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Abstract
In this expository paper, we describe a sequence of earlier papers presenting applica-
tions of a general theorem regarding pointwise estimates for kernels ofNeumann series
operators

∑∞
j=0 T

j . Here T is an integral operator with a quasi-metric kernel on a
measure space (�,ω), with ‖T ‖L2(ω)→L2(ω) < 1. Applications are made to the study
of non-negative solutions u to the time-independent Schrödinger equation−�u = qu
on a domain � ⊆ R

n, n ≥ 3, with u = f on ∂�, where q ∈ L1
loc(�) and q and f

are non-negative. We obtain a balayage condition on the potential q measuring how
rapidly q can blow up at ∂� and still allow for an almost everywhere finite solution.
We also derive bilateral estimates for the Green’s function and Poisson kernel for the
Schrödinger operator −� − q in terms of q and the Green’s function and Poisson
kernel for the Laplacian. These results are first described for a C2 domain. They are
later extended to analogues involving the Martin kernel and harmonic measure on a
uniform domain.
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1 Introduction

This paper is an exposition of a sequence of papers [9–11]. We hope to obtain a
perspective in retrospect that gives a greater clarity to the progression of these papers.
This article is meant for non-specialists. The reader will be referred to the original
papers for the more technical aspects of the proofs, and some context and background
will be presented in more detail than in an article for specialists.

We consider an open, bounded, connected domain � ⊆ R
n where, for simplicity,

n ≥ 3 (some modifications are necessary for n = 2). Let q ∈ L1
loc(�) with q ≥ 0 and

suppose f : ∂� → [0,∞) is Borel measurable. We consider the problem of finding
solutions u to

⎧
⎨

⎩

−�u = qu in �,

u = f on ∂�,

u ≥ 0.
(1.1)

The function q is the potential for the time-independent Schrödinger operator−�−
q. One can generalize without major difficulties by replacing q with a measure ω, but
again for expository simplicity, we consider only q ∈ L1

loc here. If q ∈ L∞(�), this
problem fits into the standard elliptic theory, as, for example, in Chapter 6 of [6]. Our
main interest is in relaxing the condition on q, to see, for example, how large q can be
at ∂� and still allow the existence of a solution to (1.1). In the case where f = 1, the
solution of (1.1) is called the Feynman–Kac gauge. It is considered extensively in the
probability literature, where it has an interpretation in terms of Brownian motion. At
the start we will consider C2 domains, but eventually we will generalize to the class
of uniform domains.

For a sufficiently nice domain �, let P(x, z) be the Poisson kernel (for x ∈ �, z ∈
∂�) and let σ be surface measure on ∂�. Then

P f (x) =
∫

∂�

P(x, z) f (z) dσ(z) (1.2)

is harmonic on� and extends to be continuous on�, with boundary values f , provided
f is continuous on ∂�. LetG(x, y) be theGreen’s function for−� on�, for x, y ∈ �.
The Green’s function is always symmetric (G(x, y) = G(y, x)) and strictly positive
for x, y ∈ �. Then for u nice enough on �,

Gu(x) =
∫

�

G(x, y)u(y) dy (1.3)

satisfies −�(Gu) = u on � and Gu extends continuously to � with boundary values
0 on ∂�. Hence if u satisfies

u = G(qu) + P f , (1.4)
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then formally u satisfies (1.1). We define T by

Tu(x) = G(qu)(x) =
∫

�

G(x, y)u(y)q(y) dy. (1.5)

Then Eq. (1.4) becomes

u = Tu + P f , (1.6)

or (I − T )u = P f . Working formally again for the moment, I − T has an inverse
given by the Neumann series

∑∞
j=0 T

j , and the solution of (1.1) is

u =
∞∑

j=0

T j (P f ). (1.7)

Notice that all terms in the series are non-negative, since f , q ≥ 0. The main issue is
whether the series

∑∞
j=0 T

j (P f ) converges a.e. on �, or whether it is forced to be
+∞ on a set of positive measure in �, in which case we do not regard it as a solution
of (1.1). This approach of treating Eq. (1.1) as a perturbation of the case q = 0, i.e.,
the case where u is harmonic, is common in this subject.

Solutions of−�u = qu on�, u = f on ∂� are not unique in general (see e.g., [20]
for some discussion). However, if w ≥ 0 satisfies w = Tw + P f , then substituting
Tw + P f for w on the right-hand side yields w = T 2w + T P f + P f . Iterating this
process, we obtain w = T 3w + T 2P f + T P f + P f . After n steps, one has

w = T n+1w +
n∑

j=0

T j P f ≥
n∑

j=0

T j P f .

Letting n → ∞, we see that w ≥ u. Hence if there is a non-negative solution of (1.4),
then u defined by (1.7) is the minimal non-negative solution, and if

∑∞
j=0 T

j (P f ) is
infinite on a set of positive measure in �, then (1.4) has no non-negative solution.

As long as f is not 0 a.e. with respect to surface measure σ , then P f is strictly
positive on�, since f is assumed to be non-negative. So (1.4) implies that u is strictly
positive on �, and Eq. (1.6) implies that Tu(x) < u(x) for all x ∈ �. It follows from
Schur’s Lemma that T is a bounded operator on L2(q) = L2(�, q dy) with operator
norm ‖T ‖L2(q)→L2(q) at most 1. Here is the elementary proof, for convenience. For
x ∈ �, applying the Cauchy-Schwarz inequality gives

(T f (x))2 =
(∫

�

G(x, y)
f (y)√
u(y)

√
u(y)q(y) dy

)2

≤
∫

�

G(x, y)
f 2(y)

u(y)
q(y) dy ·

∫

�

G(x, y)u(y)q(y) dy.
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The second integral is Tu(x). Using the condition Tu ≤ u and applying Fubini’s
theorem gives

∫

�

(T f (x))2q(x) dx ≤
∫

�

∫

�

G(x, y)u(x) q(x) dx
f 2(y)

u(y)
q(y) dy.

Because G is symmetric, the inner integral is Tu(y), so the estimate Tu ≤ u gives
‖T ‖L2(q)→L2(q) ≤ 1.

With this last fact in mind, in order to deal rigorously with the formal solution given
by Eq. (1.7), we make the assumption

‖T ‖L2(q)→L2(q) < 1. (1.8)

The estimate (1.8) is equivalent (see Lemma 3.1 in [11]) to the condition that there
exists β ∈ (0, 1) such that

∫

�

h2q dx ≤ β2
∫

�

|∇h|2 dx for all h ∈ C∞
0 (�). (1.9)

Inequality (1.9) has been considered earlier in the literature, starting with [19], in
more general settings. The critical case when ‖T ‖L2(q)→L2(q) = 1 is of interest but
is not treated by the methods considered here. Under assumption (1.8), (I − T )−1 =∑∞

j=0 T
j is a bounded operator on L2(q). Hence if P f ∈ L2(q), then u given by

(1.7) belongs to L2(q). As long as q > 0 a.e. with respect to Lebesgue measure, then
u < ∞ a.e., and hence is a solution of (1.6). In the special case where f is identically
1, so that P f = 1, the assumption P f ∈ L2(q) just means that

∫
�
q dy < ∞, i.e.,

q ∈ L1(�, dy). Our purpose is to relax this assumption, requiring only q ∈ L1
loc(�),

to see how quickly q can blow up at ∂� and still allow for the series (1.7) to converge
a.e.

The sense in which our solution u of the integral equation (1.6) is a solution of the
original differential equation (1.1) is a bit technical: u is a “very weak solution” of
(1.1) as in [4]. Very weak solutions are defined similarly to classical weak solutions,
except that 2 derivatives are moved to the test function. We refer to [9], §2 for a full
discussion.

Our conclusions are based on a pointwise analysis of the kernel of the Neumann
series operator

∑∞
j=0 T

j , rather than the global L2(q) analysis as above. To give an

example of the type of issues we will consider, let G j (x, y) be the kernel of T j , so
that

T ju(x) =
∫

�

G j (x, y)u(y)q(y) dy.
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Then G j (x, y) = ∫
�
G(x, z)G j−1(z, y)q(z)dz. If we consider the inhomogeneous

problem

{−�v = qv + g in �,

v = 0 on ∂�,
(1.10)

where g : � → R is measurable, then applying the Green’s operator G defined by
(1.3) to both sides yields the integral equation

v = G(qv) + Gg = T v + Gg, (1.11)

with formal solution v = (I − T )−1Gg = ∑∞
j=0 T

jGg. Note that

T jGg(x) =
∫

�

G j (x, z)
∫

�

G(z, y)g(y) dy q(z)dz

=
∫

�

∫

�

G j (x, z)G(z, y)q(z) dz g(y) dy =
∫

�

G j+1(x, y)g(y) dy.

Thus

v(x) =
∫

�

∞∑

j=0

G j+1(x, y)g(y) dy =
∫

�

G(x, y)g(y) dy, (1.12)

where

G(x, y) =
∞∑

j=1

G j (x, y). (1.13)

Thus G is the kernel of the solution operator for (1.10), with respect to the measure dy
instead of q dy, just as G is the kernel of the solution operator for Poisson’s equation
−�v = g on �, with v = 0 on ∂� (the special case q = 0 of (1.10)). Therefore
we call G the Green’s kernel for the perturbed operator −� − q, or the q-perturbed
Green’s kernel. Theorem 3.3 gives pointwise estimates for G in terms of G and q.
Theorem 3.5 gives a sufficient condition for (1.1) to have a solution u ∈ L1(�, dx),
and Theorem 4.2 gives an analogous result for u ∈ L1

loc(�) on a uniform domain.
Related arguments will give estimates for the q-perturbed Poisson kernel (Theo-

rem 3.9) in terms of q and the standard Green’s and Poisson kernels on a C2 domain.
Estimates of the same type are obtained for the q-perturbedMartin’s kernel on uniform
domains in Theorem 4.3.

All of these results depend on some estimates (see Theorem 2.2) on generalmeasure
spaces for the kernels of operators

∑∞
j=1 T

j associated to the Neumann series derived
from an integral operator T with a quasi-metric kernel.
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2 Quasi-Metric Kernels

To motivate the definition of a quasi-metric kernel, consider the simplest analogue of
(1.1), where � is replaced by R

n and f is replaced by the function 1 as a “boundary
value” at infinity in the sense that lim infx→∞ f (x) = 1 (which turns out to be as
much as one can obtain). That is, for q ∈ L1

loc(R
n), q ≥ 0 (where we assume n ≥ 3

for simplicity), we consider a solution u : Rn → R to:

⎧
⎨

⎩

−�u = qu in R
n,

lim inf x→∞ u(x) = 1,
u ≥ 0.

(2.1)

Here the role of the Green’s function G is played by the Riesz potential I2, the
integral operator on Rn with kernel cn/|x − y|n−2. Since the harmonic function with
value 1 at infinity in Rn is the constant function 1, our formal solution in (1.7) is

u =
∞∑

j=0

T j1, (2.2)

where Tu = I2(qu).
The denominator of the Riesz kernel is a power of the metric |x − y|. The power of

any metric is a quasi-metric, and that turns out to be the critical property of the Riesz
kernel that is needed for our analysis.

Definition 2.1 Let (�,ω) be a metric space. A function K : � × � → (0,+∞] is
a quasi-metric kernel with quasi-metric constant κ > 0 if K is ω × ω measurable,
symmetric (K (y, x) = K (x, y)), and d = 1/K satisfies the quasi-triangle inequality

d(x, y) ≤ κ(d(x, z) + d(z, y)) for all x, y, z ∈ �. (2.3)

We do not assume that d(x, x) = 0, or that d(x, y) > 0 for x �= y, so d is
not necessarily a quasi-metric in the usual sense. Quasi-metric kernels have been
considered by several authors; see, for example, [13, 17]. Given a quasi-metric kernel
K on (�,ω), we define the iterates K j for j ∈ N by K1 = K and, inductively,

K j (x, y) =
∫

�

K (x, z)K j−1(z, y) dω(z), (2.4)

for j > 1.
More explicitly,

K j (x, y) =
∫

�

· · ·
∫

�

K (x, z1)K (z1, z2) · · · K (z j−1, y) dω(z j−1) dω(z j−2)

· · · dω(z1). (2.5)
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Each K j is non-negative and symmetric. If we define the integral operator

T f (x) =
∫

�

K (x, y) f (y) dω(y), (2.6)

for x ∈ �, then T j , the j th iterate of T , is the integral operator with kernel K j . Hence∑∞
j=1 K j (x, y) is the kernel of the integral operator

∑∞
j=1 T

j . The foundation for our
results is the following estimate for

∑∞
j=1 K j (x, y).

Theorem 2.2 Suppose (�,ω) is a σ -finite measure space, and K is a quasi-metric
kernel on � with quasi-metric constant κ . Suppose

‖T ‖ = ‖T ‖L2(�,ω)→L2(�,ω) < 1. (2.7)

Then there exists a constant C depending only on κ and ‖T ‖ such that

∞∑

j=1

K j (x, y) ≤ K (x, y)eCK2(x,y)/K (x,y), for all x, y ∈ �. (2.8)

See [11], Theorem 1.1, for the proof, which is somewhat technical. Although the
kernels involved are non-negative, the rough idea is similar to estimates for Calderón–
Zygmond operators: use pointwise estimates for K (zm, zm+1) = 1

d(zm ,zm+1)
when

d(zm, zm+1) is relatively large, and L2 estimates for T when d(zm, zm+1) is rela-
tively small. The region of integration � j−1 is broken into sets determined by “paths”
(x, z1, z2, . . . , z j−1, y) for which the same terms satisfy the criterion for being rela-
tively large, and at the end the sum is taken over all such sets.

The estimate ‖T ‖ < 1 is close to being sharp in the sense that if ‖T ‖ > 1, then∑∞
j=1 K j (x, y) = +∞ for every x, y ∈ �. The proof (see [11, Lemma 2.1]) is an

application of Schur’s Lemma.
There is a much easier lower estimate of the same form. If (�,ω) is a σ -finite

measure space, and K is a quasi-metric kernel on � with quasi-metric constant κ ,
then there exists a constant c > 0, depending only on κ , such that

∞∑

j=1

K j (x, y) ≥ K (x, y)ecK2(x,y)/K (x,y), for all x, y ∈ �. (2.9)

See [11], Lemma 2.3 for the proof. Note that the norm condition (2.7) is not required
for the lower estimate, although it is not meaningful if ‖T ‖ > 1 because

∑∞
j=1 K j is

identically ∞ in this case, as noted above.
Estimates of the form (2.8) and (2.9) were proved under stronger assumptions in

[12], which was in turn motivated by similar results for a specific example of a quasi-
metric kernel considered in [8] as a discrete model for (1.1).

Notice that (2.8) shows that the kernel
∑∞

j=1 K j (x, y) associated to the Neumann

series for (I − T )−1 is equivalent to the original kernel K (x, y) of T if and only if
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there exists a constant C1 > 0 such that K2(x, y) ≤ C1K (x, y) for all x, y ∈ �. See
[11], Theorem 3.2, for related results.

The connection between (2.8) and the quantity
∑∞

j=0 T
j1 in (2.2) is not immedi-

ately clear. However, suppose there is a point z ∈ � such that 1
K (x,z) = d(x, z) = A,

where A > 0 is constant, for all x ∈ �. Then

K j (x, z)

K (x, z)
= A

∫

�

K j−1(x, y)K (y, z) dω(y) = T j−11(x),

since K (y, z) = 1/A. Hence (2.8) becomes

∞∑

j=0

T j1(x) =
∞∑

j=1

T j−11(x) = 1

K (x, z)

∞∑

j=1

K j (x, z) ≤ eCK2(x,z)/K (x,z) = eCT 1(x).

In general, we cannot expect such a point z to exist. However, if d is bounded, and if
we choose A sufficiently large compared to the bound on d, we can add a point z to �

and define d(x, z) = A for all x ∈ �, with d(z, z) = 0 (which is not an issue because
we set ω({z}) = 0). Then we obtain a quasi-metric kernel K = 1/d on �∪ {z} which
has quasi-metric constant equal to the maximum of 1 and the original quasi-metric
constant. We can then obtain the required estimate in the case where d is bounded.
Using that estimate, in the general case of an unbounded d, we can exhaust � by a
sequence of increasing domains on which d is bounded, and obtain the general result
by a monotone convergence argument. See [11], Theorem 3.1 for the details of the
proof of the following result.

Theorem 2.3 Let (�,ω) be a σ -finite measure space. Let K be a quasi-metric kernel
on � with quasi-metric constant κ and corresponding integral operator T .

(a) There exists c > 0, depending only on κ , such that

∞∑

j=0

T j1(x) ≥ ecT 1(x), for all x ∈ �. (2.10)

(b) If, in addition, ‖T ‖ < 1, then there exists C > 0, depending only on κ and ‖T ‖,
such that

∞∑

j=0

T j1(x) ≤ eCT 1(x), for all x ∈ �. (2.11)

Applying this result to (2.1) leads quickly to the following result (Theorem 1.4 in
[12]):

Theorem 2.4 Suppose n ≥ 3, q ∈ L1
loc(R

n), and define Tu = I2(qu).
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(a) Suppose ‖T ‖ = ‖T ‖L2(Rn ,q dx)→L2(Rn ,q dx) < 1 and

∫

Rn

q(y)

(1 + |y|)n−2 dy < ∞. (2.12)

Then u = ∑∞
j=0 T

j1 < ∞ a.e., u satisfies (2.1) in the distributional sense, and
there exists C > 0, depending on n and ‖T ‖, such that

u ≤ eC I2q (2.13)

on R
n.

(b) Conversely, if u is a distributional solution of (2.1), then ‖T ‖ ≤ 1 and there exists
c > 0, depending only on n, such that u ≥ ecI2q .

The essence of the proof is to use Theorem 2.3 to write

u(x) ≤ eCT 1(x) = eC I2q(x),

and show that inequality (2.12) implies that I2q < ∞ a.e.
As an example, the function q : Rn → R defined by q(x) = A|x |−α , for 2 <

α < n and A sufficiently small, satisfies the conditions of the theorem (by the multi-
dimensional fractional Hardy inequality, see e.g. [7]), yet q /∈ L∞ (the uniformly
elliptic case) and q /∈ L1(Rn).

3 Bounded Domains andModifiable Kernels

We return to the setting of (1.1), where � is a bounded, connected open set in R
n ,

where n ≥ 3. When � is a C2 domain (or even a C1,1 domain), the behavior of the
Green’s function G on � is well understood: by [22, 24],

G(x, y) ≈ δ(x)δ(y)

|x − y|n−2(|x − y| + δ(x) + δ(y))2
, (3.1)

where δ(x) is the distance of x ∈ � to ∂�. G is not a quasi-metric kernel on �, but
(3.1) shows that G(x,y)

δ(x)δ(y) is. It turns out that our main general results, Theorems 2.2
and 2.3, have elementary modifications that cover situations like this.

Definition 3.1 Let (�,ω) be a measure space, and let K : �×� → (0,∞] be ω×ω

measurable and symmetric. K is quasi-metrically modifiable (or q–m modifiable, for
short) with constant κ if there exists a measurable function m : � → (0,∞) such
that

H(x, y) = K (x, y)

m(x)m(y)
(3.2)

is a quasi-metric kernel with quasi-metric constant κ . The function m is called the
q–m modifier for K .
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In particular δ is a q–m modifier for G on a bounded C2 domain.
We can obtain estimates for a q–mmodifiable kernel K by applying Theorem 2.2 to

the modified kernel H defined by (3.2), but with respect to the measure space (�, ν),
where dν = m2dω. We define the integral operator S by

S f (x) =
∫

�

H(x, y) f (y) dν(y). (3.3)

Then ‖ f ‖L2(ν) = ‖ f m‖L2(ω), and

S f (x) =
∫

�

K (x, y)

m(x)m(y)
f (y)m2(y) dω(y) = T ( f m)(x)

m(x).

Hence

∫

�

|S f |2 dν =
∫

�

|T ( f m)|2
m2 m2 dω =

∫

�

|T ( f m)|2 dω.

Therefore

‖S‖L2(ν)→L2(ν) = ‖T ‖L2(ω)→L2(ω). (3.4)

DefineHj (x, y) inductively byH1 = H andHj (x, y) = ∫
�
H(x, z)Hj−1(z, y) dν(z),

analogously to (2.4). We observe that

Hj (x, y) = K j (x, y)

m(x)m(y)
(3.5)

for all j ∈ N: by definition for j = 1, and for j > 1,

Hj (x, y) =
∫

�

H(x, z)Hj−1(z, y) dν(z) =
∫

�

K (x, z)

m(x)m(z)

K j−1(z, y)

m(z)m(y)
m2(z) dω(z),

which gives (3.5). We obtain the following.

Corollary 3.2 Suppose (�,ω) is a σ -finite measure space and K is a q–m modifiable
kernel on � with constant κ . Define T by (2.6) and suppose ‖T ‖L2(ω)→L2(ω) < 1.
Then (2.8) holds with C a constant depending only on κ and ‖T ‖. The estimate (2.9)
also holds, with a constant depending on κ only, without any requirement on ‖T ‖.

The proof of the upper estimate is to apply Theorem 2.2 to the quasi-metric kernel
H , with notation as above (using (3.4)) to obtain

∞∑

j=1

K j (x, y)

m(x)m(y)
≤ K (x, y)

m(x)m(y)
e
C

(
K2(x,y)
m(x)m(y)

)
/
(

K (x,y)
m(x)m(y)

)

,

and then cancel all of the m(x) and m(y) terms.
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When applied to the Green’s kernel on a C2 domain, Corollary 3.2 and the fact
that G has a q–m modifier (namely, δ) yields the following estimates (Theorem 1.2 in
[11]) on the q-perturbed Green’s kernel G = ∑∞

j=1 G j .

Theorem 3.3 Let n ≥ 3 and let� ⊆ R
n be aC2 bounded, connected open set. Suppose

q ∈ L1
loc(�) with q ≥ 0. Define G by (1.13). Then there exist a constant c = c(�)

such that

G(x, y) ≥ G(x, y)ecG2(x,y)/G(x,y). (3.6)

If also the operator T defined by (1.5) satisfies ‖T ‖L2(q)→L2(q) < 1, then there exists
C = C(�, ‖T ‖) such that

G(x, y) ≤ G(x, y)eCG2(x,y)/G(x,y). (3.7)

The lower estimate (3.6) is known to hold with c = 1 from the probabilistic inter-
pretation (see [11], p. 906 for a discussion), but (3.7) seems to have been new at the
time of [11]. Note the consequence of (3.7) that G ≈ G (which we interpret as mean-
ing that the potential q is sufficiently mild that the Green’s kernel for the Schrödinger
operator −� − q behaves like the Green’s kernel when q = 0, i.e., the Laplacian) if
and only if there exists some constant C1 > 0 such that G2 ≤ C1G.

Just as Theorem 2.2 has a useful generalization to the q–mmodifiable case, so does
Theorem 2.3 (Corollary 3.5 in [11]), as follows.

Corollary 3.4 Suppose (�,ω) is a σ -finite measure space, and K is a q–m modifiable
kernel on � with modifier m and constant κ . Define T by (2.6). Then there exists
c = c(κ) such that

∞∑

j=0

T jm ≥ mecTm/m . (3.8)

If also ‖T ‖L2(�,ω)→L2(�,ω) < 1, then there exists C = C(κ, ‖T ‖) such that

∞∑

j=0

T jm ≤ meCTm/m . (3.9)

For the proof, define H as in (3.2), let dν = m2dω, and define S by (3.3). Note
that

S j1 =
∫

�

Hj (x, y) dν(y) =
∫

�

K j (x, y)

m(x)m(y)
m2(y) dω(y) = T jm(x)

m(x)
.

Hence, recalling (3.4), (2.11) becomes
∑∞

j=0
T jm(x)
m(x) ≤ eCTm(x)/m(x), or (3.9). The

proof of the lower estimate (3.8) is similar.
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Corollary 3.4 suggests an enhanced role for the q–m modifier m. For example, let
K = G on a C2 domain � ⊆ R

n , where n ≥ 3, dω = q dx and Tu = G(qu) as
in (1.5). Then (3.1) shows that δ(x) is a q–m modifier for G. Hence if ‖T ‖ < 1,
Corollary 3.4 yields the upper estimate

∑∞
j=0 T

jδ ≤ δeCT δ/δ , with a lower estimate
of the same type with a different constant in the exponent.

This last estimate becomes relevant to problem (1.10) for the case g = 1 because
it is relatively easy to see that G1 ≈ δ (see (2.4) in [9]). Our formal solution to (1.10)
for g = 1 is v = ∑∞

j=0 T
jG1. Hence there exists C1 > 0 such that

v =
∞∑

j=0

T jG1 ≤ C1

∞∑

j=0

T jδ ≤ C1δe
CT δ/δ = C1δe

CG(δq)/δ. (3.10)

With a bit of work (see [9, pp. 1409–10]), one can show, using the equivalence of
(1.9) and the condition that ‖T ‖ < 1, that G(δq) ∈ L1(�, dx) and hence is finite a.e.
Then inequality (3.10) shows that v < ∞ a.e., and hence v is a solution of (1.10) for
g = 1. There is also a lower estimate of the form in (3.10) with different constants.
See Theorem 1.1 in [9] for the full statement of these results.

Returning to Eq. (1.1), with the solution u given by (1.7), we have

∫

�

u dx =
∫

�

∞∑

j=0

T j P f dx =
∫

�

P f dx +
∫

�

∞∑

j=1

T j P f dx . (3.11)

Using Fubini’s theorem, the symmetry of the kernels G j , and Eqs. (1.12) and (1.13)
(for v defined with g = 1),

∫

�

∞∑

j=1

T j P f dx =
∫

�

∫

�

∞∑

j=1

G j (x, y)P f (y)q(y) dy dx

=
∫

�

∫

�

∞∑

j=1

G j (x, y) dx P f (y)q(y) dy =
∫

�

v(y) P f (y)q(y) dy

=
∫

�

∫

∂�

P(y, z) f (z) dσ(z)v(y)q(y) dy

=
∫

∂�

∫

�

P(y, z)v(y)q(y) dy f (z) dσ(z).

The Poisson kernel P(y, z) is the outward normal derivative of the Green’s function
G(y, x) as x → z. If we take a sequence (x j ) of points of�which converge to z ∈ ∂�

normally, then

∫

�

P(y, z)v(y)q(y) dy = lim
j→∞

∫

�

G(y, x j )

δ(x j )
v(y)q(y) dy = lim

j→∞
G(qv)(x j )

δ(x j )
.

(3.12)
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See Lemma 3.3 in [9] for the full justification of this fact. By Eq. (1.11), G(qv) <

G(qv) + G1 = v. Hence, using estimate (3.10),

lim
j→∞

G(qv)(x j )

δ(x j )
≤ lim

j→∞
v(x j )

δ(x j )
≤ lim

j→∞C1e
CG(δq)(x j )/δ(x j ). (3.13)

By the identity (3.12) with v replaced by δ,

lim
j→∞

G(δq)(x j )

δ(x j )
=

∫

�

P(y, z)δ(y)q(y) dy = P∗(δq)(z),

where P∗, defined by

P∗(h)(z) =
∫

�

P(y, z)h(y) dy, (3.14)

for z ∈ ∂�, is the formal adjoint of the Poisson operator. P∗h is known as the balayage,
or sweep, of h, because the integral sweeps h from � to ∂�. Putting these estimates
together gives

∫

�

P(y, z)v(y)q(y) dy ≤ C1e
CP∗(δq)(z).

Substituting this estimate above gives

∫

�

u dx ≤
∫

�

P f dx + C1

∫

∂�

eCP∗(δq)(z) f (z) dσ(z). (3.15)

We summarize with this statement (see Theorem 1.2 in [9] for the statement when
q = 1, i.e., the case of the gauge).

Theorem 3.5 Suppose � is a bounded C2 domain in Rn for n ≥ 3, q ∈ L1
loc(�), q ≥

0, f : ∂� → [0,∞) is Borel measurable, and T is defined by (1.5). Let δ(x) be the
distance of x ∈ � to ∂�.

(a) If ‖T ‖L2(q)→L2(q) < 1 and P f ∈ L1(�, dx), then there exists C > 0, depending
on � and ‖T ‖, such that if

∫

∂�

eCP∗(δq) f (z) dσ < ∞, (3.16)

then u = ∑∞
j=0 T

j P f satisfies inequality (3.15), and hence u ∈ L1(�, dx) is a
very weak solution of (1.1).

(b) Conversely, suppose f ∈ L1(∂�, dσ). If there is a very weak solution w of (1.1),
then ‖T ‖ ≤ 1. If w ∈ L1(�, dx), then P f ∈ L1(�), and (3.16) holds with C
replaced by some constant c depending only on �.
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The proof of the converse only requires a few modifications to the argument above.
We noted above that the estimate ‖T ‖ ≤ 1 follows from Schur’s Lemma. Equa-
tion (3.11) and the minimality of u imply that P f ∈ L1(�, dx). In place of (3.13) we
use the converse estimate to (3.10), the equation v = G(qv)+G1, and the equivalence
of G1 and δ, to obtain

ecG(δq)(x j )/δ(x j ) ≤ c1 lim
j→∞

v(x j )

δ(x j )

= c1 lim
j→∞

G(qv)(x j ) + G1(x j )

δ(x j )
≤ c1 lim

j→∞
G(qv)(x j )

δ(x j )
+ c2.

The constant c2 ultimately results in adding a term c2
∫
∂�

f (z) dσ(z), which is
assumed to be finite, to the estimate for

∫
∂�

eCP∗(δq) f (z) dσ .
Condition (3.16) is ameasure of how rapidly q can blow up on ∂� and still allow for

a solution to (1.1). For f = 1 (the case of the gauge), (3.16) holds if P∗(δq) ∈ BMO
with sufficiently small norm, which in turn holds if δq is a Carleson measure on �

with small enough Carleson norm—see [9], Corollary 1.3.
Theorem 3.5 is based on the estimate (3.10), which comes from the general estimate

(3.9) and the observation that δ is a q–m modifier for Green’s kernel. If we can find
other q–m modifiers for T , we can derive further results. The task of identifying q–m
modifiers is made easier by the following lemmas. A quasi-metric d with constant κ

on a set X is a symmetric function d : X × X → [0,∞) which is non-degenerate
(d(x, y) = 0 if and only if x = y) and satisfies the quasi-triangle inequality (2.3). The
following is Lemma 2.2 in [11], where it is used in the proof of Theorem 2.2 above.

Lemma 3.6 (Ptolemy inequality) Let d be a quasi-metric with constant κ on a set X.
Suppose x, y, z, w ∈ X. Then

d(x, y)d(z, w) ≤ 4κ2[d(x, w)d(y, z) + d(x, z)d(y, w)]. (3.17)

Proof Suppose that d(x, z) = min{d(x, z), d(y, z), d(y, w), d(x, w)}. Then

d(x, y) ≤ κ(d(x, z) + d(z, y)) ≤ 2κd(z, y),

and

d(z, w) ≤ κ(d(z, x) + d(x, w)) ≤ 2κd(w, x).

Hence

d(x, y)d(z, w) ≤ 4κ2(d(z, y)d(w, x)) ≤ 4κ2[d(x, w)d(y, z) + d(x, z)d(y, w)].

Inequality (3.17) is invariant under interchanging x and y, so it holds if d(y, z) is the
minimum of the 4 distances above. It is also invariant under interchanging z and w,
so it holds if d(x, w) is the minimum. Finally, the result holds in the case where the
minimum is d(y, w) by interchanging x and y, and also z and w. ��

123



La Matematica

The following lemma originated with [21], Lemma A.1 in the context of normed
vector spaces, and appears in generality in [14], Proposition 8.1 and Corollary 8.2.

Lemma 3.7 Suppose d is a quasi-metric with constant κ on X, and let z ∈ X. Define
d̃ : X\{z} × X\{z} → [0,∞) by

d̃(x, y) = d(x, y)

d(x, z) · d(y, z)
. (3.18)

Then d̃ is a quasi-metric on X\{z} with constant 4κ2.

Proof The non-degeneracy and symmetry of d̃ are trivial. For the quasi-triangle
inequality, dividing both sides of (3.17) by the non-zero quantity d(x, z)d(y, z)d(w, z)
gives

d(x, y)

d(x, z)d(y, z)
≤ 4κ2

(
d(x, w)

d(x, z)d(w, z)
+ d(y, w)

d(y, z)d(w, z)

)

,

or

d̃(x, y) ≤ 4κ2
(
d̃(x, w) + d̃(w, y)

)
.

��
The following result appears to be fortuitous.

Lemma 3.8 Let n ≥ 3 and let� ⊆ R
n be a bounded C2 domain with Green’s function

G(x, y) and Poisson kernel P(x, z) for x, y ∈ �, z ∈ ∂�. For each z ∈ ∂�, define
mz : � → (0,∞) by

mz(x) = P(x, z).

Then mz is a quasi-metric modifier for G with constant independent of z ∈ ∂�.

Proof Define d : � × � → [0,∞) by

d(x, y) = |x − y|n−2(|x − y|2 + δ(x)2 + δ(y)2),

where δ is the distance to the boundary as usual. One can show that d is a quasi-metric
on �. Let the quasi-metric constant be κ , which depends only on �. For x ∈ � and
z ∈ ∂�, δ(z) = 0 and δ(x) ≤ |x − z|, so d(x, z) ≈ |x − z|n . The Poisson kernel
satisfies the equivalence

mz(x) = P(x, z) ≈ δ(x)

|x − z|n

(see, for example, [5]). Hence, using (3.1),

G(x, y)

mz(x)mz(y)
≈ δ(x)δ(y)

d(x, y)

/ (
δ(x)

|x − z|n · δ(y)

|y − z|n
)

≈ d(x, z)d(y, z)

d(x, y)
,
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which is the reciprocal of a quasi-metric on �\{z} (hence on �), with constant 4κ2,
by Lemma 3.7. ��

To apply these observations to the study of (1.1), we make the following formal
calculation based on our solution u given by (1.7):

u(x) =
∞∑

j=0

T j P f (x) = P f (x) +
∞∑

j=1

∫

�

G j (x, y)P f (y)q(y) dy

= P f (x) +
∞∑

j=1

∫

�

G j (x, y)
∫

∂�

P(y, z) f (z) dσ(z) q(y) dy

= P f (x) +
∫

∂�

∞∑

j=1

∫

�

G j (x, y)P(y, z) q(y) dy f (z) dσ(z).

We define

P(x, z) = P(x, z) +
∞∑

j=1

∫

�

G j (x, y)P(y, z) q(y) dy, (3.19)

for x ∈ � and z ∈ ∂�, so that

u(x) =
∫

∂�

P(x, z) f (z) dσ(z). (3.20)

This equation is analogous to the standard Poisson integral formula (1.2), which it
reduces to in the case q = 0. Hence, we call P the q-perturbed Poisson kernel. We
are led to the following estimate for P .

Theorem 3.9 Let n ≥ 3 and let� ⊆ R
n be aC2 bounded, connected open set. Suppose

q ∈ L1
loc(�) with q ≥ 0. Then there exists a constant c = c(�) such that

P(x, z) ≥ P(x, z)ec
∫
� G(x,y)P(y,z)q(y) dy/P(x,z). (3.21)

If also the operator T defined by (1.5) satisfies ‖T ‖L2(q)→L2(q) < 1, then there exists
C = C(�, ‖T ‖) such that

P(x, z) ≤ P(x, z)eC
∫
� G(x,y)P(y,z)q(y) dy/P(x,z). (3.22)

For the proof of the upper estimate, P(x, z) = mz(x) is a q–m modifier for G by
Lemma 3.8, so by Corollary 3.4,
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P(x, z) =
∞∑

j=0

T jmz(x)

≤ mz(x)e
C(Tmz(x))/mz(x) = P(x, z)eC

∫
� G(x,y)P(y,z)q(y) dy/P(x,z),

where C is independent of z ∈ ∂� because it depends only on ‖T ‖ and the constant
for the q–m modifier mz , which is independent of z. The lower estimate is similar.

Of course the estimates (3.21) and (3.22) yield pointwise estimates for the solution
u of (1.1): if ‖T ‖ < 1, then

u(x) ≤
∫

∂�

P(x, z)eC
∫
� G(x,y)P(y,z)q(y) dy/P(x,z) f (z) dσ(z),

with a similar lower estimate with C replaced by c, which holds without any assump-
tion on ‖T ‖. See equations (1.12) and (1.14) in [9] for the case of the gauge, when
f = 1. Notice that these estimates reduce in the case q = 0 to the standard Pois-
son formula (1.2). Also note that they yield the result that P ≈ P if and only if∫
�
G(x, y)P(y, z)q(y) dy ≤ C1P(x, z).
Theorems 3.3 and 3.9 yield estimates for the q-perturbed Green’s and Poisson

kernels in terms of q and the classical (q = 0) Green’s and Poisson kernels. Ultimately
these estimates derive fromTheorem 2.2 about general quasi-metric kernels on general
measure spaces, but only because of the robustness of Theorem2.2 in its consequences:
Theorem 2.3 dealing with estimates of T j1, and Corollaries 3.2 and 3.4 where q–m
modifiers are introduced. This robustness is further exhibited in the following section,
where these topics are considered on uniform domains.

4 UniformDomains, Harmonic Measure, andMartin’s Kernel

Since the 1970s, substantial attention has been paid to the study of partial differential
equations on domains that are less smooth than C2 domains, starting with Lipschitz
domains (domains whose boundary is, after rotation, locally the graph of a Lipschitz
function). An extensive theory was developed by Dahlberg, Jerison, Kenig, and oth-
ers. In 1982, Jerison and Kenig introduced the more general class of nontangentially
accessible, or NTA, domains in [16].

Definition 4.1 Let � ⊆ R
n be a bounded domain (connected open set). For

M > 1, an M-tangential ball in � is a ball B(x, r) with B(x, r) ⊆ �, with
r
M ≤ d(B(x, r), ∂�) ≤ Mr , where d(B(x, r), ∂�) denotes the distance of B(x, r)
to ∂�. For x, y ∈ �, a Harnack chain from x to y is a finite sequence of M-tangential
balls such that x is in the first ball, y is in the last ball, and consecutive balls inter-
sect. The number of balls in the Harnack chain is called its length. � satisfies the
Harnack chain condition if, for every ε > 0,C > 0, and x, y ∈ � satisfying
d(x, ∂�) > ε, d(y, ∂�) > ε, and |x − y| < Cε, there exists a Harnack chain
from x to y of length depending only on C , but not on ε.
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� satisfies the interior corkscrew condition if there exist M > 0 and r0 > 0 such
that for any point z ∈ ∂�, and any 0 < r < r0, there exists a point x ∈ � such that
M−1r < |x − z| < r and dist (x, ∂�) > M−1r .

� satisfies the exterior corkscrew condition if there exist M > 0 and r0 > 0 such
that for any point z ∈ ∂�, and any 0 < r < r0, there exists a point x ∈ R

n\� such
that M−1r < |x − z| < r and dist (x, ∂�) > M−1r .

A non-tangentially accessible, or NTA, domain is a bounded domain that satis-
fies the Harnack chain condition, the interior corkscrew condition, and the exterior
corkscrew condition.

A uniform domain is a bounded domain that satisfies the interior corkscrew condi-
tion and the Harnack chain condition.

The class of NTA domains includes Lipschitz domains, but is more general, and
the class of uniform domains includes, but is more general, than the class of NTA
domains. An example of a uniform domain that is not an NTA domain is a ball in Rn

with n ≥ 3, with an interior line seqment deleted. The exterior corkscrew condition
fails at points of the boundary on the deleted segment. A ball in R

2 with a deleted
interior line segment is not a uniform domain because the Harnack chain condition
fails for points x, y close together on opposite sides of the deleted segment. InR3, there
is a Harnack chain going around the segment in a direction normal to the segment.

The exterior corkscrew condition guarantees that an NTA domain is regular for the
Dirichlet problem, which means that if f : ∂� → R is continuous on ∂�, the there
exists a function u : � → R such that u is harmonic on �, u = f on ∂�, and u
is continuous on �. A uniform domain, however, is not necessarily regular for the
Dirichlet problem.

In generalizing Theorem 3.3 to uniform domains, the first difficulty is that δ, the
distance to the boundary, is not necessarily a q–m modifier for the Green’s function
G(x, y) on a uniform domain. However, estimates [2, 13] show that for any x0 ∈ �, the
functionm(x) = min(1,G(x, x0)) is a q–mmodifier forG, with constant independent
of x0 ∈ �. The existence of a q–m modifier then implies, by Corollary 3.2, that the
Green’s Function estimates (3.6) and (3.7) of Theorem 3.3 hold when � is a uniform
domain (and ‖T ‖ < 1 for (3.7)).

The boundary of an NTA domain � can be quite wild, so that in general, surface
measure dσ is not defined on ∂�. In particular, then, there is no direct analogue of the
Poisson integral formula (1.2).

However, for an arbitrary bounded domain in R
n , given a function f : ∂� → R,

one can follow the Perron process and consider P f , which is (roughly) the infimum of
the superharmonic functions on � which dominate f on ∂�, and P f , the supremum
of the subharmonic functions lying under f on ∂�. If P f = P f , and P f is harmonic
on � (which Wiener proved to be true for any continuous f on any bounded domain
in R

n in [23]), we define P f = P f to be the generalized solution to the Dirichlet
problem. Then by the maximum principle, for any fixed x ∈ �, the map taking f to
P f (x) is a bounded linear functional on C(∂�) (the continuous functions on ∂�). By
the Riesz representation theorem, there exists a measure dHx on ∂� such that

P f (x) =
∫

∂�

f (z)dHx (z). (4.1)
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See, for example, [16, p. 83], for amore precise explanation. Hx is called the harmonic
measure on � for the base point x .

The Martin boundary and Martin kernel for a domain � are defined somewhat
abstractly by considering certain extremal positive harmonic functions on �. These
extremal functions form theMartin boundary, and general positive harmonic functions
on � can be obtained as an integral over the Martin boundary with respect to a certain
kernel. However, for uniform domains, the Martin boundary can be identified with
the topological boundary ([1], Corollary 3, for uniform domains; see [15] and [3]
for Lipschitz domains, and [16, 18] for NTA domains). To define the Martin kernel
M(x, z) on a uniform domain, for x ∈ � and z ∈ ∂�, fix a reference point x0 ∈ �

and set

M(x, z) = lim
y→z,y∈�

G(x, y)

G(x0, y)
,

where that limit exists. For x, x0 ∈ �, then dHx and dHx0 are mutually absolutely
continuous, and it turns out (see [16], p. 104 and 115 for NTA domains, and [10], §2
for uniform domains) that

dHx (z) = M(x, z)dHx0(z), (4.2)

where x0 is the reference point in the definition of M(x, z). Therefore (4.1) becomes

P f (x) =
∫

∂�

M(x, z) f (z) dHx0(z). (4.3)

This formula is an analogue of the classical Poisson formula (1.2).
If � is a C2 domain, then dHx = P(x, z) dσ(z). Taking a sequence y j of points

of � converging normally to z ∈ ∂�,

M(x, z) = lim
j→∞

G(x, y j )/δ(y j )

G(x0, y j )/δ(y j )
= P(x, z)

P(x0, z)
.

Hence (4.3) just becomes

P f (x) =
∫

∂�

P(x, z)

P(x0, z)
f (z)P(x0, z)dσ(z) =

∫

∂�

P(x, z) f (z)dσ(z),

as usual.
To obtain an analogue of Theorem 3.5 in a uniform domain, the first issue, as noted

above, is that δ is not a q–m modifier for G, although m(x) = min(1,G(x, x0)) is.
Second, in proving Theorem 3.5, we used the fact that G1 ≈ δ on a C2 domain. The
analogous result for the modifier m on a uniform domain would be that G1 ≈ m, but
thatmay not be true.However, if K is a compact subset of� andχK is the characteristic
function of K , then GχK ≤ CKm, with the converse estimate GχK ≥ cKm holding
as long as |K | > 0. As a result, instead of obtaining that the solution u of (1.1) belongs
to L1(�, dx), we can only conclude that u ∈ L1

loc(�, dx). Instead of working with
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the solution v of −�v = qv + 1 on �, v = 0 on ∂�, we work with vK , the solution
of −�v = qv + χK on �, v = 0 on ∂�. We obtain analogous estimates to those
described above for Theorem 3.5, such as equation (3.19) in [10]:

∫

K
u dx =

∫

K
P f dx +

∫

�

vK (y)P f (y)q(y) dy.

We define the analogue of the balayage for the Martin kernel in place of the Poisson
kernel analogously to (3.14):

M∗h(z) =
∫

�

M(y, z)h(y) dy

for z ∈ ∂�. The result (Theorem 1.2 in [10]) is the following.

Theorem 4.2 Suppose � ⊆ R
n is a uniform domain, n ≥ 3, q ∈ L1

loc(�), q ≥ 0 and
let x0 ∈ � be the fixed reference point for the Martin kernel M. Suppose f : ∂� →
[0,∞) is a Borel measurable function which is not a.e. 0 with respect to dHx0 . Let
T u(x) = ∫

�
G(x, y)u(y)q(y) dy, and let m(x) = min(1,G(x, x0)).

(a) If ‖T ‖ < 1, then there exists a constant C = C(�, ‖T ‖) > 0 such that if

∫

∂�

eCM∗(mq) f dHx0 < ∞,

then u = ∑∞
j=0 T

j P f ∈ L1
loc(�, dx) and hence is a (generalized) solution of

(1.1).
(b) Conversely, if u = ∑∞

j=0 T
j P f ∈ L1

loc(�, dx), then ‖T ‖ ≤ 1 and

∫

∂�

eM
∗(mq) f dHx0 < ∞.

We refer to the proof of Theorem 1.2 in [10] for more detail.
Martin’s kernel was developed to obtain a representation formula for general pos-

itive harmonic functions on a domain, not just those of the form P f for a boundary
function f . There is an analogue of Theorem 4.2 for solutions to u = G(qu) + h,
u ≥ 0, for h ≥ 0 on �, with h harmonic, in place of (1.4). Here Martin’s representing
measure takes the place of harmonic measure, and care must be paid to the irregular
points of the boundary. See Theorem 3.5 in [10] for the precise statement and proof
of this result.

Finally, we look for an analogue on uniform domains of Theorem 3.9. With P
defined by (4.1), we can proceed as above to obtain the formal solution (1.7) to (1.4)
and hence (1.1). Then, just as in the derivation of (3.20),

u(x) =
∞∑

j=0

T j P f (x) = P f (x) +
∞∑

j=1

∫

�

G j (x, y)P f (y)q(y) dy
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= P f (x) +
∞∑

j=1

∫

�

G j (x, y)
∫

∂�

M(y, z) f (z)dHx0(z) q(y) dy

= P f (x) +
∫

∂�

∞∑

j=1

∫

�

G j (x, y)M(y, z) q(y) dy f (z) dHx0(z).

We define

M(x, z) = M(x, z) +
∞∑

j=1

∫

�

G j (x, y)M(y, z) q(y) dy, (4.4)

for x ∈ � and z ∈ ∂�, so that we have

u(x) =
∫

∂�

M(x, z) f (z) dHx0(z). (4.5)

This formula is analogous to (4.3) in the same way that (3.20) is analogous to (1.2),
so we call M the q-perturbed Martin kernel.

The key for the proof of Theorem 3.9 was Lemma 3.8, which stated that as a
function of x , the Poisson kernel P(x, z) is a q–m modifier for G(x, y) with constant
independent of z ∈ ∂�. The analogue here is that the function

mz(x) = M(x, z),

where M is Martin’s kernel with fixed reference point x0, is a q–mmodifier forG with
constant independent of z ∈ ∂�. The proof uses the fact thatm(x) = min(1,G(x, x0))
is a q–m modifier for G, Lemma 3.7, and some additional calculations (see Lemma
2.4 in [10]). With the fact thatmz is a q–mmodifier for G, the following result follows
from Corollary 3.4.

Theorem 4.3 Let n ≥ 3 and let � ⊆ R
n be a uniform domain. Suppose q ∈ L1

loc(�)

with q ≥ 0. Then there exists a constant c = c(�) such that

M(x, z) ≥ M(x, z)ec
∫
� G(x,y)M(y,z)q(y) dy/M(x,z).

If also the operator defined by (1.5) satisfies ‖T ‖L2(q)→L2(q) < 1, then there exists
C = C(�, ‖T ‖) such that

M(x, z) ≤ M(x, z)eC
∫
� G(x,y)M(y,z)q(y) dy/M(x,z).

Hence, by Eq. (4.5), we obtain the pointwise estimate for the solution of (1.1) on a
uniform domain (under the assumption ‖T ‖ < 1):

u(x) ≤
∫

∂�

eC
∫
� G(x,y)M(y,z)q(y) dy/M(x,z) f (z) dHx (z),
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using Eq. (4.2). There is also the lower bound

u(x) ≥
∫

∂�

e
∫
� G(x,y)M(y,z)q(y) dy/M(x,z) f (z) dHx (z),

which holds without any requirement on ‖T ‖. See Theorem 1.1 in [10] and its proof
for details.

Hence, we have full analogues for uniform domains of Theorem 3.3, 3.5, and 3.9
for C2 domains. The key points are to identify appropriate q–m modifiers and apply
Corollaries 3.2 and 3.4 of Theorem 2.2.
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