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1. Introduction

Since John von Neumann’s beautiful characterization of the unitarily invari-
ant norms for the n × n complex matrices Mn (C), there have been over
four hundred papers related to this subject. In the 1930’s von Neumann [24]
showed that there is a natural one-to-one correspondence between the unitar-
ily invariant norms on Mn (C) and the normalized symmetric gauge norms
on C

n. As pointed out by the referee, these norms have been generalized
and utilized in several contexts (see [20] or [21]). More recently, J. Fang, D.
Hadwin, E. A. Nordgren and J. Shen [10] showed that there is an analo-
gous correspondence between the unitarily invariant norms on a II1 factor
von Neumann algebra M and the normalized symmetric gauge norms on
L∞ [0, 1]. Although the proofs of both results relied on s-numbers, the proof
of the latter result was different from von Neumann’s proof. We provide a new
proof of the II1 factor result that more closely parallels the proof for Mn (C).
The key ingredient is an “approximate” version of the Ky Fan Lemma that
is used in the finite-dimensional case.

It is our goal to find a similar characterization of all the unitarily invari-
ant norms on a finite von Neumann algebra R acting on a separable Hilbert
space H. A von Neumann algebra on H is a unital subalgebra of the algebra
B (H) of all operators on H that is closed under the adjoint operation and
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is closed in the weak operator topology. A von Neumann algebra is a fac-
tor if it cannot be written as the direct sum of two von Neumann algebras;
equivalently, if its center contains no projection P with 0 �= P �= 1. A von
Neumann algebra on a separable Hilbert space can be written as a direct in-
tegral (i.e., continuous direct sum) of factor von Neumann algebras, which is
called the central decomposition. A finite factor is a factor that has a faithful
normal tracial state. The finite-dimensional finite factors are all isomorphic
to Mn (C) for some positive integer n. An infinite-dimensional finite factor
is called a II1 factor. A finite von Neumann algebra on a separable Hilbert
space is a direct integral of finite factors. General references for von Neumann
algebras are [16] and [23].

Thus the results in [24] and [10] characterize the unitarily invariant
norms on finite factors. To make these two examples look the same, we want
to view C

n as L∞ (Jn, δn) , where (Jn, δn) is a probability space. We also
want to have Jn ⊂ [0, 1]. Our choice is Jn =

{
1
n , . . . , n

n

}
and δn is normalized

counting measure, i.e.,

δn (E) =
1
n

Card (E) .

We define J∞ = [0, 1] and δ∞ to be Lebesgue measure.
A finite von Neumann algebra R on a separable Hilbert space can be

decomposed into a direct integral of factors that are either isomorphic to
Mn (C) or are II1 factors. Each finite factor von Neumann algebra has a
unique tracial state. From the central decomposition we can define a tracial
state τ on R. The problem is to identify the corresponding measure space
(Λ, λ). A key observation is that every maximal abelian selfadjoint subalgebra
(masa) of Mn (C) is isomorphic to C

n = L∞ (Jn, δn) and with the normalized
trace corresponding to integration with respect to δn, and each masa in a II1

factor is isomorphic to L∞ [0, 1] = L∞ (J∞, δ∞) with the unique tracial state
τ corresponding to integration with respect to δ∞. It is known [22] that any
two masas on a finite von Neumann algebra are isomorphic. If A is a masa in
R, then the central decomposition of R decomposes A to a direct integral of
algebras that are masas in the corresponding factors. We must analyze this
decomposition carefully to see that the masas are all isomorphic, in a very
special way, to L∞ (Λ, λ) for some measure space (Λ, λ). Once we find the
measure space, we find a certain group G (R) of invertible measure-preserving
transformations. We then have to show how the unitarily invariant norms on
R correspond to the normalized G (R)-symmetric gauge norms on L∞ (Λ, λ).
We will see that R is a factor if and only if G (R) is the group of all invertible
measure-preserving transformations. This involves defining the analogue of
the “s-numbers” and proving a general approximate Ky Fan Lemma. To show
that things are independent of the choices of the masas used, we need a result
on approximate unitary equivalence [4].

In Sect. 2 we discuss the basic properties of unitarily invariant norms,
give a brief description of von Neumann’s characterization for Mn (C) and
give our new proof of the characterization of [10] for II1 factors.
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In Sect. 3, we prove a reformulation of a result of Ding and Hadwin [4]
for approximate unitary equivalence of representations of a (not necessarily
separable) abelian C*-algebra into a finite von Neumann algebra R in terms
of the center-valued trace on R.

In Sect. 4 we discuss the definitions and techniques of direct integrals a
a canonical way to represent the center valued trace of a finite von Neumann
in terms of its central decomposition.

In Sect. 5 we describe, for a given finite von Neumann algebra R, two
measure spaces with measures μ and λ so that L∞ (μ) is isomorphic to the
center Z (R) of R and, such that every masa A of R is isomorphic to L∞ (λ).
We prove (Theorem 6) the isomorphism from L∞ (λ) to a masa A of R can
be chosen in a special way so that a certain commutative diagram holds.

In Sect. 4 we discuss invertible measure-preserving transformations, non-
increasing rearrangements, a function version of s-numbers, and define our
group G (R) of measure-preserving transformations on the measure space
(Λ, λ). We prove (Theorem 8) a general “approximate” version of the Ky Fan
Lemma.

In Sect. 5 we put things together and prove our main theorem, which
characterizes the unitarily invariant norms on R in terms of G (R)-symmetric
normalized gauge norms on L∞ (λ).

2. Preliminaries

2.1. Unitarily invariant norms

If A is a unital C*-algebra, U (A) denotes the set of all unitary elements of
A. If T ∈ A we define |T | = (T ∗T )1/2.

Lemma 1. Suppose A is a unital C*-algebra and α is a norm on A such that
α (1) = 1. The following are equivalent.
(1) For every T ∈ A and for every U ∈ U (A),

α (T ) = α (|T |) = α (U∗TU) .

(2) For all U, V in U (A),

α (T ) = α (UTV ) .

Proof. Suppose T ∈ A and for every U ∈ U (A), we have α (T ) = α (|T |) =
α (U∗TU) . Then

α (UTV ) = α (|UTV |) = α
(
[(UTV )∗(UTV )]1/2

)

= α
(
V ∗(T ∗T )1/2V

)
= α (|T |) = α (T ) .

Suppose T ∈ A and α (T ) = α (UTV ) for every U, V ∈ U (A) . It is
clear that α (T ) = α (U∗TU). To prove α (T ) = α (|T |), we can assume, using
the universal representation [23, Chapter 3: Sect. 2], that A ⊂ B (H) for
some Hilbert space H such that the second dual A## of A is isomorphic
to A′′, the weak operator closure of A. Furthermore we have that the weak
operator topology on A## coincides with the weak*-topology, in fact, if ϕ
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is a continuous linear functional on A, then there are vectors e, f ∈ H such
that ϕ = e ⊗ f , i.e., for every A ∈ A,

ϕ (A) = (e ⊗ f) (A) = 〈Ae, f〉 .

Now suppose A,B ∈ A, W ∈ A′′, ‖W‖ ≤ 1 and A = WB. We claim

A ∈ co‖‖ ({UB : U ∈ U (A)}) ,

where co‖‖ represents the norm-closed convex hull. Since
{
eitU : t ∈ R, U ∈ U

(A)} = U (A), we see that co‖‖ ({UB : U ∈ U (A)}) is absolutely convex and
norm closed. It follows from the Hahn Banach theorem that co−‖‖({UB : U ∈
U (A)}) closed in the weak topology on A. If we assume, via contradiction,
that the claim is false, there are e, f ∈ H and a number r ∈ R such that, for
all C ∈ co‖‖ (U (A)),

|〈CBe, f〉| ≤ r < Re (〈Ae, f〉) ≤ |〈Ae, f〉| .
We know from the Russo-Dye Theorem [7] that co‖‖ (U (A)) is {C ∈ A : ‖C‖
≤ 1}. It follows from the Kaplansky density theorem [16] that there is a net
{Cj} in the closed unit ball of A such that Cλ → W in the weak operator
topology. Thus,

r < |〈Ae, f〉| = |〈WBe, f〉| = lim
λ

|〈CjBe, f〉| ≤ r,

which is the desired contradiction. We know from the Russo-Dye Theorem
[7] that if ‖S‖ < 1 then S ∈ co (U (A)), which implies α (S) ≤ 1. Hence
α (S) ≤ ‖S‖ for every S ∈ A. Since the claim is true, and it follows that
α (A) ≤ α (B). Since A′′ is a von Neumann algebra and T ∈ A, there is a
partial isometry W ∈ A′′ such that T = W |T | and |T | = W ∗T , from which
we can conclude α (T ) = α (|T |). �

Definition 1. If A is a unital C∗-algebra and α is a norm on A satisfying
α (1) = 1 and either of the two conditions in Lemma 1, we say that α is a
unitarily invariant norm on A. It is clear that when A is commutative, a
unitarily invariant norm α need only satisfy α(1) = 1 and α(T ) = α(|T |).

Below are some properties about unitarily invariant norms.

Proposition 1. If A is a unital C∗-algebra and α is a unitarily invariant norm
on A, and T,A,B ∈ A, we have the following:

(1) α (T ) ≤ ‖T‖ ,
(2) α (T ) = α (T ∗),
(3) α (ATB) ≤ ‖A‖ α (T ) ‖B‖ ,
(4) 0 ≤ A ≤ B implies α (A) ≤ α (B) .

Note: Whenever we discuss a measure space (Ω,Σ, μ) we always assume
that the space is complete in the sense that, whenever F ∈ Σ, E ⊂ F and
μ (F ) = 0, we have E ∈ Σ. The following lemma is an immediate consequence
of Proposition 1.
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Lemma 2. If α is a unitarily invariant norm on a unital C*-algebra R, S, T ∈
R, and {Uj} is a net of unitary operators in R such that

lim
j

∥
∥S − U∗

j TUj

∥
∥ = 0,

then

α (S) = α (T ) .

Definition 2. If (Ω, μ) is a probability space, then L∞ (μ) is a von Neumann
algebra, and a unitarily invariant norm α on L∞ (μ) is called a normal-
ized gauge norm on L∞ (μ). In this case all we need require of α is that
α (1) = 1 and α (f) = α (|f |) for every f ∈ L∞ (μ). We let MP (Ω, μ) denote
the group (under composition) of all invertible measure-preserving transfor-
mations from Ω to Ω. We say that a gauge norm α on L∞ (μ) is symmetric
if, for every γ ∈ MP (Ω, μ) and every f ∈ L∞ (μ), we have

α (f ◦ γ) = α (f) .

In [24], J. von Neumann characterized all of the unitarily invariant
norms on Mn (C), which is the n × n full matrix algebra with entries in
C. Also [10] characterizes the unitarily invariant norms on a II1 factor von
Neumann algebra. The goal of this paper is to give a characterization of all
unitarily invariant norms of a finite von Neumann algebra acting on a separa-
ble Hilbert space. Along the way we give a new proof of the characterization
of unitarily invariant norms on a II1 factor in [10].

2.1.1. Unitarily invariant norms on Mn (C). In this section we give a brief de-
scription of von Neumann’s characterization [24] of unitarily invariant norms
on Mn (C). Let τn be the normalized trace on Mn (C) , i.e., τn = 1

nTrace.

Lemma 3. Suppose T ∈ Mn (C) , then there exists a unitary matrix U ∈
U (Mn (C)) and numbers sT

(
1
n

)
� sT

(
2
n

)
� · · · sT

(
n
n

) ≥ 0 such that

U∗|T |U =

⎛

⎜
⎜
⎜
⎜
⎝

sT

(
1
n

)
0 · · · 0

0 sT

(
2
n

) ...
...

. . . 0
0 · · · 0 sT

(
n
n

)

⎞

⎟
⎟
⎟
⎟
⎠

.

The numbers sT

(
1
n

)
, sT

(
1
n

)
, ..., sT

(
n
n

)
are unique and are called the

s-numbers of the matrix T . Define

s (T ) =
(

sT

(
1
n

)
, sT

(
2
n

)
, · · · , sT

(n

n

))
.

If α is a unitarily invariant norm on Mn (C), then

α (T ) = α (|T |) = α (U∗|T |U) = α

⎛

⎜
⎜
⎜
⎜
⎝

sT

(
1
n

)
0 · · · 0

0 sT

(
2
n

) ...
...

. . . 0
0 · · · 0 sT

(
n
n

)

⎞

⎟
⎟
⎟
⎟
⎠

,
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and thus α (T ) depends only on the s-numbers of T .
Note that s (T ) ∈ C

n, and in classical matrix theory [2] the standard notation
is sk (T ) instead of our sT

(
k
n

)
for 1 ≤ k ≤ n. We know that C

n is isomor-
phic to L∞ (δn), where δn is normalized counting measure on

{
1
n , . . . , n

n

}
.

Let Sn be the permutation group (i.e., all the bijective functions on Jn ={
1
n , . . . , n

n

}
). It is clear that Sn = MP (Jn, δn).

In this case a normalized gauge norm β on C
n = L∞ (δn) is symmetric

if, for every f ∈ L∞ (δn) and every σ ∈ Sn,

β (f) = β (f ◦ σ) ,

that is

β ((a1, . . . , an)) = β
((

aσ(1), . . . , aσ(n)

))
.

We know that, for each x = (x1, . . . , xn) in C
n with |x| = (|x1| , . . . , |xn|),

there is a σ ∈ Sn such that

σ (|x|) =
(∣∣xσ(1)

∣
∣ , · · · ,

∣
∣xσ(n)

∣
∣) =

def

(
s|x|

(
1

n

)
, s|x|

(
2

n

)
, · · · , s|x|

(n

n

))
= s|x|,

where sx

(
1
n

) ≥ sx

(
2
n

) ≥ · · · ≥ sx

(
n
n

) ≥ 0. We call s|x| the nonincreasing
rearrangement of |x|. Note that, although σ may not be unique, s|x| is unique.

Given a unitarily invariant norm α on Mn (C) , define βα on C
n by

βα (x) = βα(x1, ..., xn) = α

⎛

⎜
⎝

x1

. . .
xn

⎞

⎟
⎠ = α

⎛

⎜
⎝

s|x|
(

1
n

)

. . .
s|x|

(
n
n

)

⎞

⎟
⎠ .

Clearly, permutations on Jn corresponds to unitary conjugations by permuta-
tion matrices in Mn (C). Hence βα is a normalized gauge norm on L∞ (δn) =
C

n.

Conversely, given a symmetric normalized gauge norm β on C
n, we would

like to define αβ on Mn (C) by

αβ (T ) = β

(
sT

(
1
n

)
, sT

(
2
n

)
, · · · , sT

(n

n

))
.

We need to check that αβ is a norm. Clearly, sλT

(
1
n

)
= |λ| sT

(
1
n

)
, so

αβ (λT ) = β

(
sλT

(
1
n

)
, sλT

(
2
n

)
, · · · , sλT

(n

n

))
= |λ|αβ (T ) .

Also, αβ (T ) ≥ 0 and αβ (T ) = 0 implies T = 0. The big problem is the
triangle inequality: sA+B

(
k
n

) ≤ sA

(
k
n

)
+ sB

(
k
n

)
can fail if k > 1. When

k = 1, sT

(
k
n

)
= ‖T‖ .

Example 1. A =
(

1
2 0
0 1

)
, B =

(
1 0
0 3

4

)
.

In this example, sA+B

(
2
n

)
= 3

2 , sA

(
2
n

)
+ sB

(
2
n

)
= 5

4 .
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In order to prove the triangle inequality of αβ , the Ky Fan Norms play
a central role. For 1 ≤ k ≤ n we define KF k

n
: Mn (C) → [0,∞) and KF k

n
:

C
n → [0,∞), by

KF k
n

(T ) =
sT

(
1
n

)
+ · · · + sT

(
k
n

)

k
and KF k

n
(x) =

s|x|
(

1
n

)
+ · · · + s|x|

(
k
n

)

k
.

To prove KF k
n

is a norm on Mn (C) and on C
n, we use the following

Lemma whose proof can be found in [7]. Once we know α = KF k
n

is a norm
on Mn (C), it easily follows that KF k

n
= βα is a symmetric gauge norm on

C
n.

Lemma 4. For T ∈ Mn (C) , KF k
n

(T ) = sup{|Tr (UTP )| : U is unitary, P is
a projection of rank k}.

We easily obtain the following corollary.

Corollary 1.
∑k

m=1sA+B(m
n ) ≤ ∑k

m=1

[
sA(m

n ) + sB(m
n )
]

for A,B ∈ Mn (C)
and 1 ≤ k ≤ n.

The key result relates the Ky Fan norms to arbitrary unitarily invariant
norms. The proof can be found in [9].

Lemma 5. Suppose n ∈ N, a = (a1, ..., an), b = (b1, ..., bn) ∈ C
n, a1 ≥ a2 ≥

· · · ≥ an ≥ 0, and b1 ≥ b2 ≥ · · · bn ≥ 0. If KF k
n

(a) ≤ KF k
n

(b) for 1 ≤ k ≤ n,

then there exists N ∈ N, σ1, · · · , σN ∈ Sn, 0 ≤ tj ≤ 1, with
∑N

j=1tj = 1 such
that a ≤ ∑N

j=1tj (σj (b)) , i.e.,

(a1, . . . , an) ≤
N∑

j=1

tj
(
bσj(1), . . . , bσj(n)

)
.

Corollary 2. Suppose a, b ∈ C
n with KF k

n
(a) ≤ KF k

n
(b) for 1 ≤ k ≤ n,

then, for every symmetric gauge norm β on C
n, β (a) ≤ β (b) .

Proof. β (a) ≤ β

(
N∑

j=1

tjσj (b)

)

≤
N∑

j=1

tjβ (σj (b)) =

(
N∑

j=1

tj

)

β (b) =

β (b) . �

Lemma 6. If β is a symmetric normalized gauge norm on C
n, then αβ is a

unitarily invariant norm on Mn (C).

Proof. We just need to prove the triangle inequality. Suppose A,B ∈ Mn (C).
If

a =
(

sA+B

(
1
n

)
, sA+B

(
2
n

)
, ..., sA+B

(n

n

))
and,

b =
(

sA

(
1
n

)
+ sB

(
1
n

)
, sA

(
2
n

)
+ sB

(
2
n

)
, . . . , sA

(n

n

)
+ sB

(n

n

))
,
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then, by Corollary 1, we know that KF k
n

(a) ≤ KF k
n

(b) for 1 ≤ k ≤ n. It
follows from Corollary 2 that β (a) ≤ β (b) . However,

αβ (A + B) = β (a) ≤ β (b) = β (sA + sB)
≤ β (sA) + β (sB) = αβ (A) + αβ (B) .

This completes the proof. �

It is easy to see that αβα
= α and βαβ

= β always hold. This gives us
von Neumann’s characterization of unitarily invariant norms on Mn (C).

Theorem 1 [24]. There is a one to one correspondence between symmetric
gauge norms on C

n and unitarily invariant norms on Mn (C).

2.1.2. Approximate discrete Ky-Fan Lemma. We want to prove an approx-
imate version of the Ky-Fan Lemma. Suppose n ∈ N, a = (1, 0, ..., 0), b =
( 1

n , 1
n , ..., 1

n ) ∈ C
n. The Ky-Fan Lemma says that a convex combination of

permutations of a is greater than or equal to b. It is clear that each permu-
tation of a has only one nonzero entry, so the number of permutations must
be at least n. We want, given a positive number ε, to find a number k that
is independent of n, so that when 0 ≤ a, b ∈ C

n and KFj (a) ≥ KFj (b) for
1 ≤ j ≤ n, there is an average of k permutations of a that is greater than or
equal to (b1 − ε, b2 − ε, . . . , bn − ε).

Suppose n ∈ N, f : {1, . . . , n} → C and γ : {1, . . . , n} → {1, . . . , n}
is bijective. Let Sn denote the set of all bijective functions γ : {1, . . . , n} →
{1, . . . , n} with the identity map id ∈ Sn defined by

id (k) = k for all 1 ≤ k ≤ n.

Let C
n denote the set of all functions f : {1, . . . , n} → C. For each γ ∈ Sn,

define the map Cγ : C
n → C

n by

Cγ (f) = f ◦ γ.

If N is a positive integer, we define

CN =

{
1
N

N∑

k=1

Cγk
: γ1, . . . , γN ∈ SN

}

.

It is easily seen that if ϕ1 ∈ CN1 and ϕ2 ∈ CN2 , then ϕ2 ◦ ϕ1 ∈ CN1N2 . Also if
m1, . . . mk ∈ N and γ1, . . . , γk ∈ Sn, and if

∑k
j=1 mj = N , then

k∑

j=1

mj

N
Cγj

∈ CN .

Suppose (X1, <1) , (X2, <2) are strictly linearly ordered sets. We let <
= (<1, <2) denote the lexicographical order on X1 × X2, i.e.,

(a1, b1) < (a2, b2) ⇔ a1 <1 a2, or a1 = a2 and b1 <2 b2.

Then (<1, <2) is a strict linear order on X1 × X2.
Suppose m ∈ N. Let Em = {1, . . . , m} × {1, . . . , m}, linearly ordered by

≺ = (<,<) (where < is the usual order). Let ≺′= (≺,≺) on Em × Em. This
makes Em × Em order-isomorphic to

{
1, 2, . . . ,m4

}
.
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Lemma 7. Suppose m,n ∈ N and f : {1, . . . , n} → {1, . . . , m} and h :
{1, . . . , n} → {0, 1, . . . ,m} are nonincreasing and, for every k ∈ {1, . . . , n}

k∑

j=1

h (j) ≤
k∑

j=1

f (j) .

If N = (m!)m5

, then there are permutations γ1, . . . , γN of {1, . . . , n} such
that

1
N

N∑

k=1

f ◦ γk ≥ h.

Proof. Suppose g : {1, . . . , n} → {0, 1, . . . ,m} and g �≥ h. We define

qg = min {k : g (k) < h (k)} and
q′
g = max {k : (g (k) , h (k)) = (g (qg) , h (qg))} .

We say g is nice if g �≥ h and
(1)

k∑

j=1

h (j) ≤
k∑

j=1

g (j)

for q′
g ≤ k ≤ n,

(2) g is nonincreasing on {k : qg ≤ k ≤ n} .

Suppose now that g is “nice”. It is clear from the definition of qg and the
fact that h is nonincreasing that (g (qg) , h (qg)) is the largest element (with
respect to ≺) of

{(g (k) , h (k)) : 1 ≤ k ≤ n, g (k) < h (k)} .

It follows from (2) that g (k) ≤ g (qg) whenever qg ≤ k ≤ n. Since g and h
are nonincreasing on {k : qg ≤ k ≤ n}, we know that

{k : (g (k) , h (k)) = (g (qg) , h (qg))} =
{
k : qg ≤ k ≤ q′

g

}
.

Thus we have
(3) for qg ≤ k ≤ n.

k∑

j=1

h (j) ≤
k∑

j=1

g (j) .

Let F =
{
k : qg ≤ k ≤ q′

g

}
, and let

b = Card (F ) = q′
g − qg + 1.

It follows from (3), with k = qg, that there is an integer k0 with 1 ≤
k0 < qg such that g (k0) > h (k0). Let pg be the smallest positive integer such
that

g (pg) = max {g (k) : 1 ≤ k ≤ n, g (k) > h (k)} .

If g (k) = g (pg) , then

g (k) = g (pg) ≥ g (k0) > h (k0) ≥ h (qg) > g (qg) ,
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which means, from (2), that k < qg. In particular, pg < qg.
It is now clear that (g (pg) , h (pg)) is the largest element (with respect

to ≺) of {(g (k) , h (k)) : g (k) > h (k)}.
Let

E = {k : 1 ≤ k ≤ n, (g (k) , h (k)) = (g (pg) , h (pg))}
and let a = Card (E). Since, for each k ∈ E, g (k) = g (pg) > g (qg) , so
E ⊂ [1, qg).

A simple computation shows that if tg = g(pg)−h(pg)
g(pg)−g(qg) and 1 − tg =

h(pg)−g(qg)
g(pg)−g(qg) , then

(1 − tg) g (pg) + tgg (qg) = h (pg) , and
(1 − tg) g (qg) + tgg (pg) = g (qg) + [g (pg) − h (pg)] .

Note that 1 ≤ g (pg) − g (qg) ≤ m. Also

g (qg) + [g (pg) − h (pg)] = g (pg) + [g (qg) − h (pg)]
g (pg) + [g (qg) − h (qg)] < g (pg) .

We now set up some notation. Suppose D ⊂ E and d = Card (D) ≤
Card (F ) . Let αD,g : D → {k : qg ≤ k < qg + d} be the unique order-
preserving bijection. Define γD,g ∈ Sn by

γD,g (k) =

⎧
⎨

⎩

αD,g (k) if k ∈ D
α−1

D,g (k) if k ∈ αD,g (D)
k otherwise

.

Define ϕD,g ∈ Cm! by

ϕD,g = (1 − tg) CγD,g
+ tgCid.

Thus

ϕD,g (g) (k) =

⎧
⎨

⎩

h (k) if k ∈ D
g (k) + (g (pg) − h (pg)) = g (qg) + (g (pg) − h (pg)) if k ∈ αD,g (D)
g (k) otherwise

.

Also

g (qg) < ϕD,g (g) (qg) = g (qg) + [g (pg) − h (pg)] = g (pg) + [g (qg) − h (pg)]
≤ g (pg) + [g (qg) − h (qg)] < g (pg) .

Since g (pg) − h (pg) > 0, it is clear that ϕD,g (g) is nonincreasing on
{k : qg ≤ k ≤ n}. If ϕD,g (g) �≥ h, then q′

ϕD,g(g) ≥ q′
g. Since

qg∑

j=1

ϕD,g (g) (j) =
qg∑

j=1

g (j) ,

it follows from (1) that, whenever k ≥ q′
ϕD,g(g) ≥ q′

g,

k∑

j=1

h (j) =
k∑

j=1

ϕD,g (g) (j) .

Thus if ϕD,g (g) �≥ h, then ϕD,g (g) is nice.
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For any nice g we define ρ (g) ∈ Em × Em by

ρ (g) = ((g (pg) , h (pg)) , (g (qq) , h (qg))) .

CLAIM: There is a ϕ̂ ∈ C(m!)m such that ĝ = ϕ̂ (g) satisfies ĝ ≥ h or ĝ
is nice and ρ (ĝ) < ρ (g).

We now consider a few cases.

Case 1: a ≤ b. Let D = E. If ϕα (g) �≥ h, then ϕα (g) is nice and
(
ϕα (g)

(
pϕα(g)

)
, h
(
pϕα(g)

)) ≺ (g (pg) , h (pg)) .

It follows that

ρ (ϕα (g)) ≺′ ρ (g) .

In this case we define ĝ = ϕα (g) and ϕ̂ = ϕα.
We now can assume that a > b. There is a smallest positive integer w

such that

g (qg) + w (g (pg) − h (pg)) ≥ h (qg) ,

and there is a positive integer v and a disjoint collection {E0, E1, . . . Ev}
whose union is E and such that

Card (Ek) = b for 1 ≤ k ≤ v.

Let u = min (v, w), and define bijections αk : Ek → F for 1 ≤ k ≤ u. We let

tk =
g (pg) − h (pg)

g (pg) − [g (qg) + k (g (qg) + (k − 1) [g (pg − h (pg))])]
,

and

ϕαk
= (1 − tk) Cγk

+ tkid.

For 1 ≤ s ≤ u, let

ϕs = ϕαs
◦ · · · ◦ ϕα1 .

We see that

ϕs (g) (k) =

⎧
⎨

⎩

h (k) if k ∈ ∪1≤j≤sEj

g (qg) + s (g (pq) − h (pg)) if k ∈ F
g (k) otherwise

.

We see that ϕu−1 (g) �≥ h and ϕu−1 (g) is nice. Thus ϕu (g) ≥ h or ϕu (g) is
nice.

We now consider more cases.

Case 2: v < w. We know that ϕv (g) is nice. We let D = E0 and let α : E0 →
{k : qg ≤ k < qq + Card (E0)} be a bijection and let ĝ = ϕα (gv) .
Then ĝ ≥ h or ĝ is nice and

(ĝ (pĝ) , h (pĝ)) ≺ (g (pg) , h (pg)) .
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Thus if ĝ �≥ h, then

ρ (ĝ) ≺′ ρ (g) .

v > w or v = w and E0 �= ∅. In this case gw is nice and if gw �≥ h, then
gω is nice,

(gω (pgw
) , h (pgw

)) = (g (pg) , h (pg))

and

(gω (qgw
) , h (pgw

)) = (g (pg) , h (pg)) .

Thus if ĝ = gw and ϕ̂ = ϕαw
◦ · · · ◦ ϕ1, then ĝ = ϕ̂ (g), either ĝ ≥ h or ĝ is

nice, and

ρ (ĝ) ≺′ ρ (g) .

Case 3: v = w and E = ∅. In this case ϕw (g) ≥ h or ϕw (g) is nice. If ϕw (g)
is nice, then

(gω (pgw
) , h (pgw

)) ≺ (g (pg) , h (pg))

and

(gω (qgw
) , h (pgw

)) ≺ (g (pg) , h (pg)) .

Thus if ĝ = gw and ϕ̂ = ϕαw
◦ · · · ◦ ϕ1, then ĝ = ϕ̂ (g) and either ĝ ≥ h or ĝ

is nice, and

ρ (ĝ) ≺′ ρ (g) .

ϕ̂ĝ ∈ C(m!)m such that ĝ = ϕ̂g (g) is nice and ρ (ĝ) ≺′ ρ (g) .
It follows from Cases 1, 2, 3 that the claim is proved.
If we let f0 = f and if fk is nice and fk �≥ h, then fk+1 = f̂k and

f̂k+1 = ϕk+1 (fk) with ϕk+1 ∈ C(m!)m . It follows from the Claim that there is
a smallest k ≤ m4 such that fk ≥ h. Then

ϕ = ϕk ◦ · · · ◦ ϕ1 ∈ C((m!)m)k ⊂ C
(m!)m5

and fk = ϕ (f). Thus the lemma is proved. �

2.1.3. Unitarily invariant norms on a II1 factor. In this section we give a
new proof of the characterization in [10] of unitarily invariant norms on a
II1 factor von Neumann algebra M. If M is a type II1 factor von Neumann
algebra. then M has a unique faithful normal tracial state τ with the property
that if P and Q are projections in M, then P and Q are unitarily equivalent
in M if and only if τ (P ) = τ (Q). In this case the measure space (Jn, δn)
is replaced with the measure space (J∞, δ∞), where J∞ = [0, 1] and δ∞ is
Lebesgue measure. A normalized gauge norm β on L∞ [0, 1] = L∞ (δ∞) is
symmetric if, for every γ ∈ MP (J∞, δ∞) and every f ∈ L∞ (δ∞) , we have
β(f) = β(f ◦ γ).

The main result in [10] is that there is a one-to-one correspondence
between the unitarily invariant norms on M and the symmetric normal-
ized gauge norms on L∞ (δ∞). This looks just like von Neumann’s result for
Mn (C).
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The definition of the s-numbers for a function in L∞ [0, 1] can be ob-
tained from nonincreasing rearrangements in measure theory. The proof in
[10] doesn’t use a version of the Ky Fan Lemma (Lemma 5); we present a new
proof here using an “approximate” version of the Ky Fan Lemma (Theorem
2).

The first result we need is nonincreasing rearrangements from [11, Chap-
ter 37].

Lemma 8. Suppose f : [0, 1] → C is measurable. Then there is a γ ∈ MP

(J∞, δ∞) such that sf =
def

|f |◦γ is nonincreasing on [0, 1]. The transformation

γ may not be unique, but sf is unique (a.e.). It therefore follows that if
f1,f2 : [0, 1] → C are measurable, then

sf1 = sf2 if and only if |f1| = |f2| ◦ γ for some γ ∈ MP (J∞, δ∞) .

The function sf is called the nonincreasing rearrangement of |f |.
For 0 < t ≤ 1, we define the Ky Fan norm KFt on L∞ [0, 1] by

KFt (f) =
1
t

∫ t

0

sfdδ∞.

For an operator T ∈ M and 0 ≤ t ≤ 1, the tth s-number of T , denoted
by sT (t), was defined by Fack and Kosaki in [8] as

sT (t) = inf{‖TE‖ : E is a projection in M with τ(E⊥) ≤ t}.

It is clear that the map t �→ sT (t) is nonincreasing on [0, 1]. The tth Ky
Fan norm KFt (T ) is defined as

KFt (T ) =
{‖T‖ if t = 0

1
t

∫ t

0
sT (t) dδ∞ if 0 < t ≤ 1

.

In the matrix case |T | is unitarily equivalent to a diagonal matrix, which
naturally corresponds to an element of C

n. In the II1 factor case we need a
more complicated approach.

Definition 3. A normal ∗-isomorphism π : L∞ (δ∞) → M such that, for every
f ∈ L∞ (δ∞),

(τ ◦ π) (f) =
∫

J∞
fdδ∞.

is called a tracial embedding.

In the matrix case, the assertion that |T | is unitarily equivalent to a
diagonal matrix can be rephrased as |T | is contained in a maximal abelian
selfadjoint algebra (i.e., masa) of Mn (C), and every masa in Mn (C) is unitar-
ily equivalent to the algebra of diagonal n × n matrices. Here is the analogue
for a II1 factor. This can be found in [22].

Lemma 9. Suppose A is a masa in a type II1 factor M. Then there is a
surjective tracial embedding π : L∞ (δ∞) → A.
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Lemma 10. Suppose A is a masa in a type II1 factor M. If f ∈ L∞ [0, 1]
and π (f) = T , then, for almost every t ∈ [0, 1],

sf (t) = sπ(f) (t) = sT (t) .

The following lemma is a consequence of Hadwin-Ding in [4].

Lemma 11. If π and ρ are tracial embeddings into a II1 factor M, then π
and ρ are approximately unitarily equivalent in M, i.e., there is a net {Uj}
of unitary operators in M such that, for every f ∈ L∞ (δ∞),

∥
∥U∗

j π (f) Uj − ρ (f)
∥
∥ → 0.

Corollary 3. If π : L∞ (δ∞) → M is a tracial embedding and γ ∈ MP

(J∞, δ∞), then ρ : L∞ (δ∞) → M defined by ρ (f) = π (f ◦ γ) is also a
tracial embedding. Hence, there is a net {Uj} of unitary operators in M such
that, for every f ∈ L∞ (δ∞),

∥
∥U∗

j π (f) Uj − π (f ◦ γ)
∥
∥ → 0.

As in the matrix case we need to prove KFt is a norm on M by giving
an alternate characterization given in [10, Lemma 5.1]

Lemma 12. If T ∈ M and 0 < t ≤ 1, then

KFt (T ) = sup {|τ (UTP )| : U ∈ U (M) , P is a projection in M, τ (P ) = t} .

Suppose α is a unitarily invariant norm on M. We can choose a tracial
embedding π : L∞ (J∞, δ∞) → M and define a norm βα on L∞ (J∞, δ∞) by

βα (f) = α (π (f)) .

We need to show that the definition does not depend on the embedding π. If
ρ : L∞ (J∞, δ∞) → M is another tracial embedding, then by Lemma 11, there
is a net {Uj} of unitary operators in M such that, for every f ∈ L∞ (J∞, δ)

∥
∥U∗

j π (f) Uj − ρ (f)
∥
∥ → 0.

Since

|β (π (f)) − β (ρ (f))| =
∣
∣β
(
U∗

j π (f) Uj

)− β (ρ (f))
∣
∣

≤ β
(
U∗

j π (f) Uj − ρ (f)
) ≤ ∥

∥U∗
j π (f) Uj − ρ (f)

∥
∥ → 0,

we see that β (π (f)) = β (ρ (f)). Moreover, it follows from Corollary 3 that,
the gauge norm βα is symmetric. A simple consequence is that KFt = βKFt

is a symmetric gauge norm on L∞ (J∞, δ∞).
Next suppose β is a symmetric gauge norm on L∞ (J∞, δ∞). We want to

define αβ on M. If T ∈ M, we can choose a masa A in M such that |T | ∈ A.
We then choose a surjective tracial embedding π : L∞ (J∞, δ∞) → A and
choose f ∈ L∞ (J∞, δ∞) such that π (f) = |T | and then define

αβ (T ) = β (f) = β (sf ) .

Since

sf (t) = sπ(f) (t) = s|T | (t) ,
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we see that the definition is independent of A and π. As in the matrix case, the
main difficulty is proving that αβ satisfies the triangle inequality. In [10] this
was done using an approach that avoids proving an analogue of the matrix
Ky Fan Lemma (Lemma 5). Here we prove a general “continuous” version of
the approximate Ky Fan Lemma that we will need later in our paper.

Lemma 13. Suppose f, h ∈ L∞ [0, 1] , and 0 ≤ f, h ≤ 1, ‖f‖∞ = 1. Suppose
f, h are non-increasing, then there exist step functions s

[m]
f ≥ f and s

[m]
h ≤ h

with ranges contained in
{

k
m : 0 ≤ k ≤ m

}
such that 1

m ≤ s
[m]
f ≤ 1 and 0 ≤

s
[m]
h ≤ m−1

m and f ≤ s
[m]
f ≤ f + 1

m and max
(
h − 1

m , 0
) ≤ s

[m]
h ≤ h. It follows

that KFt

(
s
[m]
h

)
≤ KFt (h) and KFt (f) ≤ KFt

(
s
[m]
f

)
for every t ∈ (0, 1].

Proof. For every m ∈ N, let pi = sup f−1
(
(1 − i

m , 1 − i−1
m ]
)
,

qi = inf h−1
(
(1 − i

m , 1 − i−1
m ]
)
, i = 1, ...,m. Let p0 = q0 = 0. Then define

s
[m]
f (x) =

m−1∑

i=0

(
1 − i

m

)
χ[pi,pi+1) (x) for i = 0, ...,m − 1.

s
[m]
h (x) =

m−1∑

i=0

(
1 − i + 1

m

)
χ[qi,qi+1) (x) for i = 0, ...,m − 1.

It is easy to see that f ≤ s
[m]
f ≤ f + 1

m ; thus
∥
∥
∥f − s

[m]
f

∥
∥
∥

∞
≤ 1

m . Also

max
(
h − 1

m , 0
) ≤ s

[m]
h ≤ h; so

∥
∥
∥h − s

[m]
h

∥
∥
∥

∞
≤ 1

m .

Therefore, KFt

(
s
[m]
h

)
≤ KFt (h) and KFt (f) ≤ KFt

(
s
[m]
f

)
for every

t ∈ (0, 1] �

Lemma 14. Suppose f is a step function on [a, b] and k ∈ N, then there exists
an invertible measure preserving map ϕk : [a, b] → [a, b] such that

∥
∥
∥
∥
∥
∥

1
k

k∑

j=1

f ◦ ϕ
(j)
k − 1

b − a

∫ b

a

f (x) dδ∞

∥
∥
∥
∥
∥
∥

∞

≤ η ‖f‖∞
4
k

,

where η = card f ([a, b]), ϕ
(j)
k is the composition of j of the ϕk’s, i.e., ϕk ◦

ϕk ◦ · · · ◦ ϕk.

Proof. Define ϕk : [a, b] → [a, b] by

ϕk (x) =
{

x + b−a
k if a ≤ x ≤ b − b−a

k

x + b−a
k − b + a if b − b−a

k < x ≤ b.

Then ϕ
(k)
k is the identity map.

If we define ρk (f) = 1
k

∑k
j=1f ◦ ϕ

(j)
k − 1

b−a

∫ b

a
fdδ∞, then ρk is linear and

‖ρk‖ ≤ 2 (with ρk acting as an operator on L∞ (J∞, δ∞)). Suppose 0 ≤
j < k. Then ρk

(
χ[a+j b−a

k ,a+(j+1)) b−a
k )

)
= 0 a.e. (δ∞). However, ρk is linear;

therefore
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ρk

(
χ[a+j1

b−a
k ,a+(j2))

b−a
k )

)
= 0 whenever 0 ≤ j1 < j2 ≤ k. Suppose a ≤ α <

β ≤ b. We choose j1 and j2 such that j1 is the largest j, 1 ≤ j ≤ k for
which a + j1

b−a
k ≤ α and choose j2 to be the smallest j, 1 ≤ j ≤ k for which

β ≤ a + j2
b−a

k . Then

χ[a+j1
b−a

k ,a+(j2))
b−a

k ) − χ[α,β) = χ[a+j1
b−a

k ,α) − χ[β,a+(j2))
b−a

k ).

Hence

ρk

(
χ[α,β)

)
= ρk

(
χ[a+j1

b−a
k ,α)

)
− ρk

(
χ[β,a+(j2))

b−a
k )

)
.

However, if E ∈ {[a + j1
b−a

k , α), [β, a + (j2)) b−a
k )
}

and f = χE then, since f◦
ϕ

(j)
k = χ(

ϕ
(j)
k

)−1
(E)

and the collection
{(

ϕ
(j)
k

)−1

(E) : 1 ≤ j ≤ k

}
is disjoint,

we have
∥
∥
∥
∥
∥
∥

1
k

k∑

j=1

f ◦ ϕ
(j)
k

∥
∥
∥
∥
∥
∥

∞

≤ 1
k

and

1
b − a

∫ b

a

χEdδ∞ ≤ 1
b − a

b − a

k
=

1
k

,

we have ‖ρk (E)‖∞ ≤ 2
k . Hence

ρk

(
χ[α,β)

) ≤ 4
k

.

Suppose f is a step function, then f =
∑n

j=1ajχ[αj ,αj+1) for some n ∈ N.
Denote fj = χ[αj ,αj+1). Then

f =
n∑

j=1

ajfj

∫ b

a

f (x) dδ∞ =
n∑

j=1

aj

∫ b

a

χ[αj ,αj+1)dδ∞.

Thus

‖ρk (f)‖∞ ≤
n∑

j=1

|aj | ‖ρk (fj)‖∞

≤
⎛

⎝
n∑

j=1

|aj |
⎞

⎠ 2
k

≤ η ‖f‖∞

(
4
k

)
.

�

We call the following the approximate Ky Fan Lemma for L∞ (δ∞) .

Theorem 2. Suppose m is a positive integer. Then whenever 0 ≤ f, h ≤ 1 in
L∞ (δ∞) satisfy

KFt (h) ≤ KFt (f) for all rational numbers 0 < t ≤ 1,
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there are, γ1, . . . , γmm2 ∈ MP (J∞, δ∞) , such that

sh ≤ 1
mm2

mm2

∑

i=1

sf ◦ γi +
2
m

.

Hence β (h) ≤ β (f) for every symmetric gauge norm β on L∞ (δ∞) .

Proof. If f ∈ L∞ (J∞, δ∞), then the map t �→ KFt (f) is continuous on
(0, 1]. Hence we have KFt (h) ≤ KFt (f) for all 0 < t ≤ 1. We know that
KFt (f) = KFt (sf ) and β (f) = β (sf ) for every f ∈ L∞ (δ∞) . We may
assume that f, h are nonincreasing, and we let u,w be the step functions
defined in the proof of Lemma 13. Then u,w satisfy f ≤ u ≤ f + 1

mand
max

(
h − 1

m , 0
) ≤ w ≤ h. Recall that

u =
(

1 − i

m

)
χ[pi,pi+1) (x) for i = 0, ...,m − 1.

w =
(

1 − i + 1
m

)
χ[qi,qi+1) (x) for i = 0, ...,m − 1.

and it is easy to see that
∫ t

0

fdδ∞ +
t

m
≥
∫ t

0

udδ∞ ≥
∫ t

0

wdδ∞ ≥
∫ t

0

hdδ∞ − t

m
,

for all 0 ≤ t ≤ 1.

By Lemma 14, for each m ∈ N, there exists a measure preserving map ϕm :
[0, 1] → [0, 1] such that

∥
∥
∥
∥
∥
∥

1
m

m∑

j=1

u ◦ ϕ(j)
m −

∫ 1

0

udδ∞

∥
∥
∥
∥
∥
∥

∞

≤ η ‖u‖∞
4
m

.

where η = card (Ran (u))
Let l(t) = 1

t

∫ t

0
udδ∞, then l : [0, 1] −→ [0,∞) is a continuous function. There

are 2 cases to consider:

Case 1: If l(1) =
∫ 1

0
udδ∞ ≥ b1 = max {w (t) : 0 < t ≤ 1}, then by Lemma

14, for ∀k = m2 ∈ N, there exists ϕk ∈ MP[0, 1] such that
∥
∥
∥
∥
∥
∥

u ◦ ϕ
(1)
k + · · · + u ◦ ϕ

(m2)
k

m2
−
∫ 1

0

udδ∞

∥
∥
∥
∥
∥
∥

∞

≤ 4η ‖u‖∞
m2

≤ 4
m

,

where η = card (u) ≤ m.Denote ϕ
(i)
k by γj Then we have

1
m2

m2
∑

j=1

u ◦ γj ≥ w − 6
m

.
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Therefore 1
m2

m2∑

j=1

f ◦ ϕ(j) + 1
m ≥ h − 4

m follows from Lemma 13. That

is

1
m2

m2
∑

j=1

f ◦ ϕ(j) ≥ h − 3
m

.

We can view it as

1
m2m

m2m
∑

j=1

f ◦ ϕ(j) ≥ h − 3
m

,

where ϕ(i+m2t) = ϕ(i) for 1 ≤ i ≤ m2 and 0 ≤ t ≤ m2 m−2 − 1.

Case 2: l(1) =
∫ 1

0
udδ∞ < b1.

Then there must exist p
′
1 ∈ (0, 1) , so that

l(p
′
1) =

1
p

′
1

∫ p
′
1

0

udδ∞ = b1.

Define u(1) in the following way

u(1) (x) =
{

b1

u(x)
0 ≤ x ≤ p′

1

p′
1 < x ≤ 1.

Then for every t > p
′
1,

l (t) =
∫ t

0

udδ∞ �
∫ t

0

wdδ∞ =⇒
∫ p′

1

0

udδ∞ +
∫ t

p′
1

udδ∞ �
∫ p′

1

0

wdδ∞

+
∫ t

p′
1

wdδ∞.

Thus we have b1p
′
1 +

∫ t

p′
1
u(1)dδ∞ � b1p

′
1 +

∫ t

p′
1
wdδ∞; therefore

∫ t

q1

u(1)dδ∞ �
∫ t

q1

wdδ∞.

Therefore, for every 0 < t ≤ 1, we have

u − 1
m

≤ u(1) ≤ u,

KFt

(
u(1)

)
≥ KFt (w) ,

and for every t ≤ t1,
∥
∥u(1)

∥
∥

t
= b1 = ‖h‖t

By Lemma 14 again, for k = m2 ∈ N, there exist ϕ(1), . . . , ϕ(m2) :
[0, 1] −→ [0, 1] such that

∥
∥
∥
∥
∥

1
m2

m2

Σ
i=1

u ◦ ϕ(i) −
∫ 1

0

udδ∞

∥
∥
∥
∥
∥

∞
≤ η ‖u‖∞

4
m2

≤ 4
m

.
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Let ϕ
(1)
(r)(t) =

{
ϕ(r)(t)
t

t ≤ q1

t > q1
, r = 1, . . . ,m2. Then ϕ

(1)
(r) ∈ MP[0, 1] for

all 1 ≤ r ≤ m2 and
∥
∥
∥
∥
∥

1
m2

m2

Σ
r=1

u ◦ ϕ
(1)
(r) − u(1)

∥
∥
∥
∥
∥

∞
≤ 2

m
.

That is u(1) ≈ 1
m2

m2

Σ
r=1

u ◦ ϕ
(1)
(r) and Ran(u(1)) ⊆ {b1, a2, ..., am}.

If 1
q1

∫ 1

q1
u(1)dδ∞ � b2, go to case 1.

If 1
q1

∫ 1

q1
u(1)dδ∞ < b2, do the similar process as case 2 above, we have

u(2) and ∥
∥
∥
∥
∥

1
m2

m2

Σ
i=1

u(1) ◦ ϕ
(2)
i − u(2)

∥
∥
∥
∥
∥

∞
≤ 2

m
.

That is

u(2) ≈ 1
m2

m2

Σ
i=1

u(1) ◦ ϕ
(2)
i

=
1

m2

m2

Σ
i1=1

(
m2

Σ
i2=1

1
m2

(
u ◦ ϕ

(1)
i1

)
)

◦ ϕ
(2)
i2

=
1

m4

m2

Σ
i=1

m2

Σ
j=1

(u ◦ ϕ
(1)
i1

◦ ϕ
(2)
i2

).

and Ran
(
(u)(2)

)
⊆ {b1, b2, a3, ..., am}.

Finally, after r steps (at most m), we will have

u(r) ≈ 1
m2r

m2

Σ
i1=1

· · ·
m2

Σ
ir=1

(u ◦ ϕ
(1)
i1

◦ ϕ
(2)
i2

· · · ◦ ϕ
(r)
ir

),

and thus u(r) � w.
Since m2r|mm2

, as in case 1, we can view this as

1
mm2

mm2

∑

j=1

u ◦ ϕ(j) ≥ w − 2
m

.

In conclusion, for every m, there is an integer N = mm2
, and there are

γ1, . . . γN ∈ MP (J∞, δ∞) such that

1
N

N∑

i=1

u ◦ γi ≥ w − 2m

N
.

By Lemma 13, we know that f ≥ u − 1
m and h ≤ w + 1

m

Thus, 1
N

N∑

i=1

sf ◦ γi + 2 m
N + 1

m ≥ sh.

Therefore, β (f) ≥ β (h) as m → ∞. �

Corollary 4. If β is a symmetric gauge norm on L∞ (J∞, δ∞), then αβ is a
norm on M.
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Proof. We need only prove the triangle inequality. If A,B ∈ M, we define
h (t) = sA+B (t) and f (t) = sA (t) + sB (t). Then KFt (h) = KFt (A + B)
and KFt (f) = KFt (A) + KFt (B), so Lemma 2 applies, and we get

αβ (A + B) = β (h) ≤ β (f) = β (sA (t) + sB (t))
≤ β (sA (t)) + β (sB (t)) = αβ (A) + αβ (B) .

�

Since it is easily seen that α = αβα
and β = βαβ

, we obtain the charac-
terization [10] of the unitarily invariant norms on a II1 factor von Neumann
algebra.

Theorem 3. Let M be a type II1 factor von Neumann algebra, then there is
a one-to-one correspondence between unitarily invariant norms on M and
symmetric gauge norms on L∞ (J∞, δ∞) .

2.2. Approximate unitary equivalence

The following is a consequence of a result of Hadwin and Ding [4]. Suppose
R is a von Neumann algebra and T ∈ R. Z (R) = R ∩ R′ is the center. In
[12] the R-rank of T was defined to be the Murray-von Neumann equivalence
class of the projection PT onto the closure of the range of T . We let (SOT )
and (WOT ) denote, respectively, the strong and weak operator topologies.
Note that

PT = lim
n→∞ (TT ∗)1/n (SOT ) ,

so PT ∈ M.
The following theorem can be found in [13]. The center-valued trace Φ

is described in Sect. 2.3.6.

Theorem 4. Suppose R is a finite von Neumann algebra acting on a separable
Hilbert space H. Let Φ : R → Z (R) be the unique center-valued trace on R.
Suppose A is a unital commutative C* algebra and π, ρ : A → R are unital
∗-homomorphisms. The following are equivalent:
(1) There is a net {Uj} of unitary operators in R such that, for every a ∈ A,

∥
∥U∗

j π (a) Uj − ρ (a)
∥
∥ → 0.

(2) Φ ◦ π = Φ ◦ ρ.

2.3. The central decomposition

We refer the reader to [16] for the theory of direct integrals and the central
decomposition of a von Neumann algebra acting on a separable Hilbert space.
Since we are only interested in the von Neumann algebra R and not how it
acts on a Hilbert space, we can ignore multiplicities when using the central
decomposition [16]. Suppose R is a finite von Neumann algebra acting on a
separable Hilbert space. Then we can write

R = [R1 ⊕ R2 ⊕ · · · ] ⊕ R∞,

where Rk is of type Ik for 1 ≤ k < ∞ and R∞ is a type II1 von Neumann
algebra.
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2.3.1. Measurable families. Suppose M is a type II1 von Neumann algebra
with a faithful tracial state acting on a separable Hilbert space H=l2∞. We
will associate with M a probability space (Ω, μ) and a unitary operator U :
H −→ L2(μ,H) that transforms M into a certain von Neumann algebra of
operators on L2 (μ,H) that will be described next.

We let M′ denote the commutant of M, i.e., the set of all operators
that commute with every operator in M.

For each ω ∈ Ω, there is a type II1 von Neumann algebra Mω in
B (H) that is determined by two sequences of SOT (strong operator topology)
measurable operator-valued functions fn and gn from Ω into the unit ball of
B (H) so that Mω is generated by the set {fn (ω) : n ∈ N} , M′

ω is generated
by the set {gn (ω) : n ∈ N}, and each of those sets is SOT dense in the unit
ball of the von Neumann algebra it generates. Suppose ϕ : Ω → B (H) is an
SOT-measurable function, and define |ϕ| = ‖·‖ ◦ ϕ, that is |ϕ| (ω) = ‖ϕ (ω)‖
for ω ∈ Ω. If |ϕ| ∈ L∞ (μ) , then let ‖ϕ‖∞ = ‖|ϕ|‖∞. We will assume that
(Ω, μ), U , and the fn, gn,Mω have been chosen so that

U∗MU =

{ϕ : Ω −→ B(H)|ϕ is SOT-measurable, ϕ (ω) ∈ Mω a.e. (μ) , |ϕ| ∈ L∞ (μ)} .

As usual, ϕ1 = ϕ2 will mean ϕ1 (ω) = ϕ2 (ω) a.e. (μ), and each ϕ in
U∗MU is viewed as the operator on L2 (μ,H) defined for f ∈ L2 (μ,H) by

(ϕf) (ω) = ϕ (ω) f (ω) .

2.3.2. Measurable cross-sections.

Definition 4. Suppose (X, d) is a metric space and μ : Bor(X) −→ [0,∞)
is a finite measure. A subset B of X is called μ-measurable if there are
A,F ∈ Bor(X) such that B\A ⊂ F and μ (F ) = 0. The σ-algebra of all μ-
measurable sets is denoted by Mμ. A subset D of X is absolutely measurable
if D is μ-measurable for every finite measure μ on Bor(X). The σ-algebra
of all absolutely measurable subsets of X is denoted by AM (X). Clearly we
have

AM (X) =
⋂

{Mμ : μ is a finite Borel measure on X} .

It is obvious that each Mμ contains Bor(X), so Bor(X) ⊂ AM (X).
However, it is often the case that Bor(X) �= AM (X). If Y is another met-
ric space, we say that a function f : X → Y is absolutely measurable if f
is AM (X)-Bor(Y ) measurable, i.e., for every Borel set E ⊆ Y, f−1(E) ∈
AM (X). Recall that a finite measure space (Λ,Σ, λ) is complete if, E ∈ Σ
whenever E ⊂ F, F ∈ Σ and λ (F ) = 0, i.e., all subsets of sets of measure 0
are in Σ. Note that statement (4) in Lemma 15 shows how, in the presence of
a complete measure space, absolute measurability turns into measurability.

Lemma 15. Suppose X, Y and Z are metric spaces and f : X −→ Y , and
g : Y → Z. Then
(1) f is absolutely measurable if and only if f is AM(X)-AM (Y ) measur-

able.
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(2) If f and g are absolutely measurable, then g ◦ f : X → Z is absolutely
measurable.

(3) For every Borel set E ⊆ Y, f−1(E) is absolutely measurable.
(4) If (Λ,Σ, λ) is a complete finite measure space and ϕ : Λ → X is Borel

measurable, then
(a) ϕ is Σ-AM (X) measurable, and,
(b) If f is absolutely measurable, then f ◦ ϕ : X → Y is measurable.

Definition 5. If f : X → Y and g : f(X) −→ X satisfy, for every y ∈ f(X),

f (g(y)) = y,

then g is called a cross-section for f .

The following Theorem is from Theorem 3.4.3 in [1] and is the key to
dealing with direct integrals.

Theorem 5. Suppose X is a Borel subset of a complete separable metric space,
and Y is a separable metric space. If f : X −→ Y is a continuous function,
then
(1) f(X) is an absolutely measurable subset of Y, and
(2) f has an absolutely measurable cross-section g : f(X) −→ X.

Here is a simple result proved using measurable cross-section.

Lemma 16. Suppose n is a positive integer and Mn (C)+ is the set of n × n
matrices A such that A ≥ 0. Let Un be the set of unitary n × n matrices
and let Dn be the set of all diagonal n × n matrices in Mn (C)+ of the form
diag

(
s 1

n
, . . . s1

)
with s 1

n
≥ s 2

n
≥ · · · ≥ s1 ≥ 0. Then there is an absolutely

measurable function u : Mn (C)+ → Un such that, for every A ∈ Mn (C)+,

u (A)∗
Au (A) ∈ Dn,

i.e.,

u (A)∗
Au (A) =

⎛

⎜
⎜
⎜
⎝

sA

(
1
n

)

sA

(
2
n

)

. . .
sA

(
n
n

)

⎞

⎟
⎟
⎟
⎠

.

Hence, for every T ∈ Mn (C),

u (|T |)∗ |T |u (|T |) =

⎛

⎜
⎜
⎜
⎝

sT

(
1
n

)

sT

(
2
n

)

. . .
sT

(
n
n

)

⎞

⎟
⎟
⎟
⎠

.

Proof. Let X ={
(A,UA) : A ∈ Mn (C)+ , UA ∈ Un, U∗

AAUA = diag
(
sA

(
1
n

)
, . . . , sA

(
n
n

))}
,

which is a subset of Mn (C)+×Un. For every (Aλ, UAλ
) ∈ X, and (Aλ, UAλ

) −→
(A,UA), we have Aλ −→ A,UAλ

−→ UA, Thus

‖U∗
AAUA − UAλ

AλUAλ
‖ → 0,
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We also know that 1
i

i∑

j=1

sA

(
j
n

)
= KFi (A) for all 1 ≤ i ≤ n and sA

(
1
n

)
=

KF1 (A) ≤ ‖A‖ . We can get sAλ

(
i
n

) ‖·‖→ sA

(
i
n

)
for all 1 ≤ i ≤ n. Thus

U∗
Aλ

AλUAλ = diag

(
sAλ

(
1

n

)
, . . . , sAλ

(n

n

)) ‖·‖−→ diag

(
sA

(
1

n

)
, . . . , sA

(n

n

))

Therefore U∗
AAUA = diag

(
sA

(
1
n

)
, . . . , sA

(
n
n

))
, and X is a closed sub-

set of a Mn (C)+ × Un, which is a complete separable metric space.
Define π1 : X −→ Mn (C)+ and π2 : X −→ Un by

π1(A,U) = A, π2(A,U) = U.

It is easy to see that π1(X) = Mn (C)+.
Since we know for every A ∈ Mn (C)+, there exists a unitary UA such

that

U∗
AAUA = diag

(
sA

(
1
n

)
, . . . , sA

(n

n

))
.

Thus by Theorem 5, there exists an absolutely measurable function
g : Mn (C)+ −→ X such that π1◦g = id on Mn (C)+, for every A ∈ Mn (C)+,
g(A) = (A,UA). Then we define u = π2 ◦ g : Mn (C)+ −→ Un, it is absolutely
measurable.

Therefore, for every A ∈ Mn (C)+,

u (A) = UA and u (A)∗
Au (A) = diag

(
sA

(
1
n

)
, . . . , sA

(n

n

))
∈ Dn.

Hence, for every T ∈ Mn (C),

u (|T |)∗ |T |u (|T |) =

⎛

⎜
⎜
⎜
⎝

sT

(
1
n

)

sT

(
2
n

)

. . .
sT

(
n
n

)

⎞

⎟
⎟
⎟
⎠

.

�

2.3.3. Direct integrals. Suppose Ω ⊆ R is compact, μ is a probability Borel
measure, H is a separable Hilbert space. Define

∫ ⊕
Ω

Hdμ = L2 (μ,H) to be
the set of all measurable functions f : Ω → H such that

‖f‖2
2 =

def

∫

Ω

‖f (ω)‖2
dμ (ω) < ∞.

We define an inner product 〈·, ·〉 on L2 (μ,H) by

〈f, h〉 =
∫

Ω

〈f (ω) , h (ω)〉 dμ (ω) .

In this way L2 (μ,H) is a Hilbert space.
We define L∞ (μ,B (H)) to be the set of all bounded functions ϕ :

Ω → B (H) that are measurable with respect to the weak operator topol-
ogy (WOT) on B (H). Although the weak operator topology, strong operator
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topology (SOT) and ∗-strong operator topology (∗-SOT) on B (H) are differ-
ent, the Borel sets with respect to these topologies are all the same. Suppose
the map ω �→ Tω is in L∞ (μ,B (H)). We define an operator T =

∫ ⊕
Ω

Tωdμ (ω)
by

(Tf) (ω) = Tω (f (ω)) .

If ϕ ∈ L∞ (μ,B (H)) and Tω = ϕ (ω) for ω ∈ Ω, we also use the nota-
tion Mϕ to denote

∫ ⊕
Ω

Tωdμ (ω). In this way we can view L∞ (μ,B (H)) ⊆
B
(
L2 (μ,H)

)
, and we can write L∞ (μ,B (H)) =

∫ ⊕
Ω

B (H) dμ (ω) .
We have that L∞ (μ) can be viewed as the subalgebra D of L∞ (μ,B (H))

of all functions ϕ such that ϕ (ω) ∈ C · 1 a.e. (μ), that is, by identifying
h ∈ L∞ (μ) with the function ω �→ h (ω) 1. We denote D by

D =
∫ ⊕

Ω

C · 1dμ (ω) .

We have D′ = L∞ (μ,B (H)) and L∞ (μ,B (H))′ = D, therefore D =
Z (L∞ (μ,B (H))).

Suppose, for each ω ∈ Ω, Rω ⊂ B (H) is a von Neumann algebra. We
say that the family {Rω}ω∈Ω is a measurable family if there is a countable
set {ϕ1, ϕ2, . . .} ⊂ L∞ (μ,B (H)) such that

ball (Rω) = {ϕ1 (ω) , ϕ2 (ω) , . . .}−SOT a.e. (μ) .

It is known that if {Rω}ω∈Ω is a measurable family, then so is {R′
ω}ω∈Ω.

Moreover, if {R′
ω}ω∈Ω is a measurable family, then there is a sequence

{ψ1, ψ2, . . .} ⊂ L∞ (μ,B (H)) such that

ball (R′
ω) = {ψ1 (ω) , ψ2 (ω) , . . .}−SOT a.e. (μ) .

If {Rω}ω∈Ω is a measurable family, then we define the direct integral
∫ ⊕
Ω

Rωdμ (ω) to be the set of all T =
∫ ⊕
Ω

Tωdμ (ω) ∈ L∞ (μ,B (H)) such
that

Tω ∈ Rω a.e. (μ) .

It is known [16] that a von Neumann algebra R ⊂ B
(
L2 (μ,H)

)
can be

written as

R =
∫ ⊕

Ω

Rωdμ (ω)

for a measurable family {Rω}ω∈Ω if and only if

D =
∫ ⊕

Ω

C · 1dμ (ω) ⊂ R ⊂
∫ ⊕

Ω

B (H) dμ (ω) = D′,

equivalently,

D ⊂ Z (R) .

In particular, since Z (R) = Z (R′) = R∩R′ for every von Neumann algebra
R, we see that R can be decomposed as a direct integral if and only if R′

can be decomposed as a direct integral.
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Suppose 1 ≤ n ≤ ∞ = ℵ0. We define �2n to be the space of square
summable sequences with the inner product 〈x, y〉 =

∑n
i=1xiyi, where x, y ∈

H and H is a Hilbert space with dimension n.

Lemma 17. Suppose A is an abelian von Neumann algebra on a separable
Hilbert space H. Then there are compact subsets Ωn ⊂ R for 1 ≤ n ≤ ∞
and a Borel measure μn on Ωn such that μn (Ωn) ∈ {0, 1} and A is unitarily
equivalent to

∑⊕
1≤n≤∞ L∞ (μn, C · 1) acting on

∑⊕
1≤n≤∞ L2

(
μn, �2n

)
.

Suppose R is a von Neumann algebra acting on a separable Hilbert
space H. Then the center Z (R) of R is an abelian von Neumann algebra on
H. From Lemma 17 we can write

H =
⊕∑

1≤n≤∞
L2
(
μn, �2n

)

and

Z (R) =
⊕∑

1≤n≤∞
L∞ (μn, C · 1) .

Since R commutes with Z (R), we can write

R =
⊕∑

1≤n≤∞
Rn,

where Rn ⊂ B
(
L2
(
μn, �2n

))
. It is clear, for 1 ≤ n ≤ ∞, that

Z (Rn) = L∞ (μn, C · 1) ,

which implies

Rn ⊂ Z (Rn)′ = L∞ (μn, C · 1)′ = L∞ (
μn, B

(
�2n
))

.

Hence, for each n, 1 ≤ n ≤ ∞, there is a measurable family {Rn (ω)}ω∈Ωn

such that

Rn =
∫ ⊕

Ωn

Rn (ω) dμn (ω) .

We therefore have

R =
∑⊕

1≤n≤∞

∫ ⊕

Ωn

Rn (ω) dμn (ω) .

This is called the central decomposition of R.
The following Lemma is a well-known result [16].

Lemma 18. In the central decomposition of R, almost every Rn (ω) is a factor
von Neumann algebra.

The following lemma can be obtained from [5, Chapter 3 of Part II]; we
include a short proof.
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Lemma 19. Suppose An is a masa of a Rn for 1 ≤ n ≤ ∞, then there is a
measurable family {An (ω)}ω∈Ωn

such that

An =
∫ ⊕

Ωn

An (ω) dμn (ω) ,

where An (ω) is a masa in Rn (ω) .

Proof. Suppose

W =
(
B
(
l2n
))× A × B × C × E × N × N,

where A = B = C =
∞
Π

i=1
ball

(
B
(
l2n
))

and E =
{
x ∈ l2n : ‖x‖ = 1

}
. Then W

is a complete separable metric space with product topology.
Define Xm,k to be the set of elements (T, {Ai}∞

i=1 , {Bi}∞
i=1 , {Ci}∞

i=1 ,
e,m, k) in W satisfying

TAi = AiT , TBi = BiT , ‖(TCm − CmT ) e‖ ≥ 1
k

, for every i ∈ N.

Then Xm,k is a closed subset of W. We define X = ∪∞
m,k=1Xm,k, then X is a

Borel subset of W.
Let π2,3,4 : X →A × B × C be the projection map. Then π2,3,4 (X )

consists of elements ({Ai}∞
i=1 , {Bi}∞

i=1 , {Ci}∞
i=1) so that there exists T ∈

ball
(
B
(
l2n
))

such that

T ∈ {A1, A2, . . . }′ ∩ {B1, B2, . . . }′ and T /∈ {C1, C2, . . . }′
.

Suppose there are sequences {f1, f2, . . .}, {ψ1, ψ2, . . .} and {g1, g2, . . .} con-
tained in L∞ (

μn, B
(
l2n
))

such that

ballAn (ω) = {f1 (ω) , f2 (ω) , . . . }−SOT
,

ballRn (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT
,

ballAn (ω)′ = {g1 (ω) , g2 (ω) , . . . }−SOT
.

By Theorem 5, we know there exists an absolutely measurable function
Υ : π2,3,4 (X ) −→ X such that π2,3,4◦Υ is the identity function on π2,3,4 (X ) .

Define F : Ωn → A × B × C by

F (ω) = {fi (ω)}∞
i=1 × {ψi (ω)}∞

i=1 × {gi (ω)}∞
i=1 .

Let

G = F−1 (π2,3,4 (X )) ={
ω : there exists T ∈ B

(
l2n
)

with T (ω) ∈ An (ω)′ ∩ Rn (ω) , T (ω) /∈ An (ω)
}

.

We know from Lemma 15 and the completeness of (Ωn, μn) that G is measur-
able. We need to prove μn (Gc) = 0. Suppose not, and let π1 : X →B

(
l2n
)

be
the projection map (into the first coordinate). Then, by Lemma 15, π1◦Υ◦F |G
is a measurable function from G to B

(
l2n
)
. We define T by

T (ω) =
{

(π1 ◦ Υ ◦ F |G) (ω) if ω ∈ G
0 if ω /∈ G

.
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Thus

T =
∫ ⊕

G

T (ω) dμn (ω) ⊕
∫ ⊕

Ωn\G

0dμn (ω) ,

then T ∈ A′
n ∩ Rn and T /∈ An, which contradicts to the assumption that

An is a masa. Therefore μn (G) = 0 and

An =
∫ ⊕

Ωn

An (ω) dμn (ω) ,

An (ω) is a masa a.e.(μn). This completes the proof. �

2.3.4. Multiplicities for type In factors. A type I factor von Neumann al-
gebra is isomorphic to B (H) for some Hilbert space H. However, if m is a
cardinal, we can let H(m) denote a direct sum of m copies of H and, for each
T ∈ B (H) write T (m) be a direct sum of m copies of T acting on H(m),
and let B (H)(m) =

{
T (m) : T ∈ B (H)

}
. Clearly, B (H)(m) is isomorphic to

B (H). The number m is called the multiplicity of the factor B (H)(m) and
it is the minimal rank of a nonzero projection in B (H)(m). If we consider a
type I von Neumann algebra acting on a separable Hilbert space as a direct
integral of factors, we can change the factors so that they all have multi-
plicity 1. This gives another von Neumann algebra that is isomorphic to the
original one. Since we are interested in finite von Neumann algebras, the type
In algebras, with 1 ≤ n < ∞, can be written as direct integrals of copies of
Mn (C), i.e.,

∫ ⊕
Ωn

Mn (C) dμn (ω) acting on L2
(
μn, �2n

)
for some probability

space (Ωn, μn) where μn is a Borel measure on a compact subset Ωn of R. In
this case,

∫ ⊕
Ωn

Mn (C) dμn (ω) is naturally isomorphic to Mn (L∞ (μn)) acting

on L2 (μn)(n). When we write the type In part of a von Neumann algebra
this way, we have an isomorphic copy, but maybe not a unitarily equivalent
copy of the algebra, since we changed all of the multiplicities to be 1. Note
that the center Z

(∫ ⊕
Ωn

Mn (C) dμn (ω)
)

=
∫ ⊕
Ωn

C ·1μn (ω) acts on L2
(
μn, �2n

)
.

For example, if a von Neumann algebra is
∫ ⊕

E1
M2 (C) dη1 (ω) ⊕ ∫ ⊕

E2

M2 (C)(3) dη2 (ω), then it is isomorphic to
∫ ⊕
Ω

M2 (C) dμ (ω) where Ω is the
disjoint union of E1 and E2 and μ (A) = η1 (A ∩ E1) + η2 (A ∩ E2).

Thus in the central decomposition, we can assume, for each positive
integer n (i.e., 1 ≤ n < ∞), that

Rn =
∫ ⊕

Ωn

Rn (ω) dμn (ω) =
∫ ⊕

Ωn

Mn (C) dμn (ω) ,

and

Z (Rn) =
∫ ⊕

Ωn

C · 1dμn.

For 1 ≤ n < ∞ we have that the map is a normal faithful tracial state on
Rn.
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2.3.5. II1 von Neumann algebras. Once we have changed the multiplicities
of the type In parts of R, in the decomposition

R∞ =
∫ ⊕

Ω∞
R∞ (ω) dμ∞ (ω) ,

we have

Z (R∞) =
∫ ⊕

Ω∞
C · 1dμ∞ (ω) .

where each R∞ (ω) must be an infinite dimensional finite factor; this means
it must be a type II1 factor, and we can assume it acts on �2. In this case
making the multiplicity infinite can make things more convenient.

We let R(∞)
∞ =

{
T (∞) = T ⊕ T ⊕ · · · : T ∈ R∞

}
. Clearly, R(∞)

∞ is iso-
morphic to R∞, and we have

R(∞)
∞ =

∫ ⊕

Ω∞
R(∞)

∞ (ω) dμ∞ (ω)

acting on L2
(
μ∞,

(
�2
)(∞)

)
. The nice thing about R(∞)

∞ (ω) is that every

normal state ϕ on R(∞)
∞ (ω) can be written as

ϕ
(
T (∞)

)
=
〈
T (∞)e, e

〉

for some unit vector e ∈ (
�2
)(∞). Since

(
�2
)(∞) is isomorphic to �2 = �2∞,

we can, by replacing R∞ with R(∞)
∞ , assume that every normal state ϕ on

R∞ (ω) can be written as

ϕ (T ) = 〈Te, e〉
for some unit vector e. In particular, since R∞ (ω) is a II1 factor, there is
a unique normal tracial state τ∞,ω on R∞ (ω). Hence there is a unit vector
e (ω) ∈ �2∞ such that, for every T ∈ R∞ (ω),

τ∞,ω (T ) = 〈Te (ω) , e (ω)〉 .

Using the measurable cross-section theorem, Theorem 5, we can choose
e (ω) so that the map e : Ω∞ → �2∞ is absolutely measurable.

Lemma 20. Suppose R∞ is a type II1 von Neumann algebra with

R∞ =
∫ ⊕

Ω∞
R∞ (ω) dμ∞ (ω) .

Then there exists a map e ∈ L2
(
μ∞, �2∞

)
with ‖e (ω)‖ = 1 a.e., such that

for every T =
∫ ⊕
Ω∞

Tωdμ∞ (ω) ∈ R∞, 〈T∞,ωe (ω) , e (ω)〉 = τ∞,ω (Tω), where
τ∞,ω is the unique normal tracial state on R∞ (ω) .

Proof. Suppose

W = ball
(
B
(
l2∞
))×

∞
Π

i=1
ball

(
B
(
l2∞
))× E,

where E =
{
x ∈ l2∞ : ‖x‖ = 1

}
. Then W is a complete separable metric space

with product topology.
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Let X be the set of elements (T, {Ai}∞
i=1 , e) in W satisfying

TAi = AiT, 〈AiAje, e〉 = 〈AjAie, e〉 for every i, j ∈ N.

It is easy to verify that X is closed.

Let π2 : X →
∞
Π

i=1
ball

(
B
(
l2∞
))

, π3 : X →E be the projection maps. Then

π2 (X ) is the set of elements {Ai}∞
i=1 so that there exists T ∈ ball

(
B
(
l2∞
))

such that

T ∈ {A1, A2, . . . }′ ∩ {B1, B2, . . . }′ and 〈AiAje, e〉 = 〈AjAie, e〉 for all i, j ∈ N.

There is sequence {ψ1, ψ2, . . .} contained in L∞ (
μ∞, B

(
l2∞
))

such that

ballR∞ (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT

By Theorem 5, we know there exists an absolutely measurable function
Υ : π2 (X ) −→ X such that π2 ◦ Υ is the identity function on π2 (X ) .

Define F : Ω∞ → Π∞
i=1ball

(
B
(
l2∞
))

by

F (ω) = {ψi (ω)}∞
i=1 ,

which is measurable, thus, by Lemma 15, π3 ◦Υ ◦F is a measurable function
from Ω∞ to l2∞. We define e by

e (ω) = (π3 ◦ Υ ◦ F ) (ω) .

Thus e is a measurable function with e =
∫ ⊕
Ω∞

e (ω) dμ∞ (ω), that is e ∈
L2
(
μ∞, �2∞

)
and

‖e‖2
2 =

∫

Ω∞
‖e (ω)‖2

dμ∞ (ω) =
∫

Ω∞
1dμ∞ (ω) = μ∞ (Ω∞) = 1.

�

The map

τ∞ : R∞ → C

defined by

τ∞ (T ) = 〈Te, e〉 =
∫

Ω∞
〈Tωe (ω) , e (ω)〉 dμ∞ (ω) =

def

∫

Ω∞
τ∞,ω (Tω) dμ∞ (ω)

is a faithful normal trace on R∞. Since τ∞,ω is a faithful normal trace on
R∞ (ω) and the trace on a type II1 factor is unique, it follows that τ∞,ω is
the usual trace.

2.3.6. The center-valued trace. Suppose R is an arbitrary finite von Neu-
mann algebra, possibly not acting on a separable Hilbert space. There is (see
[23]) a unique map ΦR : R → Z (R) satisfying
(1) ΦR is linear and completely positive,
(2) ΦR (1) = 1,
(3) ΦR (AB) = ΦR (BA) for all A,B ∈ R,
(4) ΦR is weak*-weak* continuous, and
(5) ΦR (ATB) = AΦR (T )B for all T ∈ R and all A,B ∈ Z (R).
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The map ΦR is called the center-valued trace on R.
When R acts on a separable Hilbert space, we have

R =
∑⊕

1≤n≤∞ Rn,

we have

Z (R) =
∑⊕

1≤n≤∞ Z (Rn) ,

and we have

ΦR =
∑⊕

1≤n≤∞ ΦRn
.

We can write each ΦRn
explicitly in terms of the central decomposition, i.e.,

ΦRn
(T ) =

∫ ⊕

Ωn

τn (Tω) · 1dμn (ω)

when 1 ≤ n < ∞, and

ΦR∞ (T ) =
∫ ⊕

Ω∞
τω (Tω) · 1dμ∞ (ω) .

It is clear that these maps satisfy the defining properties (1)-(5) and the
uniqueness tells us that these formulas are correct.

2.3.7. Two simple relations. Suppose 1 ≤ n ≤ ∞. There is a normal ∗-
isomorphism γn : L∞ (μn) → Z (Rn) defined by

γn (f) =
∫ ⊕

Ωn

f (ω) · 1dμn (ω) .

Recall ρn : Rn → C is defined by

ρn (T ) =
∫

Ωn

τn,ω (Tω) dμn (ω) .

The map f �→ ∫
Ωn

fdμn is a state on L∞ (μn). The simple relation between
this state and the ∗-isomorphism γn and the state ρn is given by

(ρn ◦ γn) (f) =
∫

Ωn

fdμn

for every f ∈ L∞ (μn).
Another simple relationship between ρn and ΦRn

is

ρn = ρn ◦ ΦRn
.
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2.3.8. Putting things together. We let Ω be the disjoint union of {Ωn : 1 ≤ n
≤ ∞}, which can be represented as a Borel subset of R. We define a proba-
bility Borel measure μ on Ω by

μ (E) =
1
2
μ∞ (E ∩ Ω∞) +

∞∑

n=1

1
2n+1

μn (E ∩ Ωn) .

Then the von Neumann algebra L∞ (μ) can be written as

L∞ (μ) = L∞ (μ∞) ⊕
∑⊕

1≤n≤∞ L∞ (μn)

We define an isomorphism

γ : L∞ (μ) → Z (R) ,

by

γ (f∞ ⊕ f1 ⊕ f2 ⊕ · · · ) = γ∞ (f∞) ⊕ γ1 (f1) ⊕ γ2 (f2) · · · .
We can define a faithful normal tracial state ρ : R → C by

ρ
(∑⊕

1≤n≤∞ Tn

)
=

1
2
ρ∞ (T∞) +

∑

1≤n<∞

1
2n+1

ρn (Tn) .

We have
1. ρ = ρ ◦ ΦR,
2. (ρ ◦ γ) (f) =

∫
Ω

fdμ for every f ∈ L∞ (μ) , and, as we stated above,
3. ΦR (T ) =

∑⊕
1≤n≤∞ ΦRn

(Tn)

=
[∑⊕

1≤n<∞
∫ ⊕
Ωn

τn (Tn (ω)) · 1dμn (ω)
]

⊕ ∫ ⊕
Ω∞

τω (T∞ (ω)) · 1dμ∞ (ω) .

3. MASAS in finite von Neumann algebras

A masa in a C*-algebra is a maximal abelian selfadjoint subalgebra. In
B (H) where H is a separable infinite-dimensional Hilbert space there are
many different masas. For example, the set of all diagonal operators with re-
spect to some fixed orthonormal basis is a discrete masa. On the other hand
L∞ [0, 1] = L∞ (δ∞) acting as multiplications on L2 [0, 1] with Lebesgue mea-
sure is also a masa that is not isomorphic to the diagonal masa, since it is
diffuse (i.e., has no minimal nonzero projections). It was show by A. Sinclair
and R. Smith [22] that in a finite von Neumann algebra acting on a separa-
ble Hilbert space all masas are isomorphic. We will prove that all masas are
isomorphic in a very special way.

Theorem 6. Suppose A is a masa in a finite von Neumann algebra R. Then
there is an tracial embedding πA : L∞ (λ) → A such that the following dia-
gram commutes

L∞ (λ) πA→ A
↓ η ↓ ΦR

L∞ (μ)
γ→ Z (R)

Moreover, if B is another masa in R, then B is isomorphic to A. In fact, πA
and πB are approximately equivalent in R.
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We first need to prove this theorem when R is a finite factor. When R
is a type In factor, i.e., R = Mn (C), the result is obvious.

Lemma 21. Suppose A ⊂ Mn (C) is a masa. Then there exists a unitary
U ∈ U (Mn (C)) such that UAU∗ = Dn, the n×n complex diagonal matrices.
Hence there is a *-isomorphism πA : L∞ (δn) → A such that, for every
f ∈ L∞ (δn), which is isometrically isomorphic to C

n.

τn (πA (f)) =
∫

Jn

fdδn.

When R is a type II1 factor the result is well-known [22].

Lemma 22. Suppose M is a type II1 factor von Neumann algebra acting on
a separable Hilbert space with a (unique) faithful normal tracial state τ , and
suppose A is a masa in M. Then there is an isomorphism πA : L∞ (δ∞) → A
such that, for every f ∈ L∞ (δ∞),

τ (πA (f)) =
∫ 1

0

f (t) dδ∞ (t) .

Corollary 5. Suppose A is an abelian von Neumann algebra on a separable
Hilbert space with a faithful (tracial) state τ . The following are equivalent:

(1) There is a tracial embedding π : L∞ (δ∞) → A such that, for every
f ∈ L∞ (δ∞),

τ (π (f)) =
∫ 1

0

f (t) dδ∞ (t) .

(2) There is a T ∈ A such that
(a) W ∗ (T ) = A
(b) T = T ∗

(c) τ (Tn) = 1
n+1 for n ∈ N

Moreover, if (2) holds, then 0 ≤ T ≤ 1, then the map

π (f) = f (T )

is the required map in (1) .

Proof. (1) ⇒ (2). Suppose π exists as in (1). Define f (t) = t in L∞ (δ∞) and
let T = π (f) . Then 0 ≤ T ≤ 1,

A = π (L∞ (δ∞)) = π (W ∗ (f)) = W ∗ (π (f)) = W ∗ (T ) ,

and, for each n ∈ N,

τ (Tn) = τ (π (fn)) =
∫ 1

0

tndt =
1

n + 1
.

(2) ⇒ (1). Define the state ρ : L∞ (δ∞) → C by

ρ (f) =
∫ 1

0

f (t) dδ∞ (t) .

Letting f ∈ L∞ (δ∞) be as above, we have τ (Tn) = ρ (fn) = 1
n+1 for each

n ∈ N. It follows from Lemma 1 in [6] that there is a normal (i.e., weak*-weak*
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continuous) ∗-isomorphism π : L∞ (δ∞) → A such that π (f) = T and such
that τ ◦π = ρ. It is clear that, for any polynomial p (t), π (p) = p (T ). Suppose
f ∈ L∞ (δ∞). By changing f on a set of measure 0, we can assume that f is
Borel measurable. Then there is a sequence
{pn} of polynomials such that pn → f weak*. Thus

f (T ) = (weak*) lim
n→∞ pn (T ) = (weak*) lim

n→∞ π (pn) = π (f) .

�

From this Lemma, we can see that π (f) = f (T ) and τ (Tn) =τ (πA (xn))
=
∫ 1

0
xndδ∞ = 1

n+1 for n = 1, 2, · · · . Let CQ = Q + iQ denote the set of all
complex numbers z such that Re (z) and Im (z) are rational. Since the set
CQ[z] of all polynomials with coefficients in CQ is countable, we can write

CQ[z] = {p1, p2, . . .} .

Lemma 23. Suppose A = A∗ ∈ B (H). It follows that

W ∗ (A) = {p1 (A) , p2 (A) , · · · }−WOT

Lemma 24. Suppose A∞ is a masa of R∞. Then there exists an opera-
tor T =

∫ ⊕
Ω∞

Tωdμ∞ (ω) such that W ∗ (Tω) = A∞ (ω), and τω,∞ (Tn
ω ) =

〈Tn
ω e (ω) , e (ω)〉 = 1

n+1 for n ≥ 1, A∞ = W ∗ (T ) .

Proof. Let

Y =B
(
l2∞
)×

∞
Π

i=1
ball

(
B
(
l2∞
))×

∞
Π

i=1
ball

(
B
(
l2∞
))×

∞
Π

i=1
ball

(
B
(
l2∞
))× E,

where E =
{
x ∈ l2∞ : ‖x‖ = 1

}
. It is clear that Y is a complete separable

metric space with product topology. Let X be the set of tuples

(S, {Ai}∞
i=1 , {Bi}∞

i=1 , {Ci}∞
i=1 , x) ∈ Y

satisfying

SAi = AiS, SBi = BiS, 〈Snx, x〉 =
1

n + 1
for n ≥ 1.

From Lemma 23, we know there exists a sequence {pn} of polynomials such
that W ∗ (S) = W ∗ (p1 (T ) , p2 (T ) , . . .) . Define Wi,k,n to be the subset of X
satisfying

S = S∗, d (Ai, pn (S)) ≥ 1
k

for n ≥ 1.

Let Wi,k =
⋂∞

n=1Wi,k,n and W =
⋂∞

i=1

⋂∞
k=1Wi,k, then W is a subset

of X satisfying

Ai /∈ W ∗ (p1 (T ) , p2 (T ) , · · · ) , for i ≥ 1.

Then X\W =
⋂∞

i=1

⋂∞
i=1X\Wi,k is a subset of X satisfying

W ∗ (A1, A2, · · · ) ⊆ W ∗ (p1 (T ) , p2 (T ) , · · · ) ,

which is a Gδ set. By [3], there exists an equivalent metric on X\W that
makes X\W a complete separable metric space. If π2,3,4 is the projection
map into the second, third, fourth coordinates, then there exists an absolute
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measurable function Υ : π2,3,4 (X ) → X such that π2,3,4 ◦ Υ is the identity
on π2,3,4 (X ) .

Suppose there are sequences {f1, f2, · · · } , {ψ1, ψ2, · · · } , {ϕ1, ϕ2, · · · }
contained in L∞ (

μ∞, B
(
l2∞
))

such that, for almost every ω,

ballA∞ (ω) = {f1 (ω) , f2 (ω) , . . . }−SOT
,

ballR∞ (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT
,

ballR∞ (ω) = {ϕ1 (ω) , ϕ2 (ω) , . . . }−SOT
.

Define F : Ω∞ → Π∞
i=1ball

(
B
(
l2∞
))×Π∞

i=1ball
(
B
(
l2∞
))×Π∞

i=1ball
(
B
(
l2∞
))

by

F (ω) = {fi (ω)}∞
i=1 × {ψi (ω)}∞

i=1 × {ϕi (ω)}∞
i=1 .

Clearly F is measurable. Thus, by Lemma 15, if π1 is the projection from
X\W into its first coordinate, then T = π1 ◦ Υ ◦ F : ω �−→ Tω is the de-
sired measurable function from Ω∞ to B

(
l2∞
)

such that ball (A∞ (ω)) = W ∗

(Tω). �

Lemma 25. Suppose An is a masa of Rn for every 1 ≤ n ≤ ∞. Then there is
an isomorphism πAn

: L∞ (Ωn × Jn, μn × δn) → An =
∫ ⊕
Ωn

An (ω) dμn (ω).

Proof. Suppose 1 ≤ n < ∞. We know that Rn is isomorphic to
∫ ⊕
Ωn

Mn (C)
dμn (ω) , so if An is a masa in Rn, then An =

∫ ⊕
Ωn

An (ω) dμn (ω) where each
An (ω) is a masa in Mn (C). There is a unitary operator Uω ∈ Mn (C) such
that An (ω) = U∗

ωDn (C) Uω. An easy measurable cross-section proof allows
us to choose the Uω’s measurably. However, Dn is isomorphic to L∞ (Jn, δn) .
Define

πAn
: L∞ (Ωn × Jn) →

∫ ⊕

Ωn

L∞ (δn) dμn (ω)

by

πAn
(f) =

∫ ⊕

Ωn

U∗
ω

⎛

⎜
⎝

f
(
ω, 1

n

)

. . .
f
(
ω, n

n

)

⎞

⎟
⎠Uωdμn (ω) .

Now suppose n = ∞. We choose {Tω} as in Lemma 24, and we define

πA∞ (f) =
∫ ⊕

Ω∞
fω (Tω) dμ∞ (ω) ,

where fω (t) = f (ω, t). �

Suppose now that R is a finite von Neumann algebra acting on a sepa-
rable Hilbert space H,

R = [R1 ⊕ R2 ⊕ · · · ] ⊕ R∞.

For 1 ≤ n < ∞, Rn is a type In von Neumann algebra acting on Hn, R∞ is
a type II1 von Neumann algebra acting on H∞,

H= [H1 ⊕ H2 ⊕ · · · ] ⊕ H∞.
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If A is a masa in R, then, we can write

A = [A1 ⊕ A2 ⊕ · · · ] ⊕ A∞,

where, for 1 ≤ n ≤ ∞, An is a masa in Rn. Clearly, since An is a masa in
Rn, we know that Dn = Z (Rn) ⊆ An ⊆ Rn ⊆ L∞ (μn, B (Hn)). It follows
from Lemma 19 that there is a measurable family {An (ω) : ω ∈ Ωn} of von
Neumann algebras such that

An =
∫ ⊕

Ωn

An (ω) dμn (ω) .

If 1 ≤ n < ∞, then almost every An (ω) must be a masa in Mn (C). If n = ∞,
then almost every An (ω) must be a masa in the II1 factor R∞ (ω). Since
throwing away a set of measure 0 from Ωn doesn’t change anything, we can
assume that, when 1 ≤ n < ∞ every An (ω) is a masa in Mn (C), and when
n = ∞, every A∞ (ω) is a masa in R∞ (ω).

If 1 ≤ n ≤ ∞, then each An (ω) is isomorphic to L∞ (δn) (see Lemmas
21 and 22). And

∫ ⊕
Ωn

An (ω) dμn (ω) is isomorphic to
∫ ⊕
Ωn

L∞ (δn) dμn (ω),
which is isomorphic to L∞ (Ωn × Jn, μn × δn). The isomorphism sends a func-
tion f (ω, t) ∈ L∞ (Ωn × Jn, μn × δn) to

∫ ⊕
Ωn

fω (t) dμn (ω), where fω (t) =
f (ω, t).

For each n, 1 ≤ n ≤ ∞, we define Λn = Ωn × Jn and we define λn =
μn × δn. We let Λ denote the disjoint union of the Λn’s for 1 ≤ n ≤ ∞, and
we can choose Λ to be a Borel subset of R, and we define a probability Borel
measure λ on Λ by

λ (F ) =
1
2
λ∞ (F ∩ Λ∞) +

∞∑

n=1

1
2n

λn (F ∩ Λn) .

We then have

L∞ (λ) = L∞ (λ∞) ⊕ Π
1≤n<∞

L∞ (λn) .

For each n, 1 ≤ n ≤ ∞, there is a mapping

ηn : L∞ (λn) = L∞ (μn × δn) → L∞ (μn) ,

defined by

ηn (f) (ω) =
∫ ⊕

Jn

f (ω, t) dδn (t) .

We define η : L∞ (λ) → L∞ (μ) by

η (f) = η (f∞ ⊕ f1 ⊕ f2 ⊕ · · · ) = η∞ (f∞) ⊕ η1 (f1) ⊕ η2 (f2) ⊕ · · · .
Lemma 26. For 1 ≤ n ≤ ∞, if An is a masa in Rn, then there exists a tracial
embedding πAn

: L∞ (λn) = L∞ (μn × δn) → An such that the following
diagram commutes

L∞ (λn)
πAn→ An

↓ ηn ↓ Φn

L∞ (μn)
γn→ Z (Rn)

.

Φn ◦ πAn
= γn ◦ ηn.
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where

γn (f) =
∫ ⊕

Ωn

f (ω) Idμn (ω) ,

ηn (f) (ω, t) =
∫

Jn

f (ω, t) dδn (t) and,

Φn

(∫ ⊕

Ωn

T (ω) dμn (ω)
)

=
∫ ⊕

Ωn

τω,n (T (ω)) Idμn (ω) .

Moreover, if Bn is a masa in Rn, and there is a tracial embedding πBn
:

L∞ (λn) → Bn such that Φn ◦ πBn
= γn ◦ ηn, then,

if 1 ≤ n < ∞, then there exists a unitary U ∈ U (Rn) such that

UπAn
(L∞ (λn)) U∗ = πBn

(L∞ (λn)) ,

if n = ∞, then πAn
is approximately equivalent to πBn

in Rn.

Proof. For 1 ≤ n < ∞, we have

γn ◦ ηn (f) (ω) = γn

(
1
n

n∑

k=1

f

(
ω,

k

n

))

I =
1
n

n∑

k=1

∫ ⊕

Ωn

f

(
ω,

k

n

)
Idμn (ω) ,

and

Φn (πAn
(f)) = Φn

⎛

⎜
⎝
∫ ⊕

Ωn

U∗
ω

⎛

⎜
⎝

f
(
ω, 1

n

)

. . .
f
(
ω, n

n

)

⎞

⎟
⎠Uωdμn (ω)

⎞

⎟
⎠

=
∫ ⊕

Ωn

τn

⎛

⎜
⎝U∗

ω

⎛

⎜
⎝

f
(
ω, 1

n

)

. . .
f
(
ω, n

n

)

⎞

⎟
⎠Uω

⎞

⎟
⎠ dμn (ω)

=
∫ ⊕

Ωn

1
n

n∑

k=1

f

(
ω,

k

n

)
Idμn (ω) .

Thus the diagram commutes. For n = ∞, by Lemma 24, we know there
exists an operator T =

∫ ⊕
Ω∞

Tωdμ∞ (ω) such that Tω generates A∞ (ω) in
weak operator topology with 0 ≤ Tω ≤ 1 and τω,∞ (Tn

ω ) = 1
n+1 for n ≥

1. The map πA∞ : L∞ (δ∞) → W ∗ (T ) = A∞ is defined by πA∞ (f) =
∫ ⊕
Ω∞

fω (Tω) dμ∞ (ω) . Thus γ∞◦η∞ (f) (ω) =
[∫

Jn
f (ω, t) dδn (t)

]
I and Φ∞◦

πA∞ (f) (ω) = τω,∞ (fω (Tω)) I =
[∫

Jn
f (ω, t) dδn (t)

]
I. Therefore the dia-

gram commutes. �
Combining all of these results we obtain Theorem 6.
And we also have the following corollary.

Corollary 6. If A and B are masas in R, then the tracial embeddings πA, πB
are approximately unitarily equivalent in R.

Proof. If A and B are masas in R, then there are tracial embeddings πA and
πB as in Theorem 6. Thus Φ ◦ πA = Φ ◦ πB. By Theorem 4, we have πA and
πB are approximately unitarily equivalent in R. �
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4. Measure-preserving transformations

4.1. Basic facts

A Borel measurable map σ : [0, 1] → [0, 1] is measure-preserving if and only
if, for every Borel set E ⊆ [0, 1],

δ∞
(
σ−1 (E)

)
= δ∞ (E) .

We say that σ : [0, 1] → [0, 1] is an invertible measure-preserving map if there
are measure-preserving measurable maps σ1, σ2 : [0, 1] → [0, 1] such that

(σ ◦ σ1) (x) = x and (σ2 ◦ σ) (x) = x, almost everywhere (δ∞) .

In this case, let E = {y ∈ J∞ : σ ◦ σ1 (y) �= y or σ2 ◦ σ (y) �= y} and let S
be the semigroup generated by σ, σ1, σ2, id[0,1]. Then S is countable, thus

denoted by S = {σ̂n : n ∈ N}. Suppose F =
(

∪
n∈N

σ̂n (E)
)

∪
(

∪
n∈N

σ̂−1
n (E)

)
,

it follows that δ∞ (F ) = 0. and σ (F ) = σ1 (F ) = σ2 (F ) = F. Therefore, on
J∞\F, the maps σ, σ1, σ2 : J∞\F → J∞\F are bijective, also σ ◦σ1 = σ2 ◦σ.
Define σ̃ on J∞ by

σ̃ (y) =
{

σ (y)
y

y ∈ J∞/F
y ∈ F

Then σ̃, σ̃−1 are bijective, measurable, and σ̃ = σ a.e.(δ∞) . We can change
σ and σ1, σ2 on sets of measure 0 so that σ : J∞ → J∞ is bijective and
σ1 = σ2 = σ−1 a.e.(δ∞). In the following sections, whenever we talk about
an invertible measure-preserving transformation σ on J∞, we will mean a
bijective map σ : J∞ → J∞ such that σ and σ−1 are measurable and measure-
preserving.
Let MP [0, 1] =

{σ|σ : [0, 1] → [0, 1] is an invertible measurable preserving transformation} .

Clearly (MP [0, 1] , ◦) is a group.
Let V be all unitaries U in U (B (L2 ([0, 1])

))
with U (1) = 1, and for

all f, g ∈ L∞ [0, 1], U (fg) = U (f) U (g) .

Lemma 27. V is ∗-SOT closed.

Proof. Suppose {Un} ⊆ V, and Un
SOT→ U , U∗

n
SOT→ U∗. It is easy to see

U∗U = UU∗ = 1 and U (1) = 1. And we know that Un
SOT→ U if and only if

sp
{

f ∈ L2 [0, 1] : ‖Unf − Uf‖2
2 → 0

}
= L2 [0, 1] .

Thus there exists a subsequence {Unk
} such that for all f, g ∈ L∞ [0, 1] ,

Ufg = limk→∞Unk
(fg) = limk→∞ (Unk

f) (Unk
g) = UfUg, thus

U ∈ V. �

Corollary 7. V is a complete separable, metric space in the ∗-SOT.

Proof. Since V is a ∗-SOT closed subset of U (B (L2 [0, 1]
))

and
U (B (L2 [0, 1]

))
is a complete separable metric space. It follows that V is

a complete separable metric space. �
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Lemma 28. There exists a group isomorphism σ → Uσ from MP [0, 1] onto
V.

Proof. If σ ∈ MP [0, 1] , define Uσ : L2 [0, 1] → L2 [0, 1] by Uσf = f ◦ σ−1.
Since, for every f ∈ L2 [0, 1] ,

‖Uσf‖2
2 =

∫

Y

(
f ◦ σ−1

)2
dδ∞ =

∫

Y

|f |2 ◦ σ−1dδ∞ =
∫

Y

|f |2 dδ∞ = ‖f‖2
2 ,

Uσ is an isometry. Since Uσ−1 = U−1
σ , Uσ is unitary. Also Uσ (fg) = (fg)◦σ =

(f ◦ σ) (g ◦ σ) = (Uσf) (Uσg) when f, g ∈ L∞ [0, 1] . Thus Uσ ∈ V.
To prove that the map σ → Uσ is onto, we suppose U ∈ V. Define x ∈

L2 [0, 1] by x (t) = t, and define γ = U (x). We will show that γ ∈ MP [0, 1].
Then U (xn) = γn for all n ≥ 1. Thus

‖γ‖∞ = lim ‖γ‖2n = lim
[∥∥
∥γ2n−1

∥
∥
∥

2

]1/2n−1

= lim
[∥∥
∥Ux2n−1

∥
∥
∥

2

]

=
[∥∥
∥x2n−1

∥
∥
∥

2

]1/2n−1

= ‖x‖∞ = 1.

Also if γ = u + iv, then

4
∫

v2dδ∞ =
∫

‖γ − γ̄‖2
2 dδ∞ = ‖γ‖2 + ‖γ̄‖2

2 − 2Re 〈γ, γ̄〉

= 2 ‖γ‖2
2 − 2

〈
γ2, 1

〉
= 2 ‖x‖2

2 − 2
∫

x2dδ∞ = 0.

Thus γ = γ̄. Since
∫ 1

0

γndδ∞ =
∫ 1

0

xndδ∞ =
1

n + 1

for each n ≥ 1. It follows from Corollary 5, using τ (f) =
∫ 1

0
fdδ∞, that

0 ≤ γ ≤ 1. And the map π (f) = f ◦ γ is a weak*-continuous automorphism
on L∞ ([0, 1]) such that, for every f ∈ L∞ [0, 1] ,

∫ 1

0

fdδ∞ = τ (π (f)) =
∫ 1

0

f ◦ γdδ∞.

Thus

δ∞
(
γ−1 (E)

)
=
∫ 1

0

χE ◦ γdδ∞ = δ∞ (E) .

Hence γ is a measure-preserving transformation on [0, 1]. Furthermore, Uγf =
f ◦ γ is an isometry on L2 ([0, 1]) and equals U on the dense subset of poly-
nomials. Thus U = Uγ . Since Uγ is unitary, γ ∈ MP [0, 1].

Since V is closed in the ∗-strong operator topology (∗-SOT), and the
closed unit ball of B

(
L2 [0, 1]

)
is a ∗-SOT complete metric space, we know

that MP [0, 1] is a complete separable metric space with the topology γn → γ
if and only if Uγn

→ Uγ in the ∗-SOT. On MP [0, 1] this topology is called
the weak topology. [14] The metric for the unit ball of B

(
L2 [0, 1]

)
is rather

complicated.
For MP [0, 1] we have a simpler metric. �
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Lemma 29. MP [0, 1] is a complete separable metric space with the metric d
on MP [0, 1] defined by

d (γ1, γ2) = ‖γ1 − γ2‖2 +
∥
∥γ−1

1 − γ−1
2

∥
∥

2

Proof. Suppose d (γn, r) → 0, then ‖γn − γ‖2 → 0 and
∥
∥γ−1

n − γ−1
∥
∥

2
→ 0.

Thus∥
∥γk

n − γk
∥
∥

2
→ 0 and

∥
∥
∥
(
γ−1

n

)k − (γ−1
)k∥∥
∥

2
→ 0 for every k ≥ 0. Thus

∥
∥Uγn

xk − Uγxk
∥
∥

2
→ 0 which implies Uγn

→ U in SOT and U∗
γn

= Uγ−1
n

→
Uγ−1 = U∗

γ in SOT. The converse is obvious. To prove completeness, a similar
argument to the one above shows that if {γn} is d-Cauchy, then {Uγn

} is ∗-
SOT Cauchy, so there is a γ ∈ MP [0, 1] such that Uγn

→ Uγ in the ∗-SOT.
Hence γn → γ in d. �

We now turn to our measure space (Λ, λ). We want to describe a sub-
group G (R) of MP (Λ, λ).

Definition 6. Suppose σ ∈ MP (Λn, λn). Then σ ∈ Gn (R) if and only if, for
every measurable E ⊂ Ωn,

σ (E × Jn) ⊂ E × Jn, a.e.,

i.e.,

λn (σ (E × Jn) \ (E × Jn)) = 0.

Since it is known that

σ ((Ωn\E) × Jn) ⊂ (Ωn\E) × Jn, a.e.,

it follows that

σ (E × Jn) = E × Jn, a.e..

This implies that σ−1 ∈ Gn (R). Clearly, Gn (R) is a subgroup of MP (Λn, γn).

Definition 7. We define G (R) to be all σ ∈ MP (Λ, λ) such that, for 1 ≤ n ≤
∞, σ (Λn) = Λn and σ|Λn

∈ Gn (R). We see that we can view

G (R) = Π
1≤n≤∞

Gn (R) ,

as a product space.

We can express the following lemma as:

G (R) =
⊕∑

1≤n≤∞

∫ ⊕

Ωn

MP (Jn, δn) dμn (ω) ⊂ MP (Λ, λ) .

In other words, every element of G (R) is a direct integral of invertible mea-
sure preserving transformations.

Lemma 30. Suppose σ ∈ Gn, 1 ≤ n ≤ ∞. Then there is a measurable family
{σω : ω ∈ Ωn} in MP (Jn, δn) such that, for every f ∈ L∞ (Λn, )

(f ◦ σ) (ω, t) = f (ω, σω (t)) .
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We write this as

σ =
∫ ⊕

Ωn

σωdμn (ω) .

Proof. We can view L2 (Λn, λn) = L2 (Ωn × Jn, μn × δn) as
∫ ⊕

Ωn

L2 (Jn, δn) dμn (ω)

by identifying f ∈ L2 (Ωn × Jn, μn × δn) with
∫ ⊕

Ωn

fωdμn (ω) ,

where fω (t) = f (ω, t) . Fubini’s theorem shows that this is an isomorphism,
i.e.,

‖f‖2
2 =

∫

Ωn×Jn

|f (ω, t)|2 d (μn × δn) =

∫

Ωn

∫

Jn

|fω|2 dδn (t) =

∫

Ωn

‖fω‖2 dμn (ω) .

Clearly, U (f) = f ◦ σ is a unitary operator on L2 (Λn, λn). Suppose E ⊂ Ωn

is measurable. Then

PE =
def

∫ ⊕

Ωn

χE (ω) 1dμ (ω) ∈
∫ ⊕

Ωn

B
(
L2 (Jn, δn)

)
dμn (ω) ,

and the definition of σ−1 ∈ Gn (R) implies that PEU = UPE . Since the linear
span of {χE : E ⊂ Ωn, E measurable} is dense in L∞ (Ωn, μn) , we see that
U is in the commutant of

{∫ ⊕

Ωn

ϕ (ω) 1dμn (ω) : ϕ ∈ L∞ (Ωn, μn)
}

.

Thus there is a measurable family {Uω : ω ∈ Ωn} of unitary operators in
B
(
L2 (Jn, δn)

)
such that

U =
∫ ⊕

Ωn

Uωdμ (ω) .

If h ∈ L2 (Jn, δn) , we define ĥ ∈ L2 (Ωn × Jn, μn × δn) by

ĥ (ω, t) = h (t) ,

i.e.,

ĥ =
∫ ⊕

Ωn

hdμn (ω) .

If h, k ∈ L∞ (Jn, δn), then U
(
ĥk̂
)

= U
(
ĥ
)

U
(
k̂
)

, so, for almost every
ω ∈ Ωn,

Uω (hk) = Uω (h) Uω (k) .

Since L2 (Jn, δn) is separable, there is a countable set E whose closure in ‖·‖2

is

{h ∈ L∞ (Jn, δn) : ‖h‖∞ ≤ 1}
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(which is ‖·‖2-closed). We now have for almost every ω ∈ Ωn and h, k ∈ E ,

Uω (hk) = Uω (h) Uω (k) .

We can change Uω on a set of measure 0 and assume that the above relation
holds for all ω ∈ Ωn. Suppose h, g ∈ L∞ (Jn, δn) and ‖h‖∞ , ‖g‖∞ ≤ 1
and suppose ω ∈ Ωn. We can choose sequences {hk} and {gk} in E such
that ‖hk − h‖2 → 0 and ‖gk − g‖2 → 0. By replacing these sequences with
appropriate subsequences, we can assume that hk (t) → h (t) , (Uωhk) (t) →
(Uωh) (t), gk (t) → g (t) , (Uωgk) (t) → (Uωg) (t) a.e. (δn). It follows that
‖hkgk − hg‖2 → 0. Thus

Uω (hg) (t) = lim
k→∞

Uω (hkgk) (t) = lim
k→∞

(Uωhk) (t) (Uωgk) (t)

= (Uωh) (t) (Uωg) (t) .

It follows from Lemma 28 that, for each ω ∈ Ωn, there is a (unique) σω ∈
MP (Jn, δn) such that, for every h ∈ L2 (Jn, δn),

Uωh = h ◦ σω.

Our measurable cross-section theorems can be used to show that there is
a measurable choice of the σω’s, but the uniqueness implies that the map
ω �→ σω is already measurable on Ωn. �

4.2. Nonincreasing rearrangement functions, s-functions, and Ky Fan func-
tions

Theorem 7. Suppose f : Λ → [0,∞) is measurable. Then there is a σ ∈ G (R)
such that, for 1 ≤ n ≤ ∞, the mapping t �→ (f ◦ σ) (ω, t) is nonincreasing on
Jn a.e. (μn).

Proof. Choose R > ‖f‖∞. Suppose 1 ≤ n ≤ ∞. Let

X = {(h, σ) ∈ L∞ (δn) × MP (Jn) : 0 ≤ h ≤ R, h ◦ σ is nonincreasing on Jn} ,

where {f : 0 ≤ f ≤ R} is given the ‖·‖2,δn
-topology, MP (Jn) is given the

weak topology, and L∞ (δn) × MP (Jn) is given the product topology. (Note
that if n < ∞, MP (Jn) corresponds to the set of n×n permutation matrices
and has the discrete topology.) Since ‖·‖2 convergence implies subsequential
convergence almost everywhere, it follows that X is a complete separable
metric space. Since every measurable h has a nonincreasing rearrangement,
the map

π1 : X → {h : 0 ≤ h ≤ R}
is onto, so, by Lemma 5, there is an absolutely measurable cross-section
γn : Y → X for π1. Let ηn = π2 ◦ γn : Y → MP (Jn).

We now define sn : Ωn → MP (Jn) by

sn (ω) = ηn (fω) ∈ MP (Jn) .

It is clear from the construction that that fω ◦ sn (ω) is a nonincreasing
function of t, i.e., f (ω, sn (ω) (t)) is a nonincreasing function of t for each
ω ∈ Ωn.



490 H. Fan and D. Hadwin

We define

σn (ω, t) = (ω, sn (ω) (t)) .

Then σ = {σn}1≤n≤∞ ∈ G (R) has the desired properties. �

Note that the function σ is not necessarily unique, but the function f ◦σ
is unique. It is called the nonincreasing rearrangement function for f , and
we denote it by sf . If f and h are nonnegative measurable functions on Λ,
we say that f and h are G (R)-equivalent if and only if sf = sh a.e. (λ). This
holds if and only if there is a σ1 ∈ G (R) such that h = f ◦ σ1.

For each ω ∈ Ωn and t ∈ Jn, sf (ω, t) is call the tth s-number of f at
ω.

Definition 8. Suppose T ∈ R. We can write T =
∑

1≤n≤∞
∫ ⊕
Ωn

T (ω) dμn (ω).
We define sT ∈ L∞ (Λ, λ) by

sT (ω, t) = sT (ω) (t)

when 1 ≤ n ≤ ∞, ω ∈ Ωn and t ∈ Jn.

Definition 9. Suppose f ∈ L∞ (Λ, λ) and 0 ≤ f . For each 1 ≤ n ≤ ∞, and
each ω ∈ Ωn, we define fω ∈ L∞ (Jn, δn) by

fω (t) = f (ω, t) .

We view

f =
⊕∑

1≤n≤∞

∫ ⊕

Ωn

fωdμn (ω) .

We then define sf ∈ L∞ (Λ, λ) by

sf (ω, t) = sfω
(t) .

Lemma 31. Suppose 0 ≤ f ∈ L∞ (Λ, λ). Then there is a σ ∈ G such that,
f ◦ σ = sf .

Proof. For 1 ≤ n ≤ ∞, the map ω �→ fω from Ωn to L∞ (Jn, δn) is measur-
able. For each ω ∈ Ωn, there is a σω ∈ MP (Jn, δn) such that fω ◦ σω = sfω

.
Using measurable cross-sections, we can choose the σω’s so that {σω : ω ∈ Ω}
is measurable. Thus σ =

∑
1≤n≤∞

∫ ⊕
Ωn

σω ∈ G and

(f ◦ σ) (ω, t) = f (ω, σω (t)) = (fω ◦ σω) (t) = sfω
(t) = sf (ω, t) .

�

Lemma 32. Suppose T ∈ R, A is a masa in R, |T | ∈ A, πA : L∞ (Λ, λ) → A
is a tracial embedding as in Theorem 6, and f ∈ L∞ (Λ, λ) satisfies πA (f) =
|T |. Then sT = sf .

Proof. We can write

A =
∑

1≤n≤∞

∫ ⊕

Ωn

Aωdμn (ω) ,
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where, for 1 ≤ n ≤ ∞ and ω ∈ Ωn, Aω is a masa in Rω. We can also write

πA =
∑

1≤n≤∞

∫ ∞

Ωn

πωdμn (ω) ,

where, for each ω ∈ Ωn, πω : L∞ (Jn, δn) → Aω is a tracial embedding. If
πA (f) = |T |, then, for almost every ω,

πω (fω) = |T | (ω) = |Tω| .
Thus, for almost every ω ∈ Ω,

sfω
= sTω

.

Thus sf = sT . �

Lemma 33. Suppose A1, A2 are masas in R, 0 ≤ Ak ∈ Ak, πk : L∞ (Λ, λ) →
Ak are the isomorphisms in Theorem 6 and f1, f2 ∈ L∞ (Λ, λ) satisfy πk (fk) =
Ak for k = 1, 2. The following are equivalent:
(1) sf1 = sf2 ,
(2) There is a γ ∈ G (R) such that f2 = f1 ◦ γ,
(3) There is a sequence {Un} of unitary operators in R such that

‖UnA1U
∗
n − A2‖ → 0,

(4) For every unitarily invariant norm α on R
α (A1) = α (A2) ,

(5) For every rational number t ∈ (0, 1] KFt (A1) = KFt (A2) .

Proof. (1) ⇒ (2). There are γ1, γ2 ∈ G (R) such sfk
= fk ◦ γk for k = 1, 2.

By (1) we have f2 = f1 ◦ (γ1 ◦ γ−1
2

)
.

(2) ⇒ (3). Define π3 : L∞ (Λ, λ) → A2 by

π3 (f) = π2 (f ◦ γ) .

Thus π3 (f1) = A2. By Theorem 4, π1 ∼a π3. Thus there is a net {Uj} of
unitary operators in R such that

lim
j

∥
∥UjA1U

∗
j − A2

∥
∥ = lim

j

∥
∥Ujπ1 (f1) U∗

j − π3 (f1)
∥
∥ = 0.

Hence, for every n ∈ N, there is a unitary Un such that

‖UnA1U
∗
n − A2‖ < 1/n.

(3) ⇒ (4), (4) ⇒ (5) are trivial.
(5) ⇒ (1). We know that KFt (A1) = KFt (sf1) and KFt (sf2). Let

Et = {ω ∈ Ω : KFt (sf1) (ω) �= KFt (sf2) (ω)} ,

and let E = ∪Et, then λ (E) = 0. Therefore
∫ t

0
f1 (x) dx =

∫ t

0
f2 (x) dx for

every 0 < t ≤ 1. Thus f1 (x) = f2 (x) except on a countable set. Therefore
f1 = f2 a.e. (δ∞) . �

Corollary 8. Suppose A1, A2 are masas in R, 0 ≤ A ∈ Ak, πk : L∞ (Λ, λ) →
Ak are the isomorphisms in Theorem 6 and f1, f2 ∈ L∞ (Λ, λ) satisfy πk (fk)
= A for k = 1, 2. Then sf1 = sf2 .
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If T ∈ R, we define

KFt (T ) = KFt (s (fT ))

We need to define tth Ky Fan function KFt (T ) solely in terms of T and
R. (See Lemma 12.)

Note that when n = ∞, KFt is defined on L∞ (Jn, δn) for all 0 < t ≤ 1.
For 1 ≤ n < ∞, KFt is only defined when t ∈ { 1

n , . . . , n
n

}
. The next definition

extends this concept.

Definition 10. Suppose 1 ≤ n < ∞ and 0 < t ≤ 1. We choose an integer k,
1 ≤ k ≤ n such that

k − 1
n

< t ≤ k

n
.

We define KFt on L∞ (Jn, δn) by

KFt = KF k
n
.

For f ∈ L∞ (Λ) and 1 ≤ n ≤ ∞ and ω ∈ Ωn and t ∈ Jn, we define

KFt (f) (ω, t) = KFt (sfω
) ,

and we define, for T ∈ R,

KFt (T ) = KFt (sT ) .

We easily have that for S, T ∈ R

KFt (S + T ) ≤ KFt (S) + KFt (T )

always holds.

4.3. G (R)-symmetric normalized Gauge norms on L∞ (Λ, λ)

Suppose (Y, ν) is a probability space, and G is a subgroup of MP (Y, ν). A
norm β on L∞ (Y, ν) is called a G-symmetric normalized gauge norm if and
only if

(1) β (1) = 1
(2) β (f) = β (|f |) for every f ∈ L∞ (Y, ν),
(3) β (f ◦ σ) = β (f) for every f ∈ L∞ (Y, ν) and every σ ∈ G.

The examples that interest us here are for Y = Λ, ν = λ, and G = G (R),
i.e., the G (R)-symmetric normalized gauge norms on L∞ (Λ, λ).

Suppose β is a G (R)-symmetric normalized gauge norm on L∞ (Λ, λ).
For every f ∈ L∞ (Λ, λ), we see that

β (f) = β (sf ) .
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4.4. Approximate Ky Fan Lemma

If T ∈ R, we define

KFt (T ) = KFt (s (fT ))

We can show that KFt satisfies the triangle inequality on R by describing
KFt (T ) directly in terms of T. The Ky Fan Lemma is more complicated.
We will apply the Ky Fan Lemmas we have throughout the direct integral.
However, this is impossible to do directly as the next examples show.

Example 2. In C
n, if f = (1, 0, . . . , 0) and g =

(
1
n , 1

n , . . . , 1
n

)
, we have

KF k
n

(f) ≥ KF k
n

(g) for 1 ≤ k ≤ n, But the number N of permutations
γ1, . . . , γN for

N∑

j=1

f ◦ γj ≥ g

must be at least n since each f ◦ γj is nonzero in exactly one coordinate.

Example 3. Suppose R = R2 = M2 (C) ⊕ M2 (C) and

A =
⊕∑

1≤k<∞

(
1

0

)

and

B =
⊕∑

1≤k<∞

(
1
2 + 1

2k

1
2 − 1

2k

)

Then there are no σ1, . . . , σN ∈ G (R) and t1, . . . , tN ∈ [0, 1] such that
N∑

k=1

tk (sA ◦ σk) ≥ sB .

This forces us to prove an approximate version of the Ky Fan Lemma
that works universally.

Theorem 8. Suppose m is a positive integer. Then, for 1 ≤ n ≤ ∞ and for
all 0 ≤ f, g ≤ 1 in L∞ (Jn, δn) with

KFt (f) ≥ KFt (g) for all t ∈ Jn

there are
{
γj : 1 ≤ j ≤ m2 m

} ⊂ MP (Jn, μn) such that

2
m

+
1

m2m

m2m
∑

j=1

sf ◦ γj ≥ sg.

Proof. For 1 ≤ n < ∞, it follows from Lemma 2. For n = ∞, it is proved in
Theorem 2. �
Corollary 9. For 1 ≤ n ≤ ∞, if KFt (f) ≥ KFt (g) for all t ∈ Jn, then
β (f) ≥ β (g) for all symmetric gauge norms β.

To prove the approximate Ky Fan Lemma, we need the following Lem-
mas.
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Lemma 34. Suppose m,n are positive integers. f = (f1, · · · , fn) , h = (h1,
· · · , hn), where f1, . . . , fn and h1, . . . , hn are integers with 1 ≤ fi+1 ≤ fi ≤
m, 1 ≤ hi+1 ≤ hi ≤ m.and

∑k
i=1 fi ≥ ∑k

i=1 hi, for 1 ≤ k ≤ n. Then there
exists a positive integer N ≤ mm2

and γ1, . . . , γN ∈ Sn such that

1
N

N∑

i=1

f ◦ γi ≥ h

Proof. Suppose S =
{(

fk

hk

)
, 1 ≤ k ≤ n

}
, and define an order on S by

(
fi

hi

)
≥
(

fj

gj

)
if fi > fj or, fi = fj and hi ≥ hj .

Then S is a linearly ordered set.

We say S is trivial if for every
(

fk

hk

)
∈ S, fk ≥ hk. If S is trivial, we are done,

so we may assume S is nontrivial. Denote S0=S\
{(

fk

fk

)
, fk ∈ {1, · · · ,m}

}
.

Define p (S0) = max (fk), q (S0) = max {fk, with hk > fk}, where
p (S0) , q (S0) ∈ {f1, · · · , fn} , we may assume p (S0) = fp, q (S0) = fq. Then
denote l (S0) = p (S0) − q (S0). It is not hard to see that fp > hp ≥ hq > fq,
so fp − fq ≥ 2.
Let γp,q be the permutation that permute fp with fq and leave all other fi’s
fixed,
define f (1) =

(
f

(1)
1 , · · · , f

(1)
n

)
= 1

l(S0)
[(hp − fq) f + (fp − hp) f ◦ γp,q], where

f (1) ∈ N
n. Then denote S(1)=

{(
f

(1)
k

hk

)
, 1 ≤ k ≤ n

}
, S(1)

0

= S(1)\
{(

f
(1)
k

f
(1)
k

)}

, we form linear convex combination of fi’s this way and

update f with f (1), · · · , f (r) until l
(
S(r)

0

)
< l (S0). We can also see that

l (S0) < m, and r < m, so we need at most mm permutations to reduce
l (S0) for 1. Repeating this process, we need at most

(
mm2

)
permutations to

reduce S0 to a trivial set. Note that we can make the number of permutations
is exactly

(
mm2

)
!, some permutations are duplicate.

Therefore, there exists a positive integer N =
(
mm2

)
!, γ1, · · · , γN ∈ Sn such

that

1
N

N∑

i=1

f ◦ γi ≥ h.

�

Lemma 35. Suppose m,n are positive integers, then there exists a positive
integer N ≤ mm2

such that for all f = (f1, f2, . . . , fn) and h = (h1, . . . , hn)
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with 1 ≥ f1 ≥ · · · ≥ fn ≥ 0, 1 ≥ h1 ≥ · · · ≥ hn ≥ 0, and
∑i=1

j fi ≥ ∑i=1
j hi

for all 1 ≤ j ≤ n, there exist γ1, . . . , γN ∈ Sn such that

1
N

N∑

i=1

f ◦ γi +
2
m

≥ h.

Proof. For all 1 ≤ i ≤ n, if k−1
m < fi ≤ k

m for some k ∈ N, then define
f̃i = k

m and if k−1
m ≤ hi < k

m for some k ∈ N, then define h̃i = k−1
m . Let

f̃ =
(
f̃1, · · · , f̃n

)
and h̃ =

(
h̃1, · · · , h̃n

)
. It is easy to check that fi ≤ f̃i ≤

fi + 1
m and max

(
hi − 1

m , 0
) ≤ h̃i ≤ hi for all 1 ≤ i ≤ n. From Lemma 34,

we know there exists a positive integer N and γ1, · · · , γN ∈ Sn such that
1
N

∑N
i=1

(
mf̃
)

◦ γi ≥
(
mh̃
)
. Therefore, 1

N

∑N
j=1f ◦ γj + 2

m ≥ h. �

The following is the Approximate Ky Fan Lemma.

Theorem 9. If f, g ∈ L∞ (Λ, λ) , m ∈ N, m ≥ 2, and 0 ≤ f, g ≤ 1 and
KFt (f) ≥ KFt (g) a.e. (μ) for each rational number t ∈ (0, 1], then there are
σ1, . . . , σ(m!)m5

mm2 ∈ G (R) such that

1

(m!)m5
mm2

∑(m!)m5
mm2

k=1
f ◦ σk +

1
m

≥ g.

Thus, for every G (R)-symmetric normalized gauge norm β on L∞ (Λ, λ) ,

β (f) ≥ β (g) .

Proof. Suppose f, g ∈ L∞ (Λ, λ). Since there are σ1, σ2 ∈ G (R) such that
sf = f ◦ σ1 and sg = g ◦ σ2, we can assume f = sf and g = sg. We
know f, g can be viewed as f =

∑⊕
1≤n≤∞ fn =

∑⊕
1≤n≤∞

∫ ⊕
Ωn

fn,ωdμn (ω) and

g =
∑⊕

1≤n≤∞
∫ ⊕
Ωn

gn,ωdμn (ω). Suppose m ∈ N and m ≥ 2. For 1 ≤ n ≤ ∞,

let Xn be the set of tuples
(
F,G, σ1, σ2, · · · , σmm2

)
satisfying 1

mm2

∑mm2

k=1 F ◦
σk + 1

m ≥ G, where 0 ≤ f, g ≤ 1. Then X is a closed subset of ball

(L∞ (Jn, δn))×ball (L∞ (Jn, δn))×Πmm2

i=1 MP (Λ, λ), which is a complete sep-
arable metric space with the ‖·‖2 on ball(L∞ (Jn, δn)). Then by Theorem
5 the projection onto ball(L∞ (Jn, δn)) ×ball(L∞ (Jn, δn)) has an absolutely
measurable range Yn and an absolutely measurable cross-section ψ and we
let ψk be the composition of projection onto the coordinate of σk with ψ for
1 ≤ k ≤

(
mm2

)
!. If 1 ≤ n < ∞, it follows from Lemma 35 and Theorem 2

that

(sfω
, sgω

) ∈ Yn

for almost all ω ∈ Ωn. We define, for 1 ≤ k ≤
(
mm2

)
!, σk (ω) ∈ MP (Jn, δn)

by

σk (ω) = ψk (sfω
, sgω

) .
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This gives σ1, . . . σ(mm2)! ∈ G (R) such that

1
(
mm2

)
!

∑
(
mm2)

!

k=1
sf ◦ σk +

1
m

≥ sg.

If follows that, for any G (R)-symmetric normalized gauge norm β on L∞

(Λ, λ) that

β (g) = β (sg) ≤ 1
(
mm2

)
!

∑
(
mm2)

!

k=1
β (sf ◦ σk) + β

(
1
m

)

=
1

(
mm2

)
!

∑
(
mm2)

!

k=1
β (f) +

1
m

= β (f) +
1
m

.

Since m ≥ 2 was arbitrary, it follows that β (g) ≤ β (f). �

5. Main theorem

We are finally ready to prove our main theorem.

Theorem 10. Suppose R is a finite von Neumann algebra acting on a sep-
arable Hilbert space H. Let the probability space (Λ,Σ, λ) and the group
G ≤ MP (Λ,Σ, λ) be as above. Then there is a natural 1-1 correspondence
between the normalized unitarily invariant norms on R and the normalized
G-symmetric gauge norms on L∞ (Λ, λ).

Proof. Suppose α is a normalized unitarily invariant norm on R, choose any
masa A in R, and choose a tracial embedding πA : L∞ (Λ, λ) → A as in
Theorem 6. Define βα : L∞ (λ) → R by

βα (f) = α (πA (f)) ,

If B is another masa in R and πB : L∞ (Λ, λ) → B is as in Theorem 6, we
see from Theorem 6 that, if Φ : R → Z (R) is the center-valued trace on R,
then

Φ ◦ πA = Φ ◦ πB.

Thus, by Theorem 6, πA and πB are approximately equivalent in R. Hence,
there is a net {Uj} in U (R) such that, for every f ∈ L∞ (Λ, λ) ,

∥
∥U∗

j πA (f) Uj − πB (f)
∥
∥ → 0.

It follows from Lemma 2 that, for every f ∈ L∞ (Λ, λ),

α (πA (f)) = α (πB (f)) .

Thus the definition of βα is independent of choice of the masa A and tracial
embedding πA. It is easy to check that βα is norm. To prove βα is G (R)-
symmetric, suppose σ ∈ G (R) . Then, by Lemma 30, there is a measurable
family {σω : ω ∈ Ω} with each ω ∈ Ωn, such that σω ∈ MP (Jn, μn) and

σ =
∫ ⊕

Λ

σωdλ (ω) .
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Thus, by Theorem 6,

Φn (πA (f ◦ σ)) = γ ◦ η (f ◦ σ) ,

but

η (f ◦ σ) (ω) =
∫

Jn

(f ◦ σ) (t, ω) dδn (t)

=
∫

Jn

fω (σω (t)) dδn (t) =
∫

Jn

fω (t) dδn (t) = η (f) (ω) .

Thus, for every f ∈ L∞ (Λ, λ),

Φ ◦ πA (f) = Γ (η (f)) = Γ (η (f ◦ σ)) = Φ ◦ πA (f ◦ σ) .

Thus, ρ (f) = πA (f ◦ σ) is a tracial embedding as in Theorem 6, which
implies ρ is approximately equivalent to πA. Hence, by Lemma 2, for every
f ∈ L∞ (Λ, λ), we have

βα (f) = α (πA (f)) = α (πA (f ◦ σ)) = βα (f ◦ σ) .

Thus βα is a normalized G (R)-invariant gauge norm on L∞ (Λ, λ).
Conversely, suppose β is a normalized G (R)-symmetric gauge norm on

L∞ (Λ, λ). If T ∈ R, then W ∗ (|T |) is abelian and is contained in a masa A
of R. By Theorem 6 there is a tracial embedding πA : L∞ (Λ, λ) → A such
that, for every f ∈ L∞ (Ω, μ),

τ (πA (f)) =
∫

Ω

fdμ.

Choose 0 ≤ f ∈ L∞ (Λ, λ) with πA (f) = |T | . Then we define

αβ (T ) = β (f) = β
(
π−1

A (|T |)) .

Suppose B is another masa in R with |T | ∈ B. Then there is a tracial em-
bedding πB : L∞ (Λ, λ) → B and an 0 ≤ h ∈ L∞ (Λ, λ) with πB (h) = |T |. It
follows from Lemma 32 that

sf = sT = sh.

Hence, by Lemma 33, there is a σ ∈ G (R) such that

h = f ◦ σ.

Thus

α (h) = α (f) = α (sT ) .

Thus the definition of αβ (T ) = β (sT ) is independent of the masa A or the
tracial embedding πA. At this point it is easy to see that βαβ

= β holds for
a G (R)-symmetric normalized gauge norm on L∞ (Λ, λ).

If U and V are unitaries in R, then, by Lemma 32,

sUTV = sT .

Thus αβ (UTV ) = αβ (T ) by Lemma 33. Thus αβ is unitarily invariant.
Clearly, αβ (1) = 1 and αβ (zT ) = |z|αβ (T ). To show αβ is a norm,

we just need to check the triangle inequality. Suppose A,B ∈ R. Let h =
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sA + sB. Since, for almost every ω ∈ Ω the functions sA (ω, t) and sB (ω, t)
are nonincreasing in t, we see that

sh = h = sA + sB .

Thus, we have, if ω ∈ Ωn, n ∈ N, and t = k/n with 1 ≤ k ≤ n, or if ω ∈ Ω∞
and 0 < t ≤ 1 is rational, then, for almost every ω,

KFt (sh) (ω) = KFt (sA + sB) (ω) = KFt (sA) (ω) + KFt (sB) (ω)
= KFt (A) (ω) + KFt (B) (ω) ≥ KFt (A + B) (ω) = KFt (sA+B) (ω) .

It follows from the approximate Ky Fan Lemma (Theorem 9) that

β (h) ≥ β (sA+B) ,

which means

αβ (A + B) ≤ β (h) = β (sA + sB) ≤ β (sA) + β (sB) = αβ (A) + αβ (B) .

This completes the proof. �
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