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1. Introduction

Since John von Neumann’s beautiful characterization of the unitarily invari-
ant norms for the n X n complex matrices M, (C), there have been over
four hundred papers related to this subject. In the 1930’s von Neumann [24]
showed that there is a natural one-to-one correspondence between the unitar-
ily invariant norms on M, (C) and the normalized symmetric gauge norms
on C". As pointed out by the referee, these norms have been generalized
and utilized in several contexts (see [20] or [21]). More recently, J. Fang, D.
Hadwin, E. A. Nordgren and J. Shen [10] showed that there is an analo-
gous correspondence between the unitarily invariant norms on a II; factor
von Neumann algebra M and the normalized symmetric gauge norms on
L>[0,1]. Although the proofs of both results relied on s-numbers, the proof
of the latter result was different from von Neumann’s proof. We provide a new
proof of the I'l; factor result that more closely parallels the proof for M, (C).
The key ingredient is an “approximate” version of the Ky Fan Lemma that
is used in the finite-dimensional case.

It is our goal to find a similar characterization of all the unitarily invari-
ant norms on a finite von Neumann algebra R acting on a separable Hilbert
space H. A von Neumann algebra on H is a unital subalgebra of the algebra
B (H) of all operators on H that is closed under the adjoint operation and
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is closed in the weak operator topology. A von Neumann algebra is a fac-
tor if it cannot be written as the direct sum of two von Neumann algebras;
equivalently, if its center contains no projection P with 0 # P # 1. A von
Neumann algebra on a separable Hilbert space can be written as a direct in-
tegral (i.e., continuous direct sum) of factor von Neumann algebras, which is
called the central decomposition. A finite factor is a factor that has a faithful
normal tracial state. The finite-dimensional finite factors are all isomorphic
to M, (C) for some positive integer n. An infinite-dimensional finite factor
is called a II; factor. A finite von Neumann algebra on a separable Hilbert
space is a direct integral of finite factors. General references for von Neumann
algebras are [16] and [23].

Thus the results in [24] and [10] characterize the unitarily invariant
norms on finite factors. To make these two examples look the same, we want
to view C" as L (J,,d,), where (J,,d,) is a probability space. We also
want to have .J,, C [0, 1]. Our choice is J,, = %, e %} and ¢, is normalized
counting measure, i.e.,

on (E) = %Card (E).

We define J, = [0, 1] and do to be Lebesgue measure.

A finite von Neumann algebra R on a separable Hilbert space can be
decomposed into a direct integral of factors that are either isomorphic to
M, (C) or are II; factors. Each finite factor von Neumann algebra has a
unique tracial state. From the central decomposition we can define a tracial
state 7 on R. The problem is to identify the corresponding measure space
(A, A). A key observation is that every maximal abelian selfadjoint subalgebra
(masa) of M, (C) is isomorphic to C™ = L (J,, d,,) and with the normalized
trace corresponding to integration with respect to d,, and each masa in a I1;
factor is isomorphic to L™ [0, 1] = L™ (Jw, dco) with the unique tracial state
7 corresponding to integration with respect to doo. It is known [22] that any
two masas on a finite von Neumann algebra are isomorphic. If A is a masa in
R, then the central decomposition of R decomposes A to a direct integral of
algebras that are masas in the corresponding factors. We must analyze this
decomposition carefully to see that the masas are all isomorphic, in a very
special way, to L (A, \) for some measure space (A, \). Once we find the
measure space, we find a certain group G (R) of invertible measure-preserving
transformations. We then have to show how the unitarily invariant norms on
R correspond to the normalized G (R)-symmetric gauge norms on L™ (A, \).
We will see that R is a factor if and only if G (R) is the group of all invertible
measure-preserving transformations. This involves defining the analogue of
the “s-numbers” and proving a general approximate Ky Fan Lemma. To show
that things are independent of the choices of the masas used, we need a result
on approximate unitary equivalence [4].

In Sect.2 we discuss the basic properties of unitarily invariant norms,
give a brief description of von Neumann’s characterization for M, (C) and
give our new proof of the characterization of [10] for II; factors.
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In Sect. 3, we prove a reformulation of a result of Ding and Hadwin [4]
for approximate unitary equivalence of representations of a (not necessarily
separable) abelian C*-algebra into a finite von Neumann algebra R in terms
of the center-valued trace on R.

In Sect. 4 we discuss the definitions and techniques of direct integrals a
a canonical way to represent the center valued trace of a finite von Neumann
in terms of its central decomposition.

In Sect.5 we describe, for a given finite von Neumann algebra R, two
measure spaces with measures p and A so that L (u) is isomorphic to the
center Z (R) of R and, such that every masa A of R is isomorphic to L> (\).
We prove (Theorem 6) the isomorphism from L (\) to a masa A of R can
be chosen in a special way so that a certain commutative diagram holds.

In Sect. 4 we discuss invertible measure-preserving transformations, non-
increasing rearrangements, a function version of s-numbers, and define our
group G (R) of measure-preserving transformations on the measure space
(A, X). We prove (Theorem 8) a general “approximate” version of the Ky Fan
Lemma.

In Sect.5 we put things together and prove our main theorem, which
characterizes the unitarily invariant norms on R in terms of G (R)-symmetric
normalized gauge norms on L (\).

2. Preliminaries

2.1. Unitarily invariant norms
If A is a unital C*-algebra, U (A) denotes the set of all unitary elements of
A If T € A we define |T| = (T*T)"/?.

Lemma 1. Suppose A is a unital C*-algebra and « is a norm on A such that
a (1) = 1. The following are equivalent.

(1) For every T € A and for every U € U (A),
a(T)=a(T))=a(UTU).
(2) For allU,V inU (A),
a(T)=a(UTV).
Proof. Suppose T € A and for every U € U (A), we have o (T) = a (|T]) =
a(U*TU). Then
a(UTV) = o ([UTV]) = a ([(UTV)*(UTV)]W)
= a (V*(T*T)Wv) = a(|T]) = a(T).

Suppose T' € A and o (T) = a(UTV) for every U,V € U (A). Tt is
clear that o (T') = a (U*TU). To prove a (T') = o (|T]), we can assume, using
the universal representation [23, Chapter 3: Sect. 2], that A C B(H) for
some Hilbert space M such that the second dual A## of A is isomorphic
to A”, the weak operator closure of A. Furthermore we have that the weak
operator topology on A## coincides with the weak*-topology, in fact, if ¢
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is a continuous linear functional on A, then there are vectors e, f € H such
that p = e® f, i.e., for every A € A,

¢ (A) =(e® f)(4) = (4e, f).
Now suppose A,B€ A, W e A", |[W] <1and A =WB. We claim
Acwll {(UB:U cU(A)}),

where colll represents the norm-closed convex hull. Since {e“U teR,UeclU
(A)} = U (A), we see that @l ({UB: U € U (A)}) is absolutely convex and
norm closed. Tt follows from the Hahn Banach theorem that colIl({UB : U €
U (A)}) closed in the weak topology on A. If we assume, via contradiction,

that the claim is false, there are e, f € H and a number r € R such that, for
all C € colll (¢4 (A)),

(CBe, f)l <r <Re((Ae, [)) < [(Ae, f)].

We know from the Russo-Dye Theorem [7] that collll (14 (A)) is {C € A : ||C||
< 1}. It follows from the Kaplansky density theorem [16] that there is a net
{C;} in the closed unit ball of A such that C’\ — W in the weak operator
topology. Thus,

r <|{de, f)l = (WBe, f)| = lim |(C;Be, f)] <,

which is the desired contradiction. We know from the Russo-Dye Theorem
[7] that if ||S]] < 1 then S € co (U (A)), which implies « (S) < 1. Hence
a(S) < ||5] for every S € A. Since the claim is true, and it follows that
a(A) < a(B). Since A” is a von Neumann algebra and 7' € A, there is a
partial isometry W € A” such that T'= W |T'| and |T| = W*T, from which
we can conclude a (T') = o (|T)). O

Definition 1. If A is a unital C*-algebra and « is a norm on A satisfying
a (1) = 1 and either of the two conditions in Lemma 1, we say that « is a
unitarily invariant norm on A. It is clear that when A is commutative, a
unitarily invariant norm « need only satisfy (1) =1 and «(T) = «(|T)).

Below are some properties about unitarily invariant norms.

Proposition 1. If A is a unital C*-algebra and « is a unitarily invariant norm
on A, and T, A, B € A, we have the following:

(1) a(T) <7,

(2) a(T) = a(T7),

(3) a(ATB) < | Al a(T) |B],

(4) 0 < A < B implies a(A) < o (B).

Note: Whenever we discuss a measure space (€2, X, 1) we always assume
that the space is complete in the sense that, whenever F' € ¥, F C F and
w(F) =0, we have E € 3. The following lemma is an immediate consequence
of Proposition 1.
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Lemma 2. If « is a unitarily invariant norm on a unital C*-algebra R, S, T €
R, and {U;} is a net of unitary operators in R such that

lim ||S — U;TU;|| = 0,
J

then
a(S)=a(T).

Definition 2. If (€, 1) is a probability space, then L™ () is a von Neumann
algebra, and a unitarily invariant norm « on L (u) is called a normal-
ized gauge norm on L (). In this case all we need require of « is that
a(l)=1and a(f) = a(|f|) for every f € L™ (). We let MP (€2, 1) denote
the group (under composition) of all invertible measure-preserving transfor-
mations from 2 to Q. We say that a gauge norm « on L (u) is symmetric
if, for every v € MP (Q, 1) and every f € L™ (u), we have

a(foy)=a(f).

In [24], J. von Neumann characterized all of the unitarily invariant
norms on M, (C), which is the n x n full matrix algebra with entries in
C. Also [10] characterizes the unitarily invariant norms on a II; factor von
Neumann algebra. The goal of this paper is to give a characterization of all
unitarily invariant norms of a finite von Neumann algebra acting on a separa-
ble Hilbert space. Along the way we give a new proof of the characterization
of unitarily invariant norms on a Il factor in [10].

2.1.1. Unitarily invariant norms on M,, (C). In this section we give a brief de-
scription of von Neumann’s characterization [24] of unitarily invariant norms
on M, (C). Let 7, be the normalized trace on M, (C), i.e., 7, = Trace.

Lemma 3. Suppose T € M,, (C), then there exists a unitary matriz U €
U (M, (C)) and numbers sy (1) = sp (2) =+ sp(Z) >0 such that

n

st(z) 0 - 0

2

U*|T|U = 9 57 (3)
: -0
0 - 0 (3)

The numbers s (%),ST (%),...,ST (%) are unique and are called the

s-numbers of the matriz T'. Define

= () r (2} ).

If «v is a unitarily invariant norm on M,, (C), then

() 0 0
2
oM =a(T) =a@mry=a| ° TG |
: . 0
0 02
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and thus o (T') depends only on the s-numbers of T'.
Note that s (T') € C", and in classical matrix theory [2] the standard notation
is s (T') instead of our sy (%) for 1 < k < n. We know that C™ is isomor-
phic to L (4,,), where ¢,, is normalized counting measure on {%, N
Let S,, be the permutation group (i.e., all the bijective functions on J, =
%, e %}) It is clear that S,, = MP (J,,0,).

In this case a normalized gauge norm 3 on C* = L (§,,) is symmetric

if, for every f € L* (6,) and every o € S,,,

B(f)=B(foo),
that is

B((ar,...;a,)) =0 ((ao(l),...,ao(n))) )

We know that, for each x = (21,...,z,) in C" with |z| = (|z1],..., |za]),
there is a o € S,, such that

o (le)) = (|ro ]+ [2om]|) = <S\z\ (%) S| (%) y e Sl (%)) = Sjal

where s, (%) > Sy (%) > . > 08, (%) > 0. We call S| the nonincreasing
rearrangement of |z|. Note that, although o may not be unique, s, is unique.
Given a unitarily invariant norm « on M, (C), define g8, on C" by

1
3 Spa ()
Lo () = BalX1y ey Tp) = @ =«
Tn spat (3)

Clearly, permutations on .J,, corresponds to unitary conjugations by permuta-
tion matrices in M, (C). Hence 3, is a normalized gauge norm on L (§,,) =
Ccn.

Conversely, given a symmetric normalized gauge norm ( on C", we would
like to define ag on M, (C) by

cm(T)ﬂ(sT (i) . (i) ;or oy (Z)).

We need to check that o is a norm. Clearly, sz (%) = |\ st (%), SO

ag (AT) = <3/\T (i) s SAT (3) STt SAT (Z)) =M as(T).

Also, ag(T) > 0 and ag (T')
triangle inequality: sa4+p (%)
k=1 s () =T]-

n

1o 10

—( 2 _
Example].A—<01>,B_(Oi
A(

In this example, sa1p (%) = %,s

= 0 implies T = 0. The big problem is the
< s4 (%) + sp (%) can fail if ¥ > 1. When
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In order to prove the triangle inequality of ag, the Ky Fan Norms play
a central role. For 1 < k < n we define KF» : M, (C) — [0,00) and KF :

C™ — [0,00), by

1 kE 1 kE
ST(n)+ [ +ST(n) and KFE (Q?)Z $|$| (n)+ p +S‘1| (n).

To prove KFx is a norm on M, (C) and on C", we use the following

KFe (T) =

Lemma whose proonf can be found in [7]. Once we know o = K Fx is a norm
on M, (C), it easily follows that KFr = 3, is a symmetric gauge norm on
c. '

Lemma 4. For T € M, (C), KFx (T) = sup{|Txr (UTP)| : U is unitary, P is

a projection of rank k}.

We easily obtain the following corollary.

Corollary 1. an:18A+B(%) < an:l [s4(2) + sp(2)] for A, B € M, (C)
and 1 <k <n.

The key result relates the Ky Fan norms to arbitrary unitarily invariant
norms. The proof can be found in [9].

Lemma 5. Suppose n € N, a = (a1,...,a,),0 = (b1,...,b,) € C", a1 > as >
> ap>0,andby > by >0, >0. If KFx (a) < KFe (b) for1 <k <n,

then there exists N € N, 01,--- ,on €Sy, 0 < t; <1, with Zj.vzltj =1 such
N .
that a <3751t (05 (), i.e.,

N
((11,. .. ,an) < th (baj(l); .. ~ab<rj(n)) .
j=1

Corollary 2. Suppose a,b € C" with KFx (a) < KFx (b) for 1 < k < n,
then, for every symmetric gauge norm 3 on C", B (a) < 3(b).

N N N
Proof. f(a) < 5(;%‘0]‘(5)) < ;tjﬂ(o'j () = (thj>6(b) =
B (D).

Lemma 6. If 3 is a symmetric normalized gauge norm on C", then ag is a
unitarily invariant norm on M, (C).

Proof. We just need to prove the triangle inequality. Suppose A, B € M, (C).
If

o= (saes (2) snn (2) ccosaen (2)) ana
. (SA (;) ts (;),SA (3) t s (3),...,3A (%) + 1 (g)),
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then, by Corollary 1, we know that KFx (a) < KFx (b) for 1 < k < n. It

n

follows from Corollary 2 that §(a) < 3 (b) . However,
ag(A+B)=p(a) <B(b) =[F(sa+sB)
< B(sa)+0(sp) = ap(A) +as(B).
This completes the proof. O

It is easy to see that ap, = a and (3,, = 3 always hold. This gives us
von Neumann’s characterization of unitarily invariant norms on M, (C).

Theorem 1 [24]. There is a one to one correspondence between symmetric
gauge norms on C" and unitarily invariant norms on M, (C).

2.1.2. Approximate discrete Ky-Fan Lemma. We want to prove an approx-
imate version of the Ky-Fan Lemma. Suppose n € N, a = (1,0,...,0),b =
(%, %, s %) € C™. The Ky-Fan Lemma says that a convex combination of
permutations of a is greater than or equal to b. It is clear that each permu-
tation of a has only one nonzero entry, so the number of permutations must
be at least n. We want, given a positive number &, to find a number k that
is independent of n, so that when 0 < a,b € C" and KFj (a) > KFj (b) for
1 < j < mn, there is an average of k permutations of a that is greater than or
equal to (by —e,bs —€,...,b, —¢).

Suppose n € N, f : {1,...,n} — Cand v: {1,...,n} — {1,...,n}
is bijective. Let S,, denote the set of all bijective functions v : {1,...,n} —
{1,...,n} with the identity map id € S,, defined by

id(k) =k forall 1 <k <n.
Let C™ denote the set of all functions f : {1,...,n} — C. For each v € S,,
define the map C, : C* — C" by
Cy(f)="Ffor.

If N is a positive integer, we define

N
1
CN{NZCW :’yl,...,’}/NGSN}.

k=1
It is easily seen that if p; € Cyn, and @2 € Cy,, then g0 ¢ € Cy, N, Also if
my,...m, € Nand v1,...,v €S, and ifZ?zlmj = N, then

L
> 3 O €.
j=1
Suppose (X1, <1), (X2, <2) are strictly linearly ordered sets. We let <
= (<1, <2) denote the lexicographical order on X1 x X, i.e.,
(al,bl) < (ag,bg) & ay <1 as, or a; = as and by <5 bs.

Then (<1, <) is a strict linear order on X; x Xo.

Suppose m € N. Let E,, = {1,...,m} x {1,...,m}, linearly ordered by
< = (<, <) (where < is the usual order). Let <'= (<, <) on E,, X E,,. This
makes By, x E,, order-isomorphic to {1,2,...,m*}.
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Lemma 7. Suppose m,n € N and f : {1,...,n} — {1,....,m} and h :
{1,...,n} = {0,1,...,m} are nonincreasing and, for every k € {1,...,n}

k k
Zh(j)ngy

If N = (m!)ms, then there are permutations y1,...,vv of {1,...,n} such
that

LN
*ZfO’YkZh'
N

Proof. Suppose g : {1,...,n} — {0,1,...,m} and g ? h. We define
gg =min{k: g (k) < h(k)} and
qy = max {k: (g (k),h(k)) = (9(qq),h(a))}
We say g is nice if g 2 h and
(1)
k k
S <Y g0)
j=1 j=1
for q; <k<n,
(2) g is nonincreasing on {k: ¢, < k <n}.
Suppose now that g is “nice”. It is clear from the definition of g, and the

fact that h is nonincreasing that (g (gq),h (gy)) is the largest element (with
respect to <) of

{(g(k),h (k) : 1<k <n,g(k)<h(k)}.

It follows from (2) that g(k) < g(gy) whenever ¢, < k < n. Since g and h
are nonincreasing on {k : ¢; < k < n}, we know that
(g

{k:(g(k),h(k)=(g9(a) h(ag)}={k:q9 <k <qp}.

Thus we have
(3) for g <k <n.

k

IO ESINIOR

j=1 j=1

Let F = {k:qg < kgqg}, and let
b=Card(F)=q, —qq+1.

It follows from (3), with k = g, that there is an integer ko with 1 <
ko < g4 such that g (ko) > h (ko). Let pgy be the smallest positive integer such
that

g(pg) =max{g(k):1<k<n,g(k)>h(k)}.
If g (k) = g (py), then

g (k) =g (pg) > g (ko) > h (ko) > h(ge) > g(qq),
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which means, from (2), that k£ < ¢,. In particular, p, < g,.

It is now clear that (g (pg),h (pg)) is the largest element (with respect
to <) of {(g (k) h(k)): g (k) > h(k)}.

Let

E={k:1<k<n,(g9(k),h(k)=(g(pg) h(pg))}

and let a = Card(E). Since, for each k € E, g(k) = g(py) > ¢(qq), so
E C[1,q4)-

A simple computation shows that if t; = % and 1 —t;, =

h(pg)—g(aq)
9(pg)—g(ag)’ then

(1—1t4) g9(pg) +t49(ag) = h(py), and
(1- tg) g (Qg) +ig9 (pg) =49 (QQ) + g (pg) —h (pg)] .
Note that 1 < g (pg) — g (q4) < m. Also

9(qq) + (9 (pg) — ()l = g (pg) + (9 (ag) — I (pg)]
9 (pg) +19(q9) — R (gq9)] < g(pg)-

We now set up some notation. Suppose D C E and d = Card (D) <
Card(F). Let apg : D — {k:gy <k <gy+d} be the unique order-
preserving bijection. Define vp 4 € S,, by

apg (k) ifkeD
YD (k)= ap' (k) ifkeapy (D).
k otherwise
Define ¢p 4 € Cr1 by

¥D,g = (1- tg) C’YD,g + tycid'

Thus
h (k) ifkeD
¢p,g(9) (k) = { g (k) + (9 (pg) — h(pg)) = g(ag) + (9(pg) —h(pg)) ifk€apgy(D).
g (k) otherwise
Also

9(ag) < #p,g(9)(49) = 9(a9) + 19 (Pg) =1 (pg)] = 9 () + [9 (dg) — T2 (1y)]
< 9(pg) +19(d9) =N (g9)] < 9(py)-
Since g (pg) — h(pg) > 0, it is clear that ¢p 4 (g) is nonincreasing on
{k:qg<k<n} Ifopgy(g) 2 h, thenq, > q Since

g

> #pg(9) () =>_90),

J=1

it follows from (1) that, whenever k > ¢’

¥YD,g

’
(9) > dg,
k

D) =2 epg(9)0)-

j=1 j=1
Thus if ¢p 4 (g) # h, then ¢p 4 (g) is nice.
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For any nice g we define p(g) € E,, X E,, by

p(9) = ((g(pg) .1 (pg)),(9(aq),h(ag)))-

CLAIM: There is a ¢ € C(pym such that g = ¢ (g) satisfies g > h or g

is nice and p (§) < p (g)-
We now consider a few cases.

Case 1: a <b.Let D=FE.If p,(g) 2 h, then ¢, (g) is nice and

(0o (9) (Poate) b (Pouiq))) < (9 (pg) , h(pg)) -
It follows that

p(va(9) < p(g).

In this case we define § = ¢, (¢9) and ¢ = p,.
We now can assume that a > b. There is a smallest positive integer w
such that

9(q9) +w(g(pg) —h(pg)) > h(gy),

and there is a positive integer v and a disjoint collection {FEy, E1,...E,}
whose union is £ and such that

Card(Ey) =bfor 1 <k <w.
Let v = min (v, w), and define bijections ay, : E, — F for 1 < k < u. We let

g (pg) — h(py)
g (pg) g (Q.q) + k(g (Q.q) +(k=1)[g (pg —h (pq))D] ’

ty =

and
Poy, = (1- tk) C’Yk + trid.

For 1 < s <u, let

Ps = Pa, O "0 Pay -

We see that
h (k) if ke UlSszEj
vs (9) (k) = q 9(ag) +5(9(pg) —h(pg))ifk €F
g (k) otherwise

We see that ¢,—1(g) 2 h and @, _1 (g) is nice. Thus @, (g) > h or ¢, (g) is
nice.
We now consider more cases.

Case 2: v < w. We know that ¢, (¢) is nice. Welet D = Ej and let o : Eg —
{k:qy <k <gy+Card(Ep)} be a bijection and let § = ¢4 (gv) -
Then g > h or g is nice and

(9 (pg) P (pg)) < (9 (pg),h(pg))-
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Thus if ¢ 2 h, then

p(g)<"p(g).
v>worv=wand Fy # &. In this case g, is nice and if g,, 7 h, then

g. 1s nice,

(9w (Pgu) s 7 (Pg.)) = (9 (pg) s h (Pg))

and

(9w (2g.,) s 1 (Pg,,)) = (9 (Pg) » P (Dg)) -

Thus if § = g, and @ = p,, © -+ 01, then § = ¢ (g), either § > h or g is
nice, and

p(9) <"pl9)-
Case 3: v =w and F = &. In this case @, (g) > h or @, (g) is nice. If @, (g)
is nice, then

(gw (pgw) h (pgw)) < (g (pg) R (pg>>

and

(90 (4g.) s 1 (Pg,)) < (9 (Pg) s b (pg)) -

Thus if § = gy and @ = @,,, © -+ 0 @1, then § = ¢ (g) and either § > h or §
is nice, and

p(9) <"p(9)-
®g € Cmyym such that g = g (g) is nice and p (g) <" p(g).
It follows from Cases 1,2, 3 that the claim is proved.
If we let fo = f and if fi is nice and f; 2 h, then fry1 = fk and
fk+1 = @1 (fx) with @ry1 € Cipnym . It follows from the Claim that there is
a smallest k& < m?* such that frx = h. Then

Y =@Epo---0p] € C((m')m)k C C(m!)ms
and fr, = ¢ (f). Thus the lemma is proved. O

2.1.3. Unitarily invariant norms on a II; factor. In this section we give a
new proof of the characterization in [10] of unitarily invariant norms on a
11, factor von Neumann algebra M. If M is a type II; factor von Neumann
algebra. then M has a unique faithful normal tracial state 7 with the property
that if P and @ are projections in M, then P and () are unitarily equivalent
in M if and only if 7 (P) = 7(Q). In this case the measure space (J,,d,)
is replaced with the measure space (Jso,doo), Where Joo = [0,1] and 0 is
Lebesgue measure. A normalized gauge norm § on L [0,1] = L™ (ds) is
symmetric if, for every v € MP (Jw,ds) and every f € L™ (ds ), we have
B(f) = B(f o).

The main result in [10] is that there is a one-to-one correspondence
between the unitarily invariant norms on M and the symmetric normal-
ized gauge norms on L™ (d,). This looks just like von Neumann’s result for
M, (C).
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The definition of the s-numbers for a function in L* [0, 1] can be ob-
tained from nonincreasing rearrangements in measure theory. The proof in
[10] doesn’t use a version of the Ky Fan Lemma (Lemma 5); we present a new
proof here using an “approximate” version of the Ky Fan Lemma (Theorem
2).

The first result we need is nonincreasing rearrangements from [11, Chap-
ter 37].

Lemma 8. Suppose f : [0,1] — C is measurable. Then there is a v € MP

(Joo, 000) such that s¢ = | floy is nonincreasing on [0, 1]. The transformation
€

v may not be unique, but sy is unique (a.e.). It therefore follows that if
fi,f2:10,1] — C are measurable, then

sy, = g, if and only if |f1] = |f2| oy for some v € MP (Joo, Goc) -

The function sy is called the nonincreasing rearrangement of | f|.
For 0 < ¢t < 1, we define the Ky Fan norm KF; on L [0, 1] by

1 t
0

For an operator T'e M and 0 <t <1, the t*" s-number of T, denoted
by sr (t), was defined by Fack and Kosaki in [8] as

sp (t) = inf{|TE| : E is a projection in M with 7(EL) < t}.

It is clear that the map ¢ — sz (¢) is nonincreasing on [0, 1]. The #** Ky
Fan norm K F; (T') is defined as

IT| ift=0

KFt(T):{ifgsT(t)déoo fo<t<1’

In the matrix case |T| is unitarily equivalent to a diagonal matrix, which
naturally corresponds to an element of C". In the I'I; factor case we need a
more complicated approach.

Definition 3. A normal *-isomorphism 7 : L (do,) — M such that, for every
€L (6e0),

(tom)(f) :/ fdbso.

oo

is called a tracial embedding.

In the matrix case, the assertion that |T| is unitarily equivalent to a
diagonal matrix can be rephrased as |T'| is contained in a maximal abelian
selfadjoint algebra (i.e., masa) of Ml,, (C), and every masa in M, (C) is unitar-
ily equivalent to the algebra of diagonal n x n matrices. Here is the analogue
for a I, factor. This can be found in [22].

Lemma 9. Suppose A is a masa in a type 11y factor M. Then there is a
surjective tracial embedding m: L™ (0 ) — A.
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Lemma 10. Suppose A is a masa in a type II; factor M. If f € L*°|0,1]
and 7 (f) =T, then, for almost every t € [0,1],

Sf (t) = Sx(f) (t) =S7 (t) .
The following lemma is a consequence of Hadwin-Ding in [4].
Lemma 11. If m and p are tracial embeddings into a 11y factor M, then m

and p are approximately unitarily equivalent in M, i.e., there is a net {U;}
of unitary operators in M such that, for every f € L (o),

U5 (N U = p (N = 0.

Corollary 3. If 7 : L™ (05) — M is a tracial embedding and v € MP
(Joos000)s then p @ L™ (0sy) — M defined by p(f) = w(fory) is also a
tractal embedding. Hence, there is a net {U;} of unitary operators in M such
that, for every f € L™ (0s0),

|Usm () U; =7 (fom)] —o0.

As in the matrix case we need to prove K F; is a norm on M by giving
an alternate characterization given in [10, Lemma 5.1]

Lemma 12. If T € M and 0 <t <1, then
KF, (T) =sup{|t (UTP)|:U €U (M), P is a projection in M, 7 (P) =t}.

Suppose « is a unitarily invariant norm on M. We can choose a tracial
embedding 7 : L (Jwo, doo) — M and define a norm S, on L (Joo, doo) by

Ba (f) = a(m (f)).
We need to show that the definition does not depend on the embedding 7. If
p: L™ (Jx,05) — M is another tracial embedding, then by Lemma 11, there
is a net {U;} of unitary operators in M such that, for every f € L™ (Ju, 9)
U7 () U = p(F)] — 0.

Since

187 (f)) =B () =6Um(f)U;) =B (p(f))
<BU;n(NHU; = p(f) <|U;m(HU; = p (£ =0,
we see that 5 (7 (f)) = B (p(f)). Moreover, it follows from Corollary 3 that,
the gauge norm [, is symmetric. A simple consequence is that KF;, = Ok,
is a symmetric gauge norm on L™ (Ju, 00 )-
Next suppose [ is a symmetric gauge norm on L™ (Ju, 05 ). We want to
define ag on M. If T' € M, we can choose a masa A in M such that |T| € A.

We then choose a surjective tracial embedding 7 : L™ (Jx, ) — A and
choose f € L™ (Jx,0x) such that 7 (f) = |T| and then define

ag (T)=B(f)=0B(sy).

Since

sp(t) = sxp) (t) = 87 (1),
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we see that the definition is independent of A and 7. As in the matrix case, the
main difficulty is proving that ag satisfies the triangle inequality. In [10] this
was done using an approach that avoids proving an analogue of the matrix
Ky Fan Lemma (Lemma 5). Here we prove a general “continuous” version of
the approximate Ky Fan Lemma that we will need later in our paper.
Lemma 13. Suppose f,h € L>[0,1], and 0 < f,h < 1, f||,, = 1. Suppose
f, h are non-increasing, then there exist step functions sgcm] > f and SLm] <h
with ranges contained m {% 0<k< m} such that % < sgcm] <1land0<
[m] <m=Llognd f < sf < f—l—% and max (h— %,O) < ng] < h. It follows
that K Fy (sgn]) < KF;(h) and KF; (f) < KF; (552”1) for every t € (0,1].

Pmof For every m € N, let p; =sup f~ ((1 - %7 1-— %]),
=infh !t ((1-L,1-%21])),i=1,..,m. Let pp = go = 0. Then define

m—1 .
m ? .
35, ] (x) = (1 - m) X[ps.piss) (x) fori=0,....,m —1.
=0

m—1 .
m i+1 .
351 ] (x) = (1 - ) Xigs,qisy) (@) fori=0,..,m —1.

=0
It is easy to see thatf<s <f+— thus Hf—sf ]H < % Also
(o]
max(h—E,O) §sL ml < h; so Hh—sh ]H < 1

Therefore, K F} ( [m }) < KF;(h) and KF; (f) < KF; ( m ]> for every

€ (0,1] 0
Lemma 14. Suppose f is a step function on [a,b] and k € N, then there exists
an invertible measure preserving map @y, : [a,b] — [a,b] such that

k b
1 G) 1 4
L o [ T@d| <ulfl g
o0

where n = card f ([a,b]), Lp,(cj)

Pk OO Pk
Proof. Define oy, : [a,b] — [a,b] by

is the composition of j of the @i ’s, i.e., @i o

x+ e ifa<z<b— b

90’“(‘”):{Qs+b;ab+a1fb<gc<b.
Then <p,(€k) is the identity map.
If we define py (f) = %Z?Zlf o go,(c - —f fdds, then py is linear and
lorll < 2 (with pg acting as an operator on L (Ju,d00)). Suppose 0 <

j < k. Then py (X[ =0 a.e. (0). However, pj is linear;

bl at(+1)) 25%)

therefore
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Pk ( o 4 (ja)) bt a)) = 0 whenever 0 < j; < jo < k. Suppose a < a <
0 < b. We ChOObe j1 and jo such that j; is the largest 7, 1 < j < k for
which a +j1 b—a < ¢ and choose j5 to be the smallest j, 1 < j < k for which
B < a+ ja272%. Then

boa o) T X[B,a+(52)) b2

b;aya)) = Pk (X[ﬁ,aJr(jz))bZa ) '

However, if E € {[a+j1 b; a),[B,a (]2))1’7 }andf X g then, since fo
(J) - (B):1<j< k} is disjoint,

72 ,a+(j2)) 52) T Xl

Hence

Pk (X[a,,@)) = Pk (

X( Ecj))_l(E) and the collection { spl(cj))

we have
k
1 () 1
< —
Zfo@k =7
j=1 o
and
1 h 1 b—a 1
- ds —
b—a), XEY= Tk Tk
we have ||pi (E)| ., < 2. Hence
4
ok (Xog) < 7

Suppose f is a step function, then f = ijlan[a].@_Hl) for some n € N.
Denote fj = X[a; )- Then

SO 1

n b n b
F=Yaihs [ 1@ di =30 [ oy
j=1 a j=1 a

Thus

n

low (f Z la| [l px (f5)]]

gajI 2 <ulfle(3)-

We call the following the approzimate Ky Fan Lemma for L™ (§) .

Theorem 2. Suppose m is a positive integer. Then whenever 0 < f,h <1 in
L™ (6s) satisfy

KF; (h) < KF,(f) for all rational numbers 0 < t < 1,
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there are, y1,...,7,,m> € MP (Jo,0s0) , such that

m,2

1 3 2

sp < o Zsf o%JrE.
i=1

Hence B (h) < B (f) for every symmetric gauge norm 8 on L™ (§x) -

Proof. It f € L™ (Js,0x0), then the map ¢t — KF;(f) is continuous on
(0,1]. Hence we have KF; (h) < KF;(f) for all 0 < ¢t < 1. We know that
KF,(f) = KF;(sy) and B(f) = B(sy) for every f € L™ (0s). We may
assume that f, h are nonincreasing, and we let u,w be the step functions
defined in the proof of Lemma 13. Then w,w satisfy f < u < f + %and
max (h — =,0) < w < h. Recall that

u = (1 — Z) Xipi,pisr) (@) for i =0,...,m —1.

1
w= (1 - Z;; ) Xlas,ais1) () for i =0,....,m — 1.

and it is easy to see that

t " t t t "
/ fdboo + — > / uddosy > / wddse > / hdboe — —
0 m 0 0 0 m

forall 0 <t <1.
By Lemma 14, for each m € N, there exists a measure preserving map @, :
[0,1] — [0, 1] such that

1 — ) ! 4
—g uopd) — udds <nllull —-
mi= 0 m

o0

where 7 = card (Ran (u))

Let I(t) = } fot udds, then [ : [0,1] — [0, 00) is a continuous function. There

are 2 cases to consider:

Case 1: If (1) = fol uddoo > b1 = max{w(t) : 0 <t <1}, then by Lemma
14, for Vk = m? € N, there exists @5, € MP[0, 1] such that

m2
woul) 4 Fuopl )—/1ud(5 ~ Anllull
i < e

IN

4
m? m2 m’
where n = card (u) < m.Denote cpg) by «v; Then we have

2
1« 6
WZUO’YJ' Z'LU*E
j=1
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m2
Therefore # Zlf o) + % >h— % follows from Lemma 13. That
j=

is

2
1 < 3
a2 d ovn 2=
j=1

We can view it as

3
Zfo@(_])>h77

m2m

Where ¢(2+m2t) = ( ) fOI' 1 S 7 S m2 and 0 S t S m2m—2 —1.
Case 2: (1 fo Uddse < by.
Then there must exist p; € (0,1), so that

, 1 Pll
l(py) = —,/ Uddoe = by.
P1Jo

Define vV in the following way

W Jb1 0<z<p)
ut (=) {u(x) Py <z <1

Then for every t > p;,

t t Pl t I
1(t) :/ uddoso >/ wddsy = ud5oo+/ uddoso 2/ Wddoso
0 0 0 P, 0

t
+ / Wdds .
p/

1

Thus we have byp) + fpt; uMdd > bip, + f;,l wdd; therefore

t t
/ uMdéy, > / wdds
q1 q1

Therefore, for every 0 < t < 1, we have

u—lgu(l)gu
m

)

KF, (u<1>) > KF, (w),

uO, = b = [,

By Lemma 14 again, for k = m? € N, there exist O(1)s -+ Plm2) -

[0,1] — ] such that

and for every t < ty, |

4 4
<nllull oy < o

1
’Euocp(z)—/ uddso
0

oo
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<
Let () (t) = {f(’”)(t) i = Zi r=1,...,m? Then (}) € MP[0,1] for

all 1 <r <m? and

Lom?
e Zuo‘p()_“(l) <

2
m’

oo

That is u") ~ 772:) cpE % and Ran(u™) C {b1,az, ..., am}.
If q% f uMdbs > ba, go to case 1.

If 1 f uMdds < by, do the similar process as case 2 above, we have

u® and
1 m? 2
‘ LB | <2
m2i=1 m’
That is
1 m?> (2)
(2) o 1) (
“ m2 i§1u ° ¥

Lomd (w1 ) @)
RN <¢22_1m2 (UO% )> ° ;)
1

m m2 (2)
mA Eljgl(u ° % o @iz ):

and Ran((u)(2)) C {b1,ba,as, ..., am}

Finally, after r steps (at most m), we will have

r 1 m? m? 1) @) ")
u! )zmzriél"'i}:} (uo(p“ o op; ),

and thus u(") > w

RITEE

. 2 . . .
Since m?"|m™", as in case 1, we can view this as

m2

1 2
e D uopg Zw— ool
j=1

In conclusion, for every m, there is an integer N = mm2, and there are
AN € MP (Jw, ds) such that

1 2m
N2 ez v T
ByLemmalS we know that f >u— L and h <w+ L

ThllS, stf O’yZ—F +% > Sp.
Therefore B(f) > B (h) as m — oo. O

Corollary 4. If 5 is a symmelric gauge norm on L™ (Jx,0x), then ag is a
norm on M.
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Proof. We need only prove the triangle inequality. If A, B € M, we define
h(t) = sa+p (t) and f(t) = sa (t) + sp(t). Then KF; (h) = KF, (A+ B)
and KF, (f) = KF; (A) + KF; (B), so Lemma 2 applies, and we get

ag(A+B)=p(h) <B(f)=B(sa(t) + 5B (1))
SB(sa(t)+8(sp (1) = apg(A) +as(B).
O

Since it is easily seen that o = o, and 8 = f3,,, we obtain the charac-
terization [10] of the unitarily invariant norms on a I'I; factor von Neumann
algebra.

Theorem 3. Let M be a type I1; factor von Neumann algebra, then there is
a one-to-one correspondence between unitarily invariant norms on M and
symmetric gauge norms on L™ (Jso, 0sc) -

2.2. Approximate unitary equivalence

The following is a consequence of a result of Hadwin and Ding [4]. Suppose
R is a von Neumann algebra and T € R. Z(R) = RN R’ is the center. In
[12] the R-rank of T was defined to be the Murray-von Neumann equivalence
class of the projection Pp onto the closure of the range of T. We let (SOT)
and (WOT) denote, respectively, the strong and weak operator topologies.
Note that

Pr = lim (TT*)"™ (SOT),

n—oo

so Pr € M.
The following theorem can be found in [13]. The center-valued trace ®
is described in Sect. 2.3.6.

Theorem 4. Suppose R is a finite von Neumann algebra acting on a separable
Hilbert space H. Let ® : R — Z (R) be the unique center-valued trace on R.
Suppose A is a unital commutative C* algebra and 7,p : A — R are unital
x-homomorphisms. The following are equivalent:

(1) There is a net {U;} of unitary operators in R such that, for everya € A,
HUJ’»‘ﬂ' (a)U; = p(a)|| — 0.
(2) Por=Dop.

2.3. The central decomposition

We refer the reader to [16] for the theory of direct integrals and the central
decomposition of a von Neumann algebra acting on a separable Hilbert space.
Since we are only interested in the von Neumann algebra R and not how it
acts on a Hilbert space, we can ignore multiplicities when using the central
decomposition [16]. Suppose R is a finite von Neumann algebra acting on a
separable Hilbert space. Then we can write

R=R1®R2® ] P Reo,

where Ry is of type I, for 1 < k < 0o and R is a type I1; von Neumann
algebra.
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2.3.1. Measurable families. Suppose M is a type I1; von Neumann algebra
with a faithful tracial state acting on a separable Hilbert space H=I2 . We
will associate with M a probability space (2, 1) and a unitary operator U :
H — L?(u, H) that transforms M into a certain von Neumann algebra of
operators on L? (u, H) that will be described next.

We let M’ denote the commutant of M, i.e., the set of all operators
that commute with every operator in M.

For each w € , there is a type II; von Neumann algebra M, in
B (H) that is determined by two sequences of SOT (strong operator topology)
measurable operator-valued functions f, and g, from 2 into the unit ball of
B (H) so that M., is generated by the set {f,, (w) : n € N}, M., is generated
by the set {g,, (w) : n € N}, and each of those sets is SOT dense in the unit
ball of the von Neumann algebra it generates. Suppose ¢ : @ — B (H) is an
SOT-measurable function, and define |¢| = ||-|| o ¢, that is |¢| (w) = ||¢ (wW)]]
for w € Q. If |p| € L™ (u), then let |¢|l., = |ll¢lll- We will assume that
(Q,p), U, and the f,, gn, M, have been chosen so that

U MU =
{¢: Q — B(H)|y is SOT-measurable, ¢ (w) € M., a.e. (1), |¢| € L= (u)}.

As usual, 1 = g will mean ¢ (W) = 2 (w) a.e. (u), and each ¢ in
U* MU is viewed as the operator on L? (u, H) defined for f € L? (u, H) by

(pf) (W) =¢ (W) f(w).
2.3.2. Measurable cross-sections.

Definition 4. Suppose (X,d) is a metric space and u : Bor(X) — [0, 00)
is a finite measure. A subset B of X is called p-measurable if there are
A, F € Bor(X) such that B\A C F and p (F') = 0. The o-algebra of all p-
measurable sets is denoted by M,,. A subset D of X is absolutely measurable
if D is u-measurable for every finite measure p on Bor(X). The o-algebra
of all absolutely measurable subsets of X is denoted by AM (X). Clearly we
have

AM (X) = ﬂ {M,, : p is a finite Borel measure on X} .

It is obvious that each M, contains Bor(X), so Bor(X) Cc AM (X).
However, it is often the case that Bor(X) # AM (X). If Y is another met-
ric space, we say that a function f : X — Y is absolutely measurable if f
is AM (X)-Bor(Y) measurable, i.e., for every Borel set £ C Y, f~}(E) €
AM (X). Recall that a finite measure space (A, X, \) is complete if, E € ¥
whenever E C F,F € ¥ and A (F) = 0, i.e., all subsets of sets of measure 0
are in 3. Note that statement (4) in Lemma 15 shows how, in the presence of
a complete measure space, absolute measurability turns into measurability.

Lemma 15. Suppose X, Y and Z are metric spaces and f: X — Y, and
g:Y — Z. Then

(1) f is absolutely measurable if and only if f is AM(X)-AM (Y) measur-
able.
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(2) If f and g are absolutely measurable, then go f : X — Z is absolutely
measurable.
(3) For every Borel set E CY, f~Y(E) is absolutely measurable.
(4) If (A, 2, N) is a complete finite measure space and ¢ : A — X is Borel
measurable, then
(a) ¢ is X-AM (X)) measurable, and,
(b) If f is absolutely measurable, then fop: X — 'Y is measurable.

Definition 5. If f: X — Y and g: f(X) — X satisfy, for every y € f(X),
W) =y,

then g is called a cross-section for f.

The following Theorem is from Theorem 3.4.3 in [1] and is the key to
dealing with direct integrals.

Theorem 5. Suppose X is a Borel subset of a complete separable metric space,
and 'Y is a separable metric space. If f : X — Y is a continuous function,
then

(1) f(X) is an absolutely measurable subset of Y, and
(2) f has an absolutely measurable cross-section g : f(X) — X.

Here is a simple result proved using measurable cross-section.

Lemma 16. Suppose n is a positive integer and M, ((C)+ is the set of n X n
matrices A such that A > 0. Let U,, be the set of unitary n X n matrices
and let Dy, be the set of all diagonal n x n matrices in M, ((C)Jr of the form

diag (s;, .. 51> with s1 > s2 > -+ > s1 > 0. Then there is an absolutely
measurable function u : M, (C)+ — U, such that, for every A € M, ((C)+,
u(A)" Au(A) € D,

WO
u(4)° Au(A) = ala)
sa(3)
Hence, for every T € M, (C),
w)
w(ITI)* [T]u (7)) = o7 (a)
st (%)

Proof. Let X =
{(A.04): A €M, (C)F U € Up, U3 AU = ding (54 (L) .54 (2)) ],

which is a subset of Ml,, (C)* xU,,. For every (A, U4, ) € X, and (Ay,Uys, ) —
(A,Uy), we have Ay — A,Us, — Uy, Thus

[UAAUA — Ua, AxUa, || — 0,
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We also know that + 3 s4 (%) = KF;(A)forall1 <i<nandsa (L) =
j=1

KF (A) <||A]|. We can get sa, (%) - sa (L) for all 1 <4 < n. Thus

n

* . 1 ANy, 1
UAAA)\UAA = diag (SAA (ﬁ) ooy SAy (%)) M> diag (SA (E) S...,SA (%))

Therefore U3 AU, = diag (sa (2),...,54 (%)), and X is a closed sub-
set of a M, ((C)Jr X Uy, which is a complete separable metric space.
Define 7 : X — M, (C)+ and my : X — U, by
m(A,U) = A, m(AU)="U.
It is easy to see that 7 (X) = M, (C)".
Since we know for every A € M, (C)", there exists a unitary U, such

that
. . 1 n
U,AU,4 = diag (sA (n> See. .84 (n)) .

Thus by Theorem 5, there exists an absolutely measurable function
g: M, (C)" — X such that 7109 = id on M, (C)™, for every A € M, (C)*,
g(A) = (A,U4). Then we define u = mp0g : M, (C)" — U,,, it is absolutely
measurable.

Therefore, for every A € M, (C),

w(A) = Uys and u(A)" Au(A) = diag (SA (i) ey Sa (”)) € D,.

Hence, for every T € M, (C),
u(|T))" T u(T]) =

O

2.3.3. Direct integrals. Suppose €2 C R is compact, p is a probability Borel
measure, H is a separable Hilbert space. Define fée Hdp = L? (u, H) to be
the set of all measurable functions f : Q@ — H such that

113 2 [ 17 @IP i) < o

We define an inner product (-,-) on L? (u, H) by

(f by = /S (f (@), h (@) djs (@)

In this way L? (u, H) is a Hilbert space.

We define L*™ (u, B(H)) to be the set of all bounded functions ¢ :
) — B(H) that are measurable with respect to the weak operator topol-
ogy (WOT) on B (H). Although the weak operator topology, strong operator
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topology (SOT) and x-strong operator topology (+-SOT) on B (H) are differ-
ent, the Borel sets with respect to these topologies are all the same. Suppose
the map w — T, is in L*° (u, B (H)). We define an operator T = féB T,du (w)
by
(Tf) (W) =T, (f (W)

If p € L™ (u,B(H)) and T,, = ¢ (w) for w € Q, we also use the nota-
tion M, to denote fga T,du (w). In this way we can view L* (u, B (H)) C
B (L*(p, H)) , and we can write L™ (u, B (H)) = féB B(H)du(w).

We have that L (41) can be viewed as the subalgebra D of L™ (u, B (H))

of all functions ¢ such that ¢ (w) € C-1 ae. (u), that is, by identifying
h € L () with the function w — h (w) 1. We denote D by

®
D:/Q C-ldu (w).

We have D' = L™ (u, B (H)) and L™ (u, B (H))' = D, therefore D =
Z(L> (p, B (H))).
Suppose, for each w € Q, R, C B(H) is a von Neumann algebra. We

say that the family {Rw}weﬂ is a measurable family if there is a countable
set {¢1,p2,...} C L (u, B(H)) such that

ball (Ry,) = {1 (@), 02 (w),...} T ae. (u).

It is known that if {R,}, ., is a measurable family, then so is {R],} -
Moreover, if {R[,} .o is a measurable family, then there is a sequence
{¢1,w27 .. } C L*® ([1,, B (H)) such that

ball (RL) = {1 (w) 12 (w),...} 9T ae. (u).
If {Ru},cq is a measurable family, then we define the direct integral

ffée Rodp (w) to be the set of all T = ff; Todu (w) € L™ (u, B(H)) such
that

T, € R, ae. (u).

It is known [16] that a von Neumann algebra R C B (L? (u, H)) can be
written as

R= /j Rudp (@)

for a measurable family {R.} ., if and only if

D

&
D:/Q C‘ld/j(w)CRC\/ﬂ B(H)dp(w) =D,

equivalently,
DCZ(R).

In particular, since Z (R) = Z (R’) = RNR’ for every von Neumann algebra
R, we see that R can be decomposed as a direct integral if and only if R’
can be decomposed as a direct integral.
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Suppose 1 < n < oo = Ng. We define £2 to be the space of square
summable sequences with the inner product (z,y) = > z;y;, where z,y €
H and H is a Hilbert space with dimension n.

Lemma 17. Suppose A is an abelian von Neumann algebra on a separable
Hilbert space H. Then there are compact subsets 2, C R for 1 < n < oo
and a Borel measure pu,, on §, such that p, (,) € {0,1} and A is unitarily

equivalent to S°_ L (ju,,C - 1) acting on 3.0~ L? (1n, 02).

Suppose R is a von Neumann algebra acting on a separable Hilbert
space H. Then the center Z (R) of R is an abelian von Neumann algebra on
H. From Lemma 17 we can write

D

H= Y L*(u.03)

1<n<oc
and
P
ZMR)= > L®(ua,C-1).
1<n<o0
Since R commutes with Z (R), we can write
@
R = jg: 72n7
1<n<oo
where R,, C B (L2 (,un,éi)). It is clear, for 1 < n < oo, that
which implies
RnCZ (Rn)l =L> (,un,(C- 1)/ =L (,Un;B (égz)) :

Hence, for each n, 1 < n < oo, there is a measurable family {R,, (w)}
such that

we,
@

R, = R (W) dp, (W) .
Q,

We therefore have

® €3]
R=Y1 o, Re@) i @),

This is called the central decomposition of R.
The following Lemma is a well-known result [16].

Lemma 18. In the central decomposition of R, almost every R,, (w) is a factor
von Neumann algebra.

The following lemma can be obtained from [5, Chapter 3 of Part II]; we
include a short proof.
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Lemma 19. Suppose A, is a masa of a R, for 1 < n < oo, then there is a

measurable family { A, (W)}, cq, such that

An—/ Ay (W) dpn, (W)

where A, (w) is a masa in R, (w).

Proof. Suppose
W= (B(I2)) x Ax BxC x ExNxN,

where A =B =C = Hlball (B(12)) and E = {z € 12 : ||lz|| =1}. Then W
=
is a complete separable metric space with product topology.
Define X, 1, to be the set of elements (T, {A;};—, ,{Bi}ic, . {Ci}tic, .
e,m, k) in W satisfying

TA;, = AT, TB;, = BT, |(TC,, — C,,T) €| > , for every ¢ € N.

Then X, 1, is a closed subset of WW. We define X’ = Um,k:le,k’ then X is a
Borel subset of W.

Let ma 34 : X =A x B x C be the projection map. Then mg 34 (X)
consists of elements ({A;};~;,{Bi}io;.{Ci};=;) so that there exists T €
ball (B (lfl)) such that

TE{Al,Ag,...}/ﬂ{Bl,BQ,...}I andTgé{Cl,Cg,...}/.

Suppose there are sequences {f1, fa,...}, {¢1,%2,...} and {¢1,92,...} con-
tained in L (i, B (12)) such that

balld, (w) = {fi W), fo (w),...} %",
ballR,, (w) = {t1 (W), ¥z (@),...} 7,
ballA,, (w) = {g1 (W), g2 (W), ...} 57"

By Theorem 5, we know there exists an absolutely measurable function
T : w34 (X) — X such that mg 3407 is the identity function on ma 34 (X).
Define F : Q,, — A x B x C by

F(w) ={fi (@)}Z) x {¢i (@)} x {gi (@)}Zy -
Let
G=F"1 (7T2,3,4 (X)) =
{w : there exists T € B (12) with T (w) € A, (w) MRy, (w),T (W) ¢ Ay, (w)} .

We know from Lemma 15 and the completeness of (€2,,, i) that G is measur-
able. We need to prove i, (G°) = 0. Suppose not, and let m : X —B (I2) be
the projection map (into the first coordinate). Then, by Lemma 15, w10 Yo F|g
is a measurable function from G to B (I2). We define T' by

(mmoYoF|g)(w) ifwed
T@Oz{o T tege
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Thus

= [Cr@dn@s [ o),

G Q. \G

then T € A, NR,, and T ¢ A,, which contradicts to the assumption that
A, is a masa. Therefore p, (G) = 0 and

A, /A ) djin (),

A, (w) is a masa a.e.(u,,). This completes the proof. O

2.3.4. Multiplicities for type I,, factors. A type I factor von Neumann al-
gebra is isomorphic to B (H) for some Hilbert space H. However, if m is a
cardinal, we can let H(™ denote a direct sum of m copies of H and, for each
T € B(H) write T™ be a direct sum of m copies of T acting on H("™),
and let B (H)™ = {T(™ :T € B(H)}. Clearly, B (H)'"™ is isomorphic to
B (H). The number m is called the multiplicity of the factor B (H)(m) and
it is the minimal rank of a nonzero projection in B (H )(m). If we consider a
type I von Neumann algebra acting on a separable Hilbert space as a direct
integral of factors, we can change the factors so that they all have multi-
plicity 1. This gives another von Neumann algebra that is isomorphic to the
original one. Since we are interested in finite von Neumann algebras, the type
I, algebras, with 1 < n < oo, can be written as direct integrals of copies of
M, (C), i.e., féBn M, (C) dpy, (w) acting on L? (1, 2) for some probability
space (2, 1) where u,, is a Borel measure on a compact subset §2,, of R. In
this case, féBn M, (C) dpy, (w) is naturally isomorphic to M, (L (u,,)) acting

on L? (,un)("). When we write the type I,, part of a von Neumann algebra
this way, we have an isomorphic copy, but maybe not a unitarily equivalent
copy of the algebra, since we changed all of the multiplicities to be 1. Note

that the center Z (féa M, (C) dp, (w ) fQ C-1py, (w) acts on L? (p,, £2).
For example, if a von Neumann algebra is [o o, M2 (C)dm (w) @ [ J?Z

M, (C)® dns (w), then it is isomorphic to féa M, (C) du (w) where Q is the
disjoint union of Fy and Es and p(A) =n1 (AN Ey) +n2 (AN E3).

Thus in the central decomposition, we can assume, for each positive
integer n (i.e., 1 <n < o0), that

R */ Ry (w) dpn (w / M, (C) dpn (w),
©®
R,) = / C- 1du,.
Qn

For 1 < n < oo we have that the map is a normal faithful tracial state on
R

and

) Birkhauser



476 H. Fan and D. Hadwin

2.3.5. II; von Neumann algebras. Once we have changed the multiplicities
of the type I, parts of R, in the decomposition

oo—/ Roo (W) dptos (W)

we have
®
Z(Re)= [ €l (o).

where each Roo (w) must be an infinite dimensional finite factor; this means
it must be a type II; factor, and we can assume it acts on ¢2. In this case
making the multiplicity infinite can make things more convenient.

We let R = {TC) =T@T@®--: T € R }. Clearly, R is iso-
morphic to R, and we have

D
RE) = / RE) () dito ()

acting on L2 (uoo, (62)(00)). The nice thing about R (w) is that every

normal state ¢ on R (w) can be written as

© (T(O")) = <T(°°)e, e>
2

for some unit vector e € (€2)(°°). Since (62)(00) is isomorphic to ¢2 = (2

we can, by replacing Ro, with R(OZO ), assume that every normal state ¢ on

Roo (W) can be written as
@(T) = (Te,e)
for some unit vector e. In particular, since R, (w) is a II; factor, there is

a unique normal tracial state 7o On Reo (w). Hence there is a unit vector
e (w) € £2, such that, for every T € R (w),

Toow (T) = (Te(w) e (w)) .
Using the measurable cross-section theorem, Theorem 5, we can choose

e (w) so that the map e : Qo — £2 is absolutely measurable.

Lemma 20. Suppose R is a type 117 von Neumann algebra with

&

Roo = Roo (W) dpioo (W) .
Qoo

Then there exists a map e € L? (jioo, (2,) with |le (w) e., such that

| =
for every T = [ Totitn () € Rons (Tt () €(0) = 7 (), wher
Toow 18 the unique normal tracial state on R (w) .

Proof. Suppose
W =ball (B (13,)) x Z_l;Ilball (B (%)) x E,

where E = {z € IZ, : [|z|| = 1}. Then W is a complete separable metric space
with product topology.
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Let X be the set of elements (T',{A;};-, ,e) in W satisfying
TA;, = AT, (A;Ajee) = (A;Aze,e) for every i,j € N.
It is easy to verify that X is closed.
Let mo : X Hi:ﬁlball (B (lgo)), w3 : X —F be the projection maps. Then

T (X) is the set of elements {A;};7, so that there exists T € ball (B (1))
such that

T € {A1,As,...} N{B1,By,...} and (A;Aje,e) = (A;Aje,e) for all i,j € N.
There is sequence {t1,12,...} contained in L™ (po0, B (I2,)) such that
ballR o (W) = {¢1 (W), 2 (w), ...} %"

By Theorem 5, we know there exists an absolutely measurable function
T :my (X) — X such that mo o T is the identity function on o (X).
Define F : Q, — 152, ball (B (12,)) by

F(w)={ti ()},
which is measurable, thus, by Lemma 15, w30 o F' is a measurable function
from Q. to [%. We define e by

e(w)=(mgoYoF)(w).

Thus e is a measurable function with e = fﬁm e(w)dis (w), that is e €
L? (pioo, £2,) and

lelly = [ le @) dhoe (0) = [ Tdpoc (@) = poe () = 1.

oo Qoo
O
The map
Too : Reo — C
defined by
e () = (Teve) = [ (Tue@) @) i () = | s (1) it )

is a faithful normal trace on Ro,. Since 7, is a faithful normal trace on
R (w) and the trace on a type Il factor is unique, it follows that 7o, is
the usual trace.

2.3.6. The center-valued trace. Suppose R is an arbitrary finite von Neu-
mann algebra, possibly not acting on a separable Hilbert space. There is (see
[23]) a unique map P : R — Z (R) satisfying

(1) ®x is linear and completely positive,

(2) o= (1) =1,

(3) Pr (AB) = & (BA) for all A, B € R,

(4) P is weak*-weak™ continuous, and

(5) PR (ATB) = APg (T)B forall T € R and all A, B € Z(R).
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The map P is called the center-valued trace on R.
When R acts on a separable Hilbert space, we have

®
R= Zlgngoo Ra,

we have

and we have

P Z@ P
R = 1<n<oo R

We can write each ®, explicitly in terms of the central decomposition, i.e.,

52}
‘I)Rn (T) = /S Tn (Tw) . ldun (w)

when 1 < n < oo, and
®
Pr (T) = / Tw (T) - ldpieo (W) .
Qoo

It is clear that these maps satisfy the defining properties (1)-(5) and the
uniqueness tells us that these formulas are correct.

2.3.7. Two simple relations. Suppose 1 < n < oco. There is a normal *-
isomorphism 7, : L (i) — Z (R,) defined by

&
(D)= [ £ 1dn @),
Recall p, : R,, — C is defined by

o (T) = / T (T) dpin (@)

n

The map f +— [ q, fdu, is a state on L> (u,,). The simple relation between
this state and the x-isomorphism ~, and the state p,, is given by

(pn © 'Yn) (f) = fdpn

Q,

for every f € L™ (pun).
Another simple relationship between p,, and @, is

Pn = pnoPr,.
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2.3.8. Putting things together. We let 2 be the disjoint union of {2, : 1 < n
< oo}, which can be represented as a Borel subset of R. We define a proba-
bility Borel measure p on 2 by

1 — 1
M(E) = 5//600 (Eono)‘i'ZWMn (Ean)
n=1

Then the von Neumann algebra L (1) can be written as

L (1) = L () @32, L™ ()
We define an isomorphism
7L (p) = Z(R),
by
V(e @ 1D f2@ ) =Yoo (foo) @M (f1) Y2 (f2) -

We can define a faithful normal tracial state p: R — C by

@ 1 1

1<n<oo
We have

Lp=podg,
2. (poy)(f) = fQ fdu for every f € L (u), and, as we stated above,

=[S o Joy, 7 (T (@) At ()] & [ 7 (T (@) - 1dacs ().

3. MASAS in finite von Neumann algebras

A masa in a C*-algebra is a maximal abelian selfadjoint subalgebra. In
B (H) where H is a separable infinite-dimensional Hilbert space there are
many different masas. For example, the set of all diagonal operators with re-
spect to some fixed orthonormal basis is a discrete masa. On the other hand
L% [0,1] = L* (s ) acting as multiplications on L? [0, 1] with Lebesgue mea-
sure is also a masa that is not isomorphic to the diagonal masa, since it is
diffuse (i.e., has no minimal nonzero projections). It was show by A. Sinclair
and R. Smith [22] that in a finite von Neumann algebra acting on a separa-
ble Hilbert space all masas are isomorphic. We will prove that all masas are
isomorphic in a very special way.

Theorem 6. Suppose A is a masa in a finite von Neumann algebra R. Then
there is an tracial embedding w4 : L (\) — A such that the following dia-
gram commutes

L*N™ A
In l P
L () - Z(R)
Moreover, if B is another masa in R, then B is isomorphic to A. In fact, w4
and mg are approrimately equivalent in R.
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We first need to prove this theorem when R is a finite factor. When R
is a type I,, factor, i.e., R = M, (C), the result is obvious.

Lemma 21. Suppose A C M, (C) is a masa. Then there exists a unitary
UeU (M, (C)) such that UAU* = D,,, the n x n complex diagonal matrices.
Hence there is a *-isomorphism w4 : L™ (8,) — A such that, for every
f € L™ (6,), which is isometrically isomorphic to C™.

T (A () = /J fd,.

When R is a type I1; factor the result is well-known [22].

Lemma 22. Suppose M is a type I1; factor von Neumann algebra acting on
a separable Hilbert space with a (unique) faithful normal tracial state T, and
suppose A is a masa in M. Then there is an isomorphism w4 : L™ (05) — A
such that, for every f € L (00),

T(ra(f)) = ; f(t) doos (1) .

Corollary 5. Suppose A is an abelian von Neumann algebra on a separable
Hilbert space with a faithful (tracial) state T. The following are equivalent:

(1) There is a tracial embedding 7 : L*° (doo) — A such that, for every
feL*®(0s),

1
r(x (f) = / £ () oo (7).

(2) Thereis a T € A such that
(a) W*(T)=A
(b)y T=T*
(c) 7(TT) = n%rl forn e N
Moreover, if (2) holds, then 0 < T < 1, then the map
m(f) = f(T)
is the required map in (1) .
Proof. (1) = (2). Suppose 7 exists as in (1). Define f (¢) = ¢ in L (doo) and
let T=7(f). Then 0 <T <1,
A =7 (L (b)) = (W" (f)) = W7 (m (f)) = W™ (T),
and, for each n € N|
1

T(T") =7 (7 (fM)) :/0 t"dt = meER
(2) = (1). Define the state p : L (0o) — C by
p(1)= [ 10 ).

Letting f € L™ (d) be as above, we have 7 (T™) = p (f") = %—H for each
n € N. It follows from Lemma 1 in [6] that there is a normal (i.e., weak*-weak*
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continuous) #-isomorphism 7 : L™ (d) — A such that 7 (f) = T and such
that Tom = p. It is clear that, for any polynomial p (¢), 7 (p) = p (T'). Suppose
f € L (0s0). By changing f on a set of measure 0, we can assume that f is
Borel measurable. Then there is a sequence
{pn} of polynomials such that p,, — f weak*. Thus

f(T) = (weak®) lim p, (T) = (weak®) lim 7 (po) = (f).
O

From this Lemma, we can see that 7 (f) = f (T) and 7 (T") =7 (74 (™))
= fol 2"d0ne = n%rl forn =1,2,--- . Let Cg = Q + ¢Q denote the set of all
complex numbers z such that Re(z) and Im (z) are rational. Since the set
Cglz] of all polynomials with coefficients in Cg is countable, we can write

(CQ[’Z] = {plap27 .. } .
Lemma 23. Suppose A= A* € B(H). It follows that
W (4) = {p (4),p2 (4),--- )7V

Lemma 24. Suppose As is a masa of Re. Then there exists an opera-
tor T = féam Todpioo (w) such that W* (T,,) = A (W), and 7,00 (T1) =
(Tre(w),e(w)) = %ﬂ forn>1, A =W*(T).

Proof. Let
Y =B (i%) x Hball (B (1Z,)) x I ball (B (1%,)) x ILball (B (I%)) x E,

where I/ = {x el ||z|| = 1}. It is clear that ) is a complete separable
metric space with product topology. Let X be the set of tuples

(SAA}Z ABZ ACHD  2) €Y
satisfying

n +

From Lemma 23, we know there exists a sequence {p,} of polynomials such
that W* (S) = W* (p1 (T) ,p2 (T'),...). Define W i, ,, to be the subset of X
satisfying

S =5"d(A;,p,(9)) > % for n > 1.
Let Wik = Mooy Wikn and W = (22 Neey Wik, then W is a subset
of X satisfying
A g W (p1 (T),p2(T),---), fori>1.
Then X\W = ;21 Nie; X\Wi i is a subset of X satisfying
W* (A1, Az, ) CW* (01 (1) ,p2 (T) -+ )

which is a G set. By [3], there exists an equivalent metric on X\W that
makes X\W a complete separable metric space. If 7534 is the projection
map into the second, third, fourth coordinates, then there exists an absolute
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measurable function Y : 7y 3.4 (X) — X such that mo 34 o Y is the identity
on 72,3,4 (X) .

Suppose there are sequences {f1, fa, -}, {¥1,%2,--}, {¢1,02, -}
contained in L (poo, B (lgo)) such that, for almost every w,

ballAdss (w) = {f1 (W), fo (w),...} 597,
ballR oo () = {11 (W), 92 (@) ...} ",

(w)
ballRoo (w) = {1 (w) ;2 (w )7~-~} o
(

Define F : Qo — 1132 ball (B (12)) x 132, ball (B (1%)) x 1132, ball (B (1%))
by

F(w) = {fi W)} x {vs W)}y x {5 (W)} -
Clearly F' is measurable. Thus, by Lemma 15, if m; is the projection from
X\W into its first coordinate, then 7' = 71 0 T o F' : w +—— T, is the de-
sired measurable function from Q to B (%) such that ball (A (w)) = W*
(To) O

Lemma 25. Suppose A,, is a masa of R,, for every 1 < n < co. Then there is
an isomorphism w4, : L™ (Qp X Jp, pin, X 8p) — Ay fQ w) dpiy (w).

Proof. Suppose 1 < n < co. We know that R, is isomorphic to an M, (C)
dpiy, (W), so if A, is a masa in R,,, then A, = féen Ay, (w) dppy, (w) where each
A, (w) is a masa in M, (C). There is a unitary operator U, € M, (C) such
that A, (w) = U2D,, (C)U,. An easy measurable cross-section proof allows

us to choose the U,’s measurably. However, D,, is isomorphic to L (J;,,d,) .
Define

A, o L7 (Qn X Jp) — : L™ (6) dptn, (w)
Qn
by
o [fw)
T4, (f) = /Q Us Usdpin () .
' fw3)

Now suppose n = oo. We choose {T,,} as in Lemma 24, and we define

7"'.Aoc / fw dMOO ( ) ’
where f,, (t) = f (w,1). O

Suppose now that R is a finite von Neumann algebra acting on a sepa-
rable Hilbert space H,
R=R1PR2® -] B R

For 1 <n < oo, R, is a type I,, von Neumann algebra acting on H,,, R is
a type Il; von Neumann algebra acting on H,

H=H, ®Hs @] ® Ho
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If A is a masa in R, then, we can write

A=A A -] 0 A,
where, for 1 < n < oo, A, is a masa in R,,. Clearly, since A,, is a masa in
R, we know that D, = Z(R,) C A, C R, C L*® (un, B(H,)). It follows
from Lemma 19 that there is a measurable family {A,, (w): w € Q,} of von
Neumann algebras such that

An—/ A (W) dpg, (W) .

If 1 <n < oo, then almost every An (w) must be a masa in M, (C). If n = oo
then almost every A,, (w) must be a masa in the IT; factor R (w). Since
throwing away a set of measure 0 from (2, doesn’t change anything, we can
assume that, when 1 < n < co every A, (w) is a masa in M, (C), and when
n = 00, every A (w) is a masa in R (w).

If 1 <n < oo, then each A, (w) is isomorphic to L (d,,) (see Lemmas
21 and 22). And fQ (w) dpy, (w) is isomorphic to fé’i L>(6,,) dpn, (w),
which is isomorphic to L"o (Qn, X T, i, X O, ) The isomorphism sends a func-
tion f(w,t) € L (Qy X Jp, i X 0p) o fQ fuo () dpy (w), where f, (1) =
fw,t).

For each n, 1 < n < oo, we define A,, = Q,, x J, and we define \,, =
tn X 0. We let A denote the disjoint union of the A,,’s for 1 < n < oo, and
we can choose A to be a Borel subset of R, and we define a probability Borel
measure A on A by

1 <1
n=1

We then have
LN =L Meo)® II L*(\,).

1<n<oo

For each n, 1 < n < oo, there is a mapping
M+ L2 (An) = L% (i X 0n) — L™ (pn)

/fwtd6 t).
We define 7 : L (A\) — L™ (u) by
N(f)=nfa@fi® 28 ) =1 (foo) ®m (f1) © 2 (f2) &

Lemma 26. For1 <n < oo, if A, is a masa in R, then there exists a tracial
embedding w4, : L (N\,) = L™ (un X 8,) — Ay such that the following
diagram commutes

defined by

L2 (A) ™ Ay
J/ 77n l (I)n
L% (pn) 2 Z(Ra)

¢, 0 TA, = YnOTn-
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D
- / £ (@) Idpn (@),
Qp

e () (@,1) = / F(w,t) b, (£) and,

o ([ @ 7@ ) = [ @ o (T () I ().

Moreover, if B, is a masa in R,, and there is a tracial embedding 7
L> (\,) — B, such that @, o, =y, 0Ny, then,
if 1 <n < oo, then there exists a unitary U € U (R,,) such that

Una, (L= ) U" = s, (L% (An))

if n = oo, then ma, is approximately equivalent to mg, in Ry,.

where

n -

Proof. For 1 <n < oo, we have

k=1 k=1 n
and
&) f(‘”’%)
B, (4, (f)) = Dn / v Usdiin (@)
Qp
f(w, %)
o fw,3)
:/Q oo U, | din ()
! fw, )

/g Zf(w o)t o).

Thus the diagram commutes. For n = oo, by Lemma 24, we know there
exists an operator T = féio Tdiso (w) such that T, generates Ao (w) in
weak operator topology with 0 < T,, < 1 and 7, (TJ)) = W%H for n >
1. The map 74 : L™ (6oo) — W*( ) = A is defined by ma_ (f) =

fQ Jio (T) dptoo (W) - Thus Yoo oMo (f [IJ (w,t) db,, ()}Iand@ooo
A (f) (W) = Twoo (fu (T)) I = [fJ (w,t) doy, (t )} I. Therefore the dia-
gram commutes. O

Combining all of these results we obtain Theorem 6.
And we also have the following corollary.

Corollary 6. If A and B are masas in R, then the tracial embeddings wa,
are approximately unitarily equivalent in R.

Proof. If A and B are masas in R, then there are tracial embeddings 74 and
7w as in Theorem 6. Thus ® o 74 = ¢ o m. By Theorem 4, we have 74 and
mp are approximately unitarily equivalent in R. 0
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4. Measure-preserving transformations

4.1. Basic facts

A Borel measurable map o : [0,1] — [0, 1] is measure-preserving if and only
if, for every Borel set F C [0, 1],

boo (071 (E)) =65 (E).
We say that o : [0,1] — [0, 1] is an invertible measure-preserving map if there
are measure-preserving measurable maps o1, 03 : [0, 1] — [0, 1] such that
(coo1)(x) =z and (09 00) (z) =z, almost everywhere (ds) .

In this case, let E = {y € J:0001(y) #yorozoo(y)#y} and let S
be the semigroup generated by o,01,02,id| ). Then S is countable, thus

denoted by S = {7,, : n € N}. Suppose F = ( UNEn (E)) U ( UN&\gl (E)) ,
ne ne

it follows that d (F') = 0. and o (F) = 01 (F) = 0 (F) = F. Therefore, on
Joo\F, the maps 0,01, 092 : Joo\F — Jx\F are bijective, also 0 ooy = g3 00.
Define o on J, by

= {70 VeI

Then &, ! are bijective, measurable, and & = o a.e.(0s ). We can change
o and 01,09 on sets of measure 0 so that o : Jo — J is bijective and
01 =09 =0} a.e.(dx). In the following sections, whenever we talk about
an invertible measure-preserving transformation o on J, we will mean a
bijective map o : Jo — Joo such that o and 0~! are measurable and measure-
preserving.

Let MP[0,1] =
{o|o :]0,1] — [0,1] is an invertible measurable preserving transformation} .

Clearly (MP[0,1],0) is a group.
Let V be all unitaries U in U (B (L?([0,1]))) with U (1) = 1, and for
all f,g € L>[0,1], U(fg) =U(f)U(g)-

Lemma 27. V is %*-SOT closed.

Proof. Suppose {U,} C V, and U, SOT U, u; SOT U+ 1t is easy to see

U*U =UU* =1 and U (1) = 1. And we know that U,, °2" U if and only if
p{f € L20,1] 5 |Uf ~ US|} — 0} = L2[0,1].

Thus there exists a subsequence {U,, } such that for all f,g € L*>[0,1],

Ufg = limgp—oUn, (fg) = limgooo (Un,f)(Un.,g) = UfUg, thus
UeV. O

Corollary 7. V is a complete separable, metric space in the x-SOT.

Proof. Since V is a xSOT closed subset of ¢ (B(L?[0,1])) and
u (B (L2 [0, 1])) is a complete separable metric space. It follows that V is
a complete separable metric space. O
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Lemma 28. There exists a group isomorphism o — U, from MP [0, 1] onto
V.

Proof. If o € MP[0,1], define U, : L?[0,1] — L?*[0,1] by U,f = foo !
Since, for every f € L?[0,1],

2 0 o—1)2 _ 2, -1 _ 2 — 2
1, £12 = /Y (Foo ) don. /Y P oo tdss /Y P dowe = 1112,

U, is an isometry. Since U, -1 = U, !, U, is unitary. Also U, (fg) = (fg)oo =
(foo)(goo)= (Uyf)(Usg) when f,g € L*>[0,1]. Thus U, € V.

To prove that the map ¢ — U, is onto, we suppose U € V. Define z €
L?[0,1] by z (t) = t, and define v = U (z). We will show that v € MP|0, 1].
Then U (z™) =™ for all n > 1. Thus

.

2%71

) 1/211,—1
Il = limm |1y ]

— lim {HU&"”

=l

. 1/277,71
) =

Also if v = u + iv, then
4 / Vb, = / Iy = 12 620 = Il + 1712 — 2Re (7, 7)

2 2
=20l 222 1) = 2ol -2 [ 25 =

Thus v = 7. Since

1 1 1
/ Y'ddso = / 2" d0oo =
0 0 n+1

for each n > 1. It follows from Corollary 5, using 7 (f) = fol fdds, that
0 <~ < 1. And the map 7 (f) = f o~ is a weak*-continuous automorphism
on L ([0, 1]) such that, for every f € L*°[0,1],

/Ofd5oo=T /f07d5

1
doo (Y7 (B)) = / XE © Vb = 650 (E) .
0

Hence v is a measure-preserving transformation on [0, 1]. Furthermore, U, f =
f oy is an isometry on L? ([0,1]) and equals U on the dense subset of poly-
nomials. Thus U = U,. Since U, is unitary, v € MP [0, 1].

Since V is closed in the x-strong operator topology (¥-SOT), and the
closed unit ball of B (L2 [0, 1]) is a *-SOT complete metric space, we know
that MP [0, 1] is a complete separable metric space with the topology ~,, — =
if and only if U,, — U, in the »-SOT. On MP|0, 1] this topology is called
the weak topology. [14] The metric for the unit ball of B (L?[0,1]) is rather
complicated.

For MP [0, 1] we have a simpler metric. O

Thus
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Lemma 29. MP[0,1] is a complete separable metric space with the metric d
on MP [0, 1] defined by

d(vi,72) = llm =l + ||t — 72_1”2

Proof. Suppose d(7yy,,r) — 0, then |7, — 7|, — 0 and H’y,jl —W_IHQ — 0.
Thus

H'yfi — 'kaQ — 0 and H(%jl)k — (’y‘l)kHQ — 0 for every k > 0. Thus
|U,, 2% = U,a* |, — 0 which implies U,, — U in SOT and U = U 1 —

U,-1 = U} in SOT. The converse is obvious. To prove completeness, a similar

argument to the one above shows that if {,} is d-Cauchy, then {U,, } is %
SOT Cauchy, so there is a v € MP[0,1] such that U,, — U, in the *-SOT.
Hence ~,, — ~ in d. O

We now turn to our measure space (A, ). We want to describe a sub-
group G (R) of MP (A, ).

Definition 6. Suppose o € MP (A, \,). Then o € G, (R) if and only if, for
every measurable E C Q,,,

o(Ex Jy) CExJy, ae.,
ie.,

A (0 (Ex Jp)\(E x Jy,))=0.
Since it is known that
o ((W\E) x J,) C (Q\E) X Jp, a.e.,

it follows that

o(E x J,)=FE x Jy, ae.
This implies that 0~ € G,, (R). Clearly, G,, (R) is a subgroup of MIP (A,,,v,,).
Definition 7. We define G (R) to be all 0 € MIP (A, \) such that, for 1 <n <
00, 0 (Ap) = A, and oy, € G, (R). We see that we can view

GOR) =, L Gn(R),

as a product space.
We can express the following lemma as:

® ®
GR)= > / MP (J,,, 6,) dpin (w) C MIP (A, N).

1<n<oo

In other words, every element of G (R) is a direct integral of invertible mea-
sure preserving transformations.

Lemma 30. Suppose 0 € G,,, 1 <n < oo. Then there is a measurable family
{o,:w e Q,} in MP (J,,d,) such that, for every f € L™= (A,,)

(foo)(wt)=f(w0u(t).
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We write this as

o= /@ owdiy (W) .

QTL
Proof. We can view L? (A, A\p) = L? (Qn X Jp, fin, X 6,) as
53]
/ L2 (o, 6) dpin (o)
Qn
by identifying f € L% (Q,, x Jy, fin X 6,,) with

/Q @ fodpin (@),

where f,, (t) = f (w,t). Fubini’s theorem shows that this is an isomorphism,
ie.,

HfHﬁ:/Q ) |f<w,t>|2d<unx6n>=/Q i e do, (0 = [ AP din ).

Qn
Clearly, U (f) = f o o is a unitary operator on L? (A,,\,). Suppose E C Q,,
is measurable. Then

P 52}
Pe &, / xe (@) 1du (w) € / B (L (s 80)) dia (),

and the definition of =1 € G,, (R) implies that PrU = U Pg. Since the linear
span of {xg : E C Q,, F measurable} is dense in L™ (2, i), we see that
U is in the commutant of

L o)1 02 0 € 2% @)}

Qp

Thus there is a measurable family {U, : w € Q,} of unitary operators in
B (L*(Jy,6,)) such that

53]
U:/ U,dp (w) .
Qn
If h e L?(J,,6,), we define h € L2 (Qy, X Jo, fin X 6,) by
h(w,t) =h(t),

ie.,
A @
h = / hdpiy, (w) .
Qp

If h,k € L*>® (J,,0,), then U (ﬁfc) =U (fz) U (/2:), so, for almost every
w € Qy,,
U, (hk) = U, (h) U,, (k).

Since L? (J,,, 8,,) is separable, there is a countable set & whose closure in |||,
is

{he L= (Jn,6n) : [|P]l o <1}
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(which is ||-||,-closed). We now have for almost every w € €,, and h, k € &,
U, (hk) = U, (h) Us (k) :

We can change U, on a set of measure 0 and assume that the above relation
holds for all w € €,. Suppose h,g € L™ (J,,0,) and [|h],[lgll, < 1
and suppose w € €,. We can choose sequences {hy} and {gx} in & such
that ||hy — hll, — 0 and ||gr — g||; — 0. By replacing these sequences with
appropriate subsequences, we can assume that h (t) — h(t), (Uy,hi) (t) —
(Uuh) (t), ge(t) — g(t), (Uygr) (t) — (Uug)(t) a.e. (6,). It follows that
lhrgr — hgll, — 0. Thus

Ui (hg) (8) = Jim U (hge) (1) = Tim (Uhe) (2) (Vi) (1)
= (Uh) (1) (Uag) (1),

It follows from Lemma 28 that, for each w € Q,, there is a (unique) o, €
MP (J,,, 6,,) such that, for every h € L? (J,,,5,),

U,h=hoo,.

Our measurable cross-section theorems can be used to show that there is
a measurable choice of the o,’s, but the uniqueness implies that the map
w +— 0, is already measurable on €,,. O

4.2. Nonincreasing rearrangement functions, s-functions, and Ky Fan func-
tions

Theorem 7. Suppose f : A — [0,00) is measurable. Then there is ao € G (R)
such that, for 1 <n < oo, the mapping t — (f o o) (w,t) is nonincreasing on
In a.e. (fn).

Proof. Choose R > || f]|,. Suppose 1 <n < oco. Let
X ={(h,0) € L*® (§,) x MP(J,,) : 0 < h < R, h oo is nonincreasing on J,},

where {f:0< f < R} is given the [-[|, 4 -topology, MP (J,) is given the
weak topology, and L (§,,) x MP (J,,) is given the product topology. (Note
that if n < oo, MIP (J,,) corresponds to the set of n x n permutation matrices
and has the discrete topology.) Since ||-||, convergence implies subsequential
convergence almost everywhere, it follows that X is a complete separable
metric space. Since every measurable h has a nonincreasing rearrangement,
the map

m: X = {h:0<h<R}

is onto, so, by Lemma 5, there is an absolutely measurable cross-section
Yo Y — X for mp. Let n,, =m0, : Y — MP (J,,).
We now define s, : Q, — MP (J,) by

Sn (w) ="n (fw> € MP (Jn) .

It is clear from the construction that that f, o s, (w) is a nonincreasing
function of ¢, i.e., f(w,s, (w)(¢)) is a nonincreasing function of ¢ for each
w € Q.
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We define
on (W, t) = (w, s, (W) (1)) .

Then 0 = {0}, ,,<o, € G(R) has the desired properties. O

Note that the function ¢ is not necessarily unique, but the function foo
is unique. It is called the nonincreasing rearrangement function for f, and
we denote it by sy. If f and h are nonnegative measurable functions on A,
we say that f and h are G (R)-equivalent if and only if sy = sp, a.e. (A). This
holds if and only if there is a 01 € G (R) such that h = f o 0y.

For each w € 2, and t € J,,, sy (w,t) is call the t'" s-number of f at
w.

Definition 8. Suppose 7' € R. We can write T'= 37, - fQ w) dpy, (w).
We define s7 € L* (A, \) by

st (w,t) = sp(w) (t)
when 1 <n<oo,we, and t € J,.

Definition 9. Suppose f € L (A, \) and 0 < f. For each 1 < n < oo, and
each w € Q,,, we define f, € L™ (J,,J,) by

fu () = f(w,t).
We view

Z fwdﬂn w).

1<n<oo” n

We then define sy € L (A, ) by
splw,t) = s (1)

Lemma 31. Suppose 0 < f € L>® (A, \). Then there is a 0 € G such that,
f 00 = Sf.

Proof. For 1 < n < oo, the map w — f, from Q, to L (J,,d,) is measur-
able. For each w € ,, there is a o, € MP (J,, d,,) such that f, oo, = sy_.
Using measurable cross-sections, we can choose the o,,’s so that {o,, : w € Q}
is measurable. Thus 0 = >, ., - fé’i 0, € G and

(foa)(wt) = f(w,00,() = (fooou) () =5y, (1) =55 (w,t) .
O

Lemma 32. Suppose T € R, AisamasainR,|T| €A, mq: L>® (AN — A
is a tracial embedding as in Theorem 6, and f € L™ (A, \) satisfies ma (f) =
|T'|. Then sp = sy.

Proof. We can write
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where, for 1 <n < oo and w € ,,, A, is a masa in R,,. We can also write
= > [ i)
1<n<oco

where, for each w € Q,, 7, : L*® (J,,d,) — A, is a tracial embedding. If
w4 (f) =|T], then, for almost every w,

T (fo) = T (@) = [TL] -
Thus, for almost every w € ,
S, = ST,-
Thus s5 = st. O
Lemma 33. Suppose A, Az are masas in R, 0 < A € Ay, mg : L= (A M) —

Ay are the isomorphisms in Theorem 6 and f1, fo € L™ (A, \) satisfy . (fr) =
Ay for k =1,2. The following are equivalent:

(1) Sf1 = Sfas
(2) There is a vy € G(R) such that fo = f1 07,
(3) There is a sequence {U,} of unitary operators in R such that

[UnA1Uy; — As| — 0,
(4) For every unitarily invariant norm o on R
a(Ar) = a(Ay),
(5) For every rational number t € (0,1] KF; (A1) = KF; (Ag).

Proof. (1) = (2). There are 1,72 € G(R) such sy, = fr oy for k =1,2.
By (1) we have fo = fio (vi0v;").
(2) = (3). Define 73 : L (A, A) — Ay by
w3 (f) =ma (for).
Thus 73 (fi1) = As. By Theorem 4, m; ~, m3. Thus there is a net {U;} of
unitary operators in R such that

th HUjAlU; - A2H = hJHl HUj'/Tl (fl) U;—k — T3 (fl)” =0

Hence, for every n € N, there is a unitary U, such that
U, AU — As|| < 1/n.
4), (4) = (5) are trivial.
) = (1). We know that KF; (A1) = KF; (sy,) and KF} (sy,). Let
Ei={weQ:KF (sy)(w) # KFi (sp) (W)},

and let £ = UFy, then X (E) = 0. Therefore fo fi(x)dx = fo f2 (z) da for
every 0 < ¢t < 1. Thus f; (x) = fa (x) except on a countable set. Therefore
fi=faae (0s). O

Corollary 8. Suppose A1, As are masas in R, 0 < A € A, 7 : L™ (A, \) —
Ay, are the isomorphisms in Theorem 6 and f1, fo € L (A, \) satisfy 7 (fx)
=A for k=1,2. Then sy, = sy,.

(3) =

(
(5
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If T € R, we define
KF(T) = KF;(s(fr))

We need to define t** Ky Fan function K F; (T) solely in terms of T and
R. (See Lemma 12.)

Note that when n = oo, K F} is defined on L (J,,,d,) for all 0 < ¢ < 1.
For 1 < n < oo, KF; is only defined when ¢ € {%, ceey %} The next definition
extends this concept.

Definition 10. Suppose 1 < n < oo and 0 < t < 1. We choose an integer k,
1 <k < n such that

k—1 k
<t< —.
n n
We define K'F; on L™ (J,,d,) by
KF, = KF..

For fe L* (A)and 1 <n < oo and w € Q,, and t € J,, we define
KFE (f) (w,t) = KF; (s1.),
and we define, for T' € R,
KF,(T) = KF, (s7) .
We easily have that for S,7 € R
KF,(S+T)<KF,(S)+ KF, (T)

always holds.

4.3. G (R)-symmetric normalized Gauge norms on L (A, A)

Suppose (Y,v) is a probability space, and G is a subgroup of MP (Y,v). A
norm [ on L™ (Y, v) is called a G-symmetric normalized gauge norm if and
only if

(1) (1) =1

(2) B(f) = B(|f]) for every f € L= (Y,v),

(3) B(foo)=p(f) for every f € L™ (Y,v) and every o € G.

The examples that interest us here are for Y = A, v = A\, and G = G (R),

i.e., the G (R)-symmetric normalized gauge norms on L (A, )).

Suppose (3 is a G (R)-symmetric normalized gauge norm on L™ (A, )).
For every f € L> (A, \), we see that

B(f)=06(sf)-

) Birkhauser



Unitarily invariant norms 493

4.4. Approximate Ky Fan Lemma
If T € R, we define
KF(T) = KF (s (fr))

We can show that K F; satisfies the triangle inequality on R by describing
KF; (T) directly in terms of T. The Ky Fan Lemma is more complicated.
We will apply the Ky Fan Lemmas we have throughout the direct integral.
However, this is impossible to do directly as the next examples show.

Ezample 2. In C", if f = (1,0,...,0) and ¢ = (£,1,...,1), we have

KFx (f) > KFi (g) for 1 < k < n, But the number N of permutations

V5.5 IN for
N

Y fovi>yg

j=1
must be at least n since each f oy; is nonzero in exactly one coordinate.

Ezample 3. Suppose R = Ro = M (C) @ M, (C) and
and

Then there are no o1,...,0x € G(R) and ty,...,ty € [0,1] such that
N

Ztk (saoor) > sp.

k=1
This forces us to prove an approximate version of the Ky Fan Lemma
that works universally.

Theorem 8. Suppose m is a positive integer. Then, for 1 < n < oo and for
all0 < f,g <1in L= (Jy, ) with

KF, (f)> KF,(g) forallteJ,
there are {'yj 1< < mzm} C MP (J,,, ) such that

2m

2 1 s -
2 50 2 8
j=1

Proof. For 1 < n < o0, it follows from Lemma 2. For n = oo, it is proved in
Theorem 2. O

Corollary 9. For 1 < n < oo, if KF;(f) > KF;(g) for all t € J,, then
B(f) = B(g) for all symmetric gauge norms 3.

To prove the approximate Ky Fan Lemma, we need the following Lem-
mas.
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Lemma 34. Suppose m,n are positive integers. [ = (f1, -+, fn),h = (h1,

-y hy), where fi,..., fn and hq,... hy are integers with 1 < fiy1 < f; <
m,1 < hixg < hy < m.and Zle fi > Zle hi, for 1 < k < n. Then there
exists a positive integer N < m™ and Yis---, YN € Sy, such that

| X
NZfo%'Zh
i=1

Proof. Suppose S = { (}J:k ) 1<EkEL n}, and define an order on S by
k

<fJZ> > (gf) if f; > fj or, fi = f; and h; > h;.

J

Then § is a linearly ordered set.

We say S is trivial if for every ( T > €S, fx > hg. If S is trivial, we are done,

hi
so we may assume S is nontrivial. Denote Sp=8\ { <§k> e edL, - ,m}}
k
Define p(Sp) = max(fi), ¢(So) = max{fr, with hy > fi}, where

p(S80),q(So) € {f1, -+, fn}, we may assume p(So) = fp,q(So) = fg- Then
denote 1 (Sp) = p(So) — q(Sp). It is not hard to see that f, > h, > hy > fy,

so fp — fq = 2.
Let 7y, 4 be the permutation that permute f, with f, and leave all other f;’s

fixed,
define f() = (f1(1)7 B él)) = z(éo) [(hp = fo) f+ (fo — hp) f ©Vp,q, Where

o)
FO € N". Then denote $<1>_{(f;; >,1§k§n}, SV
k

(1)
=S\ { (?El) > }, we form linear convex combination of f;’s this way and
k

update f with fM ... £ until l(SéT)) < 1(8p). We can also see that
1(So) < m, and r < m, so we need at most m™ permutations to reduce
[ (Sp) for 1. Repeating this process, we need at most (mm2) permutations to
reduce Sy to a trivial set. Note that we can make the number of permutations

is exactly (mm2) !, some permutations are duplicate.

Therefore, there exists a positive integer N = (mm2> Lty o YN €S, such
that

L&
NZfO%Zh.
i=1
O

Lemma 35. Suppose m,n are positive integers, then there exists a positive
integer N < m™" such that for all f = (f1, fo, -5 fn) and h = (hy,..., hy)
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with 1> f1 2 o2 fo 20,120y 2 2 hy 20, and 357 f; 2 527
for all 1 < j <n, there exist y1,...,Yn € S, such that

1 & 2
N;fo,y—'_m*

Proof. For all 1 < i < n, if % < fi < % for some k£ € N, then define
ﬁ- = % and if % < h; < % for some k € N, then define h; = % Let
j‘v: (fl, ,fn) and h = (ﬁ1,~~~ ,En> It is easy to check that f; < fvz <
fi + L and max (hi — %,0) < hy < h; for all 1 < i < n. From Lemma 34,

m
we know there exists a positive integer N and 7;,--- ,vn € S, such that

Ly, (mf) 0 = (mﬁ) Therefore, £5°  foy;+ 2 > h. O
The following is the Approzimate Ky Fan Lemma.

Theorem 9. If f,g € L¥(A,N), m € N, m > 2, and 0 < f,g < 1 and
KF,(f) > KF;(g) a.e. (n) for each rational number t € (0,1], then there are
2 € G(R) such that

O1yeeny U(m!)’”5m

2

1 (mt)™” mm 1
I — — > q.
(m!)m5 mm? Zk:l foor+ m g

Thus, for every G (R)-symmetric normalized gauge norm 3 on L (A, \),

B(f)=8(9).
Proof. Suppose f,g € L (A, \). Since there are 01,09 € G (R) such that
sf = foor and s; = gooa, we can assume [ = sy and g = s5,. We

. T
know f, g can be viewed as f = Z?ﬁngoc fn= Z?ﬁngoo fQ frwdptn (w) and

g= Z?Sngoo fée Gn.wdpin, (w). Suppose m € N and m > 2. For 1 < n < oo,

m2
let X, be the set of tuples (F, G,01,00,- - ,Ummz) satisfying ﬁ Yo, Fo
o, + % > G, where 0 < f,g < 1. Then X is a closed subset of ball
m2
(L (Jn, 6n)) x ball (L™ (J,,,6,)) x T2, MP (A, M), which is a complete sep-
arable metric space with the ||-||, on ball(L*® (J,,,d,)). Then by Theorem
5 the projection onto ball(L* (J,,d,)) xball(L*> (J,, d,)) has an absolutely

measurable range ), and an absolutely measurable cross-section @ and we
let ¢ be the composition of projection onto the coordinate of o} with v for

1<k < (mmz)!. If 1 <n < oo, it follows from Lemma 35 and Theorem 2
that

(sfmsgw) € Vn

for almost all w € Q,,. We define, for 1 < k < (mmz)!, o (w) € MP (J,,,0,)
by

ok (W) = Vi (S5, Sq.) -
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This gives o1, ... T (mm2)1 € G (R) such that

2
(),

1 ! 1
S0 s k2,

If follows that, for any G (R)-symmetric normalized gauge norm 5 on L
(A, A) that
2
!

B(9) =8 (sy) < (1,2(’” )'6<sfoak>+ﬂ(1>

mm2). k=1 m

m

- (mlmz),z,ﬂ’ff Yo+t -pin+ L

Since m > 2 was arbitrary, it follows that 8 (g) < 5 (f)- O

5. Main theorem

We are finally ready to prove our main theorem.

Theorem 10. Suppose R is a finite von Neumann algebra acting on a sep-
arable Hilbert space H. Let the probability space (A,%,\) and the group
G < MP (A, X, )\) be as above. Then there is a natural 1-1 correspondence
between the normalized unitarily invariant norms on R and the normalized
G-symmetric gauge norms on L (A, ).

Proof. Suppose « is a normalized unitarily invariant norm on R, choose any
masa A in R, and choose a tracial embedding w4 : L (A, ) — A as in
Theorem 6. Define 3, : L> (A\) — R by

o (f) = a(ma(£)),

If B is another masa in R and mg : L>® (A, \) — B is as in Theorem 6, we
see from Theorem 6 that, if ® : R — Z (R) is the center-valued trace on R,
then

Pomry=Pomg.

Thus, by Theorem 6, 74 and 7g are approximately equivalent in R. Hence,
there is a net {U;} in U (R) such that, for every f € L™ (A, \),

U7 (£)U; = 75 (F)]| = 0.
It follows from Lemma 2 that, for every f € L™ (A, N),
a(ra(f)) =a(s(f)).

Thus the definition of [, is independent of choice of the masa A and tracial
embedding 7 4. It is easy to check that (3, is norm. To prove §, is G (R)-
symmetric, suppose 0 € G (R). Then, by Lemma 30, there is a measurable
family {0, : w € Q} with each w € Q,,, such that o, € MP (J,,, ut,) and

O’/A@(TWCD\(Q)).
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Thus, by Theorem 6,

Py (ma(foo))=von(foo),
but

n(foo)(w)= / (foo)(t,w)dd, (t)
/fw oo (1)) don /fw £)db, (1) = 1 (f) ().

Thus, for every f € L™ (A, \),

Poma(f) =T (f) =T (n(foo))=Poma(foo).
Thus, p(f) = wa(foo) is a tracial embedding as in Theorem 6, which
implies p is approximately equivalent to m4. Hence, by Lemma 2, for every
f € L™ (A, \), we have
Ba (f) =a(ma(f)) =a(ma(foo))=Pa(fo0).

Thus S, is a normalized G (R)-invariant gauge norm on L™ (A, ).
Conversely, suppose 3 is a normalized G (R)-symmetric gauge norm on

L>® (A N). IfE T € R, then W* (|T]) is abelian and is contained in a masa A

of R. By Theorem 6 there is a tracial embedding 74 : L (A, A\) — A such

that, for every f € L™ (Q, u),
)= [ s
Q

Choose 0 < f € L™ (A, \) with w4 (f) = |T|. Then we define
ag (T) = B(f) =6 (73" (IT]).

Suppose B is another masa in R with |T'| € B. Then there is a tracial em-
bedding 75 : L>® (A, \) — B and an 0 < h € L™ (A, \) with 75 (h) = |T|. Tt
follows from Lemma 32 that
Sf = 8T = Sh-

Hence, by Lemma 33, there is a 0 € G (R) such that

h=foo.
Thus

a(h)=a(f) =a(sr).
Thus the definition of ag (T') = F (sr) is independent of the masa A or the
tracial embedding 7 4. At this point it is easy to see that 3,, =  holds for
a G (R)-symmetric normalized gauge norm on L™ (A, \).
If U and V are unitaries in R, then, by Lemma 32,
SUTV = ST

Thus ag (UTV) = ag (T) by Lemma 33. Thus ag is unitarily invariant.
Clearly, ag (1) = 1 and ag (2T) = |z|ag (T'). To show ag is a norm,
we just need to check the triangle inequality. Suppose A, B € R. Let h =
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sa + sp. Since, for almost every w €  the functions s4 (w,t) and sp (w,t)
are nonincreasing in ¢, we see that

sp=h=54+sp.
Thus, we have, if w € Q,, n € N, and t = k/n with 1 <k <n, or if w € Qo
and 0 < ¢t <1 is rational, then, for almost every w,
KF; (sp) (w) = KF;(sa+sp) (w) = KF;(sa) (w) + KF; (sp) (w)
=KF,(A) (w)+ KF;(B) (w) > KF,(A+ B) (w) = KF; (say+B) (w).
It follows from the approximate Ky Fan Lemma (Theorem 9) that

B(h) > B(satB),

which means
ap(A+B) <3 (h)=[B(sa+sp) <B(sa)+0(sp) =ap(4)+as(B).
This completes the proof. O
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