Acta Scientiarum Mathematicarum (2024) 90:145–163 https://doi.org/10.1007/s44146-023-00100-y Published online November 24, 2023 © The Author(s), under exclusive licence to University of Szeged 2023

Acta Scientiarum Mathematicarum

Multipliers and weak multipliers of algebras

Yuji Kobayashi[®] and Sin-Ei Takahasi

Abstract. We investigate general properties of multipliers and weak multipliers of algebras. We apply the results to determine the (weak) multipliers of associative algebras and zeropotent algebras of dimension 3 over an algebraically closed field.

Mathematics Subject Classification. Primary 43A22; Secondary 17A99, 46J10.

Keywords. (Weak) multiplier, (Non) associative algebra, Jordan algebra, Zeropotent algebra, Annihilator, Nihil decomposition, Matrix representation.

1. Introduction

Multipliers of algebras, particularly multipliers of Banach algebras, have been studied in the field of analysis. In this paper we discuss them in a purely algebraic manner.

Let A be a Banach algebra. A mapping $T: A \to A$ is termed a multiplier of A if it satisfies the condition (I) xT(y) = T(xy) = T(x)y for all $x, y \in A$. We denote the collection of all multipliers of A as M(A), and the collection of all bounded linear operators on A as B(A). Notably, M(A) forms an algebra and B(A) constitutes a Banach algebra. A Banach algebra A is referred to as without order if it has neither a nonzero left annihilator nor a nonzero right annihilator. If A is without order, the algebra M(A) forms a commutative closed subalgebra of B(A) (see [2], Proposition 1.4.11). In 1952, Wendel [8] proved an important result that the multiplier algebra of $L^1(G)$ on a locally compact group G is isometrically isomorphic to the measure algebra on G. The general theory of multipliers of Banach algebras has been developed by Johnson [1]. For a comprehensive reference on the theory of multipliers of Banach algebras, refer to Larsen [5].

When A is without order, T is a multiplier if it satisfies the condition (II) xT(y) = T(x)y for all $x, y \in A$. Many researchers had been unaware of the difference between conditions (I) and (II) until Zivari-Kazempour [9] (see also [10]) recently articulated the difference. We call a mapping T satisfying (II) a

weak multiplier and denote the set of such multipliers of A by M'(A). Then, M(A) is in general a proper subset of M'(A). Furthermore, (weak) multipliers can be defined for an algebra A that is not necessarily associative, and they are not linear mappings in general. We denote the spaces of linear multipliers and linear weak multipliers of A by LM(A) and LM'(A) respectively. M(A) and LM(A) are subalgebras of the algebra A^A consisting of all mappings from A to itself. Meanwhile, M'(A) and LM'(A) are closed under the operation \circ defined by $T \circ S = TS + ST$, and they form a Jordan algebra.

In Sects. 2 to 5, we study general properties of (weak) multipliers. More specifically, in Sects. 3 and 4 we give a decomposition theorem (Theorem 3.1), and a matrix equation (Theorem 4.2) for (weak) multipliers. They play an essential role in our examination of (weak) multipliers.

Complete classifications of associative algebras and zeropotent algebras of dimension 3 over an algebraically closed field of characteristic not equal to 2 were given in Kobayashi et al., [3] and [4]. In Sects. 6 and 7 we undertake a complete determination of the (linear) (weak) multipliers of these algebras.

Some authors have considered other weaker concepts related to multipliers, such as (pseudo-)n-multipliers (for more information, see [6] and [11]).

2. Multipliers and weak multipliers

Let K be a field and A be a (not necessarily associative) algebra over K. The set A^A of all mappings from A to A forms an associative algebra over K in the usual way. Let L(A) denote the subalgebra of A^A of all linear mappings from A to A.

A mapping $T: A \to A$ is a weak multiplier of A, if

$$xT(y) = T(x)y\tag{1}$$

holds for any $x, y \in A$, and T is a *multiplier*, if

$$xT(y) = T(xy) = T(x)y$$
(2)

for any $x, y \in A$. Let M(A) (resp. M'(A)) denote the set of all multipliers (resp. weak multipliers) of A. Define

$$LM(A) \stackrel{\text{def}}{=} M(A) \cap L(A) \text{ and } LM'(A) \stackrel{\text{def}}{=} M'(A) \cap L(A).$$

Proposition 2.1. M(A) (resp. LM(A)) is a unital subalgebra of A^A (resp. L(A)), and M'(A) (resp. LM'(A)) is a Jordan subalgebra of A^A (resp. L(A)).

Proof. First, the zero mapping is a multiplier because all three terms in (2) are zero. Secondly, the identity mapping is also a multiplier because the three terms in (2) are xy. Let $T, U \in M(A)$. Then we have

$$x(T+U)(y) = xT(y) + xU(y) = T(xy) + U(xy) = T(x)y + U(x)y$$

= (T+U)(x)y (3)

and

$$x(TU)(y) = xT(U(y)) = T(xU(y)) = TU(xy) = T(U(x)y) = (TU)(x)y$$
(4)

for any $x, y \in A$. Hence, T + U, TU belong to M(A). Finally let $k \in K$, then

$$k(kT)(y) = kxT(y) = kT(xy) = kT(x)y = (kT)(x)y,$$
(5)

and so $kT \in M(A)$. Therefore, M(A) is a unital subalgebra of A^A , and $LM(A) = M(A) \cap L(A)$ is a unital subalgebra of L(A).

Next, let $T, U \in M'(A)$. Then, the equalities in (3) and (5) hold, removing the center terms T(xy) + U(xy) and kT(xy), respectively. Hence, M'(A)is a subspace of A^A . Moreover, we have

$$x(TU)(y)=xT(U(y))=T(x)U(y)=U(T(x))y=UT(x)y$$

and similarly x(UT)(y) = TU(x)y for any $x, y \in A$. Hence,

$$x(TU + UT)(y) = (TU + UT)(x)y.$$

It follows that $TU + UT \in M'(A)$.¹

Let $\operatorname{Ann}_{l}(A)$ (resp. $\operatorname{Ann}_{r}(A)$) be the left (resp. right) annihilator of A and let A_{0} be their intersection, that is,

$$\operatorname{Ann}_{l}(A) = \{a \in A \mid ax = 0 \text{ for all } x \in A\},$$

$$\operatorname{Ann}_{r}(A) = \{a \in A \mid xa = 0 \text{ for all } x \in A\}$$

and

$$A_0 = \operatorname{Ann}_l(A) \cap \operatorname{Ann}_r(A).$$

They are all subspaces of A, and when A is an associative algebra, they are two-sided ideals. For a subset X of A, $\langle X \rangle$ denotes the subspace of A generated by X.

Proposition 2.2. A weak multiplier T of A such that $\langle T(A) \rangle \cap A_0 = \{0\}$ is a linear mapping.

Proof. Let
$$x, y, z \in A$$
 and $a, b \in K$, and let T be a weak multiplier. We have
 $T(ax + by)z = (ax + by)T(z) = axT(z) + byT(z) = aT(x)z + bT(y)z$
 $= (aT(x) + bT(y))z.$

Because z is arbitrary, we have $w = T(ax + by) - aT(x) - bT(y) \in \operatorname{Ann}_{l}(A)$. Similarly, we can show $w \in \operatorname{Ann}_{r}(A)$, and so $w \in A_{0}$. Hence, if $\langle T(A) \rangle \cap A_{0} = \{0\}$, then w = 0 because $w \in \langle T(A) \rangle$. Since a, b, x, y are arbitrary, T is a linear mapping.

Corollary 2.3. If $A_0 = \{0\}$, then any weak multiplier is a linear mapping over K, that is, M'(A) = LM'(A) and M(A) = LM(A).

Proposition 2.4. If T is a weak multiplier, then $T(\operatorname{Ann}_l(A)) \subseteq \operatorname{Ann}_l(A)$, $T(\operatorname{Ann}_r(A)) \subseteq \operatorname{Ann}_r(A)$ and $T(A_0) \subseteq A_0$.

Proof. Let $x \in Ann_l(A)$, then for any $y \in A$ we have

$$0 = xT(y) = T(x)y.$$

Hence, $T(x) \in \operatorname{Ann}_{l}(A)$. The other cases are similar.

 \square

 \Box

¹In general, for an associative algebra A over a field K of characteristic $\neq 2$, the Jordan product \circ on A is defined by $x \circ y = (xy + yx)/2$ for $x, y \in A$.

In this paper we denote the subset $\{xy \mid x, y \in A\}$ of A by A^2 .²

Proposition 2.5. Any mapping $T : A \to A$ such that $T(A) \subseteq A_0$ is a weak multiplier. Such a mapping T is a multiplier if and only if $T(A^2) = \{0\}$. In particular, if A is the zero algebra, every mapping T is a weak multiplier, and it is a multiplier if and only if T(0) = 0.

Proof. If $T(A) \subseteq A_0$, then both sides are 0 in (1) and T is a weak multiplier. This T is a multiplier if and only if the term T(xy) in the middle of (2) is 0 for all $x, y \in A$, that is, $T(A^2) = \{0\}$. If A is the zero algebra, then $A = A_0$ and $A^2 = \{0\}$. Hence, any T is a weak multiplier and it is a multiplier if and only if T(0) = 0.

The opposite A^{op} of A is the algebra with the same elements and addition as A, but the multiplication * in it is reversed, that is, x * y = yx for all $x, y \in A$.

Proposition 2.6. A and A^{op} have the same multipliers and weak multiplies, that is,

$$M(A^{op}) = M(A) \text{ and } M'(A^{op}) = M'(A).$$

Proof. Let $T \in A^A$. Then, $T \in M'(A)$ if and only if

$$x * T(y) = T(y)x = yT(x) = T(x) * y$$

for any $x, y \in A$, if and only if $T \in M'(A^{\text{op}})$. Further, $T \in M(A)$ if and only if

$$x * T(y) = T(y)x = T(yx) = T(x * y) = yT(x) = T(x) * y$$

for any $x, y \in A$, if and only if $T \in M(A^{\text{op}})$.

3. Nihil decomposition

Let A_1 be a subspace of A such that

$$A = A_1 \oplus A_0. \tag{6}$$

Here, A_1 is not unique, but choosing an appropriate A_1 will become important later. When A_1 is fixed, any mapping $T \in A^A$ is uniquely decomposed as

$$T = T_1 + T_0 \tag{7}$$

with $T_1(A) \subseteq A_1$ and $T_0(A) \subseteq A_0$. We call (6) and (7) a *nihil decomposition* of A and T, respectively. Let $\pi : A \to A_1$ be the projection and $\mu : A_1 \to A$ be the embedding, that is, $\pi(x_1 + x_0) = \mu(x_1) = x_1$ for $x_1 \in A_1$ and $x_0 \in A_0$.

Let $M_1(A)$ (resp. $M_0(A)$) denote the set of all multipliers T of A with $T(A) \subseteq A_1$ (resp. $T(A) \subseteq A_0$). Similarly, the sets $M'_1(A)$ and $M'_0(A)$ of weak multipliers of A are defined. Also, set

$$LM_i(A) = M_i(A) \cap L(A)$$
 and $LM'_i(A) = M'_i(A) \cap L(A)$

²Usually A^2 denotes the subspace of A generated by this subset.

for i = 0, 1. By Proposition 2.2 we see

 $M'_1(A) = LM'_1(A)$ and $M_1(A) = LM_1(A)$,

and by Proposition 2.5 we have

 $M'_0(A) = A^A_0$ and $M_0(A) = \{T \in A^A_0 | T(A^2) = \{0\}\}.$ (8)

Theorem 3.1. Let $A = A_1 \oplus A_0$ and $T = T_1 + T_0$ be nihil decompositions of A and $T \in A^A$ respectively.

(i) T is a weak multiplier, if and only if T_1 is a weak multiplier. If T is a weak multiplier, T_1 is a linear mapping satisfying $T_1(A_0) = \{0\}$.

(ii) If T_1 is a multiplier and $T_0(A^2) = \{0\}$, then T is a multiplier. If A_1 is a subalgebra of A, the converse is also true.

Suppose that A_1 is a subalgebra of A, and let Φ be a mapping sending $R \in (A_1)^{A_1}$ to $\mu \circ R \circ \pi \in A^A$. Then,

(iii) Φ gives an algebra isomorphism from $M(A_1)$ onto $M_1(A)$ and a Jordan isomorphism from $M'(A_1)$ onto $M'_1(A)$.

Proof. Let $x, y \in A$.

(i) If T is a weak multiplier, then

$$xT_1(y) = x(T(y) - T_0(y)) = xT(y) = T(x)y = T_1(x)y.$$

Thus, T_1 is also a weak multiplier. Moreover, T_1 is a linear mapping by Proposition 2.2 and $T_1(A_0) \subseteq A_1 \cap A_0 = \{0\}$ by Proposition 2.4. Conversely, if T_1 is a weak multiplier, then

$$xT(y) = xT_1(y) = T_1(x)y = T(x)y,$$

and so T is a weak multiplier.

(ii) If T_1 is a multiplier and $T_0(A^2) = 0$, then T is a multiplier because

$$xT(y) = xT_1(y) = T_1(xy) = T(xy) - T_0(xy) = T(xy) = T(x)y.$$

Next suppose that A_1 is a subalgebra. If T is a multiplier, then for any $x, y \in A$ we have

$$T_1(xy) + T_0(xy) = T(xy) = xT(y) = x_1T_1(y),$$
(9)

where $x = x_1 + x_0$ with $x_1 \in A_1$ and $x_0 \in A_0$. Here, $x_1T_1(y) \in A_1$ because A_1 is a subalgebra, and thus, we have $T_0(xy) = x_1T_1(y) - T_1(xy) \in A_0 \cap A_1 = \{0\}$. Since x, y are arbitrary, we get $T_0(A^2) = \{0\}$. Moreover, because $T_1(xy) = x_1T_1(y) = xT_1(y)$ by (9) and similarly $T_1(xy) = T_1(x)y$, T_1 is a multiplier. The converse is already proved above.

(iii) Let $S \in (A_1)^{A_1}$ and $x = x_1 + x_0, y = y_1 + y_0 \in A$ with $x_1, y_1 \in A_1$ and $x_0, y_0 \in A_0$. Then, $\pi(x) = \mu(x_1) = x_1, \pi(y) = \mu(y_1) = y_1$ and

$$\Phi(S)(x) = \mu(S(\pi(x))) = \mu(S(x_1)) = S(x_1).$$

Thus, if $S \in M'(A_1)$, we have

$$x\Phi(S)(y) = xS(y_1) = x_1S(y_1) = S(x_1)y_1 = \Phi(S)(x)y_1 = \Phi(S)(x)y_1.$$

Hence, $\Phi(S) \in M'_1(A)$. Moreover, if $S \in M(A_1)$, then because π is a homomorphism, we have

$$\Phi(S)(xy) = S(\pi(xy)) = S(x_1y_1) = x_1S(y_1) = x\Phi(S)(y),$$

and so $\Phi(S) \in M_1(A)$.

Conversely, let $T \in M'_1(A)$, then because T is a linear mapping satisfying $T(A_0) = \{0\}$, there is a linear mapping $S \in L(A_1)$ on A_1 such that $\Phi(S) = T$, that is, $S(x_1) = T(x) = T(x_1)$. We have

$$x_1S(y_1) = x_1T(y_1) = T(x_1)y_1 = S(x_1)y_1$$

and hence $S \in M'(A_1)$. Therefore, Φ induces a linear isomorphism from $M'(A_1)$ to $M'_1(A)$. Similarly, Φ gives a linear isomorphism from $M(A_1)$ to $M_1(A)$. Moreover, for $T, U \in M'(A_1)$, we have

 $\Phi(TU) = \mu \circ T \circ U \circ \pi = \mu \circ T \circ \pi \circ \mu \circ U \circ \pi = \Phi(T)\Phi(U).$

Thus, Φ gives an isomorphism of algebras from $M(A_1)$ to $M_1(A)$ and a Jordan isomorphism from $M'(A_1)$ to $M'_1(A)$.

Theorem 3.1 implies

$$M'(A) = M'_1(A) \oplus M'_0(A)$$
 and $M_1(A) \oplus M_0(A) \subseteq M(A)$,

where $M'_0(A)$ and $M_0(A)$ are given as (8). If A_1 is a subalgebra, we have $M'(A) \cong M'(A_1) \oplus (A_0)^A$ and $M(A) \cong M(A_1) \oplus \{T \in (A_0)^A \mid T(A^2) = \{0\}\}.$ (10)

Corollary 3.2. Any weak multiplier T is written as

$$T = T_1 + R \tag{11}$$

with $T_1 \in LM'_1(A)$ and $R \in (A_0)^A$, and it is a multiplier if and only if

$$R(x_1y_1) = x_1T_1(y_1) - T_1(x_1y_1)$$
(12)

for any $x_1, y_1 \in A_1$.

Proof. As stated above T is written as (11). Let $x = x_1 + x_0$, $y = y_1 + y_0 \in A$ with $x_1, y_1 \in A_1$ and $x_0, y_0 \in A_0$ be arbitrary, then we have

$$xT(y) = x_1(T_1(y) + R(y)) = x_1T_1(y) = x_1T_1(y_1)$$
(13)

because $R(A) \subseteq A_0$ and $T_1(A_0) = \{0\}$. The last term in (13) is also equal to $T_1(x_1)y_1 = T(x)y$. Hence, T is a multiplier if and only if it is equal to $T(xy) = T(x_1y_1) = T_1(x_1y_1) + R(x_1y_1)$, if and only if (12) holds. \Box

4. Linear multipliers and matrix equation

In this section, A is a finite-dimensional algebra over K. We derive a matrix equation that characterizes a (weak) multiplier for a linear mapping on A. Suppose that A is n-dimensional with basis $E = \{e_1, e_2, \ldots, e_n\}$.

Lemma 4.1. A linear mapping $T: A \to A$ is a weak multiplier if and only if

$$e_i T(e_j) = T(e_i)e_j, \tag{14}$$

and it is a multiplier if and only if

$$T(e_i e_j) = e_i T(e_j) = T(e_i) e_j, \tag{15}$$

for all $e_i, e_j \in E$.

🕅 Birkhäuser

Proof. The necessity of the conditions (14) and (15) is obvious. Let $x = x_1e_1 + x_2e_1$ $x_2e_2 + \dots + x_ne_n, y = y_1e_1 + y_2e_2 + \dots + y_ne_n \in A \text{ with } x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n \in A$ $y_n \in K$. If T satisfies (14), then we have

$$\begin{aligned} xT(y) &= \left(\sum_{i} x_{i}e_{i}\right)T\left(\sum_{j} y_{j}e_{j}\right) = \left(\sum_{i} x_{i}e_{i}\right)\left(\sum_{j} y_{j}T(e_{j})\right) \\ &= \sum_{i,j} x_{i}y_{j}e_{i}T(e_{j}) = \sum_{i,j} x_{i}y_{j}T(e_{i})e_{j} \\ &= \left(\sum_{i} x_{i}T(e_{i})\right)\left(\sum_{j} y_{j}e_{j}\right) = T(x)y. \end{aligned}$$

Hence, T is a weak multiplier. Moreover, if T satisfies (15), it is a multiplier in a similar manner. \square

Let A (we use the bold character) represent the multiplication table of A on E. A is a matrix whose elements are drawn from A and given by

$$\boldsymbol{A} = \boldsymbol{E}^t \boldsymbol{E},\tag{16}$$

where $\boldsymbol{E} = (e_1, e_2, \dots, e_n)$ (we again use the boldface \boldsymbol{E}) is the row vector consisting the basis elements and \mathbf{E}^t is its transpose. For a linear mapping T on A and a matrix **B** over A, $T(\mathbf{B})$ denotes the matrix obtained by applying T element-wise, that is, the (i, j)-element of T(B) is $T(b_{ij})$ for the (i, j)element b_{ij} of **B**.³ We employ the same symbol T for the representation matrix of T on E, that is,

$$T(\boldsymbol{E}) = \boldsymbol{E}T.$$
 (17)

Theorem 4.2. A linear mapping T is a weak multiplier of A if and only if

$$AT = T^t A, \tag{18}$$

and T is a multiplier if and only if

$$T(\boldsymbol{A}) = \boldsymbol{A}T = T^{t}\boldsymbol{A}.$$
(19)

Proof. By (16) and (17) we have

$$(e_1, e_2, \dots, e_n)^t (T(e_1), T(e_2), \dots, T(e_n)) = \mathbf{E}^t T(\mathbf{E}) = \mathbf{E}^t \mathbf{E} T = \mathbf{A} T$$
 (20)
and

and

$$(T(e_1), T(e_2), \dots, T(e_2))^t (e_1, e_2, \dots, e_n) = T(\mathbf{E})^t \mathbf{E} = T^t \mathbf{E}^t \mathbf{E} = T^t \mathbf{A}.$$
(21)

By Lemma 4.1, T is a weak multiplier if and only if (20) and (21) are equal, if and only if (18) holds. Moreover, T is multiplier if and only if the leftmost sides of (20) and (21) are equal to $(T(e_i e_j))_{i,j=1,2,\ldots,n} = T(\mathbf{A})$, if and only if (19) holds.

The multiplication table of the opposite algebra $A^{\rm op}$ of A is the transpose A^{t} of A. So, the algebras with multiplication tables transposed to each other share the same (weak) multipliers.

³This is called a broadcasting (cf. [7]).

5. Associative algebras

In this section, A is an associative algebra over K.

Proposition 5.1. If $A_0 = \{0\}$, then we have

$$M(A) = M'(A) = LM(A) = LM'(A).$$

Proof. Let $T \in M'(A)$, then we have

$$T(xy)z = xyT(z) = xT(y)z$$
 and $zT(xy) = T(z)xy = zT(x)y$

for any $x, y, z \in A$. It follows that

$$T(xy) - xT(y) \in \operatorname{Ann}_{l}(A) \cap \operatorname{Ann}_{r}(A) = A_{0} = \{0\}.$$

Hence, T(xy) = xT(y) and we see $T \in M(A)$. Moreover, $T \in LM(A)$ by Proposition 2.2.

Let $a \in A$. If xay = axy (resp. xay = xya) for any $x, y \in A$, a is called a *left* (resp. *right*) *central element*, and we simply call it a *central element* if ax = xa for any $x \in A$. Let $Z_l(A)$, (resp. $Z_r(A), Z(A)$) denote the set of all left central (resp. right central, central) elements.

For $a \in A$, l_a (resp. r_a) denotes the left (resp. right) multiplication by a, that is,

$$l_a(x) = ax, \quad r_a(x) = xa$$

for $x \in A$. They are linear mappings.

Lemma 5.2. For $a \in A$ the following statements are equivalent.

(i) l_a (resp. r_a) is a multiplier,
(ii) l_a (resp. r_a) is a weak multiplier,
(iii) a is left (resp. right) central.

Proof. If l_a is a weak multiplier, then

$$xay = xl_a(y) = l_a(x)y = axy$$

for any $x, y \in A$, which implies that a is left central. Conversely, if a is left central, l_a is a weak multiplier also by the above equalities. Moreover, l_a is a multiplier because $l_a(xy) = axy = l_a(x)y$. The other case is analogous, and we see that these three statements are equivalent.

As can be easily proved, $Z_l(A)$ (resp. $Z_r(A)$) is a subalgebra of A containing $\operatorname{Ann}_l(A)$ (resp. $\operatorname{Ann}_r(A)$). Hence, we can form the quotient algebras $\overline{Z}_l(A) = Z_l(A)/\operatorname{Ann}_l(A)$ and $\overline{Z}_r(A) = Z_r(A)/\operatorname{Ann}_r(A)$.

Theorem 5.3. Suppose that A has a left (resp. right) identity e. Then, any weak multiplier is a left (resp. right) multiplication by a left (resp. right) central element and it is a linear multiplier. The mapping $\phi: Z_l(A)$ (resp. $Z_r(A)$) $\rightarrow M'(A) = LM(A)$ sending $a \in Z_l(A)$ (resp. $Z_r(A)$) to l_a (resp. l_r) induces an isomorphism $\overline{\phi}: \overline{Z_l}(A)$ (resp. $\overline{Z_r}(A)$) $\rightarrow M(A)$ of algebras. In particular, if A is unital, M(A) is isomorphic to Z(A). *Proof.* Suppose that A has a left identity e. Let $T \in M'(A)$ and set a = T(e). Then we have

$$T(x) = eT(x) = T(e)x = ax$$

for any $x \in A$. Hence, $T = l_a$, where $a \in Z_l(A)$ and T is a linear multiplier by Lemma 5.2. Therefore, M'(A) = LM(A) and ϕ is surjective. Moreover, for $a \in Z_l(A)$, $\phi(a) = 0$ if and only if ax = 0 for any $x \in A$, if and only if $a \in \operatorname{Ann}_l(A)$. Thus we have $\operatorname{Ker}(\phi) = \operatorname{Ann}_l(A)$, and ϕ induces the desired isomorphism. Similarly, if A has a right identity, M(A) is isomorphic to $\overline{Z_r}(A)$. Lastly, if A has the identity, then $Z_\ell(A) = Z(A)$ and $\operatorname{Ann}_l(A) = \{0\}$, and hence M(A) is isomorphic to Z(A).

6. 3-dimensional associative algebras

Over an algebraically closed field K of characteristic not equal to 2, we have, up to isomorphism, 24 families of associative algebras of dimension 3. They consist of 5 unital algebras U_0, U_1, U_2, U_3, U_4 defined on basis $E = \{e, f, g\}$ by the multiplication tables

$$\begin{pmatrix} e & f & g \\ f & 0 & 0 \\ g & 0 & 0 \end{pmatrix}, \begin{pmatrix} e & f & g \\ f & 0 & f \\ g & -f & e \end{pmatrix}, \begin{pmatrix} e & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & g \end{pmatrix}, \begin{pmatrix} e & 0 & 0 \\ 0 & f & g \\ 0 & g & 0 \end{pmatrix}, \begin{pmatrix} e & f & g \\ f & g & 0 \\ g & 0 & 0 \end{pmatrix},$$

5 curled algebras C_0, C_1, C_2, C_3, C_4 defined by

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e \\ 0 & -e & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ e & f & 0 \\ 0 & g & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ e & f & g \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & f \\ 0 & 0 & g \end{pmatrix},$$

non-unital 4 straight algebras S_1, S_2, S_3, S_4 defined by

$$\begin{pmatrix} f & g & 0 \\ g & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} e & 0 & 0 \\ 0 & g & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} e & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} e & f & 0 \\ f & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and non-unital 10 families of waved algebras W_1 , W_2 , W_4 , W_5 , W_6 , W_7 , W_8 , W_9 , W_{10} and $\{W_3(k)\}_{k \in H}$ defined by

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & e \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & e & 0 \end{pmatrix}, \begin{pmatrix} e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & f & g \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & f \\ 0 & 0 & g \end{pmatrix},$$
$$\begin{pmatrix} e & 0 & 0 \\ 0 & 0 & f \\ 0 & 0 & g \end{pmatrix}, \begin{pmatrix} 0 & e & 0 \\ e & f & 0 \\ 0 & g & 0 \end{pmatrix}, \begin{pmatrix} 0 & e & 0 \\ e & f & g \\ 0 & 0 & 0 \end{pmatrix}$$
and
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & e & 0 \\ 0 & e & e \\ 0 & ke & e \end{pmatrix},$$

respectively, where H is a subset of K such that $K = H \cup -H$ and $H \cap -H = \{0\}$ (see [3] for details). We determine the (weak) multipliers of them below.

(0) $A = C_0$ is the zero algebra, so by Proposition 2.5, we have

$$M'(A) = A^A$$
, $M(A) = \{T \in A^A | T(0) = 0\}$ and $LM(A) = LM'(A) = L(A)$.

(i) The unital algebras U_0, U_2, U_3, U_4 are commutative, so for such A we have

$$M(A) = LM(A) = M'(A) = LM'(A) = \{l_x | x \in A\} \cong A$$

by Theorem 5.3. For $A = U_1$, we have

$$M(A) = LM(A) = M'(A) = LM'(A) \cong Z(A) = Ke.$$

(ii) For $A = C_1$, we observe that $A_0 = \operatorname{Ann}_l(A) = \operatorname{Ann}_r(A) = Ke$, and we have a nihil decomposition $A = A_1 \oplus A_0$ with $A_1 = Kf + Kg$. Let $T_1 \in M'_1(A)$, then by Theorem 3.1, T_1 is a linear mapping such that $T_1(Ke) = \{0\}$. Let

$$T_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & r \\ 0 & t & u \end{pmatrix}$$
(22)

with $q, r, t, u \in K$ be the representation matrix of T_1 on E. By Theorem 4.2, T_1 is a weak multiplier if and only if

$$\begin{pmatrix} 0 & 0 & 0 \ 0 & te & ue \ 0 & -qe & -re \end{pmatrix} = oldsymbol{A} T_1 = T_1^{ ext{t}} oldsymbol{A} = \begin{pmatrix} 0 & 0 & 0 \ 0 & -te & qe \ 0 & -ue & re \end{pmatrix},$$

if and only if r = t = 0 and q = u. Hence, $M'_1(A) = \{T_q \mid q \in K\}$, where $T_q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix}$. By Theorem 3.1 we see

$$M'(A) = \{T_q \mid q \in K\} \oplus (Ke)^A$$

and

$$LM'(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \, \middle| \, a, b, c, q \in K \right\}.$$

By examining the multiplication table of A, we find that $\alpha\beta = (xv - yz)e$ for $\alpha = xf + yg$, $\beta = zf + vg \in A_1$ with $x, y, z, v \in K$. By Corollary 3.2, $T \in M'(A)$ is given by $T = T_q + R$ with $R \in (Ke)^A$ and this T is a multiplier if and only if

$$R((xv - yz)e) = R(\alpha\beta) = \alpha T_q(\beta) - T_q(\alpha\beta)$$

= $\alpha(q\beta) - T_q((xv - yz)e) = q(xv - yz)e$

for any α and β , if and only if R(xe) = qxe for all $x \in K$. Let S_q be the scalar multiplication in A by $q \in K$. Then, we see

$$(T - S_q)(A) = (T_q - S_q + R)(A) \subseteq A_0 = Ke$$

and

$$(T - S_q)(xe) = T_q(xe) + R(xe) - S_q(xe) = 0 + qxe - qxe = 0$$

for any $x \in K$, that is, $(T - S_q)(Ke) = \{0\}$. Thus, we conclude

$$M(A) = \{ S_q \mid q \in K \} \oplus \{ R \in (Ke)^A \mid R(Ke) = \{ 0 \} \},\$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \, \middle| \, a, b, c \in K \right\}.$$

(iii) $A = C_2$: Because $\operatorname{Ann}_l(A) = Ke$ and $\operatorname{Ann}_r(A) = Kg$, we see $A_0 = \{0\}$. Hence, any weak multiplier T is a linear multiplier by Proposition 5.1. By Theorem 4.2,

$$T = \begin{pmatrix} a & b & c \\ p & q & r \\ s & t & u \end{pmatrix}$$
(23)

with $a, b, c, p, q, r, s, t, u \in K$ is a (weak) multiplier if and only if

$$\begin{pmatrix} 0 & 0 & 0\\ ae+pf & be+qf & ce+rf\\ pg & qg & rg \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} pe & pf+sg & 0\\ qe & qf+tg & 0\\ re & rf+ug & 0 \end{pmatrix},$$

if and only if b = c = p = r = s = t = 0 and a = q = u, that is, T is the scalar multiplication S_a by a. Consequently,

$$M(A) = M'(A) = LM(A) = LM'(A) = \{S_a \mid a \in K\} \cong K.$$

(iv) C_3 and C_4 are opposite to each other, and share the same (weak) multipliers by Proposition 2.6. Let $A = C_3$, then, A has a left identity $g, Z_l(A) = A$ and $\operatorname{Ann}_{l}(A) = Ke + Kf$. Hence, by Theorem 5.3,

$$M(A) = M'(A) = LM(A) = LM'(A) = A/(Ke + Kg) = \{S_a \mid a \in K\}.$$

(v) $A = S_1$: We have $A_0 = \operatorname{Ann}_l(A) = \operatorname{Ann}_r(A) = Kg$, and $A = A_1 \oplus A_0$ with $A_1 = Ke + Kf$. Then, $T_1 \in M'_1(A)$ is a linear mapping with $T(Kg) = \{0\}$. Let

$$T_1 = \begin{pmatrix} a & b & 0 \\ p & q & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(24)

with $a, b, p, q \in K$ be its representation on E. T_1 is a weak multiplier if and only if

$$\begin{pmatrix} af+pg & bf+qg & 0\ ag & bg & 0\ 0 & 0 & 0 \end{pmatrix} = oldsymbol{A}T_1 = T_1^{ ext{t}}oldsymbol{A} = \begin{pmatrix} af+pg & ag & 0\ bf+qg & bg & 0\ 0 & 0 & 0 \end{pmatrix},$$

if and only if b = 0 and a = q. Hence,

$$M'(A) = \{T_1^{a,p} \mid a, p \in K\} \oplus (Kg)^A \text{ with } T_1^{a,p} = \begin{pmatrix} a & 0 & 0 \\ p & a & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

So, $T \in M'(A)$ is written as $T = T_1^{a,p} + R$ with $R \in (Kg)^A$, and this T is multiplier if and only if

$$R(xzf + (xv + yz)g) = R(\alpha\beta) = \alpha T_1^{a,p}(\beta) - T_1^{a,p}(\alpha\beta)$$
$$= (xe + yf)(aze + (pz + av)f) - axzf$$
$$= (pxz + a(xv + yz))g$$

for any $\alpha = xe + yf$, $\beta = ze + vf \in A_1$ with $x, y, z, v \in K$, if and only if R(xf + yg) =(px + ay)g for all $x, y \in K$. Let $T^{a,p} = \begin{pmatrix} a & 0 & 0 \\ p & a & 0 \\ 0 & p & a \end{pmatrix}$, then $(T - T^{a,p})(A) \subseteq Kg$,

and

$$(T - T^{a,p})(xf + yg) = (T_1^{a,p} + R - T^{a,p})(xf + yg)$$

= $axf + (px + ay)g - (axf + pxg + ayg) = 0$
for any $x, y \in K$. Thus, $(T - T^{a,p})(Kf + Kg) = \{0\}$, and hence

 $M(A) = \{ T^{a,p} \mid a, p \in K \} \oplus \{ R \in (Kg)^A \mid R(Kf + Kg) = \{ 0 \} \}.$

🕲 Birkhäuser

By intersecting M'(A) and M(A) with L(A), we obtain

$$LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ p & a & 0 \\ s & t & u \end{pmatrix} \middle| a, p, s, t, u \in K \right\}$$

and $LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ p & a & 0 \\ s & p & a \end{pmatrix} \middle| a, p, s \in K \right\}$

(vi) $A = S_2$: We have $A_0 = \operatorname{Ann}_l(A) = \operatorname{Ann}_r(A) = Kg$, and $A = A_1 \oplus A_0$ with $A_1 = Ke + Kf$. Let a linear mapping $T_1 \in M'_1(A)$ be represented as (24), then T_1 is a weak multiplier if and only if

$$\begin{pmatrix} ae & be & 0\\ pg & qg & 0\\ 0 & 0 & 0 \end{pmatrix} = \boldsymbol{A}T = T^{\mathsf{t}}\boldsymbol{A} = \begin{pmatrix} ae & pg & 0\\ be & qg & 0\\ 0 & 0 & 0 \end{pmatrix},$$

if and only if b = p = 0. Hence,

$$M'(A) = \{T_1^{a,q} \mid a, q \in K\} \oplus (Kg)^A \text{ with } T_1^{a,q} = \begin{pmatrix} a & 0 & 0\\ 0 & q & 0\\ 0 & 0 & 0 \end{pmatrix}$$

and

$$LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & q & 0 \\ s & t & u \end{pmatrix} \, \middle| \, a, q, s, t, u \in K \right\}.$$

By Corollary 3.2, a weak multiplier T written as $T = T_1^{a,q} + R$ for $a, q \in K$ and $R \in (Kg)^A$ is multiplier if and only if

$$R(xze + yvg) = R(\alpha\beta) = \alpha T_1^{a,q}(\beta) - T_1^{a,q}(xze + yvg)$$
$$= (xe + yf)(aze + qvf) - axze = yqvg$$

for any $\alpha = xe + yf$, $\beta = ze + vf \in A_1$ with $x, y, z, v \in K$, if and only if R(xe + yg) = qyg for all $x, y \in K$. Let $T^{a,q} = \begin{pmatrix} a & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix}$, then we have $(T - T^{a,q})(xe + yg) = 0$ for any $x, y \in K$ following the same calculation as in (y) above. Hence

yg) = 0 for any $x, y \in K$, following the same calculation as in (v) above. Hence, $(T - T^{a,q})(Ke + Kg) = \{0\}$, and we have

$$M(A) = \{ T^{a,p} \mid a, p \in K \} \oplus \{ R \in (Kg)^A \mid R(Ke + Kg) = \{ 0 \} \}$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & p & 0 \\ 0 & t & 0 \end{pmatrix} \, \middle| \, a, p, t \in K \right\}.$$

(vii) $A = S_3$: We have $A_0 = Kg$ and $A = A_1 \oplus A_0$ with $A_1 = Ke + Kf$. As A_1 is a subalgebra of A, by Theorem 3.1 we obtain the equalities (10) in Sect. 3. Because A_1 is a commutative unital algebra,

$$M(A_1) = M'(A_1) = A_1 = \left\{ \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} \, \middle| \, a, b \in K \right\}$$

by Theorem 5.3. Note that $A^2 = Ke + Kf$. Hence,

$$M'(A) = A_1 \oplus (Kg)^A$$
 and $M(A) = A_1 \oplus \{T \in (Kg)^A | T(Ke + Kf) = 0\}$

🕅 Birkhäuser

Intersecting with L(A) we have

$$LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ s & t & u \end{pmatrix} \middle| a, b, s, t, u \in K \right\}$$

and $LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & u \end{pmatrix} \middle| a, b, u \in K \right\}.$

(viii) $A = S_4$: We have $A = A_1 \oplus A_0$ with $A_0 = Kg$ and $A_1 = Ke + Kf$. Because A_1 is a commutative unital subalgebra of A, similarly to the previous case, we obtain

$$M'(A) = A_1 \oplus (Kg)^A = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \middle| a, b \in K \right\} \oplus (Kg)^A,$$

$$M(A) = A_1 \oplus \{T \in (Kg)^A \mid T(Ke + Kf) = \{0\}\},$$

$$LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ b & a & 0 \\ s & t & u \end{pmatrix} \middle| a, b, s, t, u \in K \right\} \text{ and } LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ b & a & 0 \\ 0 & 0 & u \end{pmatrix} \middle| a, b, u \in K \right\}$$

(ix) $A = W_1$: We have $A = A_1 \oplus A_0$ with $A_0 = Ke + Kf$ and $A_1 = Kg$. Let $T_1 \in M'_1(A)$, then T_1 is a linear mapping with $T_1(A_0) = \{0\}$. So T_1 is determined by $T_1(g) = ag$ with $a \in K$. Denoting this T_1 as T_1^a , we have

$$M'(A) = \{T_1^a \mid a \in K\} \oplus (Ke + Kf)^A.$$

A weak multiplier $T = T_1^a + R$ with $R \in (Ke + Kf)^A$ is a multiplier if and only if

$$R(xye) = R((xg)(yg)) = xgT_1^a(yg) - T_1^a(xye) = axye$$

for all $x, y \in K$, if and only if R(xe) = axe for any $x \in K$. Let $T_a = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}$.

Then, $(T - T_a)(Ke) = \{0\}$ and it follows that

$$M(A) = \{T_a \mid a \in K\} \oplus \{R \in (Ke + Kf)^A \mid R(Ke) = \{0\}\}.$$

Also we have

$$LM'(A) = \left\{ \begin{pmatrix} a & b & c \\ p & q & r \\ 0 & 0 & u \end{pmatrix} \middle| a, b, c, p, q, r, u \in K \right\}$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & q & r \\ 0 & 0 & a \end{pmatrix} \middle| a, b, c, q, r \in K \right\}.$$

(x) $A = W_2^4$: We have $A = A_1 \oplus A_0$ with $A_0 = Ke$ and $A_1 = Kf + Kg$. Let $T \in M'_1(A)$, then T is a linear mapping with $T(Ke) = \{0\}$ and can be represented as (22). Then, T is a weak multiplier if and only if

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & qe & re \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & te & 0 \\ 0 & ue & 0 \end{pmatrix},$$

⁴This is the algebra taken up in [9].

if and only if r = t = 0 and q = u. Hence,

$$M'(A) = \{T_q \, | \, q \in K\} \oplus (Ke)^A \text{ with } T_q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix}.$$

So,

$$LM'(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \, \middle| \, a, b, c, q \in K \right\}$$

A weak multiplier $T = T_q + R$ with $R \in (Ke)^A$ is a multiplier if and only if

$$R(yze) = R(\alpha\beta) = \alpha T_q(\beta) - T_q(yze) = \alpha(q\beta) = qyze$$

for any $\alpha = xf + yg$, $\beta = zf + vg \in A_1$ with $x, y, z, v \in K$, if and only if R(xe) = qxe for all $x \in K$. Let S_a be the scalar multiplication by $a \in K$. Then, $(T - S_a)(Ke) = \{0\}$, and hence,

$$M(A) = \{S_a \mid a \in K\} \oplus \{R \in (Ke)^A \mid R(Ke) = \{0\}\}\$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \, \middle| \, a, b, c \in K \right\}.$$

(xi) $A = W_4$: We have $A = A_1 \oplus A_0$ with $A_0 = Kf + Kg$ and $A_1 = Ke$. Because A_1 is a subalgebra isomorphic to the base field K, with the scalar multiplication S_1^a by $a \in K$, we see

$$M'(A) = \{S_1^a \mid a \in K\} \oplus (fK + gK)^A$$

and

$$M(A) = \{S_1^a \mid a \in K\} \oplus \{R \in (fK + gK)^A \mid R(Ke) = \{0\}\}\$$

by Theorem 3.1. Taking the intersections with L(A) we have

$$LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ p & q & r \\ s & t & u \end{pmatrix} \middle| a, p, q, r, s, t, u \in K \right\}$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & q & r \\ 0 & t & u \end{pmatrix} \, \middle| \, a, q, r, t, u \in K \right\}.$$

(xii) W_5 and W_6 are opposite. Let $A = W_5$, then $A = A_1 \oplus A_0$ with $A_0 = Ke$ and $A_1 = Kf + Kg$. Since A_1 is a subalgebra of A and has a left identity g, we have

$$M(A_1) = LM(A_1) = M'(A_1) = LM'(A_1) \cong (A_1)/Kf \cong Kg$$

by Theorem 5.3. So, any element in $M(A_1)$ is a scalar multiplication S_1^q in A_1 by $q \in K$. By Theorem 3.1 we have

$$\begin{split} M'(A) &= \{S_1^q \mid q \in K\} \oplus (Ke)^A, \\ M(A) &= \{S_1^q \mid q \in K\} \oplus \{R \in (Ke)^A \mid R(Kf + Kg) = \{0\}\}, \\ LM'(A) &= \left\{ \begin{pmatrix} a & b & c \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \mid a, b, c, q \in K \right\} \text{ and } LM(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \mid a, q \in K \right\} \end{split}$$

🕲 Birkhäuser

(xiii) W_7 and W_8 are opposite. Let $A = W_7$, then we see $A_0 = \operatorname{Ann}_r(A) = \{0\}$. Hence, any weak multiplier is a linear multiplier by Proposition 5.1, and a linear mapping T represented as (23) is a weak multiplier if and only if

$$\begin{pmatrix} ae & be & ce \\ 0 & 0 & 0 \\ pf + sg & qf + tg rf + ug \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} ae & sf & sg \\ be & tf & tg \\ ce & uf & ug \end{pmatrix},$$

if and only if b = c = p = r = s = t = 0 and q = u. Therefore,

$$M(A) = LM(A) = M'(A) = LM'(A) = LM'(A) = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \middle| a, q \in K \right\}.$$

(xiv) W_9 and W_{10} are opposite. Let $A = W_9$. Then, because $A_0 = \operatorname{Ann}_l(A) = \{0\}$, any weak multiplier is a linear multiplier and a linear mapping T represented as (23) is a weak multiplier if and only if

$$\begin{pmatrix} pe & qe & re\\ ae+pf & be+qf & ce+rf\\ pg & qg & rg \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} pe & ae+pf+sg & 0\\ qe & be+qf+tg & 0\\ re & ce+rf+ug & 0 \end{pmatrix},$$

if and only if c = p = r = s = t = 0, a = q = u. Therefore,

$$LM(A) = M(A) = LM'(A) = M'(A) = \left\{ \begin{pmatrix} a & b & 0\\ 0 & a & 0\\ 0 & 0 & a \end{pmatrix} \middle| a, b \in K \right\}.$$

(xv) $A = W_3(k)$: We have $A = A_1 \oplus A_0$ with $A_0 = Ke$ and $A_1 = Kf + Kg$. Then, $T \in M'_1(A)$ is a linear mapping with $T(Ke) = \{0\}$ represented as (22). It is a weak multiplier if and only if

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & qe & re \\ 0 & (kq+t)e & (kr+u)e \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (q+kt)e & te \\ 0 & (r+ku)e & ue \end{pmatrix}.$$
 (25)

When k = 0, (25) holds if and only if r = t, and otherwise it holds if and only if r = t = 0 and q = u. Thus,

$$M'(A) = \{T_1^{q,r,u} \mid q,r,u \in K\} \oplus (Ke)^A, \ LM'(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & q & r \\ 0 & r & u \end{pmatrix} \mid a,b,c,q,r,u \in K \right\}$$

when k = 0, and

$$M'(A) = \{T_1^q \mid q \in K\} \oplus (Ke)^A, \ LM'(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix} \mid a, b, c, q \in K \right\}$$

when $k \neq 0$, where

$$T_1^{q,r,u} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & r \\ 0 & r & u \end{pmatrix} \text{ and } T_1^q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{pmatrix}$$

Now, when $k = 0, T = T_1^{q,r,u} + R$ with $R \in (Ke)^A$ is multiplier if and only if

$$R((xz+yv)e) = R(\alpha\beta) = \alpha T_1^{q,r,u}(\beta) - T_1^{q,r,u}((xz+yv)e)$$
$$= \alpha((qz+rv)f + (rz+uv)g) = (qxz+uyv + r(xv+yz))e$$

for any $\alpha = xf + yg$, $\beta = zf + vg \in A_1$ with $x, y, z, v \in K$, if and only if q = u, r = 0and R(xe) = qxe for all $x \in K$. While, when $k \neq 0$, $T = T_1^q + R$ with $R \in (Ke)^A$ is a multiplier if and only if

$$R((xz + y(kz + v))e) = R(\alpha\beta) = \alpha T_1^q(\beta) - T_1^q(xue + y(kz + v)e)$$
$$= \alpha(q\beta) = q(xz + y(kz + v))e$$

for any α, β , if and only if R(xe) = qxe for any $x \in K$. In both cases, with the scalar multiplication S_a by $a \in K$, we have $(T - S_a)(Ke) = \{0\}$. Therefore, for arbitrary k (whether k is zero or nonzero) we conclude that

$$M(A) = \{S_a \mid a \in K\} \oplus \{R \in (Ke)^A \mid R(Ke) = \{0\}\}$$

and

$$LM(A) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix} \, \middle| \, a, b, c \in K \right\}.$$

7. 3-dimensional zeropotent algebras

An algebra A is zeropotent if $x^2 = 0$ for all $x \in A$. A zeropotent algebra A is anti-commutative, that is, xy = -yx for all $x, y \in A$. Thus we see

$$A_0 = \operatorname{Ann}_l(A) = \operatorname{Ann}_r(A).$$

Let A be a zeropotent algebras of dimension 3 over a field K with $char(K) \neq 2$. Let $E = \{e, f, g\}$ be a basis of A. Because A is anti-commutative, the multiplication table \boldsymbol{A} of A on E is given as

$$\mathbf{A} = \begin{pmatrix} 0 & \alpha & -\beta \\ -\alpha & 0 & \gamma \\ \beta & -\gamma & 0 \end{pmatrix} \text{ with } \begin{cases} \gamma = fg = a_{11}e + a_{12}f + a_{13}g \\ \beta = ge = a_{21}e + a_{22}f + a_{23}g \\ \alpha = ef = a_{31}e + a_{32}f + a_{33}g \end{cases}$$

for $a_{ij} \in K$. We call $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ the *structural matrix* of *A*. The *rank* of *A* is defined as the rank of its structural matrix.

Lemma 7.1. If $rank(A) \ge 2$, then $A_0 = \{0\}$.

Proof. If rank $(A) \geq 2$, at least two of $\alpha = ef, \beta = ge, \gamma = fg$ are linearly independent. Suppose that α and β are linearly independent (the other cases are similar). If x = ae + bf + cq with $a, b, c \in K$ is in Ann_l(A), then $xe = -b\alpha + c\beta$ and $xf = a\alpha - c\gamma$ are both zero. It follows that a = b = c = 0. Hence, we have $A_0 = \operatorname{Ann}_l(A) = \{0\}$.

Theorem 7.2. Let A be a zeropotent algebra of dimension 3 with rank(A) > 2 over K. Then, any weak multiplier of A is the scalar multiplication S_a for some $a \in K$, that is,

$$M(A) = M'(A) = LM(A) = LM'(A) = \{S_a \mid a \in K\}.$$

Proof. By Lemma 7.1 and Corollary 2.3, any weak multiplier T is a linear mapping. Let $T \in L(A)$ be represented as (23). By Theorem 4.2, T is a weak multiplier if and only if $AT = T^{t}A$, if and only if

$$\begin{pmatrix} p\alpha - s\beta & q\alpha - t\beta & r\alpha - u\beta \\ -a\alpha + s\gamma & -b\alpha + t\gamma & -c\alpha + u\gamma \\ a\beta - p\gamma & b\beta - q\gamma & c\beta - r\gamma \end{pmatrix} = \begin{pmatrix} -p\alpha + s\beta & a\alpha - s\gamma & -a\beta + p\gamma \\ -q\alpha + t\beta & b\alpha - t\gamma & -b\beta + q\gamma \\ -r\alpha + u\beta & c\alpha - u\gamma & -c\beta + r\gamma \end{pmatrix}$$
(26)

holds. Suppose that α, β are linearly independent (the other cases are similar). Then, by comparing the (1,1)-elements of the two matrices in (26), we have $p\alpha - s\beta = -p\alpha + s\beta$, which implies p = s = 0. Comparing the (1,2)-elements and (1,3)-elements, we have $q\alpha - t\beta = a\alpha - s\gamma = a\alpha$ and $r\alpha - u\beta = -a\beta + p\gamma = -a\beta$. It follows that a = q = u and r = t = 0. Furthermore, comparing (2,2)-elements and (3,3)-elements, we see b = c = 0. Consequently, (26) holds if and only if b = c = p = r = s = t = 0 and a = q = u, that is, $T = S_a$.

In [4] we classified the zeropotent algebras of dimension 3 over an algebraically field K of characteristic not equal to 2. Up to isomorphism, we have 10 families of zeropotent algebras. They are

 $Z_0, Z_1, Z_2, Z_3, \{Z_4(a)\}_{a \in H}, Z_5, Z_6, \{Z_7(a)\}_{a \in H}, Z_8 \text{ and } Z_9$

defined respectively by the structural matrices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} and \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}.$$

 Z_0 is the zero algebra, and Z_1 is isomorphic to the 3-dimensional associative algebra C_1 , and their (weak) multipliers are already determined in Sect. 6. The algebras Z_3 to Z_9 have rank greater or equal to 2, and they are covered by Theorem 7.2.

Thus, only $A = Z_2$ remains to be analyzed. The multiplication table A of A is $\begin{pmatrix} 0 & g & 0 \\ -g & 0 & g \\ 0 & -g & 0 \end{pmatrix}$. We see $A_0 = \operatorname{Ann}_l(A) = \operatorname{Ann}_r(A) = K(e+g)$, and we have the nihil decomposition $A = A_0 \oplus A_1$ with $A_1 = Ke + Kf$. A weak multiplier $T \in M'_1(A)$ is a linear mapping represented by $\begin{pmatrix} a & b & c \\ p & q & r \\ 0 & 0 & 0 \end{pmatrix}$ satisfying

$$\begin{pmatrix} pg & qg & rg \\ -ag & -bg & -cg \\ -pg & -qg & -rg \end{pmatrix} = \mathbf{A}T = T^{\mathsf{t}}\mathbf{A} = \begin{pmatrix} -pg & ag & pg \\ -qg & bg & qg \\ -rg & cg & rg \end{pmatrix}.$$

Hence, a = -c = q and b = p = r = 0. Let T_a be this linear mapping, then by Theorem 3.1 we have

$$M'(A) = \{T_a \mid a \in K\} \oplus (K(f+g))^A$$

🕲 Birkhäuser

and

$$LM'(A) = \left\{ \begin{pmatrix} a+s & t & -a+u \\ 0 & a & 0 \\ s & t & u \end{pmatrix} \, \middle| \, a, s, t, u \in K \right\}.$$

By Corollary 3.2, a weak multiplier $T = T_a + R$ with $R \in (K(e+g))^A$ becomes a multiplier if and only if for any $\zeta = xe + yf$ and $\eta = ze + vf$ with $x, y, z, v \in K$,

$$R((xv - yz)g) = R(\zeta\eta) = \zeta T_a(\eta) - T_a((xv - yz)g)$$
$$= \zeta(a\eta) + a(xv - yz)e = a(xv - yz)(e + g)$$

holds. It follows that R(xg) = ax(e+g) for all $x \in K$. Let S_a be the scalar multiplication by a, then $(T - S_a)(A) \subseteq K(e+g)$ and $(T - S_a)(Kg) = \{0\}$. Hence, we obtain

$$M(A) = \{ S_a \, | \, a \in K \} \oplus \{ R \in (K(e+g))^A \, | \, R(Kg) = \{ 0 \} \},\$$

and

$$LM(A) = \left\{ \begin{pmatrix} a+s & t & 0\\ 0 & a & 0\\ s & t & a \end{pmatrix} \, \middle| \, a, s, t \in K \right\} = \left\{ \begin{pmatrix} a & b & 0\\ 0 & c & 0\\ a-c & b & c \end{pmatrix} \, \middle| \, a, b, c \in K \right\}.$$

Data availability Not applicable.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

- Johnson, B.E.: An introduction to the theory of centralizers. Proc. London Math. Soc. 14, 299–320 (1964)
- [2] Kaniuth, E.: A Course in commutative Banach algebras. Springer, USA (2008)
- [3] Kobayashi, Y., Shirayanagi, K., Tsukada, M., Takahasi, S.-E.: A complete classification of three-dimensional algebras over ℝ and ℂ, visiting old lean new. Asian-Eur. J. Math. 14, 2150131 (2021)
- [4] Kobayashi, Y., Shirayanagi, K., Tsukada, M., Takahasi, S.-E.: Classification of three dimensional zeropotent algebras over an algebraically closed field. Commun. Algebra 45, 5037–5052 (2017)
- [5] Larsen, R.: An introduction to the theory of multipliers. New York, Springer-Verlag, Berlin (1971)
- [6] Laali, J., Fozouni, M.: n-multipliers and their relations with n-homomorphisms. Vietnam J. Math. 45, 451–457 (2017)
- [7] Tsukada, M., et al.: Linear algebra with Python. Theory and Applications, Springer, USA
- [8] Wendel, J.G.: Left Centralizers and Isomorphisms on group algebras. Pacific J. Math. 2, 251–261 (1952)
- [9] Zivari-Kazempour, A.: Almost multipliers of Frechet algebras. J. Anal. 28(4), 1075–1084 (2020)

- [10] Zivari-Kazempour, A.: Approximate θ-multipliers on Banach algebras. Surv. Math. Appl. 77, 79–88 (2022)
- [11] Zivari-Kazempour, A., Valaei, M.: pseudo-n-multiplier and Pseudo-n-Jordan multiplier. Analysis (2023). https://doi.org/10.1515/anly-2021-1009

Yuji Kobayashi(⊠) and Sin-Ei Takahasi Laboratory of Mathematics and Games Funabashi Japan e-mail: kobayasi@is.sci.toho-u.ac.jp

Sin-Ei Takahasi e-mail: sin-ei@emperor.yz.yamagata-u.ac.jp

Received: June 14, 2023. Accepted: October 31, 2023.