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Abstract

This paper studies the anisotropic fractional Sobolev space restricted on a bounded
domain in the Euclidean space R" with fractional order & € [0, n], which complements
the previous theory with fractional order « > n. We investigate the seminorm of the
characteristic function as the anisotropic fractional perimeter restricted on a bounded
domain, and systematically establish its metric properties including the upper bound
estimation. For application, we prove the embedding law with respect to the anisotropic
fractional Sobolev space and the Radon measure based Lebesgue space restricted on
a bounded domain by the intrinsic geometric characterization.

Keywords Anisotropic fractional Sobolev space - Anisotropic fractional perimeter -
Anisotropic fractional Sobolev embedding

1 Preliminaries

For p>1,0<s <1 and Q C R”, the fractional Sobolev space is introduced by

Gagliardo in [3] including all the functions f € L?(£2) with the fractional Sobolev
s-seminorm

_ p
1 Wperiey = [ [ T2 dxay < +oc. )

o |lx—y[mte
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The fractional Sobolev space has been widely developed with respect to various aspects
in mathematics and applied mathematics. For example, it plays important role in the
trace problems of the Sobolev space (see also in [3]). For more applications, we refer
to[1,2,7, 10-12].

For s € (0, 1), the fractional s-perimeter of a Borel set £ C R” is defined by

PS(E)=// ;dxdy, 2)
E JEe |x — y["ts

where E€ denotes the complement of E in R". Fractional perimeter attracts increasing
attentions in geometry (see [5] and the references therein), which is closely related to
the fractional Sobolev space. Note that, let p = 1 and Q2 = R", then || 1£]|| W l(Rry =
2P (E), where 1 denotes the characteristic function on E.

Recently, both fractional Sobolev space and fractional perimeter have been gener-
alized in an anisotropic way. For this, we need first recall some basic conceptions and
results in convex geometry analysis.

Aset K ; R” is called star-shaped with respect to the origin if the intersection of
every line through origin with K is a compact line segment. The radial function of K
is defined by

pk(x) =max{A >0:Ax € K} Vx e R"\ o,

where o denotes the origin of R”. If pg is positive and continuous, K is called a star
body with respect to the origin and if for any x € R" \ o, px (x) = pg(—x), K is
called symmetric with respect to the origin. In this paper, we always assume that K is
a symmetric star body with respect to the origin.

The Minkowski functional of K, || - ||x is defined by:

lxllxk =inf{A >0:x € AK} V x € R",

where AK = {Ay : y € K}. Note that ||x||x = || — x||x for any x € R” since K is
assumed to be symmetric in this paper.

Lety e R",a > 0and

Bf () ={xeR":|x—ylx <a)
be the K -ball centered at y with radius a. In this paper, let E C R” be a bounded mea-
surable set, and E€, V (E) denote the complement of E in R” and the n-dimensional
volume of E, respectively. Then, it is easy to check that
V(BX(y) = a"V(K).

For more information on convex geometry, we refer to [4] and [9].

The anisotropic fractional Sobolev space and fractional perimeter follows by replac-

ing |[x — y| by ||x — y||x in respectively (1) and (2), which have been well developed
in recent years. For example, Ludwig studies the limiting behavior of the anisotropic
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fractional Sobolev s-seminorm for both s — 1~ and s — 07 in [6], while the lim-
iting cases of the anisotropic fractional s-perimeter are investigated respectively by
also Ludwig in [5] for s — 1~ and Maz’Ya, Shaposhnikova for s — 07 in [8]. The
anisotropic Sobolev capacity with fractional order is introduced by Xiao and Ye in [14]
with applications to the theory of anisotropic fractional Sobolev space embeddings.
Estimation for the anisotropic fractional perimeter is also established in [14], which
is optimal in a limiting way.

Note that the fractional orders n 4+ ps in these previous theories are greater than n.
As for the fractional orders not more than n, we will study the corresponding theory
in this paper. Let €2 be a bounded domain and & € [0, n] if not specially mentioned in
this paper.

Definition 1 The anisotropic fractional Sobolev space restricted on €2, denoted by
Wloé’l(Q), is the set of all the functions f € L'(€2) with the seminorm

1y 2// |f(x) — fiy)ld dy < +oc.
K llx = ylik

Let

1
Pa(EﬂQ,K):/ / — — dxdy
ene JEng IIx — Y%

be the anisotropic fractional perimeter restricted on 2 for a bounded measurable set
E C R" with respect to K. We can check that

11El et q) = 2Pa(EN R, K, 3)

and if V(EN Q) = 0or V(E°N Q) = 0, it is easy to check that ||1E||Wa,l(Q) =

K
2P,(ENL, K) = 0,whichis trivial. Hence, we will always assume that V (ENS2) # 0
and V(E€ N Q) # 0 in this paper. Moreover, note that K is symmetric star body with
respect to the origin, then by Fubini’s theorem, we can check that

1
Pa(EﬂQ,K):/ / —— dxdy
ene JEng IIXx — yll%
1
:/ f —_— dydx
ennJEng IIx — Y%
1
=f / ———— dydx
eene JEng Iy — xlI%
1
:/ / ———dxdy.
eengJEng IIXx — yli%
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2 Metric Properties for the Anisotropic Fractional Perimeter
Restricted on a Bounded Domain

In this section, we are going to study the metric properties of the anisotropic fractional
perimeter restricted on €2, which induce corresponding properties for the seminorm
of characteristic function in the anisotropic fractional Sobolev space restricted on €2

by (3).

Theorem 1 (i) Homogeneity for K : let r > 0, then
Py (ENQ,rK)=r"P, (ENQ,K).
(i) Translation: for any xo € R",

Py ((xo + E)NQ, K) = Po(EN (2 = x0), K),
Py (xo+ ENQ,K) =P, (ENQ, K),

wherexo + E={xo+y:y€E},Q—xo={y—x0:y € Qand
X0+ ENQ={x+y:ye ENQ}.
(iii) Interpolation: let 0 < o < B < y < n, then

[Ps(ENQ, K™ <[P(ENQ, KPP (ENQ, K)F,

In[Ps(E N R, K)] < ;%g In[P,(ENQ, K)] + ﬁ%g I[P, (E N, K)], “)

and

[ Ps(ENQ, K) ]‘//’
B —
V(ENQ)V(ESN Q)

is increasing on (0, n).

Proof (i) Note that ||x — y|l,x = r~'|lx — y|lx holds for any x, y € R”", then

1
Pa(EﬂQ,rK)zf / —————dxdy
ene JEeng Ix — yIFk

=r ————dxdy
ene JEeng lIx — yll%

=r*P,(ENQ,K).
(ii) Note that (xg + E)¢ = xo + E€, then

@ Springer



La Matematica (2024) 3:833-847 837

1
Pa((xo+E)ﬂQ,K)=/ </ —adx> dy
to+ENQ \JxorExna Ix — yl%
1
[ | = L
xo+EN(Q-x0) \Jxo+En@Q—xo) X — ¥ll%
1
Lo U T g ) @
xo+EN(Q—x0) \JEn(Q—x0) Iz +x0 — ¥l
1
Lo e = =g )
xo+ENQ—x0) \JEN©Q—x0) 12— —x0)
1
R/
ENQ—x0) \JEN®©Q—xo) 12— Wl

= Po(E N (§2 = x0), K),

where we let x = z 4+ xp and y = w + x¢. Hence, it follows that

Py (xo + ENQ, K) = Py ((xo + E) N (x0 + ), K)
— PU(ENQ,K).

(iii) Note that 0 < L= < 1,0 < 222 < 1 and L=£ + £=% — 1. Hence, by
y—a o y—o y—o
Holder’s inequality, it follows that

<

Ps(ENQ, K)

1
RN R R,
ENQJENQ [|x — ylI%
1 =B/ (y-a) 1 B=a)/ly—a)
= _ _ dxdy
-/EﬁSZ /Ecm (llx —Y||°1‘(> <||x —le’,})
_ / ( / dx )(V—ﬂ)/(y—a) / ax P .
< — — y
gna \Jeeng lIx =yl Eeng I =yl
dxdy 7P/ f=a)/ly—a)
(/l;“msz /Efrm lx —yl% ) /Emsz /Efﬂsz llx — )’||K

= (Py(EN S, K))()’—.B)/()/—O!) (P,(ENK, K))(,B—oz)/(y—a)7

which implies the desired inequalities (4) by taking power y — « to both sides and
applying the logarithmic function to both sides.

Leta = 0. Then Po(EN 2, K) = V(EN Q)V(E N Q) and it follows from (4)
that

PR(ENQ, K) < (VENVE NQ))" P (P (ENnQ, k),
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which implies

Pg(ENQ,K) 1/ﬁ< P (ENQ,K) 17
[V(EHQ)V(ECHQ)} \[V(EOSZ)V(ECOQ)}

Hence,

[ Ps(ENQ, K) }”f’
B —
V(ENQ)V(ECNQ)

is increasing on (0, n). O
We can establish the upper bound estimation for the anisotropic fractional perimeter
restricted on €2 and the seminorm of characteristic function in the anisotropic fractional

Sobolev space restricted on 2.

Theorem 2 Let o € [0, n). Then

||1E||W;é.l(9) =2P,(EN,K)

o
n

2n . ( V(K) )
< V(ENQV(E‘NQ)
n—ao

max(V(E N Q), V(EC N Q))
5

Proof 1Tt is easy to check that the desired inequality (5) holds trivially if V(EN Q) = 0,
or V(E°NQ) = 0,ora = 0. Hence, we will suppose V(ENQ) # 0, V(E‘NRQ) #0
and o € (0, n) in the following proof. Let y € E€ N and BrK (y) be the K —ball with

center y and radius
1
VIENQ)\"
r=——m—m—] >0
V(K)

Note that V(B,K(y)) =V({x:llx—=ylg <r}) =r"V(K) = V(E N ) and hence
VIENQNBE(y) = VB NENQ),
which, together with the fact

Ix —yllxk <r, VYx e (ENQ)°NBK®y);
lx —ylx >r, Vx e (BXO) N(ENQ),

implies
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/ dx__ _ V(BEG) N(ENQ))
(En@)nBK(y) X —yl% ~ re
_ V(B N((ENQ)
rO[

v

/ dx
BX(yenEne) X = yI%

Hence, it follows that

/ dx _ / dx +/ dx
ena lIx — ylI% (En)nBK (v) X = ylig (En)NBK (e IX = ylik

dx dx
= e T T
(En)nBK () X — ¥k (En@)enBK (v IX — ¥l
dx
iy 0
BK(y X — yll%

Then by Fubini’s theorem, we have

o0
/ d—xa :/ (/ a1 dt) dx
B X =yl Jiwie—yix<r) \Jjx—yiix
o0
=f a1 (f dx) dt
r {e:llx—yligx <r}
.
+/ a1 (/ dx) dt
0 {x:llx—yligx <t}

o r
= r”V(K)/ at T % dr + V(K)/ a1 gy
r 0

="V (K) + —

"V (K)
n—o

=" VENQTVE)S,
n—uo

which, together with (6), implies

1
raenes = [ [
ene JEeng IIx — yll%

1
_ / / vy
eengJEng IIX — Yl%

/ " VENQ) T VK dy
EnQ N —«o

A

ﬁV(EmQ)%V(K)%V(ECmQ). %)
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On the other hand, similar way can be applied to get

d.x n c n—o o
- < V(ECNQ) » V(K)n,
ene llx—ylx ~ n—«a
and hence
1
P,(ENQ,K)= ————dxdy
ene JEng IIx — ¥yl
5/ T VEC N Q)T V(K dy
EnQ N —«
= T VENQTVEK)TVENQ),
n—a
which, together with (7), implies (5) holds. O

By Theorem 2, we can explore more metric properties of the anisotropic fractional
perimeter restricted on €2, including the uniform continuity and regularity, which
induce corresponding metric properties of the seminorm of characteristic function
in the anisotropic fractional Sobolev space restricted on €2, and contribute to the
anisotropic fractional Sobolev embedding restricted on €2 in the next section.

Theorem3 Let 0 < a < nand E, G C R" be bounded measurable sets with
V(EAG) =0, where EAG = (E° N G) U (E N G°), then

Py(ENS, K) = Py(GNQ, K).

Proof For any x € R", it follows by Theorem 2 that

[
ene Ix = yII% one Ix = yII%

_ / dy
E&acne lx = yI%
n n—

VIEAG)N Q)T

< “V(K)n

n—uo

=0,

L. . dy _ dy
which 1mphes fEﬂQ m = meQ m, and hence

1
Pa(EﬂQ,K)zf / —— dxdy
ene JEeng Ix — yll%

1
_ / / i
eeneJEng IIx — Y%
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1
e
cene Jong lx — vl

1
B
6ne Jeeng Ix — ¥l

=Py, (GNQ,K).

m}

Theorem4 Let 0 < o < n. Py(- N R, K) is uniformly continuous in the following
way: for any € > 0, there exists 5 > 0, such that, for any bounded measurable sets
E1, E; C R" with V(E|AE,) < 4, it follows that

|Po(E1NQ,K)— Py (E2NQ,K)| <e.

Proof For any ¢ > 0, let

. [8(1’1—01) a=n —a <8(H—Ot) 1 a>nna}
S=miny ———V(Q) 7 V(K)7 ,| ————=V(Q)'V(K)™ )
4n 4

n

Then, for any bounded measurable sets Ey, E; € R" with V(E{AE,) < 4§, by
Fubini’s theorem, we have

|Po(E1 N2, K) — Py (E2 N2, K)|

1 1
- / / — —dxdy —/ f —— dxdy
Eine JEsng Ix — ylig e Jesne Ix — yllg

1 1
= / / ————dydx —/ / ————dydx
ene JEina X = yllk Esne JEsn I1x — vl

1 1
< / / ———— dydx| + / / —— 5 dydx
EcaEHnQ JEna IX — Yk (EAEHNQ JEsne IX — vl
1 1
+ — dy-— ——__dy)dx
EnESHNe \JEna X — ylik Ene 1Ix = ylI%

=hL+DL+ 1

Note that E1AEy = E{AES and hence V(E1AE>) = V(E{AEYS) < 6. Then, by
Theorem 2, it follows that

n n—a

I < V((ESAES) NQV(EINQ) T V(K)"
n—auo
né n—o o
< V(Q) = V(K)n
n—auo
&
< p—
3
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Estimation for 7, follows in a similar way:

n n—a

L < VI(ESAES) NQ)V(E,NQ) T V(K)"
n—o
né n—a 3
< V(€)= V(K)»
n—o
&
< —.
3

For I3, by Theorem 2 again, we have

d d
13 = / / Y o / 2 o dx
(Ei’ﬁEg)ﬂQ EiNQ ||x - y”K E,NQ ||-x - y”[(

dy
= o | 4
(ESNEHN | (EraEnne IX — Yl

L VESNES) NQV((EIAE) N Q) V(K)S

IA

n—o

n—o

" v@s v
n—o

&
< —.

3

IA

In conclusion,

& I &
Po(EYN Q. K) = Po(E2NQK) | = h+ b+l < 5+ 5 +5=¢

O

By theorem 4, we have the following corollary for the regularity of the anisotropic
fractional perimeter restricted on €2, which induces corresponding regularity of
the seminorm of characteristic function in the anisotropic fractional Sobolev space
restricted on 2.

Corollary 5 Let0 < o < n.

(1) For any bounded measurable set E and any open set sequence { O, },eN, decreasing
to E, which means O, 2 O,4+1 2 E for any n € N4 and for any ¢ > 0, there exists
N € Ny such that V(O, \ E) < ¢ forn > N, it follows that

Py(ENQ,K) = lim Py(0,NQ, K).

n—0o0
(ii) For any bounded measurable open set O and any compact set sequence {Ly}eN,

increasing to O, which means L, € L,+1 € O for any n € Ny and for any ¢ > 0,
there exists N € N4 such that V(O \ L) < ¢ forn > N, it follows that

P(ONQ,K) = lim Po(Ly N2, K).
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Proof (i) By theorem 4, for any ¢ > 0, there exists § > 0, such that, for any bounded
measurable sets O with V(EAQO) < 4, it follows that

IPL(ENQ, K) — Py(0NQ,K)| <e.

For this § > 0 and the open set sequence {O,},en, decreasing to E, there exists
N € Ny suchthat V(O, \ E) = V(O,AE) < é forn > N, and hence

|Po,(ENQ,K)— Py(0,N2,K)| <eforn> N,
which implies
Py(ENQ,K)= lim Py,(0,N,K).
n—o00

(ii) The proof is similar with (i) and we omit the details here. ]

3 Anisotropic Fractional Sobolev Inequality Restricted on a Bounded
Domain

In this section, we will establish the embedding from anisotropic fractional Sobolev
space restricted on 2 to the Radon measure based Lebesgue space restricted on 2 by
the intrinsic geometric characterization. Before this, we need the following lemma with
respect to the coarea formula for the anisotropic fractional Sobolev space restricted
on 2.

Lemma6 Let f € WI%’](Q) and O;(f) ={x e R" : | f(x)| > t} fort > 0. Then

o]

I et ) = 2/0 P (O0:(f) N2, K)dr.

Proof Note that f € L' () since f € Wloé’l (£2) and Visintin in [13] pointed out that
as a consequence of Fubini’s theorem, a generalized coarea formula for the anisotropic
fractional Sobolev space restricted on €2 can be established:

|f(x) = f)
o= [ ety

+00
=2f Po({x eR": f(x) >t} NQ, K)dt

—00

+o0
= 2/ Po({x eR": f(x) >t} NQ, K)dt
0

0
+2/ Py({x e R": f(x) >t} NQ, K)dt

—00
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+o00
= 2/ Py({x e R": f(x) >t} NQ, K)dt
0
+oo
+2/ Py({x e R": f(x) > —s} N Q, K)ds, 8)
0

where the variable changing ¢+ = —s is applied in the last equality. Note that K is
origin symmetric, then, for any s € (0, 4+00), it follows that

Pu(fx eR": f(x) > —s}NQ,K) = Po({x e R": f(x) > —s} N Q, K)
=Pu({x eR": f(x) < —s} NQ, K)
= Pa({x eR": f(x) < —s} N, K),

where the last equality holds by Theorem 3 since V({x e R" : f(x) = —s}) = 0
almost everywhere. This, together with (8), implies

1 et @) = 2/0+Oo Py({x e R": f(x) >t} NQ, K)dt
+2f0+oo Po({x e R": f(x) < —s} N Q, K)ds
= 2/0+oo Po({x e R" : | f(0)| >t} NQ, K)dt
=2/000Pa(0t(f)n§z,1<)dt.

O

Theorem 7 Let p be a nonnegative Radon measure on R", p > 1 and 0 < a < n.
The following two inequalities are equivalent.

(i) The anisotropic fractional Sobolev inequality restricted on Q2: there is a constant
¢ > 0 such that

1/ lg@ = clf Iy ¥ F € Wi @), ©

(i) The anisotropic fractional isoperimetric inequality restricted on Q2: there is a
constant ¢ > 0, such that for any bounded measurable set E C R",

WENQ)? < 2Py (ENQ, K). (10)

Proof (i) = (ii) Suppose (9) holds true, then for any compact set L C R” and any
€ € (0,1),let

|1 =€ Udist(x, L), if dist(x, L) < e,
Jex) = {0, if dist(x, L) > e,
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where dist(x, L) = inf{|x — y| : y € L} denotes the Euclidean distance of the point
x and the set L. Let Ly, be the support set of fe. Note that 0 < f. < 1, and
f. € L' (Q), then by a similar estimation as in Theorem 2, it follows that

|fe(x) Je)I
€ a,l d d
ey = [ [ e dxay

// fe®)] dxdy +// eI dxdy
a llx —yli% o llx —yli%
// 1 () dxdy

o llx =yl

V(LeN Q)5 V(K)1 V(RQ)

=<
n—a

< +OO7

which implies f, € W' (£2). Then, by (9), it follows that

1 1
WLNQT = ( /Q 1Ldu<x>)” < ( /Q fe(x)”du(x)>p

= ”fé”Lﬁ(Q) < c”fg”W,‘?l(Q)'
Let e — 07, then by the dominated convergence theorem, it follows that

(LﬂQ)” = hm cll fellyar q) = clLllyerq,

=2cPO,(LmQ,K). (11

For any open set O C R”, there exists a sequence of compact sets {Ly}eN +
increasing to O. By Corollary 5 and (11), it follows that

1
P

1
w(ONQ)7? = lim u(L,NQ)? < lim 2¢Py(L, N2, K)
n—oo n—0oo

=2cP, (0N, K). (12)

For any bounded measurable set E C R”, there exists a sequence of open sets
{On}nen, decreasing to E. By Corollary 5 and (12), it follows that

1 1
WENQ)7? = lim u(0, NQ)? < lim 2¢Py(0, N2, K)
n—>oo n—>0oo
=2cP,(ENQ, K).

(i1) = (i) Assume (10) holds. Let f € Wz’l(Q). Obviously, i (O;(f)) is adecreas-
ing function on ¢ € [0, c0), and hence for p > 1, by Fubini’s theorem, it follows
that
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1

If(x)l”du(x)) !

[f ()] %
f [/ pt”_ldt] du(x)
Q 0
00 1
[ Uosele)
0 O/ (f)N2
1
_ ( / (@(f)m@dﬂ’)”
d P
:/ 7(/ ,u(Os(f)ﬁQ)dsp) dt
0

d
) L—l
/ ( u(oA(fmmds) W (O(f) N Q) 1P~ dr
0

0

- /0 (1 (0,(f) N Q)7 dr,

||f||L//j(Q) =

I Il
N T

51
1 (0(f) N Q) ds ) 1 (O(f) N Q)P dr

which, together with (10) and lemma 6, implies, for any f € Cé’",

Iy = [ w0 nat ar

IA

oo

20/ Py (O/(f)N,K)dt
0

:C”f”WIDéI(Q)

[}
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