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1. Introduction

Multipliers of algebras, particularly multipliers of Banach algebras, have been
studied in the field of analysis. In this paper we discuss them in a purely
algebraic manner.

Let A be a Banach algebra. A mapping T : A → A is termed a multiplier
of A if it satisfies the condition (I) xT (y) = T (xy) = T (x)y for all x, y ∈ A.
We denote the collection of all multipliers of A as M(A), and the collection of
all bounded linear operators on A as B(A). Notably, M(A) forms an algebra
and B(A) constitutes a Banach algebra. A Banach algebra A is referred to as
without order if it has neither a nonzero left annihilator nor a nonzero right
annihilator. If A is without order, the algebra M(A) forms a commutative
closed subalgebra of B(A) (see [2], Proposition 1.4.11). In 1952, Wendel [8]
proved an important result that the multiplier algebra of L1(G) on a locally
compact group G is isometrically isomorphic to the measure algebra on G.
The general theory of multipliers of Banach algebras has been developed by
Johnson [1]. For a comprehensive reference on the theory of multipliers of
Banach algebras, refer to Larsen [5].

When A is without order, T is a multiplier if it satisfies the condition (II)
xT (y) = T (x)y for all x, y ∈ A. Many researchers had been unaware of the
difference between conditions (I) and (II) until Zivari-Kazempour [9] (see also
[10]) recently articulated the difference. We call a mapping T satisfying (II) a
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weak multiplier and denote the set of such multipliers of A by M ′(A). Then,
M(A) is in general a proper subset of M ′(A). Furthermore, (weak) multipliers
can be defined for an algebra A that is not necessarily associative, and they
are not linear mappings in general. We denote the spaces of linear multipliers
and linear weak multipliers of A by LM(A) and LM ′(A) respectively. M(A)
and LM(A) are subalgebras of the algebra AA consisting of all mappings from
A to itself. Meanwhile, M ′(A) and LM ′(A) are closed under the operation ◦
defined by T ◦ S = TS + ST , and they form a Jordan algebra.

In Sects. 2 to 5, we study general properties of (weak) multipliers. More
specifically, in Sects. 3 and 4 we give a decomposition theorem (Theorem
3.1), and a matrix equation (Theorem 4.2) for (weak) multipliers. They play
an essential role in our examination of (weak) multipliers.

Complete classifications of associative algebras and zeropotent algebras
of dimension 3 over an algebraically closed field of characteristic not equal to
2 were given in Kobayashi et al., [3] and [4]. In Sects. 6 and 7 we undertake a
complete determination of the (linear) (weak) multipliers of these algebras.

Some authors have considered other weaker concepts related to multi-
pliers, such as (pseudo-)n-multipliers (for more information, see [6] and [11]).

2. Multipliers and weak multipliers

Let K be a field and A be a (not necessarily associative) algebra over K. The
set AA of all mappings from A to A forms an associative algebra over K in
the usual way. Let L(A) denote the subalgebra of AA of all linear mappings
from A to A.

A mapping T : A → A is a weak multiplier of A, if

xT (y) = T (x)y (1)

holds for any x, y ∈ A, and T is a multiplier, if

xT (y) = T (xy) = T (x)y (2)

for any x, y ∈ A. Let M(A) (resp. M ′(A)) denote the set of all multipliers
(resp. weak multipliers) of A. Define

LM(A) def= M(A) ∩ L(A) and LM ′(A) def= M ′(A) ∩ L(A).

Proposition 2.1. M(A) (resp. LM(A)) is a unital subalgebra of AA (resp.
L(A)), and M ′(A) (resp. LM ′(A)) is a Jordan subalgebra of AA (resp. L(A)).

Proof. First, the zero mapping is a multiplier because all three terms in (2)
are zero. Secondly, the identity mapping is also a multiplier because the three
terms in (2) are xy. Let T,U ∈ M(A). Then we have

x(T + U)(y) = xT (y) + xU(y) = T (xy) + U(xy) = T (x)y + U(x)y
= (T + U)(x)y (3)

and

x(TU)(y) = xT (U(y)) = T (xU(y)) = TU(xy) = T (U(x)y) = (TU)(x)y
(4)
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for any x, y ∈ A. Hence, T +U, TU belong to M(A). Finally let k ∈ K, then

x(kT )(y) = kxT (y) = kT (xy) = kT (x)y = (kT )(x)y, (5)

and so kT ∈ M(A). Therefore, M(A) is a unital subalgebra of AA, and
LM(A) = M(A) ∩ L(A) is a unital subalgebra of L(A).

Next, let T,U ∈ M ′(A). Then, the equalities in (3) and (5) hold, remov-
ing the center terms T (xy) + U(xy) and kT (xy), respectively. Hence, M ′(A)
is a subspace of AA. Moreover, we have

x(TU)(y) = xT (U(y)) = T (x)U(y) = U(T (x))y = UT (x)y

and similarly x(UT )(y) = TU(x)y for any x, y ∈ A. Hence,

x(TU + UT )(y) = (TU + UT )(x)y.

It follows that TU + UT ∈ M ′(A).1 �
Let Annl(A) (resp. Annr(A)) be the left (resp. right) annihilator of A

and let A0 be their intersection, that is,

Annl(A) = {a ∈ A | ax = 0 for all x ∈ A},

Annr(A) = {a ∈ A |xa = 0 for all x ∈ A}
and

A0 = Annl(A) ∩ Annr(A).

They are all subspaces of A, and when A is an associative algebra, they
are two-sided ideals. For a subset X of A, 〈X〉 denotes the subspace of A
generated by X.

Proposition 2.2. A weak multiplier T of A such that 〈T (A)〉 ∩ A0 = {0} is a
linear mapping.

Proof. Let x, y, z ∈ A and a, b ∈ K, and let T be a weak multiplier. We have

T (ax + by)z = (ax + by)T (z) = axT (z) + byT (z) = aT (x)z + bT (y)z

= (aT (x) + bT (y)) z.

Because z is arbitrary, we have w = T (ax + by) − aT (x) − bT (y) ∈ Annl(A).
Similarly, we can show w ∈ Annr(A), and so w ∈ A0. Hence, if 〈T (A)〉∩A0 =
{0}, then w = 0 because w ∈ 〈T (A)〉. Since a, b, x, y are arbitrary, T is a linear
mapping. �
Corollary 2.3. If A0 = {0}, then any weak multiplier is a linear mapping over
K, that is, M ′(A) = LM ′(A) and M(A) = LM(A).

Proposition 2.4. If T is a weak multiplier, then T (Annl(A)) ⊆ Annl(A),
T (Annr(A)) ⊆ Annr(A) and T (A0) ⊆ A0.

Proof. Let x ∈ Annl(A), then for any y ∈ A we have

0 = xT (y) = T (x)y.

Hence, T (x) ∈ Annl(A). The other cases are similar. �
1In general, for an associative algebra A over a field K of characteristic �= 2, the Jordan
product ◦ on A is defined by x ◦ y = (xy + yx)/2 for x, y ∈ A.
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In this paper we denote the subset {xy |x, y ∈ A} of A by A2.2

Proposition 2.5. Any mapping T : A → A such that T (A) ⊆ A0 is a weak
multiplier. Such a mapping T is a multiplier if and only if T (A2) = {0}. In
particular, if A is the zero algebra, every mapping T is a weak multiplier, and
it is a multiplier if and only if T (0) = 0.

Proof. If T (A) ⊆ A0, then both sides are 0 in (1) and T is a weak multiplier.
This T is a multiplier if and only if the term T (xy) in the middle of (2) is 0
for all x, y ∈ A, that is, T (A2) = {0}. If A is the zero algebra, then A = A0

and A2 = {0}. Hence, any T is a weak multiplier and it is a multiplier if and
only if T (0) = 0. �

The opposite Aop of A is the algebra with the same elements and addi-
tion as A, but the multiplication ∗ in it is reversed, that is, x ∗ y = yx for all
x, y ∈ A.

Proposition 2.6. A and Aop have the same multipliers and weak multiplies,
that is,

M(Aop) = M(A) and M ′(Aop) = M ′(A).

Proof. Let T ∈ AA. Then, T ∈ M ′(A) if and only if

x ∗ T (y) = T (y)x = yT (x) = T (x) ∗ y

for any x, y ∈ A, if and only if T ∈ M ′(Aop). Further, T ∈ M(A) if and only
if

x ∗ T (y) = T (y)x = T (yx) = T (x ∗ y) = yT (x) = T (x) ∗ y

for any x, y ∈ A, if and only if T ∈ M(Aop). �

3. Nihil decomposition

Let A1 be a subspace of A such that

A = A1 ⊕ A0. (6)

Here, A1 is not unique, but choosing an appropriate A1 will become important
later. When A1 is fixed, any mapping T ∈ AA is uniquely decomposed as

T = T1 + T0 (7)

with T1(A) ⊆ A1 and T0(A) ⊆ A0. We call (6) and (7) a nihil decomposition
of A and T , respectively. Let π : A → A1 be the projection and μ : A1 → A
be the embedding, that is, π(x1 +x0) = μ(x1) = x1 for x1 ∈ A1 and x0 ∈ A0.

Let M1(A) (resp. M0(A)) denote the set of all multipliers T of A with
T (A) ⊆ A1 (resp. T (A) ⊆ A0). Similarly, the sets M ′

1(A) and M ′
0(A) of weak

multipliers of A are defined. Also, set

LMi(A) = Mi(A) ∩ L(A) and LM ′
i(A) = M ′

i(A) ∩ L(A)

2Usually A2 denotes the subspace of A generated by this subset.
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for i = 0, 1. By Proposition 2.2 we see

M ′
1(A) = LM ′

1(A) and M1(A) = LM1(A),

and by Proposition 2.5 we have

M ′
0(A) = AA

0 and M0(A) = {T ∈ AA
0 |T (A2) = {0}}. (8)

Theorem 3.1. Let A = A1 ⊕ A0 and T = T1 + T0 be nihil decompositions of
A and T ∈ AA respectively.

(i) T is a weak multiplier, if and only if T1 is a weak multiplier. If T is
a weak multiplier, T1 is a linear mapping satisfying T1(A0) = {0}.

(ii) If T1 is a multiplier and T0(A2) = {0}, then T is a multiplier. If A1

is a subalgebra of A, the converse is also true.
Suppose that A1 is a subalgebra of A, and let Φ be a mapping sending

R ∈ (A1)A1 to μ ◦ R ◦ π ∈ AA. Then,
(iii) Φ gives an algebra isomorphism from M(A1) onto M1(A) and a

Jordan isomorphism from M ′(A1) onto M ′
1(A).

Proof. Let x, y ∈ A.
(i) If T is a weak multiplier, then

xT1(y) = x(T (y) − T0(y)) = xT (y) = T (x)y = T1(x)y.

Thus, T1 is also a weak multiplier. Moreover, T1 is a linear mapping by
Proposition 2.2 and T1(A0) ⊆ A1 ∩ A0 = {0} by Proposition 2.4. Conversely,
if T1 is a weak multiplier, then

xT (y) = xT1(y) = T1(x)y = T (x)y,

and so T is a weak multiplier.
(ii) If T1 is a multiplier and T0(A2) = 0, then T is a multiplier because

xT (y) = xT1(y) = T1(xy) = T (xy) − T0(xy) = T (xy) = T (x)y.

Next suppose that A1 is a subalgebra. If T is a multiplier, then for any
x, y ∈ A we have

T1(xy) + T0(xy) = T (xy) = xT (y) = x1T1(y), (9)

where x = x1+x0 with x1 ∈ A1 and x0 ∈ A0. Here, x1T1(y) ∈ A1 because A1

is a subalgebra, and thus, we have T0(xy) = x1T1(y)−T1(xy) ∈ A0∩A1 = {0}.
Since x, y are arbitrary, we get T0(A2) = {0}. Moreover, because T1(xy) =
x1T1(y) = xT1(y) by (9) and similarly T1(xy) = T1(x)y, T1 is a multiplier.
The converse is already proved above.

(iii) Let S ∈ (A1)A1 and x = x1 + x0, y = y1 + y0 ∈ A with x1, y1 ∈ A1

and x0, y0 ∈ A0. Then, π(x) = μ(x1) = x1, π(y) = μ(y1) = y1 and

Φ(S)(x) = μ(S(π(x))) = μ(S(x1)) = S(x1).

Thus, if S ∈ M ′(A1), we have

xΦ(S)(y) = xS(y1) = x1S(y1) = S(x1)y1 = Φ(S)(x)y1 = Φ(S)(x)y.

Hence, Φ(S) ∈ M ′
1(A). Moreover, if S ∈ M(A1), then because π is a homo-

morphism, we have

Φ(S)(xy) = S(π(xy)) = S(x1y1) = x1S(y1) = xΦ(S)(y),
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and so Φ(S) ∈ M1(A).
Conversely, let T ∈ M ′

1(A), then because T is a linear mapping satisfying
T (A0) = {0}, there is a linear mapping S ∈ L(A1) on A1 such that Φ(S) = T ,
that is, S(x1) = T (x) = T (x1). We have

x1S(y1) = x1T (y1) = T (x1)y1 = S(x1)y1,

and hence S ∈ M ′(A1). Therefore, Φ induces a linear isomorphism from
M ′(A1) to M ′

1(A). Similarly, Φ gives a linear isomorphism from M(A1) to
M1(A). Moreover, for T,U ∈ M ′(A1), we have

Φ(TU) = μ ◦ T ◦ U ◦ π = μ ◦ T ◦ π ◦ μ ◦ U ◦ π = Φ(T )Φ(U).

Thus, Φ gives an isomorphism of algebras from M(A1) to M1(A) and a Jordan
isomorphism from M ′(A1) to M ′

1(A). �

Theorem 3.1 implies

M ′(A) = M ′
1(A) ⊕ M ′

0(A) and M1(A) ⊕ M0(A) ⊆ M(A),

where M ′
0(A) and M0(A) are given as (8). If A1 is a subalgebra, we have

M ′(A)∼=M ′(A1)⊕(A0)A and M(A)∼=M(A1)⊕
{
T ∈ (A0)A |T (A2)= {0}}

.

(10)

Corollary 3.2. Any weak multiplier T is written as

T = T1 + R (11)

with T1 ∈ LM ′
1(A) and R ∈ (A0)A, and it is a multiplier if and only if

R(x1y1) = x1T1(y1) − T1(x1y1) (12)

for any x1, y1 ∈ A1.

Proof. As stated above T is written as (11). Let x = x1 +x0, y = y1 +y0 ∈ A
with x1, y1 ∈ A1 and x0, y0 ∈ A0 be arbitrary, then we have

xT (y) = x1(T1(y) + R(y)) = x1T1(y) = x1T1(y1) (13)

because R(A) ⊆ A0 and T1(A0) = {0}. The last term in (13) is also equal
to T1(x1)y1 = T (x)y. Hence, T is a multiplier if and only if it is equal to
T (xy) = T (x1y1) = T1(x1y1) + R(x1y1), if and only if (12) holds. �

4. Linear multipliers and matrix equation

In this section, A is a finite-dimensional algebra over K. We derive a matrix
equation that characterizes a (weak) multiplier for a linear mapping on A.
Suppose that A is n-dimensional with basis E = {e1, e2, . . . , en}.

Lemma 4.1. A linear mapping T : A → A is a weak multiplier if and only if

eiT (ej) = T (ei)ej , (14)

and it is a multiplier if and only if

T (eiej) = eiT (ej) = T (ei)ej , (15)

for all ei, ej ∈ E.
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Proof. The necessity of the conditions (14) and (15) is obvious. Let x = x1e1+
x2e2+· · ·+xnen, y = y1e1+y2e2+· · ·+ynen ∈ A with x1, x2, . . . , xn, y1, y2, . . . ,
yn ∈ K. If T satisfies (14), then we have

xT (y) =

(
∑

i

xiei

)

T

⎛

⎝
∑

j

yjej

⎞

⎠ =

(
∑

i

xiei

)⎛

⎝
∑

j

yjT (ej)

⎞

⎠

=
∑

i,j

xiyjeiT (ej) =
∑

i,j

xiyjT (ei)ej

=

(
∑

i

xiT (ei)

)⎛

⎝
∑

j

yjej

⎞

⎠ = T (x)y.

Hence, T is a weak multiplier. Moreover, if T satisfies (15), it is a multiplier
in a similar manner. �

Let A (we use the bold character) represent the multiplication table of
A on E. A is a matrix whose elements are drawn from A and given by

A = EtE, (16)

where E = (e1, e2, . . . , en) (we again use the boldface E) is the row vector
consisting the basis elements and Et is its transpose. For a linear mapping T
on A and a matrix B over A, T (B) denotes the matrix obtained by applying
T element-wise, that is, the (i, j)-element of T (B) is T (bij) for the (i, j)-
element bij of B.3 We employ the same symbol T for the representation
matrix of T on E, that is,

T (E) = ET. (17)

Theorem 4.2. A linear mapping T is a weak multiplier of A if and only if

AT = T tA, (18)

and T is a multiplier if and only if

T (A) = AT = T tA. (19)

Proof. By (16) and (17) we have

(e1, e2, . . . , en)t (T (e1), T (e2), . . . , T (en)) = EtT (E) = EtET = AT (20)

and

(T (e1), T (e2), . . . , T (e2))
t (e1, e2, . . . , en) = T (E)tE = T tEtE = T tA.(21)

By Lemma 4.1, T is a weak multiplier if and only if (20) and (21) are equal,
if and only if (18) holds. Moreover, T is multiplier if and only if the leftmost
sides of (20) and (21) are equal to (T (eiej))i,j=1,2,...,n = T (A), if and only if
(19) holds. �

The multiplication table of the opposite algebra Aop of A is the trans-
pose At of A. So, the algebras with multiplication tables transposed to each
other share the same (weak) multipliers.

3This is called a broadcasting (cf. [7]).
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5. Associative algebras

In this section, A is an associative algebra over K.

Proposition 5.1. If A0 = {0}, then we have

M(A) = M ′(A) = LM(A) = LM ′(A).

Proof. Let T ∈ M ′(A), then we have

T (xy)z = xyT (z) = xT (y)z and zT (xy) = T (z)xy = zT (x)y

for any x, y, z ∈ A. It follows that

T (xy) − xT (y) ∈ Annl(A) ∩ Annr(A) = A0 = {0}.

Hence, T (xy) = xT (y) and we see T ∈ M(A). Moreover, T ∈ LM(A) by
Proposition 2.2. �

Let a ∈ A. If xay = axy (resp. xay = xya) for any x, y ∈ A, a is called
a left (resp. right) central element, and we simply call it a central element if
ax = xa for any x ∈ A. Let Zl(A), (resp. Zr(A), Z(A)) denote the set of all
left central (resp. right central, central) elements.

For a ∈ A, la (resp. ra) denotes the left (resp. right) multiplication by
a, that is,

la(x) = ax, ra(x) = xa

for x ∈ A. They are linear mappings.

Lemma 5.2. For a ∈ A the following statements are equivalent.
(i) la (resp. ra) is a multiplier,
(ii) la (resp. ra) is a weak multiplier,
(iii) a is left (resp. right) central.

Proof. If la is a weak multiplier, then

xay = xla(y) = la(x)y = axy

for any x, y ∈ A, which implies that a is left central. Conversely, if a is left
central, la is a weak multiplier also by the above equalities. Moreover, la is a
multiplier because la(xy) = axy = la(x)y. The other case is analogous, and
we see that these three statements are equivalent. �

As can be easily proved, Zl(A) (resp. Zr(A)) is a subalgebra of A con-
taining Annl(A) (resp. Annr(A)). Hence, we can form the quotient algebras
Z̄l(A) = Zl(A)/Annl(A) and Z̄r(A) = Zr(A)/Annr(A).

Theorem 5.3. Suppose that A has a left (resp. right) identity e. Then, any
weak multiplier is a left (resp. right) multiplication by a left (resp. right) cen-
tral element and it is a linear multiplier. The mapping φ : Zl(A) (resp. Zr(A))
→ M ′(A) = LM(A) sending a ∈ Zl(A) (resp. Zr(A)) to la (resp. lr) induces
an isomorphism φ̄ : Zl(A) (resp. Zr(A)) → M(A) of algebras. In particular,
if A is unital, M(A) is isomorphic to Z(A).
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Proof. Suppose that A has a left identity e. Let T ∈ M ′(A) and set a = T (e).
Then we have

T (x) = eT (x) = T (e)x = ax

for any x ∈ A. Hence, T = la, where a ∈ Zl(A) and T is a linear multiplier
by Lemma 5.2. Therefore, M ′(A) = LM(A) and φ is surjective. Moreover,
for a ∈ Zl(A), φ(a) = 0 if and only if ax = 0 for any x ∈ A, if and only if
a ∈ Annl(A). Thus we have Ker(φ) = Annl(A), and φ induces the desired iso-
morphism. Similarly, if A has a right identity, M(A) is isomorphic to Zr(A).
Lastly, if A has the identity, then Z�(A) = Z(A) and Annl(A) = {0}, and
hence M(A) is isomorphic to Z(A). �

6. 3-dimensional associative algebras

Over an algebraically closed field K of characteristic not equal to 2, we have,
up to isomorphism, 24 families of associative algebras of dimension 3. They
consist of 5 unital algebras U0, U1, U2, U3, U4 defined on basis E = {e, f, g}
by the multiplication tables
⎛

⎝
e f g
f 0 0
g 0 0

⎞

⎠ ,

⎛

⎝
e f g
f 0 f
g −f e

⎞

⎠ ,

⎛

⎝
e 0 0
0 f 0
0 0 g

⎞

⎠ ,

⎛

⎝
e 0 0
0 f g
0 g 0

⎞

⎠ ,

⎛

⎝
e f g
f g 0
g 0 0

⎞

⎠ ,

5 curled algebras C0, C1, C2, C3, C4 defined by
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 e
0 −e 0

⎞

⎠ ,

⎛

⎝
0 0 0
e f 0
0 g 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
e f g

⎞

⎠ ,

⎛

⎝
0 0 e
0 0 f
0 0 g

⎞

⎠ ,

non-unital 4 straight algebras S1, S2, S3, S4 defined by
⎛

⎝
f g 0
g 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
e 0 0
0 g 0
0 0 0

⎞

⎠ ,

⎛

⎝
e 0 0
0 f 0
0 0 0

⎞

⎠ ,

⎛

⎝
e f 0
f 0 0
0 0 0

⎞

⎠ ,

and non-unital 10 families of waved algebras W1, W2, W4, W5, W6, W7, W8,
W9, W10 and

{
W3(k)

}
k∈H

defined by
⎛

⎝
0 0 0
0 0 0
0 0 e

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
0 e 0

⎞

⎠ ,

⎛

⎝
e 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
0 f g

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 f
0 0 g

⎞

⎠ ,

⎛

⎝
e 0 0
0 0 0
0 f g

⎞

⎠ ,

⎛

⎝
e 0 0
0 0 f
0 0 g

⎞

⎠ ,

⎛

⎝
0 e 0
e f 0
0 g 0

⎞

⎠ ,

⎛

⎝
0 e 0
e f g
0 0 0

⎞

⎠ and

⎛

⎝
0 0 0
0 e 0
0 ke e

⎞

⎠ ,

respectively, where H is a subset of K such that K = H ∪−H and H ∩−H =
{0} (see [3] for details). We determine the (weak) multipliers of them below.

(0) A = C0 is the zero algebra, so by Proposition 2.5, we have

M ′(A) = AA, M(A) = {T ∈ AA | T (0) = 0} and LM(A) = LM ′(A) = L(A).

(i) The unital algebras U0, U2, U3, U4 are commutative, so for such A we have

M(A) = LM(A) = M ′(A) = LM ′(A) = {lx|x ∈ A} ∼= A
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by Theorem 5.3. For A = U1, we have

M(A) = LM(A) = M ′(A) = LM ′(A) ∼= Z(A) = Ke.

(ii) For A = C1, we observe that A0 = Annl(A) = Annr(A) = Ke, and we
have a nihil decomposition A = A1 ⊕ A0 with A1 = Kf + Kg. Let T1 ∈ M ′

1(A),
then by Theorem 3.1, T1 is a linear mapping such that T1(Ke) = {0}. Let

T1 =

⎛

⎝
0 0 0
0 q r
0 t u

⎞

⎠ (22)

with q, r, t, u ∈ K be the representation matrix of T1 on E. By Theorem 4.2, T1 is
a weak multiplier if and only if

⎛

⎝
0 0 0
0 te ue
0 −qe −re

⎞

⎠ = AT1 = T t
1A =

⎛

⎝
0 0 0
0 −te qe
0 −ue re

⎞

⎠ ,

if and only if r = t = 0 and q = u. Hence, M ′
1(A) = {Tq

∣∣ q ∈ K}, where Tq =⎛

⎝
0 0 0
0 q 0
0 0 q

⎞

⎠. By Theorem 3.1 we see

M ′(A) = {Tq

∣
∣ q ∈ K} ⊕ (Ke)A

and

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 q 0
0 0 q

⎞

⎠
∣∣
∣ a, b, c, q ∈ K

⎫
⎬

⎭
.

By examining the multiplication table of A, we find that αβ = (xv − yz)e
for α = xf +yg, β = zf +vg ∈ A1 with x, y, z, v ∈ K. By Corollary 3.2, T ∈ M ′(A)
is given by T = Tq + R with R ∈ (Ke)A and this T is a multiplier if and only if

R((xv − yz)e) = R(αβ) = αTq(β) − Tq(αβ)

= α(qβ) − Tq((xv − yz)e) = q(xv − yz)e

for any α and β, if and only if R(xe) = qxe for all x ∈ K. Let Sq be the scalar
multiplication in A by q ∈ K. Then, we see

(T − Sq)(A) = (Tq − Sq + R)(A) ⊆ A0 = Ke

and

(T − Sq)(xe) = Tq(xe) + R(xe) − Sq(xe) = 0 + qxe − qxe = 0

for any x ∈ K, that is, (T − Sq)(Ke) = {0}. Thus, we conclude

M(A) = {Sq

∣∣ q ∈ K} ⊕ {
R ∈ (Ke)A

∣∣ R(Ke) = {0}}
,

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 a 0
0 0 a

⎞

⎠
∣
∣∣ a, b, c ∈ K

⎫
⎬

⎭
.

(iii) A = C2: Because Annl(A) = Ke and Annr(A) = Kg, we see A0 = {0}.
Hence, any weak multiplier T is a linear multiplier by Proposition 5.1. By Theorem
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4.2,

T =

⎛

⎝
a b c
p q r
s t u

⎞

⎠ (23)

with a, b, c, p, q, r, s, t, u ∈ K is a (weak) multiplier if and only if
⎛

⎝
0 0 0

ae + pf be + qf ce + rf
pg qg rg

⎞

⎠ = AT = T tA =

⎛

⎝
pe pf + sg 0
qe qf + tg 0
re rf + ug 0

⎞

⎠ ,

if and only if b = c = p = r = s = t = 0 and a = q = u, that is, T is the scalar
multiplication Sa by a. Consequently,

M(A) = M ′(A) = LM(A) = LM ′(A) = {Sa

∣
∣ a ∈ K} ∼= K.

(iv) C3 and C4 are opposite to each other, and share the same (weak) multi-
pliers by Proposition 2.6. Let A = C3, then, A has a left identity g, Zl(A) = A and
Annl(A) = Ke + Kf . Hence, by Theorem 5.3,

M(A) = M ′(A) = LM(A) = LM ′(A) = A/(Ke + Kg) = {Sa

∣
∣ a ∈ K}.

(v) A = S1: We have A0 = Annl(A) = Annr(A) = Kg, and A = A1 ⊕ A0

with A1 = Ke + Kf . Then, T1 ∈ M ′
1(A) is a linear mapping with T (Kg) = {0}.

Let

T1 =

⎛

⎝
a b 0
p q 0
0 0 0

⎞

⎠ (24)

with a, b, p, q ∈ K be its representation on E. T1 is a weak multiplier if and only if
⎛

⎝
af + pg bf + qg 0

ag bg 0
0 0 0

⎞

⎠ = AT1 = T t
1A =

⎛

⎝
af + pg ag 0
bf + qg bg 0

0 0 0

⎞

⎠ ,

if and only if b = 0 and a = q. Hence,

M ′(A) = {T a,p
1 | a, p ∈ K} ⊕ (Kg)A with T a,p

1 =

⎛

⎝
a 0 0
p a 0
0 0 0

⎞

⎠.

So, T ∈ M ′(A) is written as T = T a,p
1 +R with R ∈ (Kg)A, and this T is multiplier

if and only if

R(xzf + (xv + yz)g) = R(αβ) = αT a,p
1 (β) − T a,p

1 (αβ)

= (xe + yf)(aze + (pz + av)f) − axzf

= (pxz + a(xv + yz))g

for any α = xe+yf, β = ze+vf ∈ A1 with x, y, z, v ∈ K, if and only if R(xf+yg) =

(px + ay)g for all x, y ∈ K. Let T a,p =

⎛

⎝
a 0 0
p a 0
0 p a

⎞

⎠, then (T − T a,p)(A) ⊆ Kg,

and

(T − T a,p)(xf + yg) = (T a,p
1 + R − T a,p) (xf + yg)

= axf + (px + ay)g − (axf + pxg + ayg) = 0

for any x, y ∈ K. Thus, (T − T a,p)(Kf + Kg) = {0}, and hence

M(A) = {T a,p | a, p ∈ K} ⊕ {
R ∈ (Kg)A

∣
∣ R(Kf + Kg) = {0}}

.
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By intersecting M ′(A) and M(A) with L(A), we obtain

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
p a 0
s t u

⎞

⎠
∣
∣∣ a, p, s, t, u ∈ K

⎫
⎬

⎭

and LM(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
p a 0
s p a

⎞

⎠
∣
∣∣ a, p, s ∈ K

⎫
⎬

⎭
.

(vi) A = S2: We have A0 = Annl(A) = Annr(A) = Kg, and A = A1 ⊕ A0

with A1 = Ke + Kf . Let a linear mapping T1 ∈ M ′
1(A) be represented as (24),

then T1 is a weak multiplier if and only if
⎛

⎝
ae be 0
pg qg 0
0 0 0

⎞

⎠ = AT = T tA =

⎛

⎝
ae pg 0
be qg 0
0 0 0

⎞

⎠ ,

if and only if b = p = 0. Hence,

M ′(A) = {T a,q
1

∣∣ a, q ∈ K} ⊕ (Kg)A with T a,q
1 =

⎛

⎝
a 0 0
0 q 0
0 0 0

⎞

⎠,

and

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 q 0
s t u

⎞

⎠
∣∣
∣ a, q, s, t, u ∈ K

⎫
⎬

⎭
.

By Corollary 3.2, a weak multiplier T written as T = T a,q
1 + R for a, q ∈ K and

R ∈ (Kg)A is multiplier if and only if

R(xze + yvg) = R(αβ) = αT a,q
1 (β) − T a,q

1 (xze + yvg)

= (xe + yf)(aze + qvf) − axze = yqvg

for any α = xe+yf, β = ze+vf ∈ A1 with x, y, z, v ∈ K, if and only if R(xe+yg) =

qyg for all x, y ∈ K. Let T a,q =

⎛

⎝
a 0 0
0 q 0
0 0 q

⎞

⎠, then we have (T − T a,q)(xe +

yg) = 0 for any x, y ∈ K, following the same calculation as in (v) above. Hence,
(T − T a,q)(Ke + Kg) = {0}, and we have

M(A) = {T a,p | a, p ∈ K} ⊕ {
R ∈ (Kg)A

∣
∣ R(Ke + Kg) = {0}}

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 p 0
0 t 0

⎞

⎠
∣
∣∣ a, p, t ∈ K

⎫
⎬

⎭
.

(vii) A = S3: We have A0 = Kg and A = A1 ⊕ A0 with A1 = Ke + Kf . As
A1 is a subalgebra of A, by Theorem 3.1 we obtain the equalities (10) in Sect. 3.
Because A1 is a commutative unital algebra,

M(A1) = M ′(A1) = A1 =

{(
a 0
0 b

) ∣
∣
∣ a, b ∈ K

}

by Theorem 5.3. Note that A2 = Ke + Kf . Hence,

M ′(A) = A1 ⊕ (Kg)A and M(A) = A1 ⊕ {T ∈ (Kg)A | T (Ke + Kf) = 0}.
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Intersecting with L(A) we have

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 b 0
s t u

⎞

⎠
∣
∣
∣ a, b, s, t, u ∈ K

⎫
⎬

⎭

and LM(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 b 0
0 0 u

⎞

⎠
∣
∣
∣ a, b, u ∈ K

⎫
⎬

⎭
.

(viii) A = S4: We have A = A1 ⊕ A0 with A0 = Kg and A1 = Ke + Kf .
Because A1 is a commutative unital subalgebra of A, similarly to the previous case,
we obtain

M ′(A) = A1 ⊕ (Kg)A =

{(
a 0
b a

) ∣
∣∣ a, b ∈ K

}
⊕ (Kg)A,

M(A) = A1 ⊕ {
T ∈ (Kg)

A ∣
∣ T (Ke + Kf) = {0}}

,

LM
′
(A)=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a 0 0
b a 0
s t u

⎞

⎟
⎟
⎠

∣
∣
∣ a, b, s, t, u∈K

⎫
⎪⎪⎬

⎪⎪⎭
and LM(A)=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a 0 0
b a 0
0 0 u

⎞

⎟
⎟
⎠

∣
∣
∣ a, b, u∈K

⎫
⎪⎪⎬

⎪⎪⎭
.

(ix) A = W1: We have A = A1 ⊕ A0 with A0 = Ke + Kf and A1 = Kg. Let
T1 ∈ M ′

1(A), then T1 is a linear mapping with T1(A0) = {0}. So T1 is determined
by T1(g) = ag with a ∈ K. Denoting this T1 as T a

1 , we have

M ′(A) = {T a
1 | a ∈ K} ⊕ (Ke + Kf)A.

A weak multiplier T = T a
1 +R with R ∈ (Ke+Kf)A is a multiplier if and only if

R(xye) = R((xg)(yg)) = xgT a
1 (yg) − T a

1 (xye) = axye

for all x, y ∈ K, if and only if R(xe) = axe for any x ∈ K. Let Ta =

⎛

⎝
a 0 0
0 0 0
0 0 a

⎞

⎠.

Then, (T − Ta)(Ke) = {0} and it follows that

M(A) = {Ta

∣
∣ a ∈ K} ⊕ {

R ∈ (Ke + Kf)A
∣
∣ R(Ke) = {0}}

.

Also we have

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a b c
p q r
0 0 u

⎞

⎠
∣
∣
∣ a, b, c, p, q, r, u ∈ K

⎫
⎬

⎭

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 q r
0 0 a

⎞

⎠
∣
∣
∣ a, b, c, q, r ∈ K

⎫
⎬

⎭
.

(x) A = W2
4: We have A = A1 ⊕ A0 with A0 = Ke and A1 = Kf + Kg. Let

T ∈ M ′
1(A), then T is a linear mapping with T (Ke) = {0} and can be represented

as (22). Then, T is a weak multiplier if and only if
⎛

⎝
0 0 0
0 0 0
0 qe re

⎞

⎠ = AT = T tA =

⎛

⎝
0 0 0
0 te 0
0 ue 0

⎞

⎠ ,

4This is the algebra taken up in [9].
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if and only if r = t = 0 and q = u. Hence,

M ′(A) = {Tq | q ∈ K} ⊕ (Ke)A with Tq =

⎛

⎝
0 0 0
0 q 0
0 0 q

⎞

⎠.

So,

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 q 0
0 0 q

⎞

⎠
∣
∣
∣ a, b, c, q ∈ K

⎫
⎬

⎭
.

A weak multiplier T = Tq + R with R ∈ (Ke)A is a multiplier if and only if

R(yze) = R(αβ) = αTq(β) − Tq(yze) = α(qβ) = qyze

for any α = xf+yg, β = zf+vg ∈ A1 with x, y, z, v ∈ K, if and only if R(xe) = qxe
for all x ∈ K. Let Sa be the scalar multiplication by a ∈ K. Then, (T − Sa)(Ke) =
{0}, and hence,

M(A) = {Sa | a ∈ K} ⊕ {
R ∈ (Ke)A

∣
∣ R(Ke) = {0}}

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 a 0
0 0 a

⎞

⎠
∣∣
∣ a, b, c ∈ K

⎫
⎬

⎭
.

(xi) A = W4: We have A = A1⊕A0 with A0 = Kf+Kg and A1 = Ke. Because
A1 is a subalgebra isomorphic to the base field K, with the scalar multiplication
Sa
1 by a ∈ K, we see

M ′(A) = {Sa
1 | a ∈ K} ⊕ (fK + gK)A

and

M(A) = {Sa
1 | a ∈ K} ⊕ {

R ∈ (fK + gK)A
∣∣ R(Ke) = {0}}

by Theorem 3.1. Taking the intersections with L(A) we have

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
p q r
s t u

⎞

⎠
∣
∣∣ a, p, q, r, s, t, u ∈ K

⎫
⎬

⎭

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 q r
0 t u

⎞

⎠
∣
∣
∣ a, q, r, t, u ∈ K

⎫
⎬

⎭
.

(xii) W5 and W6 are opposite. Let A = W5, then A = A1 ⊕ A0 with A0 = Ke
and A1 = Kf + Kg. Since A1 is a subalgebra of A and has a left identity g, we
have

M(A1) = LM(A1) = M ′(A1) = LM ′(A1) ∼= (A1)/Kf ∼= Kg

by Theorem 5.3. So, any element in M(A1) is a scalar multiplication Sq
1 in A1 by

q ∈ K. By Theorem 3.1 we have

M ′(A) = {Sq
1 | q ∈ K} ⊕ (Ke)A,

M(A) = {Sq
1 | q ∈ K} ⊕ {

R ∈ (Ke)A
∣∣R(Kf +Kg) = {0}}

,

LM ′(A)=

⎧
⎨

⎩

⎛

⎝
a b c
0 q 0
0 0 q

⎞

⎠
∣∣
∣ a, b, c, q∈K

⎫
⎬

⎭
and LM(A)=

⎧
⎨

⎩

⎛

⎝
a 0 0
0 q 0
0 0 q

⎞

⎠
∣∣
∣ a, q∈K

⎫
⎬

⎭
.
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(xiii) W7 and W8 are opposite. Let A = W7, then we see A0 = Annr(A) = {0}.
Hence, any weak multiplier is a linear multiplier by Proposition 5.1, and a linear
mapping T represented as (23) is a weak multiplier if and only if

⎛

⎝
ae be ce
0 0 0

pf + sg qf + tg rf + ug

⎞

⎠ = AT = T tA =

⎛

⎝
ae sf sg
be tf tg
ce uf ug

⎞

⎠ ,

if and only if b = c = p = r = s = t = 0 and q = u. Therefore,

M(A) = LM(A) = M ′(A) = LM ′(A) = LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a 0 0
0 q 0
0 0 q

⎞

⎠
∣∣
∣ a, q ∈ K

⎫
⎬

⎭
.

(xiv) W9 and W10 are opposite. Let A = W9. Then, because A0 = Annl(A) =
{0}, any weak multiplier is a linear multiplier and a linear mapping T represented
as (23) is a weak multiplier if and only if

⎛

⎝
pe qe re

ae + pf be + qf ce + rf
pg qg rg

⎞

⎠ = AT = T tA =

⎛

⎝
pe ae + pf + sg 0
qe be + qf + tg 0
re ce + rf + ug 0

⎞

⎠ ,

if and only if c = p = r = s = t = 0, a = q = u. Therefore,

LM(A) = M(A) = LM ′(A) = M ′(A) =

⎧
⎨

⎩

⎛

⎝
a b 0
0 a 0
0 0 a

⎞

⎠
∣
∣
∣ a, b ∈ K

⎫
⎬

⎭
.

(xv) A = W3(k): We have A = A1 ⊕ A0 with A0 = Ke and A1 = Kf + Kg.
Then, T ∈ M ′

1(A) is a linear mapping with T (Ke) = {0} represented as (22). It is
a weak multiplier if and only if

⎛

⎝
0 0 0
0 qe re
0 (kq + t)e (kr + u)e

⎞

⎠ = AT = T tA =

⎛

⎝
0 0 0
0 (q + kt)e te
0 (r + ku)e ue

⎞

⎠ . (25)

When k = 0, (25) holds if and only if r = t, and otherwise it holds if and only if
r = t = 0 and q = u. Thus,

M ′(A)={T q,r,u
1

∣
∣ q, r, u∈K}⊕(Ke)A, LM ′(A)=

⎧
⎨

⎩

⎛

⎝
a b c
0 q r
0 r u

⎞

⎠
∣∣
∣ a, b, c, q, r, u∈K

⎫
⎬

⎭

when k = 0, and

M ′(A) = {T q
1

∣
∣ q ∈ K} ⊕ (Ke)A, LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 q 0
0 0 q

⎞

⎠
∣
∣∣ a, b, c, q ∈ K

⎫
⎬

⎭

when k �= 0, where

T q,r,u
1 =

⎛

⎝
0 0 0
0 q r
0 r u

⎞

⎠ and T q
1 =

⎛

⎝
0 0 0
0 q 0
0 0 q

⎞

⎠.

Now, when k = 0, T = T q,r,u
1 +R with R ∈ (Ke)A is multiplier if and only if

R((xz + yv)e) = R(αβ) = αT q,r,u
1 (β) − T q,r,u

1 ((xz + yv)e)

= α((qz + rv)f + (rz + uv)g) = (qxz + uyv + r(xv + yz))e



160 Y. Kobayashi and S. Takahasi

for any α = xf +yg, β = zf +vg ∈ A1 with x, y, z, v ∈ K, if and only if q = u, r = 0
and R(xe) = qxe for all x ∈ K. While, when k �= 0, T = T q

1 + R with R ∈ (Ke)A

is a multiplier if and only if

R((xz + y(kz + v))e) = R(αβ) = αT q
1 (β) − T q

1 (xue + y(kz + v)e)

= α(qβ) = q(xz + y(kz + v))e

for any α, β, if and only if R(xe) = qxe for any x ∈ K. In both cases, with the
scalar multiplication Sa by a ∈ K, we have (T − Sa)(Ke) = {0}. Therefore, for
arbitrary k (whether k is zero or nonzero) we conclude that

M(A) = {Sa

∣
∣ a ∈ K} ⊕ {

R ∈ (Ke)A
∣
∣ R(Ke) = {0}}

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a b c
0 a 0
0 0 a

⎞

⎠
∣
∣
∣ a, b, c ∈ K

⎫
⎬

⎭
.

7. 3-dimensional zeropotent algebras

An algebra A is zeropotent if x2 = 0 for all x ∈ A. A zeropotent algebra A is
anti-commutative, that is, xy = −yx for all x, y ∈ A. Thus we see

A0 = Annl(A) = Annr(A).

Let A be a zeropotent algebras of dimension 3 over a field K with char(K) �= 2.
Let E = {e, f, g} be a basis of A. Because A is anti-commutative, the multiplication
table A of A on E is given as

A =

⎛

⎝
0 α −β

−α 0 γ
β −γ 0

⎞

⎠ with

⎧
⎪⎨

⎪⎩

γ = fg = a11e + a12f + a13g

β = ge = a21e + a22f + a23g

α = ef = a31e + a32f + a33g

for aij ∈ K. We call

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33.

⎞

⎠ the structural matrix of A. The rank of A

is defined as the rank of its structural matrix.

Lemma 7.1. If rank(A) ≥ 2, then A0 = {0}.

Proof. If rank(A) ≥ 2, at least two of α = ef, β = ge, γ = fg are linearly indepen-
dent. Suppose that α and β are linearly independent (the other cases are similar). If
x = ae+bf+cg with a, b, c ∈ K is in Annl(A), then xe = −bα+cβ and xf = aα−cγ
are both zero. It follows that a = b = c = 0. Hence, we have A0 = Annl(A) = {0}.

�

Theorem 7.2. Let A be a zeropotent algebra of dimension 3 with rank(A) ≥ 2 over
K. Then, any weak multiplier of A is the scalar multiplication Sa for some a ∈ K,
that is,

M(A) = M ′(A) = LM(A) = LM ′(A) = {Sa | a ∈ K}.
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Proof. By Lemma 7.1 and Corollary 2.3, any weak multiplier T is a linear mapping.
Let T ∈ L(A) be represented as (23). By Theorem 4.2, T is a weak multiplier if
and only if AT = T tA , if and only if
⎛

⎝
pα − sβ qα − tβ rα − uβ

−aα + sγ −bα + tγ −cα + uγ
aβ − pγ bβ − qγ cβ − rγ

⎞

⎠ =

⎛

⎝
−pα + sβ aα − sγ −aβ + pγ
−qα + tβ bα − tγ −bβ + qγ
−rα + uβ cα − uγ −cβ + rγ

⎞

⎠

(26)

holds. Suppose that α, β are linearly independent (the other cases are similar).
Then, by comparing the (1,1)-elements of the two matrices in (26), we have pα −
sβ = −pα + sβ, which implies p = s = 0. Comparing the (1,2)-elements and (1,3)-
elements, we have qα − tβ = aα − sγ = aα and rα − uβ = −aβ + pγ = −aβ.
It follows that a = q = u and r = t = 0. Furthermore, comparing (2,2)-elements
and (3,3)-elements, we see b = c = 0. Consequently, (26) holds if and only if
b = c = p = r = s = t = 0 and a = q = u, that is, T = Sa. �

In [4] we classified the zeropotent algebras of dimension 3 over an algebraically
field K of characteristic not equal to 2. Up to isomorphism, we have 10 families of
zeropotent algebras. They are

Z0, Z1, Z2, Z3, {Z4(a)}a∈H , Z5, Z6, {Z7(a)}a∈H , Z8 and Z9

defined respectively by the structural matrices
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 0 1
0 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 0
0 1 a
0 0 1

⎞

⎠ ,

⎛

⎝
0 1 0
0 0 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 1 1
0 0 1
0 0 1

⎞

⎠ ,

⎛

⎝
1 a 0
0 1 0
0 0 1

⎞

⎠ ,

⎛

⎝
1 2 2
0 1 2
0 0 1

⎞

⎠ and

⎛

⎝
1 3 3
0 1 3
0 0 1

⎞

⎠ .

Z0 is the zero algebra, and Z1 is isomorphic to the 3-dimensional associative
algebra C1, and their (weak) multipliers are already determined in Sect. 6. The
algebras Z3 to Z9 have rank greater or equal to 2, and they are covered by Theorem
7.2.

Thus, only A = Z2 remains to be analyzed. The multiplication table A of A

is

⎛

⎝
0 g 0

−g 0 g
0 −g 0

⎞

⎠. We see A0 = Annl(A) = Annr(A) = K(e + g), and we have

the nihil decomposition A = A0 ⊕ A1 with A1 = Ke + Kf . A weak multiplier

T ∈ M ′
1(A) is a linear mapping represented by

⎛

⎝
a b c
p q r
0 0 0

⎞

⎠ satisfying

⎛

⎝
pg qg rg

−ag −bg −cg
−pg −qg −rg

⎞

⎠ = AT = T tA =

⎛

⎝
−pg ag pg
−qg bg qg
−rg cg rg

⎞

⎠ .

Hence, a = −c = q and b = p = r = 0. Let Ta be this linear mapping, then by
Theorem 3.1 we have

M ′(A) = {Ta | a ∈ K} ⊕ (K(f + g))A
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and

LM ′(A) =

⎧
⎨

⎩

⎛

⎝
a + s t −a + u
0 a 0
s t u

⎞

⎠
∣
∣
∣ a, s, t, u ∈ K

⎫
⎬

⎭
.

By Corollary 3.2, a weak multiplier T = Ta+R with R ∈ (K(e+g))A becomes
a multiplier if and only if for any ζ = xe+ yf and η = ze+ vf with x, y, z, v ∈ K,

R((xv − yz)g) = R(ζη) = ζTa(η) − Ta((xv − yz)g)

= ζ(aη) + a(xv − yz)e = a(xv − yz)(e + g)

holds. It follows that R(xg) = ax(e + g) for all x ∈ K. Let Sa be the scalar
multiplication by a, then (T − Sa)(A) ⊆ K(e+ g) and (T − Sa)(Kg) = {0}. Hence,
we obtain

M(A) = {Sa | a ∈ K} ⊕ {
R ∈ (K(e + g))A

∣∣ R(Kg) = {0}}
,

and

LM(A) =

⎧
⎨

⎩

⎛

⎝
a + s t 0
0 a 0
s t a

⎞

⎠
∣
∣
∣ a, s, t ∈ K

⎫
⎬

⎭
=

⎧
⎨

⎩

⎛

⎝
a b 0
0 c 0

a − c b c

⎞

⎠
∣
∣
∣ a, b, c ∈ K

⎫
⎬

⎭
.
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