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Abstract. In this paper, we improve a result of Fujita and Le concerning
the Diophantine equation x2 + (2c− 1)y = cz.

Jeśmanowicz conjectured that if a, b, c form a Pythagorean triple a2+b2 =

c2 then the only positive integer solution (x, y, z) of the equation ax+by = cz is
(x, y, z) = (2, 2, 2). He proved his conjecture for a few particular Pythagorean
triples. Motivated by this conjecture, Terai made additional conjectures about
solutions to three terms exponential Diophantine equations with a couple of
fixed bases and variable exponents. In [6], he conjectured that, assuming again
that a, b, c satisfy a2 + b2 = c2, the only solution in positive integers (x, y, z)

of the equation x2 + by = cz is (a, 2, 2). Later, in [7], he conjectured that if
c > 1 is a positive integer then the only positive integer solution (x, y, z) of the
Diophantine equation x2 + (2c− 1)y = cz is (x, y, z) = (c− 1, 1, 2). Regarding
this last conjecture, Fujita and Le [2] put

T := {c > 1 : Terai’s conjecture from [7] is false}

and T (N) := T ∩ [1, N ] and prove that #T (N) < 0.22N holds for all N > N0.
Here we improve this as follows.

Theorem 1. We have
#T (N) � N√

logN
.

Proof. Assume that c is such that x2 + (2c− 1)y = cz for some (y, z) �= (1, 2).
If y is even, then c is a sum of two coprime squares. By a result of Landau
(see [1], vol 2, p. 649–661 and [8]) the set of such c ≤ N has cardinality
O(N/

√
logN). Assume that z is odd and let p be any prime factor of 2c − 1.

Then x2 ≡ c(c(z−1)/2)2 (mod p), so (c|p) = 1, where the above notation is the
Legendre symbol. Since also c ≡ 2−1 (mod p), it follows that (2|p) = 1. Thus,
p ≡ 1, 7 (mod 8). Since this holds for all prime factors p of 2c − 1 < 2N , we
deduce, again by Landau’s result, that the number of such c is O(N/

√
logN).

So, we assume that z is even so we get (2c−1)y = cz−x2 = (cz/2−x)(cz/2+x)
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and the factors on the right are coprime. Hence, there exist divisors d,m of
2c − 1 with dm = 2c − 1 such that dy = cz/2 − x and my = cz/2 + x. Thus,
2cz/2 = dy+my. Since y is odd, we get that d+m divides 2cz/2. We distinguish
two cases.

Case 1. One of d, m equals 1.

Then 1 + (2c− 1)y = 2cz/2. Note that z > y from the original equation.
We get

1

2cz/2
= |(2c− 1)y2−1c−z/2 − 1|.

The expression on the left is nonzero. By a linear form in logarithms á la Baker
(see, for example, Matveev’s version [4]), the right hand side exceeds

exp(−C1 log c log(2c− 1) log z)

with some positive absolute constant C1. Hence, we get that

(z/2) log c < C1 log c log(2c− 1) log z

giving z < 2C1 log(2N) log z. In particular, z < C2(logN)2 for some absolute
constant C2. Since y < z, the pair of exponents (y, z/2) can be fixed in at most
C3(logN)4 ways. For each one of them, the expression

P (X) := 2Xz/2 − (2X − 1)y − 1

is a fixed polynomial in X which is nonzero. Indeed, if it were 0 then we would
get by looking at the largest possible monomials and their coefficients that
2 = 2y and z/2 = y, whence y = z/2 = 1, but this is excluded. Thus, c is a zero
of one of the above polynomials whose degree is at most C2(logN)2. Hence,
the number of such c is at most C4(logN)6 which is o(N/

√
logN) as N → ∞.

Case 2. min{d,m} > 1.

Clearly, min{d,m} <
√
2N . Assume first that every prime factor of d +

m = d+(2c− 1)/d is at most p(N) := (logN)3/2. Thus, d+(2c− 1)/d belongs
to the set C(N) := {n ≤ 2N : P (n) ≤ p(N)}, where P (n) is the largest
prime factor of n with the convention that P (1) = 1. The cardinality of the
set {n ≤ x : P (n) ≤ y} is denoted Ψ(x, y) and has been intensively studied. A
result of de Bruijn (see Theorem 2 in Chapter III.5 in [5]) shows that uniformly
in x ≥ y ≥ 2, we get

logΨ(x, y) = Z
(
1 +O

( 1

log y
+

1

log log 2x

))
,

where
Z :=

log x

log y
log

(
1 +

y

log x

)
+

y

log y
log

(
1 +

log x

y

)
.
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For us x = 2N, y = p(N) = (logN)3/2 so (log x)/y tends to 0 so the second
term is

y

log y
log

(
1 +

log x

y

)
= O

( log x
log y

)
= o(logN)

as N tends to infinity while the first term is

log(2N)

(3/2) log logN
log

(
1 +

(logN)3/2

log(2N)

)
= (1/3 + o(1)) logN

as N tends to infinity. Hence,

Ψ(2N, p(N)) = exp((1/3 + o(1)) logN) = N1/3+o(1) as N → ∞.

Since min{d,m} ≤
√
2N and 2c − 1 is uniquely determined by min{m, d}

and a number in C(N), it follows that the number of such c ≤ N is at most
N1/2+1/3+o(1) = o(N/

√
logN) as N → ∞.

Finally, assume now that there exists a prime p such that p > (logN)3/2

and p | d+ (2c− 1)/d. Then also p | c, so d− d−1 ≡ 0 (mod p) showing that
d ≡ ±1 (mod p). Thus, one of d,m is congruent to 1 modulo p and the other is
congruent to −1 modulo p. Hence, 2c− 1 = (p�1+1)(p�2− 1) for some positive
integers �1, �2. Fixing �2, we get

p�1 < p�1 + 1 <
2N

p�2 − 1
≤ 4N

p�2
.

Thus, fixing p and �2, the number of choices for �1 is ≤ 4N/(p2�2). We now
sum the above estimates over �2 ≤ N and p > (logN)3/2, getting the number
of such c is at most

4N
∑

p>(logN)3/2

1

p2

∑
�2≤2N

1

�2
� N logN

(logN)3/2 log logN
= o

( N√
logN

)
.

This finishes the proof.
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