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Abstract

In this paper we study the homogenization of the Dirichlet problem for the Stokes equa-
tions in a perforated domain with multiple microstructures. First, under the assumption
that the interface between subdomains is a union of Lipschitz surfaces, we show that
the effective velocity and pressure are governed by a Darcy law, where the permeabil-
ity matrix is piecewise constant. The key step is to prove that the effective pressure is
continuous across the interface, using Tartar’s method of test functions. Secondly, we
establish the sharp error estimates for the convergence of the velocity and pressure,
assuming the interface satisfies certain smoothness and geometric conditions. This is
achieved by constructing two correctors. One of them is used to correct the disconti-
nuity of the two-scale approximation on the interface, while the other is used to correct
the discrepancy between boundary values of the solution and its approximation.

Keywords Homogenization - Stokes equations - Perforated domain - Convergence
rate

Mathematics Subject Classification 35Q35 - 35B27 - 76D07

1 Introduction

In this paper we study the homogenization of the Dirichlet problem for the Stokes
equations in a perforated domain €2,

- 82/’LAM8 +Vpe=f ing,
div(ug) =0 in g, (1.1)
u, =0 on 0L,
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where 0 < ¢ < 1 and & > 0 is a constant. Let 2 be a bounded Lipschitz domain in
RY, d > 2. Let {Qe : 1 < £ < L} be a finite number of disjoint subdomains of €2,
each with a Lipschitz boundary, such that

L
Q=[]Jal (1.2)
=1

To describe the porous domain 2., let Y = [—1/2, 1 /2]‘1 be a closed unit cube and
{Yf : 1 < £ < L} open subsets (solid parts) of ¥ with Lipschitz boundaries. Assume

thatfor 1 < ¢ < L, dist(dY, BYSZ) > 0 and Y]Li =Y \Y_f (the fluid part) is connected.
ForO <e <land1 < ¢ < L, define

Qﬁ:Q@\Ue(Y_erz), (1.3)

where z € Z4 and the union is taken over those z’s for which e(Y + z) c Q¢. Thus
the subdomain Q¢ is perforated periodically, using the solid obstacle Y f. Let

L L
o.=sulJet=a\JUe (W +2). (14)

=1 =1 z

where ¥ is the interface between subdomains, given by

L L
r=q\[Je =]\ . (1.5)

=1 =1

For f € L?(2; RY), let (ug, pe) € Hd (Q:; RY) x L2(Q,) be the weak solution of
(1.1) with fszg pe dx = 0. We extend u, to the whole domain €2 by zero. Let P, denote
the extension of p, to €2, defined by (2.21). In the case L = 1, where 2 is perforated
periodically with small holes of same shape, it is well known thatas ¢ — 0, u, — ug
weakly in L2(; R4 ) and P, — Py strongly in L2(2), where the effective velocity
and pressure (1o, Pp) are governed by the Darcy law,

wo=p " 'K(f=VP) inQ,
div(ug) =0 in L, (1.6)
uop-n=0 onad2,

with fQ Ppdx = 0. Note that in (1.1) we have normalized the velocity vector by a
factor &2, where ¢ is the period. For references on the Darcy law, we refer to the reader
to[1, 3, 4, 10, 13].

In (1.6) the permeability matrix K is a d x d positive-definite, constant and sym-
metric matrix and n denotes the outward unit normal to 9€2. It was observed in [3] by
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G. Allaire that as ¢ — 0,
ug — " 'W(x/e)(f — VPy) — 0 strongly in L>(Q2; RY), (1.7)

where W (y) is an 1-periodic d x d matrix defined by a cell problem and fY W(y)dy =
K . Recently, it was proved in [14] by the present author that

e — ™' Wx/e)(f = VP2 + 1P — Poll 2@y < CVell fllcring, (1.8)

and that
leVue — w™ ' VW (x/e)(f — VPl 2 < CVell fllcring- (1.9)

We point out that due to the discrepancy between boundary values of ;='W (x /&) (f —
V Py) and u, on 0€2, the 0(81/2) convergence rates in (1.8) and(1.9) are sharp. See
[11] for an earlier partial result on solutions with periodic boundary conditions.

The primary purpose of this paper is to study the Darcy law for the case L > 2,
where the domain €2 is divided into several subdomains and different subdomains are
perforated with small holes of different shapes.

Theorem 1.1 Let 2 be a bounded Lipschitz domain in RY d > 2, and Q. be given
by (1.4). Let (ue, pe) € H(} (Q%:; RY) x L*(2,) be a weak solution of (1.1), where
f e L*(Q; RY) and st pedx = 0. Let P; be the extension of pe, defined by (2.21).
Then u, — ug weakly in L3(S2: Rd) and Py — fQ P, — Py strongly in L*(), as
& — 0, where Py € HY(Q) and (uo, Po) is governed by the Darcy law (1.6) with the
matrix

L
K=Y K'xq inQ. (1.10)
=1

The matrix K¢ in (1.10) is the (constant) permeability matrix associated with the
solid obstacle Y. Thus, the matrix K is piecewise constant in €, taking the value K*
in the subdomain Q¢, and

uo = Kf —VPy) inQ. (1.11)

Since div(ug) = 0in Q and Py € H'(S), both the normal component ug - n and
Py are continuous across the interface X (in the sense of trace) between subdomains.
However, the tangential components of #( may not be continuous across X.

The Dirichlet problem for the Stokes equations (1.1) is used to model fluid flows in
porous media with different microstructures in different subdomains. The continuity
of the effective pressure Py and the normal component u - n of the effective velocity
across the interface is generally accepted in engineering [6, 9]. Theorem 1.1 is prob-
ably known to experts. However, to the best of the author’s knowledge, the existing
literatures on rigorous proofs only treat the case of flat interfaces. In particular, the
result was proved in [9] under the assumptions that d = 2, the interface I' = R x {0}
and the solutions are 1-periodic in the direction x. Also see related work in [5, 12].
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We provide a proof here for the general case, where the interface is a union of Lips-
chitz surfaces, using Tartar’s method of test functions. We point out that the proof for
(1.11) and Py € H'(Q2) for each ¢ is the same as in the classical case L = 1. The
challenge is to show that the effective pressure Py is continuous across the interface
and thus Py € H'(), which is essential for proving the uniqueness of the limits of
subsequences of {u}.

Our main contribution in this paper is on the sharp convergence rates and error
estimates for u, and P.. We are able to extend the results in [14] for the case L = 1
to the case L > 2 under some smoothness and geometric conditions on subdomains.
More specifically, we assume that each subdomain is a bounded C 2172 domain, and
that there exists ro > 0 such that if xo € a0k N 9Q™ for some 1 < k,m < L and
k # m, there exists a coordinate system, obtained from the standard one by translation
and rotation, such that

B(xo, 70) N Q¥ = B(xo, 70) N {(x', xa) € R 1 x4 > ¥ (x)},

B(x0,70) N Q"™ = B(xo,70) N | (x', xa) € RY : x4 < Y (x))}, (.12
where ¢ : R¢~! — Ris a C>!/? function. Roughly speaking, this means that inside
a small ball centered on the interface ¥, the domain €2 is divided by ¥ into exactly
two subdomains. In particular, the condition excludes the cases where the interface
intersects with each other or with the boundary of €.

The following is the main result of the paper. The matrix wt (y) in (1.13)-(1.14) is
the 1-periodic matrix associated with the solid obstacle Y.

Theorem 1.2 Ler Q be a bounded C*'/2 domain and Q2 be given by (1.4). Assume
that the subdomains {Q2*} are bounded C*>'/* domains satisfying the condition (1.12).
Let (ug, Pg) and (ug, Po) be the same as in Theorem 1.1. Then, for f € Cchl/2(Q; RY),

L

> e — uT W G /) (f = VPOl 2y + 11 Pe —][ P; — Poll2(g) < CVEl fllcrirg).
Q

=1

(1.13)
and

L
Y leVue — VW /o) (f = VPOl < CVel fllcting,  (1.14)
(=1

where C depends on d, i1, Q, {Q2¢} and {Yf}.

As we mentioned earlier, the sharp convergence rates in (1.13) and (1.14) were
proved in [14] for the case L = 1. In the case of two porous media with a flat interface,
partial results were obtained in [9] for solutions with periodic boundary conditions.
Theorem 1.2 is the first result that treats the general case of smooth interfaces.

As in [9], the basic idea in our approach to Theorem 1.2 is to use

L
Vo) = Y Wh/e)(f — VP xgg (1.15)
=1
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to approximate the solution u, and obtain the error estimates by the energy method.
Observe that V, = 0on ', = 992,\0€2. There are three main issues with this approach:
(1) the divergence of V; is not small in L2 (2) V. does not agree with u, on 9Q2; and
(3) V, isnotin H'(Q,; Rd), as it is not continuous across the interface. To overcome
these difficulties, we introduce three corresponding correctors: CDS), q>§2), and d>£3).
To correct the divergence of V., we construct <I>§l> € HO1 (Q¢; RY) with the property
that

£ HV(DQ)‘

S+ |div (@0 + vz

< CVellfllerizg (1.16)

L2(L L2(QY)

for 1 < ¢ < L. The construction of ¢>§1) is similar to that in [9, 11, 14]. Next, we
correct the boundary data of V, on 02 by constructing <I>§2) € H'(Q¢:; R?) such that
d>§2) + Ve, =00n0dQ, d>f;2) = 0onI'g, and that

P qu>g2> ‘

n ”div (q>g2>)]

) < CVellfllcring- (1.17)

L%(8) L2(Q

The construction of <I>§2) is similar to that in [14] for the case L = 1. The key
observation is that the normal component of V,; on 92 can be written in the form

eVian (@(x/€)) - g, (1.18)
where Vi, denotes the tangential gradient on 0€2. We remark that a similar observation

is also used in the proof of Theorem 1.1. Finally, to correct the discontinuity of V,
across the interface, we introduce

L
o =3 L@ — VP xg, (1.19)
=1

with the properties that V + <I>f;3) e HY(Q,; RY), d>f;3) = 0 on 0€2,, and that

£ HwbS)‘ S+ Hdiv (q>g3>)\

2@ < CVelflicing- (1.20)

L2(Qf)
More specifically, for each 1 < £ < L, the matrix-valued function If is a solution of
the Stokes equations in Q¢ with 7/ = 0 on 32\, On each connected component
¥ of the interface ¥, the boundary value of / f is either O or given by

ninm

- + - - +
Wi (x/e) = Wi (x/e) = Wi (x/e) (K — Kot ) Y (1.21)

where the repeated indices i and m are summed from 1 to d. Here the subdomains Q%
are separated by £, and (W*, K¥) denote the corresponding 1-periodic matrices for
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Q% and their averages over Y, respectively. To show V + CDS) is continuous across

¥, we use the fact that (Vian Po) T = (Vian Po)~ and
n- Kt (f=VP)tT=n-K (f —VPy)~, (1.22)

where (v)T denote the trace of v taken from Q7 respectively. The proof of the estimate
(1.20) again relies on the observation that the normal component of (1.21) is of form
(1.18).

Theorem 1.2 is proved under the assumption that {Yf : 1 < ¢ < L} are subdomains
of Y with Lipschitz boundaries. The C?!/? condition and the geometric condition
(1.12) for Q and subdomains {Q} are dictated by the smoothness requirement in its
proof for Py in each subdomain. Note that Py is a solution of an elliptic equation with
piecewise constant coefficients in £2. Not much is known about the boundary regularity
of Py if the interface intersects with the boundary 9€2 or with each other.

The paper is organized as follows. In Sect.2 we collect several useful estimates
that are more or less known. In Sect.3 we establish the energy estimates for the
Dirichlet problem (1.1). Theorem 1.1 is proved in Sect.4. In Sect.5 we give the proof
of Theorem 1.2, assuming the existence of suitable correctors. Finally, we construct
correctors <I>§1) ) §2) ,and CDS) , described above, in the last three sections of the paper.
Throughout the paper we will use C to denote constants that may depend on d, wu,
Q, {4, and {Yf}. Since the viscosity constant p is irrelevant in our study, we will
assume p = 1 in the rest of the paper.

2 Preliminaries
LetY =[—1/2,1/2]¢ and {YS‘Z : 1 < £ < L} be a finite number of open subsets of ¥

with Lipschitz boundaries. We assume that dist(dY, 8Y¢) > 0 and that Y£ = Y \Y_f
is connected. Let '

o' = U (Yerz)

ze74

be the periodic repetition of ¥ J‘Q Forl <j<dandl1 <{¢<1L,let

(W7t ) = (WHO. - WE )L 7H0) € Hibhe(@'s RY x Le(@")

be the 1-periodic solution of

¢ e_
AWj—i—an_e/ inw",

div(W)) =0 ino’, 2.1
Wf =0 on Bwe,
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with fY} nf dy =0,wheree; = (0,...,1,...,0) with 1 in the jth place. We extend
the d x d matrix Wt = (ij) to R? by zero and define

K =/YW£»(y) dy. (2.2)
Since
K =/Yvwfk-vwfkdy

(the repeated index k is summed from 1 to d), it follows that K t=(K i‘}) is symmetric
and positive definite.

The existence and uniqueness of solutions to (2.1) can be proved by applying the
Lax-Milgram Theorem on the closure of the set,

{u € COO(Rd; Rd) :u is 1-periodic, # = 0 in Yf, and div(z) = 0 in Rd} ,
in H'(Y; R?). By energy estimates,
/Y (VW2 + W2+ 17 ) dy < €, 2.3)
where we have also extended ¢ to R? by zero. By periodicity this implies that
/D (IVWia/olR + Wia/el + /ol )de <€, @4

where D is a bounded domain and C depends on diam(D).

Lemma 2.1 Let D be a bounded Lipschitz domain in RY. Then
/ (1IVWi /e + Wi/ + Ixt (v/e) ) do < C, 2.5)
aD

where C depends on D.

Proof If Yf is of C1 the inequality above follows directly from the fact that VW and
7* are bounded in Y. To treat the case where Y f is merely Lipschitz, by periodicity,
we may assume that ¢ = 1 and D is a subdomain of Y. Note that the bound for the
integral of [W¢2 on 8D follows from (2.3). Indeed, if D is a subdomain of ¥ with
Lipschitz boundary,

/ |We|sz§C/ (9w + 1w ay.
aD D
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The estimates for VW and ¢ are a bit more involved. By using the fundamental
solutions for the Stokes equations in R?, we may reduce the problem to the estimate

||V”||L2(aD) + ||P||L2(3D) <C EHVMHLZ(?\YSZ) + ||p||L2()~’\Yf) + ”h”H‘(aY})} )
for solutions of the Stokes equations,

—Au+Vp=0 in?\Y_f,
diviw) =0 inY\Y!,
u=h onBYSZ,

where h € H'(d Y, f; R?) and Y = (1 4+ ¢)Y. The desired estimates follow from the
interior estimates as well as the nontangential-maximal-function estimate,

1OVl 2arey + 1P 2argy = € [l + Null 2, + 1PN 2grs |
(2.6)
where the nontangential maximal function (v)* is defined by

()*(x) = sup {|v(y)| ye¥\ Y and|y — x| < Codist (y, aY;’)}

for x € an. The estimate (2.6) is a consequence of the nontangential-maximal-
function estimates, established in [7], for solutions of the Dirichlet problem for the
Stokes equations in a bounded Lipschitz domain. O

Lemma2.2 Fix1 < j <dand1 < € < L. There exist I-periodic functions ¢,fij ),
ik=1,2,....d such that ¢;; € H'(Y), [, ¢;;dy =0,

a 4 l Y4 YA ?
vk (d’kii) =W —Kij and ¢;; =~y 2.7
where the repeated index k is summed from 1 to d. Moreover,
¢ 2
| Jetseso| a0 <c. 238)
aD

where D is a bounded Lipschitz domain in R? and C depends on D.

Proof See [14, Lemma 5.3] for the proof of (2.7). Indeed, qﬁ,fi ; is given by

12 12
g 2 O P
AR
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where hf/ satisfies
¢ £ L :
{ Ahi; =W —Kj; inY,
0 - . g
h;; is 1-periodic.
The estimate (2.8) follows from the observation,

||V¢l€ij||L2(Y) + ||¢I€ij”L2(Y) = C”Vzhfj”Lz(Y) + C||V2h1€j||L2(Y)
< CIIW* 2y < C.
o

Let @ be a bounded Lipschitz domain in RY and {Q‘Z : 1 < £ < L} be disjoint
subdomains of €2, each with Lipschitz boundary, and satisfying the condition,

Q=ul,Qf (2.9)
Define
L
K = Z K g, (2.10)
=1

where K¢ is given by (2.2) and Xq¢ denotes the characteristic function of Qt.

Lemma23 Let f € LZ(Q; Rd). Then there exists Py € H'(Q), unique up to con-
stants, such that

div(K(f —VPy)) =0 inQ, @.11)
n-K(f—VP) =0 onoS2, ’
in the sense that
/K(f—VP0)~V<pdx:0 (2.12)
Q

forany ¢ € H'(Q).

Proof This is standard since the coefficient matrix K is positive-definite in each sub-
domain Q¢ and thus in Q. O

Foreachl < ¢ < Land0 < ¢ < 1, let Qﬁ be the perforated domain defined by
(1.3), using Yf. Let 2, be given by (1.4). Note that
0, = 0Q U, (2.13)

where T, = UL_ 'L and T"! consists of the boundaries of holes &(Y{ + z) that are
removed from Q.

Lemma24 Letu € HI(QS) withu = 0 on I'y. Assume I"f #Wforalll <t < L.
Then
lullr2,) < CellVuell2q,)- (2.14)
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Proof Tt follows from Lemma 2.2 in [14] thatfor 1 < £ < L,

2 2 2
”u”LZ(Qg) S CS ”Vu”Lz(Qf)’

which yields (2.14) by summation. Note that we do not assume u = 0 on 9. O

From now on we will assume that & > 0 is sufficiently small so that 'Y % ¢ for all
1 < ¢ < L. The main results in this paper are only relevant for small ¢.

Lemma 2.5 Let Q2 be a bounded Lipschitz domain and Q2. be given by (1.4). There
exists a bounded linear operator,

R.: H'(2:RY) — H! (Qg; ]Rd>, (2.15)
such that
R.(u)=0 onT, and R, (u)=u onods2,
Re(u) € Hy(2e:RY) if u € Hy (2 RY), 2.16)
Rew)=u inQ ifu=0 onT,, ’
div(Rs(u)) = div(u) in Q, if diviw) =0 inQ\ Qp,
and

sIVR: W)l 20, + IR 20y < C (el Vull 2y + lull 2y} 217)

Moreover,
div(Re @)l 12, < Clldiv(u) |l 12(q)- (2.18)

Proof A proof for the case L = 1, which is similar to that of a lemma due to Tartar (in
an appendix of [13]), may be found in [14, Lemma 2.3]. Also see [1, 10]. The same
proof works equally well for the case L > 2. Indeed, let u € H 1 (2; Rd). For each
e(Y +2) c Qwith1 < ¢ < L and z € Z4, we define R, (1) on s(Y;i + 7) by the
Dirichlet problem,

— e2AR.(u) + Vg = —*Au ine (Y]‘i 1 z) ,

div(R (1)) = div(u) + div(w)dx ine (Y]‘i + z) ,

ol
(Y + 2| Jert+a)

(2.19)
Re) =0 ond (e(¥) +2),
Rc:(u)y=u onad(eY +2)).
Ifx e Qcandx ¢ e(Yy +z) forany e(Y +2) C Q¢ we let Ry () = u. m]
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Lemma2.6 Let f € L*(2,) with o, fdx = 0. Then there exists u; € Hi (245 RY)
such that div(u,) = f in Q. and

luell 2@, +€lVuell2,) = Cllfll2q,)- (2.20)

Proof Let F be the zero extension of f to 2. Since F € LZ(Q) and fQ Fdx =0,
there exists u € Hé (Q2; R?) such that div(x) = F in € and lull 2 + 11IVull 2y <
CIIF |12y Let us = Re(u). Then ue € Hy (R, RY), and by (2.17),

ellVuell 2, + lluell 2,y < C{ellVull2q) + lullz2 )
< ClfllL2 -

Since div(x) = F = 0 in Q\2,, by the last line in (2.16), we obtain div(u;) =
div(u) = f in Q. O

For p € L*(Q;), as in [10], we define an extension P of p to L%(£2) by
px) ifx e Q,
Px) = ][ p ifxe s(Yf +z7)Ce(Y+z)Cc Qfforsomel <¢ <Landze 74.
S(Yfz-kz)
(2.21)

Lemma2.7 Let p € L?(S2;) and P be its extension given by (2.21). Then
(Vp, RS(M)>H_1(Q£)XHOI () = (VP, u)y—l(g)xyol Q) (2.22)

where u € HO1 (2; ]Rd) and R (u) is given by Lemma 2.5.

Proof We use an argument found in [1, 2, 10]. Note that if u € H(} (22; Rd), we have
R.(u) € Hj(Qe; RY) and

Vp, RS(”)>H—1(QS)XH01(Q€)| = [(p, div(Re (u))) 120, ) x12(20)|
= lIpll2o) Idiv(R: )l 12(q,)
=< ClipllL2@uIdiv) [ 12y

where we have used the estimate (2.18) for the last inequality. Thus there exists A €
H~1(©; R?) such that

(VP Re @) 1@y xaf ) = A M a-1@x @
forany u € Hj (Q2; RY). Since (A, u) = 0if div(u) = 01in €, it follows that A = VQ
for some Q € L%(Q).
Next, using the fact that R, (u) = u foru € H(} (Q2%; R?), we obtain

(VP =VO.u)y-1q,)xni@) =0
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for any u € HO1 (Q2%; R?). This implies that p — Q is constant in €2,. Since Q is only
determined up to a constant, we may assume that Q = p in .. Moreover, we note
thatif e(Y +z) C Q‘ forsome 1 < ¢ < Landz € Z9, and u € C}(s(Y} +2),RY),
then R;(u#) = 0 in Q.. It follows that VQ = 0 in s(Yf + z). Thus Q is constant in
each e(Y! + 7).

Finally, for any u € C}(e(Y + z); RY) with e(Y + z) C Q°, we have

Re(u) € Hy (s(in ~|—z);Rd),

and by (2.19),

div(R, (1)) = div(u) + div(u) dx

i/
‘8 (Y]‘i—kz)‘ e(Yi+z)

in 8(Y,€ + z). This, together with

e(Y+z2)

/ p-div(Re(n))dx = / Q -div(u) dx
a(Y}ﬂ)

and the fact that Q = p in g, yields

/ 0 — ][ p )div(u)dx = 0.
e(Yi+z) s(Y§+z)

Consequently,

Q=][ p ine(Yf—i—Z).
e(Yi+2)

As a result, we have proved that Q = P, an extension of p given by (2.21). O

3 Energy Estimates

Let 2. be given by (1.4). Recall that 02, = 9Q2 U I'y, where I'; consists of the
boundaries of the holes of size ¢ that are removed from 2. In this section we establish
the energy estimates for the Dirichlet problem,

—&*Aug +Vp, = f +ediv(F) in €,
div(u,) = g in Qq, 3.1
u, =0 only,

U, =h onoQ,
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where (g, h) satisfies the compatibility condition,

/ gdx:/ h-ndo. 3.2)
Qe aIQ

Throughout this section we assume that €2, Qlandy, f for1 < £ < L are domains with
Lipschitz boundaries. We use L%(QS) to denote the subspace of functions in L2(S2,)
with mean value zero.

Theorem 3.1 Let f € L*(Q:;RY) and F € L*(Q; RY*?). Let g € L*(2) and
h € HY2(32; RY) satisfy the condition (3.2). Let (ug, pe) € H'(Q; RY) x L%(Qs)
be a weak solution of (3.1). Then
ellVuellr2q,) + luell2q,) + 1Pell L2,
= C{||f||L2(Q£) + 12,y + 18ll2 ) + 1 H 2

+ VO |2y + €||VH||L2<Q)}, (3.3)

where H is any function in H'(Q; RY) with the property H = h on 9.

Proof This theorem was proved in [14, Sect. 3] for the case L = 1. The proof for the
case L > 2 is similar. We provide a proof here for the reader’s convenience.
Step 1. We show that

||ps||L2(Qg) <C {8||Vua||L2(Qg) + ”f”LZ(Qg) + ||F||L2(Qg)} : (3.4)

To this end we use Lemma 2.6 to find v, € HO] (2 ]Rd) such that div(ve) = p. in ;¢
and

elVelip2 g,y + el = Clipellizg,)- (3.5

By using v, as a test function we obtain

1PelF 2,y < € 1Vue N 2000 1V Ve D20, + 1L Fll 2 Ve 2200,
+ el Fli2) Vel L2,
< Clpel2o,) (e Vuel 2 + 1 fll2n) + 1F 220, } -

where we have used (3.5) for the last inequality. This yields (3.4).
Step 2. We prove (3.3) in the case & = 0. In this case we may use u, € HO1 (Q2; RY)
as a test function to obtain

ENVuelTaq,) < 1Pel 2@ 8l + 1 F 2@, lue 2,

+ellFli2o) Vel L2,y
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By using the Cauchy inequality as well as the estimate |lug[|;2(q,) < CellVuel2(q,),
we deduce that

1/2 1/2
il 2 + Vil 2,y = € {Ipellig, I8, + 17 120 + 1F N2, |-

This, together with (3.4), gives (3.3) for the case h = 0.

Step 3. We consider the general case 1 € H'/?(3Q; R?). Let H be a function in
H'(2; RY) such that H = h on 9. Let w, = u, — R.(H), where R.(H) is given
by Lemma 2.5. Then w, € H(} (Q2%; R?) and

—&?Awe 4+ Vp, = [+ ediv(F) + ¢?AR, (H),
div(we) = g — div(R:(H)),

in ;. By Step 2 we obtain
ellVwellr2q,) + lwellp2q,) + I PellL2@,)
= C{If 2@ + Il 2, + EIVREDl 20 + 1811200y
 IdVR (D20, )
It follows that
ellVuell 2, + lluell 2o,y + 1PellL2@,)
= C{If Iy + 1F 2, + gl
el VR (D2 + IR (D20, + IV (R CHD 200,
= {20y + 1F 2@, + gl + el VHI 2
+ 1H 200 + I4VCED | 2gqy |

where we have used estimates (2.17) and (2.18) for the last inequality. m]

Corollary 3.2 Let (ug, pe) be the same as in Theorem 3.1. Then

ellVuell 2o,y + luell2@.) + I1Pelli2,)
< Ci I f 2@ + IF 2@ + 181220 + 1R1L200) + 8||h||Hl/2(as2)}- (3.6)

Proof Forh € HY2(3$2; R?), let H be the weak solution in H!($2; R?) of the Dirich-
let problem,

—AH+Vg=0 inQ,
div(H) =y in«,
u=~nh on 012,
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where the constant

3,
y =-— h-ndo
12| Jaq

is chosen so that the compatibility condition (3.2) is satisfied. Note that

div(E)|[2¢q) = Cly| < Clhll 250

and by the standard energy estimates, |VH |1 2q) < Cllhllg1/2¢5¢)- In view of (3.3)
we only need to show that

IH 2@ < ClihllL20)- (3.7)
To this end, let
Hy=H -y —x0)/d,
where xg € 2. Since —AHj + Vg = 0 and div(H;) = 0in €2, it follows from [7] that

IHill 2@ < CIICHD 12000
= CllHil20) = Clihll2pe)-

where (Hp)* denotes the nontangential maximal function of Hj. As a result, we obtain

I1Hlz2@ < 1Hillz2@) + Cly
< ClhllL2p0)

which completes the proof. O

Corollary 3.3 Let (ug, pe) be the same as in Theorem 3.1. Let P, be the extension of
Pe, defined by (2.21). Then

IPellz2) < C{If 2 + IF 2@ + 1811200 + 1Bl 1200) + €l g120) ) -
3.8)

Proof By the definition of P., we have

L 2
/|Pe|2dx=/ pel?dx + > " le(¥ +2)] ][ pe
Q Q. = e(Yi+2)
Lo
<> — [ Ipelrdx,
Z;Wfl/% ’
which, together with (3.6), gives (3.8). ]
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4 Homogenization and Proof of Theorem 1.1

Let f € L*(Q;RY) and h € H'?(09; RY) with [, h - ndo = 0, where n denotes
the outward unit normal to d€2. Consider the Dirichlet problem,

—ezAug +Vpe = f inQq,
div(ug) =0 in Qg,

u. =0 onlyg,

U =h onos2,

.1

where 2, is given by (1.4) and 02, = 92 U I';. Throughout the section we assume
that , Q¢ and Y for | < ¢ < L, are domains with Lipschitz boundaries. As before,
we extend u, to 2 by zero and still denote the extension by u,. We use P, to denote the
extension of p; to €2, given by (2.21). The goal of this section is to prove the following
theorem, which contains Theorem 1.1 as a special case & = 0.

Theorem 4.1 Let f € L*(Q;RY) and h € H'?(92; RY) with [, h -ndo = 0. Let
(e, pe) € H'(Qe; RY) x L3(Q,) be the weak solution of (4.1). Let (u, Ps) be the
extension of (ug, pe). Then u, — ug weakly in LZ(Q; Rd) and P, — fQ P, — Py
strongly in L2(Q), ase — 0, where Py € H (), fQ Pydx =0, (uo, Po) is governed
by a Darcy law,

uo=K(f —VPy) inS,

div(ug) =0 in 2, 4.2)

up-n=h-n onoQ,

with the permeability matrix K given by (1.10).
We begin with the strong convergence of P;.

Lemma 4.2 Let (ug, pe,) be a weak solution of (4.1) with & = &y. Suppose that as
ex — 0, P, — P weakly in LZ(Q)for some P € L*(Q). Then Py, — P strongly in
L3().

Proof The proofis similar to that for the classical case L = 1 (see e.g. [4]). One argues
by contradiction. Suppose that P, does not converge strongly to P in L%(Q). Since

[VPe, — VP10 ~ ‘

ng—P—][<ng—P)
Q

L2(Q)

and [, Po, dx — [, P dux, it follows that V P,, does not converge to V P strongly in

H~1(Q; RY). By passing to a subsequence, this implies that there exists a sequence
{Yx} C H} (S R?) such that 1kl ) ) = 1 and

|<VPsk - VP, I/fk>H—l(Q)><HOl(Q)| >co > 0.
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By passing to another subsequence, we may assume that ¢ — 1o weakly in
Hg (2 RY). Let ¢ = ¥ — Y. Using P, — P weakly in L?(S2), we obtain

|(Vpek - VP, (pk>H—1(Q)XH01(Q)| > co/2, 4.3)

if k is sufficiently large. Since gx — 0 weakly in H] (Q2; R?), we may conclude further
that
|(Vng, (pk>H*1(Q)><HO|(Q)| > co/4, 4.4)

if k is sufficiently large. On the other hand, by (2.7), we have

‘(Vpak» ¢k>H*1(Q)XHOI (Q)‘ = ‘(Vpak’ R, (‘pk»Hfl(ng)XHol ()
2
= ‘(%Auek + f, R, (‘Pk))Hfl(ng)XH(} (ng)‘
= 81%||Vusk||L2(Q€k)||VRsk ((Pk)||L2(Q£k) + ||f||L2(Q)||Rsk (fpk)”LZ(ng)
< C (I l2@ + Wllrge) (5l Ra @02, ) + IR @0 1260, )
< C(If 2 + Ml mrpe) (ExllVorl 2@ + lekli2q) - 4.5)

where we have used the estimate (3.6) for the second inequality and (2.17) for the last.
This contradicts with (4.4) as the right-hand side of (4.5) goes to zero. O

By Corollaries 3.2 and 3.3, the sets {u, : 0 < ¢ < 1} and {P; : 0 < ¢ < 1}
are bounded in L(2; RY) and L?(L2), respectively. It follows that for any sequence
er — 0, there exists a subsequence, still denoted by {ex}, such that u;, — u and
Py, — P weakly in LZ(Q; Rd) and LQ(Q), respectively. By Lemma 4.2, P;, — P
strongly in L2(2). Thus, as in the classical case L = 1, to prove Theorem 4.1, it
suffices to show that if & — 0, ug, — u weakly in L2(; ]Rd), and P, — P
strongly in L?(Q), then P € H'(2) and (u, P) is a weak solution of (4.2). Since the
solution of (4.2) is unique under the conditions that Py € H 1(Q) and fQ Pydx =0,
one concludes that as ¢ — 0, u; — ug weakly in L?(€2; R?) and P; — f, P. — Py
strongly in L2(2), where (o, Po) is the unique solution of (4.2) with the property
Py € H'(Q) and [, Pydx = 0.

Lemma4.3 Let (e} be a sequence such that ex — 0. Suppose that ug, — u weakly
in L>(Q; RY) and Ps, — P strongly in L>(Q2). Then P € H'(Q%) for 1 < ¢ < L
and (u, P) is a solution of (4.2).

Proof Since

/usk~V(pdx=/ (h-n)pdo
Q R

for any ¢ € C®(R?), by letting k — o0, we see that

/ro<pdx=/ (h-n)pdo
Q Q2
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for any ¢ € C>®(RY). 1t follows that div(x) = 0in Qand u - n = h - n on 3.
Next, we show that P € H'(Q2%) for each subdomain Q¢ and that

u=K'(f—VP) inQt (4.6)
where Kt = (K E) is defined by (2.2). The argument is the same as that of Tartar
for the case L = 1 (see [13]). Fix 1 < ¢ < L,1 < j <d,and ¢ € C(‘)’O(Qe). We
assume k > 1 is sufficiently large that supp(¢) C {x € QF : dist(x, Q%) > Cyer).

Let (Wf ), nf(y)) be the 1-periodic functions given by (2.1). By using Wf (x/ep)p
as a test function, we obtain

ak/ Vug, - VWf(x/sk)(p dx + 8]%/ Vug, - Wf(x/sk)V(p dx
Qt Qt
- / Py, W (x/ex) - Vo dx
QL
= / f-Wix/e0e dx, (4.7)
QL
where we have used the facts that div(W]‘.Z (x/€)) = 01in R? and W]‘.Z (x/e) =0onTI,.

Since Wl.‘;. (x/ex) — Kfj weakly in L*(Q%) and P;, — P strongly in L3(QY), we
deduce from (4.7) that

lim sk/ Vu£k~VWf(x/8k)<pdx:/ PK@—dx+/ fiK5edx, (4.8)
Qf Qf

k— 00 Y ox

where the repeated index i is summed from 1 to d.
Note that

—&2A (ij(x/e)) v (m]‘f(x/e)) —e;
in the set {x € Qg s dist(x, 992%) > cqe). By using ug, ¢ as a test function, we see that
o [ VWi /e (V) d+ e [ IWH/en) - (V) dx
Q Q ’
- ak/ 7 (x /e, (Vo) dx = / ej - uggdx, (4.9)
Qf Qf
which leads to
lim ek/ VW (x/er) - (Vg g dx = / ej-updx. (4.10)
k—o00 Qf Qt

In view of (4.8) and (4.10) we obtain

/Qzej-ugodxz/Q PKfjax dx+/ f,K,]godx
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Since ¢ € C(()’O(Qe) is arbitrary and the constant matrix K t=(K l.‘;.) is invertible, we
conclude that P € H'(Q¢) and

= k(=57

in Q. Since K is also symmetric, this gives (4.6). O

To prove the effective pressure in Lemma 4.3 P € H'!(), it remains to show that
P is continuous across the interface ¥ = Q \ Ué‘ZIQ‘Z between subdomains.

Lemmad.4 Let f € C™(B(xp, 2ce); RY) for some xy € RY m > 0andc > 0.
Suppose that

—&>Au, +Vp, = f in B(xg, 2c¢), @D
div(ug) =0 in B(xg, 2c¢). ’
Then
2 2 2 12 2 12 = k k
"t (f V"2 u | ) < C<][ [uel ) +CZS 1V* fllco,
B(xg,ce) B(xq,2ce) k=0
(4.12)

where C depends only on d, m and c.

Proof The case ¢ = 1 is given by interior estimates for the Stokes equations. The
general case follows by a simple rescaling argument. O

Define
Ye = {x € 1 dist(x, 0Q) > ¢}, (4.13)

where ¥ is the interface given by (1.5)

Lemma4.5 Let (ug, ps) be a solution of (4.1) with f € C®(R¥; RY) and h €
H]/Z(E)Q; Rd). Then, for m > 0,

1

<C(f. e "2,

”vmuslle(yE) =

1

||p£||L2()/é) S C(fa h)g_Z,
_1
IVpellr2g,) = C(f, ez, (4.14)

where C(f, h) depends on m, f and h, but not on €.
Proof Recall that

¥ = Ul 00\ 4.
It follows that y, = U@L: 1 yf, where

yf = {x € Qb dist(x, 0Q) > S}‘
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Thus, it suffices to prove (4.14) with yf in the place of y,. Let
D! = {x e Q' dist (x, yf) < ce}.

&

Using the assumption that Q¢ is a bounded Lipschitz domain, one may show that

c
/ IV"ug>do < = [ |V"ug|>dx + Cs/ [Vl 1 dx
},Z £ Dg D¢

£ €

¢ 2
;:%{A}MIM+CU4, (4.15)

where C(f) depends on f. We point out that the second inequality in (4.15) follows
by covering Df with balls of radius ce and using (4.12). This, together with the energy
estimate (3.6), yields

1
IV uell 28y < C(f )e™" 2,

where C(f, h) depends on f and A. Next, using the equation —&2Aug + Vpe = f,
we obtain

IV Pellzagey < & 1Auell 20 + 1 200
< C(f, e %

Finally, observe that

C
pe2do < ;/z Pl dx *Cs/z IV e dx
D£ DE

¥

IA

C
—/ Ipelzdx+C85/ |Aug|? dx + C(f)
€ Q; D‘f

IA

C
—/ |ps|2dx+c8/ lug|* dx + C(f).
& JQ, Qe

This, together with the energy estimate (3.6), yields the second inequality in (4.14).

O
The following is the main technical lemma in the proof of Theorem 4.1.

Lemma 4.6 Let (ugy, pe,), Py, and (u, P) be the same as in Lemma 4.3. Also assume
that f € C®(R%; R?). Let Pt denote the trace of P, as a function in H (QY), on
dQL. Then, for any ¢ € Coo(2),

/aQ[anzwdx:kli)ngo/ml n;jpeedo, (4.16)
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where 1 < € <L, 1 < j <d,andn = (ny,na,...,ng) denotes the outward unit
normal 1o 9.

Proof For notational simplicity we use ¢ to denote g¢. Fix 1 < j <dand1 < ¢ < L.
Let ¢ € C3°(2). Then

82/ Vu, -V (Wf(x/eyp) dx
Q!
= g/ Vue - VW] (x/e)p dx +52/ Vue - Wi(x/e)(Vo) dx,
Qf QL
and by integration by parts,

&2 /Qz Vi, -V (Wf(x/s)w) dx

dug

=/ f.Wf(x/e)goder/ PSW]‘?(x/s).Vgoder/ -Wx/e)pdo,
[el4 QL QL Jv J
where
dug _ 5 Ol
v on P
By letting ¢ — 0 we obtain
lim & / Vi, - VW (x/e)p dx
e—0 Qt J
3
=/ f.Kffpder/ PK{ - Vedx + lim Y Wl /e)e do.
Qf Qt e—=0 [oqt v J
(4.17)

It follows by Lemma 2.1 that ||Wj’f] (x/s)lle(BQe) < C. This, together with the first
inequality in (4.14) with m = 1, show that

< C|(Vue)gl 2ty = O(e'?).

ad
82/ te -Wé(x/s)(p do
aQl on 1

Hence, by (4.17),

lims/ Vi - VWS (x/e)p dx
Qf

e—0

= /Q[ f- Kf(pdx+/m PK{-Veodx — lim P Wi (x/e)p do.

(4.18)
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Next, note that
82/ V(Wf(x/a)).V(usgo)dx
Qf

=g/ VWf(x/e)-(Vug)wdx—i—s/ VWi(x/e) ue(Vo)dx.  (4.19)
at at

Choose a cut-off function 7, such that supp(n:) C {x € R? : dist(x, 3Q¢) < 2Ce},
ne(x) = 1if dist(x, Q%) < Ce, and |Vn,| < Ce~'. Thenv

¢ /Q[ v (Wf(x/e)) V() dx

_ 82/ v (Wf(x/g)) V(e (1 — np)e) dx + 82/ v (Wj‘?(x/g)) YV (ueneq) dx
Q6 Q6

=Ji + . (4.20)

Using (4.19), (4.20), and

1/2
|| < Ce ( / |VWf(x/e>|2dx) {IVuell 2 + & uell 20 )
{xeR4: dist(x,d2¢)<Ce}

< Cce? {IVuell 2 + E_IHME”LZ(Q)}
< gl/2C(f, h),

we obtain
lim s/ VWi(x/e) - (Vug)pdx = lim J;. 4.21)
Qf e—0

e—0

To handle the term J;, we use integration by parts as well as the fact that
2 14 4 — e
—&2A (Wj (x/e)) 4V <£7'rj (x/s)) —e;
in the set {x € Qﬁ - dist(x, 922Y) > Ce}, to obtain

h= [ ent/one V=m0 de+ [ e upt - nods
Qt Qt
=Jn + Jiz,

where we have used the fact div(u,) = 0 in .. Since

1/2
[l <C ( / 7j(x /)] dx) e Il 20y + Celluell 2y
{xeR4: dist(x,0Q¢)<Cs)

< Ce'2C(f, h),
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we see that
lim J; = lim Jyp = / ej-updx. 4.22)
e—=0 Qt

e—0

In view of (4.18), (4.21) and (4.22), we have proved that

lim p5n~Wf(x/8)<pdo:/ f-Kf(pdx+/ PKf»V(pdx—/ ej-updx.
Qt Qt Qf Qt

e—0 /g

(4.23)
Recall that K¢ = (K fj) is symmetric and by Lemma 4.3,
_ pt ol
u=K(f—VP) inQ".
Thus, by (4.23),
lim pen - Wi(x/e)pdo = / Pt(n- KHedo, (4.24)
e—0 FIek J FIek J
where P! denotes the trace of P on 9.
Finally, we use Lemma 2.2 to obtain
(Wheese) — k) == (np ") (g x10)) (4.25)
n- (x/e) —K:) == |ng— —ng— (x/e)), .
J J 2 \P Xy “ dxg apj

where the repeated indices « and 8 are summed from 1 to d. Since ng % — Ny % is
o

a tangential derivative on 8¢, we obtain

/ pen- (Wf(x/s) - Kf) o do

B1o)
3 ¢ el d
=5 /me Pop(x/€) ("ﬂa - na@) (pew) do

< Cel[V(pe@) 2902
< C(f, he'?,

where we have used (2.8) for the first inequality and (4.14) for the last. This, together
with (4.24), yields

im [ pe (n : K‘f) odo = / pt (n : K‘f) o do. (4.26)
e—0 BQZ J 39[ J

Since the constant matrix K¢ = (K i‘;.) is invertible, the desired Eq.(4.16) follows
readily from (4.26). O

We are now in a position to give the proof of Theorem 4.1.
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Proof of Theorem 4.1 We first prove Theorem 4.1 under the additional assumption
f e C®MRY4; RY). Let {g} be a sequence such that g — 0, ug, — u weakly in
L2(: RY) and P, — P strongly in L?*(Q). By Lemma 4.3, P ¢ H'(Q% and
u=Kf—VP)in Qf for 1 < ¢ < L. It suffices to show that P € H'(Q). This
would imply that P is a weak solution of the Neumann problem,

{ div(K(f —VP)) =0 inQ, (4.27)

n-K(f—VP)=n-h ondf2.

As a result, we may deduce that as ¢ — 0, u; — ug weakly in Lz(Q; Rd) and
P, — fQ P. — Py strongly in Lz(Q), where ug = K(f — VPy) in Q and Py is the
unique weak solution of (4.27) with fQ Pydx = 0.

To prove P € H'(Q), we use the assumption f € C*®(R%; R?) and Lemma 4.6 to
obtain

L
Z/aman pdo = hm Z/ n;jpeedo,
=1

for any ¢ € C8° () and 1 < j < d, where P* denotes the trace of P, as a function
in H'(Q%), on 9Q¢. Since p; is continuous in 2, we have

L
Z/mlnjpggpdo =0.
(=1

It follows that

L

Z/ anZ¢d0=0
=1 Q!

for 1 < j < d andforany ¢ € C3°(2). This, together with the fact that P HY(QY
for 1 < ¢ < L, gives

P—d = P—d

/Q 0x; = Z/Qz 0x; *
__Z/Q(axjwdx—i—Z/ an(pdo
__Z‘/Q[E(p X.

As a result, we obtain P € H'(Q).
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In the general case f € L2(Q; RY), we choose a sequence of functions {f,,} in
C*®(R4; R?) such that || f,, — fll2i@ — O0asm — oo. Let (ue m, pe,m) denote the
weak solution of (4.1) with f;, in the place of f and with ng Pe,m dx = 0. By the
energy estimates (3.6) and (3.8) we obtain

lue —uemlrzQ) + 1P — Pemlirz < CIf — fullr2)s (4.28)

where P; , denotes the extension of p. ,,, defined by (2.21). Let ug,m = K(fm —
V Py,n), where Py, is the unique solution of (4.27) with f, in the place of f and
with [ Py, dx = 0. Note that

H&—f&—%hmﬁﬂ&—&mjf@—&whm)
Q Q
—wam—f&m—mmmmwwmm—mhm>
Q

<CIf = fmll2@) + | Pem _][ Pem — Pomll2@)-
Q

Since Pem — fq Pemn — Pom in L*(Q), as € — 0, we see that

MMM&—f&—mm@sau—mw®-
Q

e—0

By letting m — 0o, we obtain P, — f, P, — Po in L%(Q),as ¢ — 0.
Finally, let v € L2(Q2; RY). Note that

’/Q(ug—uo)vdx‘

= }/(Ma - us,m)v dx’ + ‘ / (Ms,m — UQ,m)V dx‘ + )/(uo,m —up)vdx
Q Q Q
< e = el 10l + | [ G = 0,00 88] 4 i = w0l20y 0120
Q

<CIf = full2@llvlli2 ) + ‘/Q(us,m — uo,m)v dx
By letting ¢ — 0 and then m — oo, we see that u, — ug weakly in L>(€; RY). 0

5 Convergence Rates and Proof of Theorem 1.2

Throughout the rest of this paper, unless indicated otherwise, we will assume that
Q61 < ¢ < L, are C*1/2 domains satisfying the interface condition (1.12). Given
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f e L2(Q; RY), let Py € H'(2) be the weak solution of

—div(K(f —VP))=0 ing,

5.1
n-K(f—-—VP)=0 onad<,

with fQ Pydx = 0, where the coefficient matrix K is given by (1.10). Since the
interface ¥ and 92 are of C%1/2, it follows from [15, Theorem 1.1] that

IVPlice) < Cllfllce(w),

(5.2)
IVPolicrey < Cllflicrs),
forO0 <o <land0 < g <1/2.
Let
L
Ve(x) =Y Wh(x/e)(f — VP)xge inQ, (5.3)

=1

where the 1-periodic matrix wt (y) is defined by (2.1). Note that V, = 0 in I';. For
each ¢, using

—&2A {Wf(x/s)} +V {srrf(x/a)} =e; in U & (z + Yﬁ), 5.4)

zez4

one may show that for any ¢ € Hl(Qﬁ; RY) with ¢ = 0 on I‘ﬁ,

o [ vwise - vyar—e | alaedvia- [ vl
o o o 55)

< C2NVY I 20

To see (5.5), let

Oﬁ:Us(z%—Yﬁ),

Z

where z € Z¢ and the union is taken over those z’s for which e(z + ¥) ¢ Q¢. Using
|§2§\(’)£| < Ceand ||¢||Lz(95) < C8||V1/f||Lz(Q§), one may show that each integral in

the left-hand side of (5.5), with Q£\OF in the place of 2, is bounded by the right-hand
side of (5.5). By using integration by parts and (5.4), it follows that the left-hand side
of (5.5) with O! in the place of Q¢ is bounded by

172
Cs (/ (|vw‘f(x/a)| + |nf(x/<»:)|)2 da) (/ |1/f|2da)
00! 20t

< C VYl

1/2
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where we have used (2.5) and the observation,

Il 2000 < Ce™ IVl + Ce' IVl
< Ce' 2Vl 2.

From (5.5) we deduce further that
‘8/ VW!(x/e) - Vi dx —/ v dx‘
Qf Qf
< o' {el Vol agg) + 1)l ey | (5.6)

for any ¢ € Hl(Qf; R?) with ¢ = 0 on Fﬁ.

Theorem 5.1 Let (u, ps) € Hi(Qe; RY) x LE(Q,) be a weak solution of (1.1). Let
Ve be given by (5.3). Then

L
‘822/ (Vi — VV.) - Vi dx —/ (pe — Po) diV(tp)dx’
=17% $2
= Ce Pl fllcng {1V g, + e Pldvilag, | 6D
forany ¥ € H(} (Qe: RY).

Proof We apply (5.6) with ¥ (f; — 920 in the place of ¢. Using

Bx_,-

|2V Ve - Vi — eVW (x/e) - V (W (f = VR)) |
= C [2IWi@/oNIvY] + CelVW /o) lvI |19/ = VR

in ¢, we obtain

’82/ vvg.wfdx—/ (f—VPO)-wdx’
Qf Qf

= C2 (I lloe + IV flloo + 19 Polloe + V2 Pollos ) 1991l 2
+ Ce(ll flloo + 1V Polloo) Idiv(y) 2y

This, together with
[ =vrvan=e [ Vuovwar— [ (oo poaivas,
Qe Qe Qe

gives (5.7). ]
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Let
U =V, + O, (5~8)

where @, is a corrector to be constructed so that U, € H(} (Q2: RY),

Idiv(U) Il 120,y < Ce2 1 fllcrirng). (5.9)
and that
elV®ellz2ie) < Ce 2l fllcring, (5.10)

forl <¢ <L.
Assuming that such corrector ®, exists, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By letting = u, — Uy = u, — Vo — &, € H}(Q; RY) in
(5.7), we obtain

Ve = Vel oo,
< 2 |Vite = VWell2ion IV e 2,y + 176 = Po = Bll 2oy 1AV 120,y
+Ce 2 fllering {ellVie = VVell2g,) + el V@ell 20, + 21V U 20, |
< C2| fllcrinollVie — VVell 2,
+Ce2| fllerirollpe — Po— Blli2, + anf”zc“/z(f?)’

for any B € R, where we have used (5.9) and (5.10) for the last inequality. By the
Cauchy inequality, this implies that

e IVite =V Vell22 g, SCell FIzniggy+Ce I ety P = Po = Blli2g,)-
(5.11)

We should point out that both V, and &, are not in H 1 (2 Rd). In the estimates
above (and thereafter) we have used the convention that

172

L
I Vll2g, = (Z ||vw||iz(gg)> :

=1
where ¢ € H'(Q%) for 1 < ¢ < L.

Next, we choose 8 = JCQF (ps — Pp). By Lemma 2.6, there exists ve € HOl (S2: RY)
such that 4

div(ve) = pe — Pp— B in 2,
ellVuell2q,) < Cllpe — Po — BllL2(q,)-

By letting ¥, = v, in (5.7), we obtain

Ipe — Po — Bll 2,y < CellVue — VVell2q,) + Ce 2l fllcring.  (5.12)
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By combining (5.11) with (5.12), it is not hard to see that

ellVue — VVell 20,y + IPe — Po— Bll 2,y < Ce' 2l fllcringy.  (5.13)

This, together with [ju, — V8||L2(Q£> < Ce¢||Vu, — VV5||L2(Q£), gives the bound for
the first term in (1.13). Also, note that

eVVe — VW (x/e)(f — VP2t < CellV(f = VPo)llco-
Thus,
leVue — VW (x/e)(f — VPOl 20t < Ce' 21 fllcrizgy-

Finally, to estimate the pressure, we let Q. be the extension of (Py + B)|q, to €2,
using the formula in (2.21). Note that

2
10~ (Po+ Py =Y [ |po-f  m[ar
L@ ; e(Yi+z) 8(¥§»+z)

where the sum is taken over those (¢, z)’s for which z € 74 and eY+2)c Qi It
follows that

Qe — (Po+ B2 @) = CellVRolle)
= Cellfllcrirg-

As aresult, by (5.13), we obtain
[P — Po— Bllr2@) < 1Pe — Qellr2@) + 19 — (Po + B2

< Cllpe = Po = Bllr2q.) + Cell fllcrinig
<"\ fllcuirng).

where 8 = — st Py. Clearly, we may replace 8 by f,(P. — Py) = fq P.. This gives
the bound for the second term in (1.13). O

To complete the proof of Theorem 1.2, it remains to construct a corrector &, such
that V; + @, € Hi (Q; R?) and (5.9)~(5.10) hold. This will be done in the next three
sections. More precisely, we let

o, =0V + 0@ + 0, (5.14)
where CI>£1) is a corrector for the divergence operator with the properties that

oV e Hy (2 RY),
elVON 12, < Ce2 fllcring. (5.15)
Idiv(@" + Vol 2 e < Ce' 2l fllcrirng,
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gz) is a corrector for the boundary data of V, on 02 with the properties that
d? e H'(Q:;RY) and P =0 onT,,
@ 4+ V. =0 ondQ, (5.16)
VORI 20, + IdiVI®) 120, < C' 2l fllcrirg).

and d>§3) is a corrector for the interface ¥ with the properties that

o e HI(QLRY) and P =0 ondQ,
Ve+ 0P e HY(Q; RY), (5.17)
eIVOD L2 gr) + V(@I L20r) < C' 21 fllcrir gy

for 1 < £ < L.Itis not hard to verify that the desired property V, + &, € HOl (S2:; RY)
as well as the estimates (5.9) and (5.10) follows from (5.15)and(5.17).

6 Correctors for the Divergence Operator

Let V, be given by (5.3). Note that since div(Wf (x/e)) =0in R4,
div(Ve) = Wi(x/e)V(f — VPy) in QL 6.1)

In this section we construct a corrector CIJS) that satisfies (5.15). The approach is
similar to that used in [11, 14].
Forl <¢<Landl < i,j<dlet® = (O ..., 04

TIIRE .) be a 1-periodic
function in HIL . (R?: RY) such that

J

{div@fj) =W, + Y7k}, inYy, ©2)
O =0 inY,. '
Fix ¢ € C8°(B(O, 1/8)) such that ¢ > 0 and fRd ¢ dx = 1. Define

S =00 = [ B0Ient= 0. 6.3)
where ¢. (x) = 8‘d(p(x). Let <I>§1) = (CDS{, A @((8?;), where, for x € Qﬁ,

CDSi(x) = 8nﬁ(x)®ﬁij(X/s)a%Sa <fj - g-i) , (6.4)
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and Py is the solution of (5.1). The function nf in (6.4) is a cut-off function in CSO(QZ)
with the properties that |Vn£| < Ce !and

nt(x) =0 ifdist(x, 3Q°) < 2de,
nt(x) =1 ifx e Qand dist(x, 9Q°) > 3de.

As a result, @gl) vanishes near 9°.

Theorem 6.1 Let ® be defined by (6.4). Then (5.15) holds.
Proof Clearly, d'" e HJ (Q; RY). Note that

IVOL 2 ey < Ce'IVSe(f = VPO LNy \Naze) + CIVS(f = VPOl oo @\ Ny
+Cel| V2Se(f = VPOl 1o (@t \ o)

where N, = {x € Q¢ : dist(x, 3R2°) < r}. This, together with the observation that
VSe(¥) = S (V) and

1Se (¥) (x)| + €|V Se (¥) ()] SC][ V1,

B(x,c/8)
yields

VO I 12iqe) < Cell V(S — VPl peqr)
< C8||f||cl.l/2(gz)-

Next, note that in Qf,

div(®{V) = e(Vn)O (x/e)VSe (f — VPy) — i W (x/e) VS, (f — V Py)
+enf® (x/e)V2Se(f — V),

where we have used the fact that div(K¢(f — VPy)) = 0in Qﬁ It follows that

Idiv(®{M) + W x/e)V(f = VPOl 2an
< Ce'BIV(S = VRl + W5/ V(S = V) =1 9S:(f = V0 sz
+ Ce || V2Se(f = VPOl oo @i\ Nge)
= Ce IV = VR)lLgry + IV = VP = VSe(f = VPO lL(@e\vaue)
+ Ce||[ V28 (f — V Po)ll L@\ Nage)
< Ce'V(f — VP)llcrzqe

< Ce' || fllcrirg
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where we have used (5.2) for the last inequality. In the third inequality above we also
used the observation that

VSe(¥)(x) = — /Rd (W (x —y) — ¥ () Vylge () dy,
which gives

IVS: () ()] < Ce* MY ll o (Bx.0))-

This completes the proof of (5.15). O

7 Boundary Correctors

To construct the boundary corrector @éz), we consider the Dirichlet problem,

—&*Aus +Vp, =0 iny
di = in g,
v(ug) Y & 7.1)
u, =0 only,
U, =h onadQ,

where €2, is given by (1.4) and

1
— h -ndo. 7.2
v |Qs|/asz e 7:2)

Let d>§2) € H'(Q,: R?) be the solution of (7.1) with boundary value,

h=-V, onaL, (7.3)
where V; is given by (5.3). Thus, if 92 N aQt # @ forsomel <l <L,
dP = —W(x/e)(f — VP, Ele) ¢
9 = 0) on NnoaK". (7.4)

Theorem 7.1 Let <I>g2) be defined as above. Then d>§2) satisfies (5.16).

To show Theorem 7.1, we first prove some general results, which will be used also
in the construction of correctors for the interface.

Theorem 7.2 Let Q2 be a bounded Lipschitz domain in RY, d > 2. Assume that Q°
and Yf with 1 < £ < L are subdomains of 2 and Y, respectively, with Lipschitz
boundaries. Let (ug, pe) be a weak solution in H'(S2; R?) x L%(Qg) of (7.1), where
he H'(3Q: RY) and

h-n=0 onof. (7.5)
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Then

ellVuell 2,y + luell2@o,) + 11Pellr2@,) < C«/E{”h”LZ(aQ) + 8”vtanh”L2(3Q)} ,
(7.6)
where Vianh denotes the tangential gradient of h on 2.

Proof This theorem was proved in [14, Theorem 4.1] for the case L = 1. The proof
only uses the energy estimate (3.6) and the fact that

—82Au8 +Vpe=0 and div(u,) =0
in the set {x € Q : dist(x, 9R2) < ce}. As a result, the same proof works equally
well for the case L > 2. We mention that the argument relies on the Rellich estimates
in [7] for the Stokes equations in Lipschitz domains. The condition (7.5) allows us to
drop the pressure p, term in the conormal derivative du./dv for u, on 2. We omit

the details. O

In the next theorem we consider the case where
h-n=¢ Vande) - g onof. 7.7

By using integration by parts on 92, we see that

|V|§C‘/ h-nda‘
02

< Cell¢eViangll 12 (90)- (7.8)

Theorem 7.3 Let Q be a bounded C*® domain in R?, d > 2. Let (us, De) be a weak
solution in H'(S2; RY) x L%(Q) of (7.1), where h € H (32) and h - n is given by
(7.7). Then

ellVuellp2(q,) + lluell 2o + IPell2@,)

< C\/g[”h”LZ(BQ) + el Vanhll2q) + 19:8ll200) + ‘91/2||¢6Vtang||L2(8§2)} .
(7.9)

Proof A version of this theorem was proved in [14, Theorem 5.1] for the case L = 1.
We give the proof for the general case, using a somewhat different argument.
We first note that by writing
h=0h—(-nn)+ (h-n)n

and applying Theorem 7.2 to the solution of (7.1) with boundary data & — (h - n)n,
we may reduce the problem to case where i = (h - n)n on 9€2.
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Next, by the energy estimate (3.3) and (7.8),

ellVuell 2,y + lluell 2o,y + 1PellL2@,)

<C {||H||L2(Q) + ldiv(E) |l 2 + €llVH 120 + 8||¢5Vtang||Lz(ag)} )
(7.10)

where H is any function in HY(; Rd) with H = h on 0Q2. We choose H = H| +
y(x — x0)/d, where xo € 2 and H| is the weak solution of

—AH;+Vg=0 and div(H;) =0 in £,
with the boundary value Hy = h — y(x — x¢)/d on 9€2. It follows that

ellVuell 2 + lluell 2y + 1Pell 2@
< C{lH 2 +ellVHL2(0) + 8||¢avtang”L2(3§z)} , (7.11)

where we have used (7.8). By the energy estimates for the Stokes equations in €2,

IVH 12 < C {Ihl girpe) + v}
1/2 1/2
< C {15 g 1R gy + 171]
= {2l 200) + &2 IVuanh 20y + 171} -
It follows that

ellVH 2 < C\/E{”h”LZ(BQ) + el VianhllL20) + 8||¢£Vtang||L2(aQ)} - (7.12)

To bound || Hi||12(g), We use the following nontangential-maximal-function esti-
mate,

ICHD 2200 < ClIHII2002): (7.13)

where the nontangential maximal function (H;)* on 92 is defined by
(H)*(x) = sup {|[Hi ()] : y € Qand |y — x| < Codist(y, 09)]

for x € 9€2. The estimate (7.13) was proved in [7] for a bounded Lipschitz domain 2.
Let

N, = {x € Q: dist(x, Q) < r}.
It follows from (7.13) that

[Hillz2v,) < CVElHD 200
< CVe{lhll2pa) + ellde Viangll 290 } - (7.14)
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It remains to bound || H || 12\ ,)- To this end, we consider the Dirichlet problem,

—AG+Var=F inQ,
div(G) =0 1in L,
G=0 onof,

where F € C(‘)’O(Q\Ng) and fQ m dx = 0. Under the assumption that 92 is of c2e,
we have the W22 estimates,

1G | m2@) + I7llgr @) = ClIFI 20 (7.15)

This implies that
IVGl2a0) + 17260 = ClIFI2q)- (7.16)

Moreover, since F' = 0 in N, by covering <2 with balls of radius ce, one may show
that

/m <|V2G|2 T |V7‘[|2) do < Ce 7V FII2 . (7.17)

To see this, we use the Green function representation for G to obtain

IV2G(x)| SC/ LSDIR (7.18)

aw, lx —yld
for x € 9. See e.g. [8] for estimates of Green functions for the Stokes equations.

Choose o, B € (0, 1) suchthatae + 8 = 1, > (1/2) and B > (1/2) — (1/2d). It
follows by the Cauchy inequality that for x € 9€2,

dy FO)I?
|v26(x)|256</ —) (/ EDT gy
Q. |x — |2 W, |x — |28

F 2
< Ced’dd"‘/ Lﬂmﬂ dy,
Q\N, [x — I

where we have used the conditions « + 8 = 1 and @ > (1/2). Hence,

d
/ IV2G|* do < Csd_Zd“/ |F(y)[*dy sup / —U(x;d/s
a0 Q\N; YEQ\N, /02 lx — yl

< CS—I/Q|F<y)|2dy,

where we have used the condition § > (1/2) — (1/2d). This gives the estimate for
V2G| in (7.17). The estimate for Vrr follows from the equation —AG + Vz = 0
near 9€2.
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Finally, using integration by parts, we see that

/Hl-Fdx:/Hl-(—AG+V7r)dx
Q Q

:—/BQHy(%—nn)do

- - /a ] (2((Vune) - 1 = v (x = x0)/d) - (% —nr) do

It follows by using integration by parts on 92 that

)/H, -Fdx‘
Q

=Ce /m (6el (IVEIIVGI + 18l VGl + [glI VG| + | VglIx| + gl V| + |gllx]) do

+ 1yl / (VG| +|r]) do
J o2

< Cellgegll 290 {||V2G||L2(asz) +IVGlir2pe) + IV l260) + 17200 )
+ Cellge Vingll 20 {IVG 200 + 171 2200) ) -

where we have used the Cauchy inequality and (7.8). This, together with (7.16) and
(7.17), gives

| /Q Hy - Fdx| = Ce' |1 Fll oy {1968l 200 + &2 19 Ving | 200 | -

By duality we obtain

Il 2@ < Ce {Igegl 2oe + 210 Ving l 2agy |- (7:19)
The desired estimate (7.9) follows from (7.10), (7.12), (7.14) and (7.19). m]
Proof of Theorem 7.1 Clearly, by its definition, @2 € H!(Q: RY), % = 0 on Ty,

and @ + V, = 0 on 3. Using the fact that n - K(f — VPy) = 0 on 82 N 3%,
we obtain

n-h=—n-Wx/e)(f - VF)
= —n-(Wx/e) — KO(f — VPy)
= =5 (nige — s ) (9f R
=73 <n13Xk nkaxi)(%j(x/s)) (f] 8x-) (7.20)

J
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on 32 N IQL. Tt follows that
| [ _n-hdo| = Co19(s = VPOl
082

Hence,

Idiv(®P) 1120,y < Cly| < CellV(f — VP) Lm0
< Cell fllcrirg)-

Finally, in view of (7.20), we apply Theorem 7.3 to obtain

eIVOP 2y = Ce 2 {I1f = VPollLme + e 21V = VP e |

< Ce'2|| fllcrizg)-

8 Interface Correctors

In this section we construct a corrector CDS) for the interface ¥ and thus completes the
proof of Theorem 1.2. Let D = Qf and D, = Qﬁ for some 1 < £ < L. Assume that

9D has no intersection with the boundary of the unbounded connected component of
R? \ Q. Consider the Dirichlet problem,

—Al/lg"‘vpg:() ian,

div(uy) = in Dg,
o= . (8.1)

ug =0 only,

ug=h onaD,

where Ff =T.NDand

),
y = h-ndo.
|De| Jop

Let WH(y) = W¥(y). Fix 1 < j < d, the boundary data 4 on 3D in (8.1) is given as
follows. Let 0D = U,]?):l ¥k, where £* are the connected component of § D. On each
>k, either

h=0 8.2)
or iy,

— W _wt W - _ et
h—Wj (x/¢) Wj (x/e) =W, (x/e)(ij ij)(nK_,n)

. (83)
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where W™ (y) denotes the 1-periodic matrix defined by (2.1) for the subdomain on
the other side of =¥, and

Kt = /Y Wt)dy, K- = /Y W= (y) dy.

In particular, if >k c 9Q, we let h = 0 on =F. Note that the repeated indices i, m in
(8.3) are summed from 1 to d.

Lemma 8.1 Let D be a bounded C** domain in R, d > 2. Let (u,, Pe) be a weak
solution of (8.1) with ng pe dx = 0, where h is given by (8.2) and (8.3). Then

ellVuell2(p,) + luell2(p,) + IPellL2p,y = CVe, 3.4

and
Idiv(ue)l 2(p,) < Ce. (8.5)

Proof We apply Theorem 7.3 with Q2 = D to establish (8.4). First, observe that by
(2.5),
120 29Dy + €lVaanhli 29Dy < C- (8.6)

Next, we compute u - n on X, assuming / is given by (8.3). Note that

_ + - - yim
h-n= ntWtj (x/e) — ntW,j (x/e) —m: W (X/S)(ij B ij) (nK—,n)
=n, (Wt;(x/g) — Kt;) —ny (W,er(x/e) - K,er)

ninm

—n (W (x/e) —K;) (K, — K?Iﬂm’

(8.7)

where the repeated indices ¢, i, m are summed from 1 to d. We use Lemma 2.2 to write

d 0
- ns—> (655 (x/2)) . (8.8)

&

n; (Wtjl.t(x/s) — Kf) = - <nt

2 0xg 0x;

As a result, the function in the right-hand side of (8.7) may be written in the form
&(Vian@e) - g with (¢, g) satisfying

l@ell 29y + 18llco + [ Vianglloo < C.

Consequently, the estimate (8.4) follows from (7.9) in Theorem 7.3. Finally, note that
(8.7) and (8.8) yield

Idiv (o) | 2p,) §C‘/ h.nda‘
aD

< Ce.

]
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Define .,
o =3 "IL@)(f = VP)Xgr in Q. (8.9

=1
where IZ (IZ v Iy d) is a solution of (8.1)in D, = Q‘Z with & given by (8.2) and

(8.3). To fix the boundary value h for each subdomain, we assume that the unbounded
connected component of R4 \Q shares boundary with I andleth = 0on 92! Thus,
Ig1 (x) =0 and <I>§3) = 0 in Q. Next, for each subdomain Q¢ that shares boundaries
with 9Q!, we use the boundary data (8.3) for the common boundary with Q! and
let 4 = 0 on other components of 32¢. We continue this process. More precisely,
at each step, we use (8.3) on the connected component X of 9Q¢ if £ is also the
connected component of the boundary of a subdomain considered in the previous step,
and let 1 = 0 on the remaining components. We point out that at each interface ¥,
the nonzero data (8.3) is used only once. Also, 47 = 0 on 9€2.

Lemma8.2 Let @ be given by (8.9) with f € CHV/2(2; RY). Then V, + o8 e
H'(Q; RY).

Proof Let W, = V, + d>§3). Since f € cl1/2(Q) implies that V2 P, is bounded in
each subdomain, it follows that ¥, € H 1(§2£; Rd) for 1 < £ < L. Thus, to show
U, € H'(Q,; R?), it suffices to show that the trace of W, is continuous across each
interface TX.

Suppose that £¥ is the common boundary of subdomains % and Q. Let \Ilgc
denote the trace of W, on XX, taken from Q% respectively. Recall that in the definition
of {/ f }, the non-zero data (8.3) is used once on each interface. Assume that the non-zero
data on =¥ is used for 1. Then

U — W = (Whx/e) + L)) (f = VP)T — W (x/e)(f — VP,

where I;" is given by (8.3). It follows that

. +
W W = <Wj_(x/s) — WG /e) (K — K;j)n”l&) <fj _ %)

_ Py
- Wj (x/e) (fj - 7)

J

_ 3Py 0P\" _ _njrm (. BR\T
=Wy (X/e){<axj> _<37j) T K K (ﬁ_a_xi> }

_ ning _ 8P()
ek (6= 50)
where we have used the observation that
0P\ " _ 9P\~
+
M K i <f,- - aT) =nnkK,, (ﬁ- = (8.10)
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on the interface. Thus,
- + ) - +
iz w0 - () - e (5 - () )
i 0x; ox; (nK—,n) ™ x; 0x;
e o njng _ d Py __ d Py +
=Y (x/e)!a” <nK,n>K"”‘}((axi> (axi> )

Since

njnm _
oo = G =0
and (Vian Po)™ = (Vian Po)~ on X, we obtain ¥;F = ¥ on X O

Theorem 8.3 Let % be defined by (8.9) with f € C1-/2(Q; RY). Then V, + % €
H' (2 RY) and

elVOD 2(p) + I1diV@I 2 ey < Ce' N fllcring (8.11)
forl <t <L.
Proof By Lemma 8.2, we have V, + <b§3) S Hl(Q; Rd). Note that by Lemma 8.1,
eIV 2@ + I 2 + 1AVUID 2 g < Ce'/?
for 1 < ¢ < L. It follows that

el VOl 20z < elVIL 2l f = VPoll o) + el 20 IV = VPOl Loar)
< Ce' | flcrir g

and

Idiv( @)1 202y < IdivID N 20y I = VPoll Loegey + 1 N 2@ 1V (f = VPOl Lo (e
< Ce"2lI fllcrirng-
O
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