x ∈ A−1

+ is an additive map. Then

(a(x2 + xy + yx + y2)a)
1
2 = (a(x + y)2a)

1
2 = (ax2a)

1
2 + (ay2a)

1
2

for every x, y ∈ A−1
+ . To simplify the equation, we can square both sides,

resulting in:

axya + ayxa = (ax2a)
1
2 (ay2a)

1
2 + (ay2a)

1
2 (ax2a)

1
2 .

Substituting x = a−1 we obtain

ya + ay = 2(ay2a)
1
2 , y ∈ A−1

+ . (1)

Since φ is additive, the inverse map φ−1(x) = (a−1x2a−1)
1
2 , x ∈ A−1

+ is also
additve. In a similar way as (1) we obtain

ya−1 + a−1y = 2(a−1y2a−1)
1
2 , y ∈ A−1

+ . (2)

Replacing y by aya in (2), we have

ay + ya = 2(ya2y)
1
2 , y ∈ A−1

+ . (3)
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By compairing (1) and (3) we have

(ay)(ay)∗ = ay2a = ya2y = (ay)∗(ay), y ∈ A−1
+ .

Thus ay is normal for every y ∈ A−1
+ . On the other hand, the equation

σ(ay) = σ(y
1
2 ay

1
2 ) ⊂ (0,∞)

implies that the spectrum of ay consists of positive real numbers. It may
be well known that a normal element, whose spectrum is confined to real
numbers, is self-adjoint. This can be demonstrated by examining the closed
subalgebra generated by the corresponding normal element, constituting a
commutative C∗-algebra. As the spectra in a C∗-algebra and in a closed
∗-subalgebra are identical, and in a commutative C∗-algebra, an element
whose spectrum is confined to the real numbers is self-adjoint, it follows that
the element ay is self-adjoint. This implies that a and y commute for every
y ∈ A−1

+ , which further implies that a is a central element in A. Finally, a
simple calculation shows that φ(x) = ax for x ∈ A−1

+ . �

Theorem 2.3. Let φ : A−1
1+ → A−1

2+ be a surjection. Then, the following are
equivalent:

(i) ‖φ(x)φ(y)−1‖ = ‖xy−1‖, x, y ∈ A−1
1+,

(ii) there exists a Jordan ∗-isomorphism J : A1 → A2 such that

φ(x) = (φ(e)J(x)2φ(e))
1
2 , x ∈ A−1

1+.

When φ satisfies the condition (i), or equivalently (ii), the map φ is additive
if and only if φ(e) is a central element in A2. In this case,

φ(x) = φ(e)J(x), x ∈ A−1
1+.

Proof. We prove that (i) implies (ii). Define ψ : A−1
1+ → A−1

2+ by ψ(x) =
φ(x

1
2 )2, x ∈ A−1

1+. Then ψ is a surjection. By calculation, we have

‖y− 1
2 x

1
2 ‖ = ‖(x

1
2 y− 1

2 )∗‖ = ‖x
1
2 y− 1

2 ‖ = ‖φ(x
1
2 )φ(y

1
2 )−1‖

= ‖ψ(x)
1
2 ψ(y)− 1

2 ‖ = ‖ψ(y)− 1
2 ψ(x)

1
2 ‖.

Then we have

‖y− 1
2 xy− 1

2 ‖ = ‖(y− 1
2 x

1
2 )(y− 1

2 x
1
2 )∗‖ = ‖y− 1

2 x
1
2 ‖2

= ‖ψ(y)− 1
2 ψ(x)

1
2 ‖2 = ‖ψ(y)− 1

2 ψ(x)ψ(y)− 1
2 ‖. (4)

Similarly, we have

‖x− 1
2 yx− 1

2 ‖ = ‖ψ(x)− 1
2 ψ(y)ψ(x)− 1

2 ‖. (5)

Since y− 1
2 xy− 1

2 is positive, we have

‖y− 1
2 xy− 1

2 ‖ = sup{t : t ∈ σ(y− 1
2 xy− 1

2 )}
= inf{t : y− 1

2 xy− 1
2 ≤ te} = inf{t : x ≤ ty}. (6)

In the same way, we have

‖x− 1
2 yx− 1

2 ‖ = inf{s : y ≤ sx}. (7)
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Recall that the Thompson metric dT (·, ·) on A−1
+ is

dT (x, y) = log max{inf{t : x ≤ ty}, inf{s : y ≤ sx}}, x, y ∈ A−1
+ .

It follows by (4), (5), (6) and (7) that for every x, y ∈ A−1
1+

dT (x, y) = log max{‖x− 1
2 yx− 1

2 ‖, ‖y− 1
2 xy− 1

2 ‖}
= log max{‖ψ(x)− 1

2 ψ(y)ψ(x)− 1
2 ‖, ‖ψ(y)− 1

2 ψ(x)ψ(y)− 1
2 ‖}

= dT (ψ(x), ψ(y)).

We conclude that ψ : A−1
1+ → A−1

2+ is a surjective Thompson isometry. By [10,
Theorem 9] there exists a Jordan ∗-isomorphism J : A1 → A2 and a central
projection P ∈ A2 such that

ψ(x) = ψ(e)
1
2 (PJ(x) + (e − P )J(x−1))ψ(e)

1
2 , x ∈ A−1

1+. (8)

Substituting x = 1
2e and y = e in (4), we obtain by (8) that

1
2

=
∥
∥
∥
∥
e− 1

2
1
2
ee− 1

2

∥
∥
∥
∥

=
∥
∥
∥
∥
ψ(e)− 1

2 ψ

(
1
2
e

)

ψ(e)− 1
2

∥
∥
∥
∥

=

∥
∥
∥
∥
∥
PJ

(
1
2
e

)

+ (e − P )J

((
1
2
e

)−1
)∥

∥
∥
∥
∥

=
∥
∥
∥
∥

1
2
P + 2(e − P )

∥
∥
∥
∥

,

as P is a central projection, we have

= max
{∥

∥
∥
∥

1
2
P

∥
∥
∥
∥

, ‖2(e − P )‖
}

.

It follows that e − P = 0, so ψ = ψ(e)
1
2 Jψ(e)

1
2 . We conclude that

φ(x) = ψ(x2)
1
2 = (φ(e)J(x)2φ(e))

1
2 , x ∈ A−1

1+.

Suppose that (ii) holds. We prove (i). Applying Proposition 2.1 we have

‖φ(x)φ(y)−1‖ = ‖(φ(e)J(x)2φ(e))
1
2 (φ(e)J(y)2φ(e))− 1

2 ‖
= ‖J(x)J(y)−1‖, x, y ∈ A−1

1+. (9)

On the other hand, as a Jordan ∗-isomorphism preserves squaring, the triple
product, the inverse, and the norm, we have

‖J(x)J(y)−1‖2 = ‖(J(x)J(y)−1)∗J(x)J(y)−1‖
= ‖J(y)−1J(x2)J(y)−1‖ = ‖J(y−1x2y−1)‖
= ‖y−1x2y−1‖ = ‖xy−1‖2, x, y ∈ A−1

1+.

Then by (9) we conclude

‖φ(x)φ(y)−1‖ = ‖xy−1‖
holds for every x, y ∈ A−1

1+.
Suppose that φ(x) = (φ(e)J(x)2φ(e))

1
2 , x ∈ A−1

1+ and φ is additive.
This implies that the mapping y �→ (φ(e)y2φ(e))

1
2 is additive. Therefore, by

Proposition 2.2, we conclude that φ(e) is a central element in A2. We infer
by a simple calculation that φ(x) = φ(e)J(x) for every x ∈ A−1

1+. �
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Note that if ‖φ(x)φ(y)−1‖ = ‖xy−1‖ holds for every x, y ∈ A−1
1+ and

φ(e) is not a central element in A2, then φ can not be extended to even an
additive map from A1 into A2.

The structure of a surjection that preserves the spectrum or the spectral
seminorm of the quotient is relatively simple. It can be extended to a Jordan
∗-isomorphism followed by 2-sided multiplication by an element in A−1

2+. To
elaborate, the following holds true.

Theorem 2.4. Let φ : A−1
1+ → A−1

2+ be a surjection. Then, the following are
equivalent:

(i) There exists a Jordan ∗-isomorphism J : A1 → A2 such that

φ(x) = φ(e)
1
2 J(x)φ(e)

1
2 , x ∈ A−1

1+,

(ii) ‖φ(x)φ(y)−1‖S = ‖xy−1‖S , x, y ∈ A−1
1+,

(iii) σ(φ(x)φ(y)−1) = σ(xy−1), x, y ∈ A−1
1+.

Proof. By the definition of the spectrum norm, it is evident that (iii) implies
(ii).

We prove that (ii) implies (i). For every x, y ∈ A−1
1+,

‖xy−1‖S = sup{t : t ∈ σ(xy−1)} = sup{t : t ∈ σ(y− 1
2 xy− 1

2 )}
= inf{t : y− 1

2 xy− 1
2 ≤ te} = inf{t : x ≤ ty}.

In the same way, ‖yx−1‖S = inf{t : y ≤ tx}, ‖φ(x)φ(y)−1‖S = inf{t : φ(x) ≤
tφ(y)}, and ‖φ(y)φ(x)−1‖S = inf{t : φ(y) ≤ tφ(x)}. Due to the definition of
the Thompson metric, we obtain

dT (x, y) = log max{‖xy−1‖S , ‖yx−1‖S}
= log max{‖φ(x)φ(y)−1‖S , ‖φ(y)φ(x)−1‖S} = dT (φ(x), φ(y))

for every x, y ∈ A−1
1+; φ is a (surjective) Thompson isometry. Hence, accord-

ing to [10, Theorem 9] there exist a Jordan ∗-isomorphism J and a central
projection P ∈ A2 such that

φ(x) = φ(e)
1
2 (PJ(x) + (e − P )J(x−1))φ(e)

1
2 , x ∈ A−1

1+.

Letting x = 1
2e, we have

φ

(
1
2
e

)

= φ(e)
1
2

(
1
2
P + 2(e − P )

)

φ(e)
1
2 .

So

1
2

=
∥
∥
∥
∥

1
2
ee−1

∥
∥
∥
∥
S

=
∥
∥
∥
∥
φ(e)

1
2

(
1
2
P + 2(e − P )

)

φ(e)− 1
2

∥
∥
∥
∥
S

=
∥
∥
∥
∥

1
2
P + 2(e − P )

∥
∥
∥
∥
S

.

It follows that e − P = 0. We conclude that φ = φ(e)
1
2 Jφ(e)

1
2 .
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Suppose that (i) holds. Then for every x, y ∈ A−1
1+, we infer φ(x)φ(y)−1 =

φ(e)
1
2 J(x)J(y−1)φ(e)− 1

2 , so

σ(φ(x)φ(y)−1) = σ(φ(e)
1
2 J(x)J(y−1)φ(e)− 1

2 )

= σ(J(x)J(y−1)) = σ(J(x
1
2 )J(y−1)J(x

1
2 ))

= σ(J(x
1
2 y−1x

1
2 )) = σ(x

1
2 y−1x

1
2 ) = σ(xy−1).

Thus, (iii) holds. �

3. Maps that preserve the spectrum or the norm of the
products of elements in positive definite cones

In this section, we study not only multiplicatively spectrum-preserving maps
but also multiplicatively norm-preserving maps and multiplicatively spectral
seminorm-preserving maps on a positive definite cone. We prove the following
as an application of Lemma 13 in [4].

Lemma 3.1. Let a, a′ ∈ A−1
+ . Then, the following are equivalent:

(i) a = a′,
(ii) ‖ax‖ = ‖a′x‖ for every x ∈ A−1

+ ,
(iii) ‖xax‖ = ‖xa′x‖ for every x ∈ A−1

+ .

Proof. If a = a′, then (ii) and (iii) are apparent. Suppose that (iii) holds.
Then, a ≤ a′ follows from ‖xax‖ ≤ ‖xa′x‖, x ∈ A−1

+ by [4, Lemma 13]. In
the same manner, we infer that a′ ≤ a. Thus, we obtain (i). Suppose that (ii)
holds. Since (ax)∗(ax) = xa2x for every x ∈ A−1

+ as x and a are self-adjoint,
so

‖xa2x‖ = ‖ax‖2 = ‖a′x‖2 = ‖xa′2x‖, x ∈ A−1
+ .

As (iii) implies (i), we have a2 = a′2. Hence, a = a′.
�

Lemma 3.2. Let a, a′ ∈ A−1
+ . Then, a ≤ a′ if and only if ‖ay‖S ≤ ‖a′y‖S for

every y ∈ A−1
+ .

Proof. Suppose that a ≤ a′. Then y
1
2 ay

1
2 ≤ y

1
2 a′y

1
2 for every y ∈ A−1

+ . Since
σ(ay) = σ(y

1
2 ay

1
2 ) (resp. σ(a′y) = σ(y

1
2 a′y

1
2 )) for every y ∈ A−1

+ , which is a
subset of the set of positive real numbers, we obtain

‖ay‖S = sup{t : t ∈ σ(ay)} = sup{t : t ∈ σ(y
1
2 ay

1
2 )}

≤ sup{t : t ∈ σ(y
1
2 a′y

1
2 )} = sup{t : t ∈ σ(a′y)} = ‖a′y‖S

for every y ∈ A−1
+ .

Conversely, suppose that ‖ay‖S ≤ ‖a′y‖S for every y ∈ A−1
+ . Since

σ(ay2) = σ(yay) (resp. σ(a′y2) = σ(ya′y)) and ‖yay‖ = ‖yay‖S (resp.
‖ya′y‖ = ‖ya′y‖S) for every y ∈ A−1

+ , we have

‖yay‖ = ‖ay2‖S ≤ ‖a′y2‖S = ‖ya′y‖
for every y ∈ A−1

+ . By [4, Lemma 13], we have a ≤ a′. �
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Corollary 3.3. Let a, a′ ∈ A−1
+ . Then a = a′ if and only if ‖ay‖S = ‖a′y‖S

holds for every y ∈ A−1
+ .

A proof is apparent from Lemma 3.2 and is omitted.

Lemma 3.4. Suppose that φ and ψ are surjections from A−1
1+ onto A−1

2+ such
that

‖φ(y)ψ(x)φ(y)‖ = ‖yxy‖, x, y ∈ A−1
1+

and ψ(e) = e. Then, there exists a Jordan ∗-isomorphism J : A1 → A2 such
that ψ = J on A−1

1+.

Proof. We show that ψ is order preserving in both directions. By Lemma
13 in [4] we have x ≤ x′ if and only if ‖yxy‖ ≤ ‖yx′y‖ if and only if
‖φ(y)ψ(x)φ(y)‖ ≤ ‖φ(y)ψ(x′)φ(y)‖ if and only if ψ(x) ≤ ψ(x′) as φ(A−1

1+) =
A−1

2+ for every x, x′ ∈ A−1
1+. This means that ψ is order preserving in both

directions. Hence, we see that ψ is an injection, so a bijection. We prove that
ψ is positive homogeneous. Let t > 0 and x ∈ A−1

1+ be arbitrary. We have

‖φ(y)ψ(tx)φ(y)‖ = ‖ytxy‖
= t‖yxy‖ = t‖φ(y)ψ(x)φ(y)‖ = ‖φ(y)tψ(x)φ(y)‖

for every y ∈ A−1
1+. Since φ(A−1

1+) = A−1
2+, we have ψ(tx) = tψ(x) by Lemma

3.1. As t and x are arbitrary, we see that ψ is positive homogeneous. By
Theorem 1.1 there exists a Jordan ∗-isomorphism J : A1 → A2 such that
ψ = J on A−1

1+ since ψ(e) = e. �

As a result of Lemma 3.4, we characterize a surjective map that pre-
serves the norm of the triple product.

Corollary 3.5. Let φ : A−1
1+ → A−1

2+ be a surjection. Suppose that

‖φ(y)φ(x)φ(y)‖ = ‖yxy‖, x, y ∈ A−1
1+. (10)

Then there exists a Jordan ∗-isomorphism J : A1 → A2 such that φ = J on
A−1

1+. Conversely, a Jordan ∗-isomorphism J satisfies

‖J(y)J(x)J(y)‖ = ‖yxy‖, x, y ∈ A−1
1+.

Proof. Letting x = y in (10), we have ‖φ(y)3‖ = ‖y3‖. As y and φ(y) are
positive, we have ‖φ(y)‖ = ‖y‖. Hence ‖φ(y)2‖ = ‖y2‖. Thus

‖φ(y)φ(e)φ(y)‖ = ‖yey‖ = ‖φ(y)2‖ = ‖φ(y)eφ(y)‖
for every y ∈ A−1

1+. As φ(A−1
1+) = A−1

2+, applying Lemma 3.1 we have φ(e) = e.
Then by Lemma 3.4 we observe that there exists a Jordan ∗-isomorphism
J : A1 → A2 such that φ = J on A−1

1+.
Conversely, as a Jordan ∗-isomorphism preserves the triple product and

the norm, we see that

‖J(y)J(x)J(y)‖ = ‖J(yxy)‖ = ‖yxy‖
for every x, y ∈ A−1

1+. �
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Theorem 3.6. Suppose that φ : A−1
1+ → A−1

2+ is a surjection. The following are
equivalent:

(i) There exists a Jordan ∗-isomorphism J : A1 → A2 such that φ = J on
A−1

1+,
(ii) ‖φ(x)φ(y)‖ = ‖xy‖, x, y ∈ A−1

1+,
(iii) ‖φ(x)φ(y)‖S = ‖xy‖S, x, y ∈ A−1

1+,
(iv) σ(φ(x)φ(y)) = σ(xy), x, y ∈ A−1

1+,
(v) for a positive real number p, ‖(φ(x)

p
2 φ(y)pφ(x)

p
2 )

1
p ‖ = ‖(x

p
2 ypx

p
2 )

1
p ‖,

x, y ∈ A−1
1+.

Note that the equivalence between (i) and (ii) is already pointed out
just after Theorem 25 ([19, p.36]). For clarity, we include proof.

Proof. We prove that (i) implies (ii). Suppose that there exists a Jordan ∗-
isomorphism J such that φ = J on A−1

1+. Since J preserves squaring, the
involution, the triple product, and the norm, we obtain

‖φ(x)φ(y)‖2 = ‖J(x)J(y)‖2 = ‖(J(x)J(y))∗J(x)J(y)‖
= ‖J(y)J(x2)J(y)‖ = ‖J(yx2y)‖ = ‖yx2y‖ = ‖xy‖2,

so (ii) holds.
We prove that (ii) implies (i). Suppose that ‖φ(x)φ(y)‖ = ‖xy‖ holds

for every x, y ∈ A−1
1+. Letting x = y we obtain ‖y2‖ = ‖φ(y)2‖, hence ‖y‖ =

‖φ(y)‖ since y and φ(y) are self-adjoint. Then, we have

‖φ(e)φ(y)‖ = ‖ey‖ = ‖y‖ = ‖φ(y)‖ = ‖eφ(y)‖
for every y ∈ A−1

1+. As φ is a surjection we infer by Lemma 3.1 that φ(e) = e.
Put ψ(x) = φ(x

1
2 )2 for x ∈ A−1

1+. It is apparent that ψ is a surjection. We
infer that ψ(e) = φ(e

1
2 )2 = φ(e)2 = e2 = e. Let x, y be arbitrary in A−1

1+.
Since yxy = (x

1
2 y)∗x

1
2 y and

(φ(x
1
2 )φ(y))∗φ(x

1
2 )φ(y) = φ(y)φ(x

1
2 )2φ(y) = φ(y)ψ(x)φ(y)

hold, we have

‖yxy‖ = ‖x
1
2 y‖2 = ‖φ(x

1
2 )φ(y)‖2 = ‖φ(y)ψ(x)φ(y)‖. (11)

Then by Lemma 3.4 there exists a Jordan ∗-isomorphism J such that J = ψ
on A−1

1+. We infer by the definition of ψ that φ = J on A−1
1+.

It is apparent that (iv) implies (iii).
Suppose that (iii) holds. We prove (i). We show that φ(e) = e. Letting

x = y in (iii) we have ‖φ(y)2‖S = ‖y2‖S . By the spectral mapping theorem,
we have σ(z2) = {t2 : t ∈ σ(z)}, so that ‖y2‖S = ‖y‖2S and ‖φ(y)2‖S =
‖φ(y)‖2S . Thus we have ‖y‖S = ‖φ(y)‖S . Thus we have

‖eφ(y)‖S = ‖φ(y)‖S = ‖y‖S = ‖ey‖S = ‖φ(e)φ(y)‖S
for every y ∈ A−1

1+. By applying Corollary 3.3 we have φ(e) = e. Since σ(xy) =
σ(y

1
2 xy

1
2 ), we have

‖xy‖S = ‖y
1
2 xy

1
2 ‖S = ‖y

1
2 xy

1
2 ‖. (12)
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Similarly, we obtain

‖φ(x)φ(y)‖S = ‖φ(y)
1
2 φ(x)φ(y)

1
2 ‖. (13)

Letting ϕ(y) = φ(y2)
1
2 for each y ∈ A−1

1+, ϕ : A−1
1+ → A−1

2+ is a surjection. By
(12) and (13) we observe that

‖yxy‖ = ‖ϕ(y)φ(x)ϕ(y)‖, x, y ∈ A−1
1+.

Then by Lemma 3.4 there exists a Jordan ∗-isomorphism J such that J = φ
on A−1

1+.
A proof that (i) implies (iv) is as follows. As a Jordan ∗-isomorphism J

preserves squaring, the triple product, and the spectrum we have

σ(J(x)J(y)) = σ(J(x)J(y
1
2 )2) = σ(J(y

1
2 )J(x)J(y

1
2 ))

= σ(J(y
1
2 xy

1
2 )) = σ(y

1
2 xy

1
2 ) = σ(xy).

We prove that (v) implies (i). Let p = 1 first. As x
1
2 yx

1
2 ∈ A−1

1+ for every
x, y ∈ A−1

1+, we infer ‖x
1
2 yx

1
2 ‖ = ‖x

1
2 yx

1
2 ‖S . We also have σ(x

1
2 yx

1
2 ) = σ(xy)

for every x, y ∈ A−1
1+. Hence, we have ‖x

1
2 yx

1
2 ‖ = ‖xy‖S . Similarly, we have

‖φ(x)
1
2 φ(y)φ(x)

1
2 ‖ = ‖φ(x)φ(y)‖S . Hence, (v) is equivalent to (iii) if p = 1.

We consider a general positive real number p. Put ψ(x) = φ(x
1
p )p, x ∈ A−1

1+.
By a simple calculation, substituting x by x

1
p and y by y

1
p in (v), we obtain

‖(ψ(x)
1
2 ψ(y)ψ(x)

1
2 )

1
p ‖ = ‖(φ(x

1
p )

p
2 φ(y

1
p )pφ(x

1
p )

p
2 )

1
p ‖

= ‖(x
1
2 yx

1
2 )

1
p ‖, x, y ∈ A−1

1+. (14)

By the spectral mapping theorem we have σ(a
1
p ) = σ(a)

1
p for every positive

invertible element a, we have

‖a
1
p ‖ = ‖a

1
p ‖S = ‖a‖

1
p

S = ‖a‖ 1
p

for every positive invertible element a. By (14) we have

‖ψ(x)
1
2 ψ(y)ψ(x)

1
2 ‖ = ‖x

1
2 yx

1
2 ‖, x, y ∈ A−1

1+.

It follows from the first part that

‖ψ(x)ψ(y)‖S = ‖xy‖S , x, y ∈ A−1
1+,

(iii) for ψ is observed. As we have already proven that (iii) and (i) are equiva-
lent, a Jordan ∗-isomorphism J exists, such as ψ = J . Then φ(x) = ψ(xp)

1
p =

J(xp)
1
p = J(x), x ∈ A−1

1+; (i) holds for φ. Suppose that φ = J on A−1
1+. Since

a Jordan ∗-isomorphism J preserves the power and the triple product, we see
that

(φ(x)
p
2 φ(y)pφ(x)

p
2 )

1
p = (J(x

p
2 ypx

p
2 ))

1
p ,

and J preserves the norm. Thus, we have (v).
�
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Theorem 3.7. Let φj : A−1
1+ → A−1

2+ be a bijection for j = 1, 2. Suppose that

‖φ1(x)φ2(y)‖ = ‖xy‖, x, y ∈ A−1
1+.

Suppose also that φ1(e) = e. Then, there exists a Jordan ∗-isomorphism
J : A1 → A2 such that φ1 = φ2 = J on A−1

1+.

Proof. We have

‖φ2(y)φ1(x
1
2 )2φ2(y)‖ = ‖φ1(x

1
2 )φ2(y)‖2

= ‖x
1
2 y‖2 = ‖yxy‖, x, y ∈ A−1

1+. (15)

Put ψ(x) = φ1(x
1
2 )2, x ∈ A−1

1+. Then ψ : A−1
1+ → A−1

2+ is a bijection. Ap-
parently, ψ(e) = e. Applying Lemma 3.4 there is a Jordan ∗-isomorphism
J : A1 → A2 such that φ1 = J on A−1

1+. Then we have

‖φ2(e)J(x)‖ = ‖(φ2(e)J(x))∗‖
= ‖J(x)φ2(e)‖ = ‖xe‖ = ‖x‖ = ‖J(x)‖ = ‖eJ(x)‖

for every x ∈ A−1
1+ we have e = φ2(e) as J is surjective. Similarly as φ1, there

is a Jordan ∗-isomorphism J ′ : A−1
1+ → A−1

2+ such that φ2 = J ′ on A−1
1+. Let

y ∈ A−1
1+ be fixed. Then for every x ∈ A−1

1+ we have

‖J(x)J ′(y)‖2 = ‖xy‖2 = ‖xy2x‖ = ‖J(xy2x)‖
= ‖J(x)J(y)2J(x)‖ = ‖J(x)J(y)‖2.

Then J ′(y) = J(y) by Lemma 3.2. As y can be arbitrary we conclude that
J ′(y) = J(y) for every y ∈ A−1

1+. Thus φ1 = φ2 = J on A−1
1+. �

Note that the assumption φ1(e) = e is essential in Theorem 3.7 as the
following example shows.

Example 3.8. Suppose that a ∈ A−1
1+ is not a central element and J : A1 →

A2 is a Jordan ∗-isomorphism. Let φ1 : A−1
1+ → A−1

2+ be defined as φ1(x) =
(aJ(x)2a)

1
2 , x ∈ A−1

1+ and φ2(x) = (a−1J(x)2a−1)
1
2 , x ∈ A−1

1+. We infer that
φ1(e) = a and φ1(x) = (φ1(e)J(x)2φ1(e))

1
2 . We also have φ2(y) = φ1(y−1)−1,

y ∈ A−1
1+. Hence, we have by Theorem 2.3 that

‖φ1(x)φ2(y)‖ = ‖φ1(x)φ1(y−1)−1‖ = ‖x(y−1)−1‖ = ‖xy‖
for every x, y ∈ A−1

1+. As a is not a central element, neither φ1 nor φ2 are
additive on A−1

1+ according to Theorem 2.3. Hence, neither φ1 nor φ2 are
Jordan ∗-isomorphisms.

4. Conditions for centrality of elements in the positive definite
cones

In this section, we study certain conditions for the centrality of elements in
the positive definite cones. The following is a version of Corollary 5 in [15].
We can prove this by applying Corollary 5 in [15]. We can also prove this
using Theorem 1.1. Here we provide a proof as a corollary of Proposition 1
in [22].
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Proposition 4.1. Let T : A−1
1+ → A−1

2+ be a bijection. Suppose that T is ad-
ditive; i.e., T (a + b) = T (a) + T (b) for all a, b ∈ A−1

1+. Then there exists a
Jordan ∗-isomorphism J : A1 → A2 such that T (a) = T (e)

1
2 J(a)T (e)

1
2 for

every a ∈ A−1
1+.

Proof. We prove that T preserves the arithmetic mean; T
(
a+b
2

)

= T (a)+T (b)
2

for every a, b ∈ A−1
1+. First, for any a ∈ A−1

1+ we have T (a) = T (a2 + a
2 ) =

2T (a2 ). Hence T (a)
2 = T (a2 ) for every a ∈ A−1

1+. It follows that

T

(
a + b

2

)

=
1
2
(T (a + b)) =

T (a) + T (b)
2

for every a, b ∈ A−1
1+. Thus T preserves the arithmetic mean. Then by [22,

Proposition 1] that T is of the desired form. �

Recall that the geometric mean x#y of x, y ∈ A−1
+ is

x#y = x
1
2 (x− 1

2 yx− 1
2 )

1
2 x

1
2 .

Let a ∈ A−1
+ and φ(x) = a2#x2, x ∈ A−1

+ . Then φ is a bijection from A−1
+

onto itself. Note that if A is commutative, then a2#x2 = ax. It means that
φ is additive if A is commutative. We have the converse. Suppose that φ
is additive. Then a−1φ(x)a−1 = (a−1x2a−1)

1
2 defines an additive bijection

from A−1
+ onto itself. Then by Proposition 2.2, a−1 is central, hence so is a.

Similarly, it occurs for (b#x)2. If A is commutative, then (b#x)2 = bx for
every b, x ∈ A−1

+ . On the other hand, we have the following.

Corollary 4.2. Let b ∈ A−1
+ . Suppose that a map φ : A−1

+ → A−1
+ which is

defined as φ(x) = (b#x)2, x ∈ A−1
+ is additive. Then b is a central element

in A.

Proof. We infer that φ is a bijection by a simple calculation. We have φ(e) =
(b#e)2 = b. Hence, by Proposition 4.1 there exists a Jordan ∗-isomorphism
J such that φ = b

1
2 Jb

1
2 . As b#x = b

1
2 (b− 1

2 xb− 1
2 )

1
2 b

1
2 we have

J(x) = (b− 1
2 xb− 1

2 )
1
2 b(b− 1

2 xb− 1
2 )

1
2 , x ∈ A−1

+ .

As a Jordan ∗-isomorphism preserves the triple product, we have

J(b
1
2 )J(x)J(b

1
2 ) = J(b

1
2 xb

1
2 ) = x

1
2 bx

1
2 , x ∈ A−1

+ . (16)

On the other hand, as we have

b
1
2 J(b)b

1
2 = φ(b) = (b#b)2 = b2,

we obtain J(b) = b, hence J(b
1
2 ) = b

1
2 . By (16) we obtain

b
1
2 J(x)b

1
2 = x

1
2 bx

1
2 (17)

for every x ∈ A−1
+ . Substituting x−1 instead of x we have

b
1
2 J(x)−1b

1
2 = b

1
2 J(x−1)b

1
2 = x− 1

2 bx− 1
2 . (18)

Hence

b− 1
2 J(x)b− 1

2 = x
1
2 b−1x

1
2 . (19)
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By (17) and (19) we have

b− 1
2 x

1
2 bx

1
2 b− 1

2 = b
1
2 x

1
2 b−1x

1
2 b

1
2 ,

so

(b
1
2 x

1
2 b− 1

2 )∗(b
1
2 x

1
2 b− 1

2 ) = (b
1
2 x

1
2 b− 1

2 )(b
1
2 x

1
2 b− 1

2 )∗.

This means that b
1
2 x

1
2 b− 1

2 is normal. Alongside the equation

σ(b
1
2 x

1
2 b− 1

2 ) = σ(x
1
2 ) ⊂ (0,∞),

we observe that b
1
2 x

1
2 b− 1

2 is self-adjoint, similar to the manner highlighted in
the proof of Proposition 2.2. Hence, we have

b
1
2 x

1
2 b− 1

2 = (b
1
2 x

1
2 b− 1

2 )∗ = b− 1
2 x

1
2 b

1
2 .

It follows that bx
1
2 = x

1
2 b holds for every x. Then b is a central element in

A. �

We present a proof of a localized version of Ogasawara’s theorem [26]
concerning commutativity. This result is a specific instance of a theorem of
Nagy [25, Theorem 1] and Virosztek [32, Theorem 1] applied to the squar-
ing functions, addressing the local monotonicity of a strictly convex increas-
ing function. Our presentation provides a concise and straightforward di-
rect proof, despite the application of two profound results: the Russo and
Dye theorem [29, Corollary 1] and Kadison’s generalized Schwarz lemma [15,
Theorem 1].

Proposition 4.3. Let a ∈ A−1
+ . Then a is central if and only if a2 ≤ x2 holds

for every x ∈ A−1
+ with a ≤ x.

Proof. If a is central, it is apparent that a2 ≤ x2 holds for every x ∈ A−1
+

with a ≤ x.
We prove the converse. Suppose that a ∈ A−1

+ which satisfies that a2 ≤
x2 holds for every x ∈ A−1

+ with a ≤ x. We first prove 0 ≤ ab + ba for every
b ∈ A with 0 ≤ b. For any 0 < t ≤ 1 we have a ≤ (1 − t)a + t(a + b). By
the hypothesis, we have a2 ≤ ((1− t)a+ t(a+ b))2. By calculation, we obtain
that

(2 − t)a2 ≤ (1 − t)(2a2 + ab + ba) + t(a + b)2.

Letting t → 0, we have

0 ≤ ab + ba.

Define a map T : A → A as T (y) = 1
2 (a

1
2 ya− 1

2 + a− 1
2 ya

1
2 ), y ∈ A. Then

T is positive since T (b) = 1
2a− 1

2 (ab + ba)a− 1
2 ≥ 0 for any b ≥ 0. We also

have T (e) = e. By the Russo and Dye theorem [29, Corollary 1], we see that
‖T‖ = 1. Kadison’s generalized Schwarz lemma [15, Theorem 1] asserts that
T (x2) ≥ T (x)2 for each self-adjoint element x. After calculating T (x2) and
T (x)2, we can observe that

a
1
2 x2a− 1

2 + a− 1
2 x2a

1
2 ≥ a

1
2 xa−1xa

1
2 + a− 1

2 xaxa− 1
2 .
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By multiplying a
1
2 from the left and right-hand sides of each term of both

sides of the inequality, we infer that

ax2 + x2a ≥ axa−1xa + xax.

Then

ax2 − xax ≥ axa−1xa − x2a = (ax − xa)a−1xa.

Thus we obtain

(ax − xa)a−1(ax − xa) ≥ 0. (20)

On the other hand, as (ax − xa)∗ = −(ax − xa), we obtain

0 ≤ ((ax − xa)a− 1
2 )((ax − xa)a− 1

2 )∗ = −(ax − xa)a−1(ax − xa). (21)

Combining (20) and (21), we infer that

‖(ax − xa)a− 1
2 ‖2 = ‖(ax − xa)a−1(ax − xa)‖ = 0.

It follows that ax = xa. As x is an arbitrary self-adjoint element, we conclude
that a is a central element. �

Proposition 4.4. Let a ∈ A−1
+ . The following are equivalent:

(i) a is a central element in A,
(ii) ‖axa−1‖ = ‖x‖ for every element x ∈ A−1

+ ,
(iii) ‖a2x‖ = ‖axa‖ for every element x ∈ A−1

+ ,
(iv) ‖ax‖ = ‖ax‖S for every element x ∈ A−1

+ ,
(v) ‖a2x‖ = ‖a2x‖S for every element x ∈ A−1

+ .

Proof. First, we prove that (i) and (iv) are equivalent. Suppose that (i) holds;
a is a central element. Then, so is a

1
2 since a

1
2 is approximated by polynomials

of a. Hence ax = a
1
2 xa

1
2 , so ‖ax‖ = ‖a

1
2 xa

1
2 ‖. As a

1
2 xa

1
2 is positive, so self-

adjoint, we have ‖a
1
2 xa

1
2 ‖ = ‖a

1
2 xa

1
2 ‖S . As σ(a

1
2 xa

1
2 ) = σ(ax), we have

‖a
1
2 xa

1
2 ‖S = ‖ax‖S . Thus, (iv) holds.

Suppose that a is not a central element. We prove (iv) does not hold.
As the above, we see that a2 is not a central element. Applying Proposition
4.3, there exists x0 ∈ A−1

+ such that a ≤ x−1
0 and a2 �≤ x−2

0 . Put

t0 = inf{t : a2 ≤ tx−2
0 },

and

s0 = inf{s : a ≤ sx−1
0 }.

Then t0 > 1 as a2 �≤ x−2
0 . Since a ≤ x−1

0 we have s0 ≤ 1. We compute

t0 = inf{t : x0a
2x0 ≤ te} = sup{t : t ∈ σ(x0a

2x0)} = ‖x0a
2x0‖,

where the last equality holds since x0a
2x0 is positive, hence self-adjoint. Since

x0a
2x0 = (ax0)∗(ax0) we have

‖x0a
2x0‖ = ‖ax0‖2.
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On the other hand, we compute

s0 = inf{s : a ≤ sx−1
0 } = inf{s : x

1
2
0 ax

1
2
0 ≤ se}

= sup{s : s ∈ σ(x
1
2
0 ax

1
2
0 )} = sup{s : s ∈ σ(ax0)} = ‖ax0‖S .

Since t0 > 1 ≥ s20, we can conclude that ‖ax0‖ > ‖ax0‖S , so (iv) does not
hold.

In a similar way as above, we see that (i) and (v) are equivalent.
By a calculation, we have

‖axa‖ = sup{t : t ∈ σ(axa)} = sup{t : t ∈ σ(a2x)} = ‖a2x‖S .

Hence (iii) and (v) are equivalent.
Suppose that (ii) holds. By substituting axa in place of x in equation

(ii), we have ‖a2x‖ = ‖axa‖. Thus (iii) holds.
Suppose that (iii) holds. Substituting a−1xa−1 in place of x in equation

(iii), we have ‖axa−1‖ = ‖x‖. Thus (ii) holds. �

5. Maps between positive semidefinite cones

In this section, we exhibit results on maps between positive semidefinite cones
of unital C∗-algebras. Theorem 1.1, “the corollary” of Molnár, can be slightly
generalized for the case of positive semidefinite cones of unital C∗-algebras as
Theorem 5.1. It is in the same vein as “the corollary”. Notably, the Thomp-
son metric is not well defined on the positive semidefinite cones. However, a
representation theorem is possible for positively homogeneous order isomor-
phisms between positive semidefinite cones. As an application of Theorem
5.1, we provide a solution (Theorem 5.5) to the problem posed by Molnár
[20, p.194].

Theorem 5.1. Suppose that φ : A1+ → A2+ is a positively homogeneous order
isomorphism, that is,
(1) φ is a bijection,
(2) φ(tx) = tφ(x), x ∈ A1+, t ≥ 0,
(3) x ≤ x′ if and only if φ(x) ≤ φ(x′).
Then there exists a Jordan ∗-isomorphism J : A1 → A2 such that φ =
φ(e)

1
2 Jφ(e)

1
2 on A1+.

Proof. We first prove that φ(A−1
1+) = A−1

2+. Suppose that a ∈ A−1
1+. Let b =

φ−1(e), where e is the unit in A2. As a is invertible, a− 1
2 ba− 1

2 ≥ 0, so there
exists a positive real number tb > 0 such that b ≤ tba. As φ preserves the
order and is positively homogeneous, we infer that

e = φ(b) ≤ φ(tba) = tbφ(a).

Hence φ(a) is invertible, so φ(a) ∈ A−1
2+. Conversely, we infer in a similar way

that if c ∈ A−1
2+, then φ−1(c) ∈ A−1

1+. Thus we have φ(A−1
1+) = A−1

2+.
According to “the corollary”, there exists a Jordan ∗-isomorphism

J : A1 → A2 such that φ = φ(e)
1
2 Jφ(e)

1
2 on A−1

1+. We prove that the equality
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also holds on A1+. Let a ∈ A1+ be arbitrary. For any t > 0, a + te ∈ A−1
1+.

Then

φ(a) ≤ φ(a + te) = φ(e)
1
2 J(a + te)φ(e)

1
2 = φ(e)

1
2 J(a)φ(e)

1
2 + tφ(e)

as φ preserves the order. Letting t → 0 we have

φ(a) ≤ φ(e)
1
2 J(a)φ(e)

1
2 .

As φ is a surjection, there exists a′ ∈ A1+ such that φ(a′) = φ(e)
1
2 J(a)φ(e)

1
2 .

Hence we have φ(a) ≤ φ(a′), so a ≤ a′ as φ is an order isomorphism. Next,
for any t > 0 we have

φ(a′) = φ(e)
1
2 J(a)φ(e)

1
2 ≤ φ(e)

1
2 J(a + te)φ(e)

1
2 = φ(a + te),

as J preserves the order and a + te ∈ A−1
1+. Thus, we have a′ ≤ a + te for

every t > 0. Letting t → 0, we have a′ ≤ a. It follows that a = a′ and
φ(a) = φ(a′) = φ(e)

1
2 J(a)φ(e)

1
2 . As a ∈ A1+ is arbitrary, we conclude that

φ = φ(e)
1
2 Jφ(e)

1
2 on A1+. �

The proposition below is about a characterization of the inequality a ≤ b
for a, b in a positive semidefinite cone of a unital C∗-algebra. It is a gener-
alization of a part of [4, Lemma 13] which applies to positive definite cones,
as well as a part of [20, Lemma 2.8], which applies to positive semidefinite
cones of von Neumann algebras. To prove it, we apply [4, Lemma 13].

Proposition 5.2. Let a, b ∈ A+. Suppose that ‖xax‖ ≤ ‖xbx‖ holds for every
x ∈ A−1

+ . Then a ≤ b. Suppose conversely that a ≤ b. Then ‖xax‖ ≤ ‖xbx‖
holds for all x ∈ A+. In particular, a ≤ b if and only if ‖xax‖ ≤ ‖xbx‖ for
every x ∈ A+.

Proof. Suppose that ‖xax‖ ≤ ‖xbx‖ for every x ∈ A−1
+ . Let x ∈ A−1

+ and
0 < t < 1 be arbitrary. We have

‖x(a + te)x‖ ≤ ‖xax‖ + ‖x(te)x‖ ≤ ‖xbx‖ + ‖x(te)x‖
≤ ‖x(b + te)x‖ + 2‖x(te)x‖. (22)

As 0 < te ≤ √
tb + te, we have by Lemma 13 in [4] that

‖x(te)x‖ ≤ ‖x(
√

tb + te)x‖ =
√

t‖x(b +
√

te)x‖.

As 0 < t < 1 we have 0 < b + te ≤ b +
√

te, so by [4, Lemma 13],

‖x(b + te)x‖ ≤ ‖x(b +
√

te)x‖.

We obtain that

‖x(b + te)x‖ + 2‖x(te)x‖ ≤ (1 + 2
√

t)‖x(b +
√

te)x‖.

Then by (22) we have

‖x(a + te)x‖ ≤ (1 + 2
√

t)‖x(b +
√

te)x‖ = ‖x(1 + 2
√

t)(b +
√

te)x‖.

As x ∈ A−1
+ is arbitrary, by [4, Lemma 13] we have

a + te ≤ (1 + 2
√

t)(b +
√

te).

Letting t → 0, we obtain a ≤ b.
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Conversely, suppose that a ≤ b. Then for every x ∈ A+, 0 ≤ xax ≤ xbx.
Hence

‖xax‖S = sup{t : t ∈ σ(xax)} ≤ sup{t : t ∈ σ(xbx)} = ‖xbx‖S .

As xax and xbx are self-adjoint, the norm and the spectral seminorm coincide
with each other, hence we obtain ‖xax‖ ≤ ‖xbx‖ for all x ∈ A+.

�
Corollary 5.3. Let a, b ∈ A+. Then, a = b if and only if ‖xax‖ = ‖xbx‖ for
every x ∈ A+ with x ≤ e.

Proof. Suppose that ‖xax‖ = ‖xbx‖ for every x ∈ A+ with x ≤ e. Then
for every positive real number t, we have ‖(tx)a(tx)‖ = ‖(tx)b(tx)‖. Thus
we have ‖yay‖ = ‖yby‖ for every y ∈ A+. By Proposition 5.2 we infer that
a = b.

The converse statement is trivial. �
The following proposition is a version of Lemma 3.4.

Proposition 5.4. Suppose that φ and ψ are surjections from A1+ onto A2+

such that

‖yxy‖ = ‖φ(y)ψ(x)φ(y)‖, x, y ∈ A1+ (23)

and ψ(e) = e. Then, there exists a Jordan ∗-isomorphism J : A1 → A2 such
that ψ = J on A1+.

Proof. We prove that ψ is an order isomorphism from A1+ onto A2+. Let
x, x′ ∈ A1+. As ψ is a surjection, it is enough to prove that x ≤ x′ if and
only if ψ(x) ≤ ψ(x′) for every x, x′ ∈ A1+. By (23) and Proposition 5.2, we
have x ≤ x′ if and only if ‖yxy‖ ≤ ‖yx′y‖ for every y ∈ A1+ if and only if
‖φ(y)ψ(x)φ(y)‖ ≤ ‖φ(y)ψ(x′)φ(y)‖ for every y ∈ A1+. As φ is a surjection,
it is equivalent to ψ(x) ≤ ψ(x′) by Proposition 5.2. We conclude that x ≤ x′

if and only if ψ(x) ≤ ψ(x′) for every x, x′ ∈ A1+. We infer that ψ is an
injection, so it is a bijection. As x and x′ are arbitrary, we conclude that
ψ is an order isomorphism. We prove that ψ is positively homogeneous. Let
x ∈ A1+ and t ≥ 0 arbitrary. Then we have by (23) that

‖φ(y)ψ(tx)φ(y)‖ = ‖y(tx)y‖
= t‖yxy‖= t‖φ(y)ψ(x)φ(y)‖=‖φ(y)(tψ(x))φ(y)‖, y∈A1+.

As φ is a surjection, we have ψ(tx) = tψ(x) by Corollary 5.3. Thus, ψ is
positively homogeneous. Due to Theorem 5.1 and the hypothesis that ψ(e) =
e, we conclude that there exists a Jordan ∗-isomorphism J : A1 → A2 such
that ψ = J . �

The following theorem provides a solution to the problem posed by
Molnár [20, p.194].

Theorem 5.5. Suppose that φ : A1+ → A2+ is a surjection. The following are
equivalent:

(i) There exists a Jordan ∗-isomorphism J : A1 → A2 such that φ = J on
A1+,
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(ii) ‖φ(x)φ(y)‖ = ‖xy‖, x, y ∈ A1+,
(iii) ‖φ(x)φ(y)‖S = ‖xy‖S, x, y ∈ A1+,
(iv) σ(φ(x)φ(y)) = σ(xy), x, y ∈ A1+,
(v) for a positive real number p,

‖(φ(x)
p
2 φ(y)pφ(x)

p
2 )

1
p ‖ = ‖(x

p
2 ypx

p
2 )

1
p ‖, x, y ∈ A1+.

Proof. Suppose that (ii) holds. We prove (i). As (ab)∗ab = ba2b for every
a, b ∈ A1+, we infer by the equation (ii) that

‖yxy‖ = ‖x
1
2 y‖2 = ‖φ(x

1
2 )φ(y)‖2 = ‖φ(y)φ(x

1
2 )2φ(y)‖, x, y ∈ A1+ (24)

Defining ψ : A1+ → A2+ by ψ(x) = φ(x
1
2 )2, x ∈ A1+, ψ is a surjection, and

by (24) we obtain

‖yxy‖ = ‖φ(y)ψ(x)φ(y)‖, x, y ∈ A1+. (25)

We prove ψ(e) = e. Letting x = y in the equation of (ii), we have ‖y2‖ =
‖φ(y)2‖. Thus we have

‖φ(y)φ(e)2φ(y)‖ = ‖φ(e)φ(y)‖2
= ‖ey‖2 = ‖y2‖ = ‖φ(y)2‖ = ‖φ(y)eφ(y)‖.

By Corollary 5.3, we have φ(e)2 = e, so φ(e) = e, hence ψ(e) = e. Applying
Proposition 5.4, there exists a Jordan ∗-isomorphism J : A1 → A2 such that
ψ = J on A1+. For any x ∈ A1+, φ(x) = ψ(x2)

1
2 = J(x2)

1
2 = J(x). Thus

φ = J on A1+.
We prove (v) implies (i). Suppose first we consider p = 1. In this case,

the equation of (iii) is

‖φ(x)
1
2 φ(y)φ(x)

1
2 ‖ = ‖x

1
2 yx

1
2 ‖, x, y ∈ A1+. (26)

We prove φ(e) = e. Inserting x = y in (26), we obtain ‖φ(x)2‖ = ‖x2‖. Hence
‖φ(x)‖ = ‖x‖ for every x ∈ A1+. Then by (26) we have

‖φ(x)
1
2 φ(e)φ(x)

1
2 ‖ = ‖x

1
2 ex

1
2 ‖

= ‖x‖ = ‖φ(x)‖ = ‖φ(x)
1
2 eφ(x)

1
2 ‖, x ∈ A1+.

As φ is a surjection, we see that {φ(x)
1
2 : x ∈ A1+} = A2+. Then Corollary

5.3 ensures that φ(e) = e. Define ϕ : A1+ → A2+ by ϕ(x) = φ(x2)
1
2 , x ∈ A1+.

Then by (26) we obtain

‖ϕ(x)φ(y)ϕ(x)‖ = ‖xyx‖, x, y ∈ A1+.

Then by Proposition 5.4 we observe that (i) holds.
We consider a general positive p. Define φ′ : A1+ → A2+ by φ′(x) =

φ(x
1
p )p, x ∈ A1+. By a simple calculation, we infer that φ′ is a surjection

and

‖x
1
2 yx

1
2 ‖ = ‖φ′(x)

1
2 φ′(y)φ′(x)

1
2 ‖, x, y ∈ A1+.

By the first part, a Jordan ∗-isomorphism J : A1 → A2 exists such that
φ′ = J . Thus, we also see that φ = J on A1+.

It is apparent that (v) implies (iv).
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Suppose that (iii) holds. Let x, y ∈ A1+ arbitrary. By the so-called
Jacobson’s lemma, we have σ(xy) \ {0} = σ(x

1
2 yx

1
2 ) \ {0}. Hence we have

‖xy‖S = ‖x
1
2 yx

1
2 ‖S . As x

1
2 yx

1
2 is self-adjoint, we have ‖x

1
2 yx

1
2 ‖S = ‖x

1
2 yx

1
2 ‖.

Therefore we have ‖xy‖S = ‖x
1
2 yx

1
2 ‖. In the same way we have ‖φ(x)φ(y)‖S

= ‖φ(x)
1
2 φ(y)φ(x)

1
2 ‖. Thus we have

‖φ(x)
1
2 φ(y)φ(x)

1
2 ‖ = ‖x

1
2 yx

1
2 ‖, x, y ∈ A1+.

In other words, we have (v) for p = 1 holds for φ. In this case, we have already
proven that (i) holds.

Suppose that (i); φ = J on A1+ for a Jordan ∗-isomorphism J . We
prove (iv). Let x, y ∈ A1+ arbitrary. By the Jacobson lemma, σ(xy) \ {0} =
σ(x

1
2 yx

1
2 ) \ {0}. By a simple calculation we have x

1
2 yx

1
2 is invertible if and

only if xy is invertible. (Suppose that x
1
2 yx

1
2 is invertible; (x

1
2 yx

1
2 )a =

a(x
1
2 yx

1
2 ) = e for some a ∈ A1. It means that x

1
2 is also invertible. Hence

yx = x− 1
2 (x

1
2 yx

1
2 )x

1
2 is invertible. Thus xy = (yx)∗ is invertible. Conversely,

suppose that xy is invertible. As (xy)∗ = yx is also invertible, we have xyyx =
xy2x is invertible. Hence, there exists b ∈ A1 such that bxy2x = xy2xb = e.
Hence, x is also invertible. Thus, the spectrum of x consists of positive real
numbers. By the spectral mapping theorem, so is the spectrum of x

1
2 . Thus,

x
1
2 is invertible. Hence x

1
2 (yx)x− 1

2 = x
1
2 yx

1
2 is invertible.) It follows that

σ(x
1
2 yx

1
2 ) = σ(xy). Similarly, we have σ(J(x)

1
2 J(y)J(x)

1
2 ) = σ(J(x)J(y)).

As a Jordan ∗-isomorphism preserves the spectrum, the triple product, and
the square root, we see that

σ(x
1
2 yx

1
2 ) = σ(J(x

1
2 yx

1
2 )) = σ(J(x)

1
2 J(y)J(x)

1
2 ).

We conclude that σ(J(x)J(y)) = σ(xy).
We prove that (i) implies (ii). Suppose that there exists a Jordan ∗-

isomorphism J such that φ = J on A1+. Since J preserves squaring, the
involution, the triple product, and the norm, we obtain for arbitrary x, y ∈
A1+ that

‖φ(x)φ(y)‖2 = ‖J(x)J(y)‖2 = ‖(J(x)J(y))∗J(x)J(y)‖
= ‖J(y)J(x2)J(y)‖ = ‖J(yx2y)‖ = ‖yx2y‖ = ‖xy‖2,

so (ii) holds.
As a Jordan ∗-isomorphism preserves the triple product and the power,

it is easy to prove that (i) implies (v). �

The set E(A) = {a ∈ A+ : 0 ≤ a ≤ e} is known as the effect alge-
bra. This structure holds significant importance in the quantum theory of
measurements, as it establishes the foundation for unsharp measurements
within quantum mechanics. The following result generalizes Corollary 2.9
in [20], which was stated for von Neumann algebras. Let p > 0. We define
x p y = (x

p
2 ypx

p
2 )

1
p for x, y ∈ E(A). The involved operation for p = 1 is the

usual sequential product.

Corollary 5.6. Let φ : E(A1) → E(A2) be a surjection and p > 0. It satisfies

‖φ(x) p φ(y)‖ = ‖x p y‖, x, y ∈ A1+
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if and only if there exists a Jordan ∗-isomorphism J : A1 → A2 such that
φ = J on E(A1).

Proof. We first prove that φ(tx) = tφ(x) for every x ∈ E(A1) and 0 < t ≤ 1.
Suppose that x, y ∈ E(A1) and 0 < t ≤ 1. Then we have ty ∈ E(A1) and

‖(φ(x)
p
2 φ(ty)pφ(x)

p
2 )

1
p ‖ = ‖(x

p
2 (ty)px

p
2 )

1
p ‖ = t‖(x

p
2 ypx

p
2 )

1
p ‖

= t‖(φ(x)
p
2 φ(y)pφ(x)

p
2 )

1
p ‖ = ‖(φ(x)

p
2 (tφ(y))pφ(x)

p
2 )

1
p ‖.

As {φ(x)
p
2 : x ∈ E(A1)} = E(A2), we have φ(ty) = tφ(y) by Corollary 5.3.

Define φ̃ : A1+ → A2+ as

φ̃(a) =

{

‖a‖φ
(

a
‖a‖

)

, a �= 0

0, a = 0.
(27)

It is easy to see that φ̃ is a surjection. By the first part, we infer that φ = φ̃
on E(A1). We also see by a simple calculation that

‖(φ̃(x)
p
2 φ̃(y)pφ̃(x)

p
2 )

1
p ‖ = ‖(x

p
2 ypx

p
2 )

1
p ‖, x, y ∈ A1+.

It follows by Theorem 5.5 that there exists a Jordan ∗-isomorphism J : A1 →
A2 such that φ̃ = J on A1+, in particular, on E(A1). As φ = φ̃ on E(A1), we
have the conclusion. �
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[31] Touré, C., Brits, R., Sebastian, G.: A multiplicative Kowalski–S�lodkowski the-
orem for C∗-algebras. Can. Math. Bull. 66, 951–958 (2023)

[32] Virosztek, D.: Connections between centrality and local monotonicity of certain
functions on C∗-algebras. J. Math. Anal. Appl. 453, 221–226 (2017)

Osamu Hatori
Institute of Science and Technology
Niigata University
Niigata 950-2181
Japan
e-mail: hatori@math.sc.niigata-u.ac.jp

Shiho Oi(B)

Department of Mathematics, Faculty of Science
Niigata University
Niigata 950-2181
Japan
e-mail: shiho-oi@math.sc.niigata-u.ac.jp

Received: March 11, 2024.

Accepted: May 12, 2024.


	Non-linear characterization of Jordan *-isomorphisms via maps on positive cones of C*-algebras
	Abstract
	1. Introduction
	2. Maps that preserve the spectrum or norm of the quotients of elements in positive definite cones
	3. Maps that preserve the spectrum or the norm of the products of elements in positive definite cones
	4. Conditions for centrality of elements in the positive definite cones
	5. Maps between positive semidefinite cones
	Acknowledgements
	References


