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Abstract
In this paperwe study the homogenization of theDirichlet problem for the Stokes equa-
tions in a perforated domainwithmultiplemicrostructures. First, under the assumption
that the interface between subdomains is a union of Lipschitz surfaces, we show that
the effective velocity and pressure are governed by a Darcy law, where the permeabil-
ity matrix is piecewise constant. The key step is to prove that the effective pressure is
continuous across the interface, using Tartar’s method of test functions. Secondly, we
establish the sharp error estimates for the convergence of the velocity and pressure,
assuming the interface satisfies certain smoothness and geometric conditions. This is
achieved by constructing two correctors. One of them is used to correct the disconti-
nuity of the two-scale approximation on the interface, while the other is used to correct
the discrepancy between boundary values of the solution and its approximation.

Keywords Homogenization · Stokes equations · Perforated domain · Convergence
rate

Mathematics Subject Classification 35Q35 · 35B27 · 76D07

1 Introduction

In this paper we study the homogenization of the Dirichlet problem for the Stokes
equations in a perforated domain �ε,

⎧
⎪⎨

⎪⎩

− ε2μ�uε + ∇ pε = f in �ε,

div(uε) = 0 in �ε,

uε = 0 on ∂�ε,

(1.1)
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where 0 < ε < 1 and μ > 0 is a constant. Let � be a bounded Lipschitz domain in
R
d , d ≥ 2. Let {�� : 1 ≤ � ≤ L} be a finite number of disjoint subdomains of �,

each with a Lipschitz boundary, such that

� =
L⋃

�=1

��. (1.2)

To describe the porous domain �ε, let Y = [−1/2, 1/2]d be a closed unit cube and
{Y �

s : 1 ≤ � ≤ L} open subsets (solid parts) of Y with Lipschitz boundaries. Assume

that for 1 ≤ � ≤ L , dist(∂Y , ∂Y �
s ) > 0 and Y �

f = Y \ Y �
s (the fluid part) is connected.

For 0 < ε < 1 and 1 ≤ � ≤ L , define

��
ε = �� \

⋃

z

ε
(
Y �
s + z

)
, (1.3)

where z ∈ Z
d and the union is taken over those z’s for which ε(Y + z) ⊂ ��. Thus

the subdomain �� is perforated periodically, using the solid obstacle Y �
s . Let

�ε = � ∪
L⋃

�=1

��
ε = � \

L⋃

�=1

⋃

z

ε
(
Y �
s + z

)
, (1.4)

where � is the interface between subdomains, given by

� = � \
L⋃

�=1

�� =
L⋃

�=1

∂�� \ ∂�. (1.5)

For f ∈ L2(�;Rd), let (uε, pε) ∈ H1
0 (�ε;Rd) × L2(�ε) be the weak solution of

(1.1) with
´
�ε

pε dx = 0. We extend uε to the whole domain� by zero. Let Pε denote
the extension of pε to �, defined by (2.21). In the case L = 1, where � is perforated
periodically with small holes of same shape, it is well known that as ε → 0, uε → u0
weakly in L2(�;Rd) and Pε → P0 strongly in L2(�), where the effective velocity
and pressure (u0, P0) are governed by the Darcy law,

⎧
⎪⎨

⎪⎩

u0 = μ−1K ( f − ∇P0) in �,

div(u0) = 0 in �,

u0 · n = 0 on ∂�,

(1.6)

with
´
�
P0 dx = 0. Note that in (1.1) we have normalized the velocity vector by a

factor ε2, where ε is the period. For references on the Darcy law, we refer to the reader
to [1, 3, 4, 10, 13].

In (1.6) the permeability matrix K is a d × d positive-definite, constant and sym-
metric matrix and n denotes the outward unit normal to ∂�. It was observed in [3] by
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G. Allaire that as ε → 0,

uε − μ−1W (x/ε)( f − ∇P0) → 0 strongly in L2(�;Rd), (1.7)

whereW (y) is an 1-periodic d×d matrix defined by a cell problem and
ffl
Y W (y) dy =

K . Recently, it was proved in [14] by the present author that

‖uε − μ−1W (x/ε)( f − ∇P0)‖L2(�) + ‖Pε − P0‖L2(�) ≤ C
√

ε‖ f ‖C1,1/2(�), (1.8)

and that

‖ε∇uε − μ−1∇W (x/ε)( f − ∇P0)‖L2(�) ≤ C
√

ε‖ f ‖C1,1/2(�). (1.9)

We point out that due to the discrepancy between boundary values ofμ−1W (x/ε)( f −
∇P0) and uε on ∂�, the O(ε1/2) convergence rates in (1.8) and(1.9) are sharp. See
[11] for an earlier partial result on solutions with periodic boundary conditions.

The primary purpose of this paper is to study the Darcy law for the case L ≥ 2,
where the domain � is divided into several subdomains and different subdomains are
perforated with small holes of different shapes.

Theorem 1.1 Let � be a bounded Lipschitz domain in R
d , d ≥ 2, and �ε be given

by (1.4). Let (uε, pε) ∈ H1
0 (�ε;Rd) × L2(�ε) be a weak solution of (1.1), where

f ∈ L2(�;Rd) and
´
�ε

pε dx = 0. Let Pε be the extension of pε, defined by (2.21).

Then uε → u0 weakly in L2(�;Rd) and Pε − ffl
�
Pε → P0 strongly in L2(�), as

ε → 0, where P0 ∈ H1(�) and (u0, P0) is governed by the Darcy law (1.6) with the
matrix

K =
L∑

�=1

K �χ�� in �. (1.10)

The matrix K � in (1.10) is the (constant) permeability matrix associated with the
solid obstacle Y �

s . Thus, the matrix K is piecewise constant in �, taking the value K �

in the subdomain ��, and

u0 = K �( f − ∇P0) in ��. (1.11)

Since div(u0) = 0 in � and P0 ∈ H1(�), both the normal component u0 · n and
P0 are continuous across the interface � (in the sense of trace) between subdomains.
However, the tangential components of u0 may not be continuous across �.

The Dirichlet problem for the Stokes equations (1.1) is used to model fluid flows in
porous media with different microstructures in different subdomains. The continuity
of the effective pressure P0 and the normal component u0 · n of the effective velocity
across the interface is generally accepted in engineering [6, 9]. Theorem 1.1 is prob-
ably known to experts. However, to the best of the author’s knowledge, the existing
literatures on rigorous proofs only treat the case of flat interfaces. In particular, the
result was proved in [9] under the assumptions that d = 2, the interface 	 = R× {0}
and the solutions are 1-periodic in the direction x1. Also see related work in [5, 12].
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We provide a proof here for the general case, where the interface is a union of Lips-
chitz surfaces, using Tartar’s method of test functions. We point out that the proof for
(1.11) and P0 ∈ H1(��) for each � is the same as in the classical case L = 1. The
challenge is to show that the effective pressure P0 is continuous across the interface
and thus P0 ∈ H1(�), which is essential for proving the uniqueness of the limits of
subsequences of {uε}.

Our main contribution in this paper is on the sharp convergence rates and error
estimates for uε and Pε. We are able to extend the results in [14] for the case L = 1
to the case L ≥ 2 under some smoothness and geometric conditions on subdomains.
More specifically, we assume that each subdomain is a bounded C2,1/2 domain, and
that there exists r0 > 0 such that if x0 ∈ ∂�k ∩ ∂�m for some 1 ≤ k,m ≤ L and
k �= m, there exists a coordinate system, obtained from the standard one by translation
and rotation, such that

B(x0, r0) ∩ �k = B(x0, r0) ∩ {
(x ′, xd) ∈ R

d : xd > ψ(x ′)
}
,

B(x0, r0) ∩ �m = B(x0, r0) ∩ {
(x ′, xd) ∈ R

d : xd < ψ(x ′)
}
,

(1.12)

where ψ : Rd−1 → R is a C2,1/2 function. Roughly speaking, this means that inside
a small ball centered on the interface �, the domain � is divided by � into exactly
two subdomains. In particular, the condition excludes the cases where the interface
intersects with each other or with the boundary of �.

The following is the main result of the paper. The matrix W �(y) in (1.13)-(1.14) is
the 1-periodic matrix associated with the solid obstacle Y �

s .

Theorem 1.2 Let � be a bounded C2,1/2 domain and �ε be given by (1.4). Assume
that the subdomains {��} are bounded C2,1/2 domains satisfying the condition (1.12).
Let (uε, Pε) and (u0, P0) be the same as in Theorem 1.1. Then, for f ∈ C1,1/2(�;Rd),

L∑

�=1

‖uε − μ−1W �(x/ε)( f − ∇P0)‖L2(��) + ‖Pε −
 

�

Pε − P0‖L2(�) ≤ C
√

ε‖ f ‖C1,1/2(�),

(1.13)
and

L∑

�=1

‖ε∇uε − μ−1∇W �(x/ε)( f − ∇P0)‖L2(��) ≤ C
√

ε‖ f ‖C1,1/2(�), (1.14)

where C depends on d, μ, �, {��} and {Y �
s }.

As we mentioned earlier, the sharp convergence rates in (1.13) and (1.14) were
proved in [14] for the case L = 1. In the case of two porous media with a flat interface,
partial results were obtained in [9] for solutions with periodic boundary conditions.
Theorem 1.2 is the first result that treats the general case of smooth interfaces.

As in [9], the basic idea in our approach to Theorem 1.2 is to use

Vε(x) =
L∑

�=1

W �(x/ε)( f − ∇P0)χ��
ε

(1.15)
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to approximate the solution uε and obtain the error estimates by the energy method.
Observe that Vε = 0 on	ε = ∂�ε\∂�. There are threemain issueswith this approach:
(1) the divergence of Vε is not small in L2; (2) Vε does not agree with uε on ∂�; and
(3) Vε is not in H1(�ε;Rd), as it is not continuous across the interface. To overcome
these difficulties, we introduce three corresponding correctors: �

(1)
ε , �(2)

ε , and �
(3)
ε .

To correct the divergence of Vε, we construct �
(1)
ε ∈ H1

0 (�ε;Rd) with the property
that

ε

∥
∥
∥∇�(1)

ε

∥
∥
∥
L2(��

ε)
+

∥
∥
∥div

(
�(1)

ε + Vε

)∥
∥
∥
L2(��

ε)
≤ C

√
ε‖ f ‖C1,1/2(�) (1.16)

for 1 ≤ � ≤ L . The construction of �
(1)
ε is similar to that in [9, 11, 14]. Next, we

correct the boundary data of Vε on ∂� by constructing �
(2)
ε ∈ H1(�ε;Rd) such that

�
(2)
ε + Vε = 0 on ∂�, �(2)

ε = 0 on 	ε, and that

ε

∥
∥
∥∇�(2)

ε

∥
∥
∥
L2(�ε)

+
∥
∥
∥div

(
�(2)

ε

)∥
∥
∥
L2(�ε)

≤ C
√

ε‖ f ‖C1,1/2(�). (1.17)

The construction of �
(2)
ε is similar to that in [14] for the case L = 1. The key

observation is that the normal component of Vε on ∂� can be written in the form

ε∇tan (φ(x/ε)) · g, (1.18)

where∇tan denotes the tangential gradient on ∂�.We remark that a similar observation
is also used in the proof of Theorem 1.1. Finally, to correct the discontinuity of Vε

across the interface, we introduce

�(3)
ε =

L∑

�=1

I �
ε (x)( f − ∇P0)χ��

ε
, (1.19)

with the properties that V + �
(3)
ε ∈ H1(�ε;Rd), �(3)

ε = 0 on ∂�ε, and that

ε

∥
∥
∥∇�(3)

ε

∥
∥
∥
L2(��

ε)
+

∥
∥
∥div

(
�(3)

ε

)∥
∥
∥
L2(��

ε)
≤ C

√
ε‖ f ‖C1,1/2(�). (1.20)

More specifically, for each 1 ≤ � ≤ L , the matrix-valued function I �
ε is a solution of

the Stokes equations in ��
ε with I �

ε = 0 on ∂��
ε\∂��. On each connected component

�k of the interface �, the boundary value of I �
ε is either 0 or given by

W−
j (x/ε) − W+

j (x/ε) − W−
i (x/ε)

(
K−
mj − K+

mj

) ninm
〈nK−, n〉 , (1.21)

where the repeated indices i andm are summed from 1 to d. Here the subdomains �±
are separated by�k , and (W±, K±) denote the corresponding 1-periodic matrices for
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�± and their averages over Y , respectively. To show V + �
(3)
ε is continuous across

�, we use the fact that (∇tanP0)+ = (∇tanP0)− and

n · K+( f − ∇P0)
+ = n · K−( f − ∇P0)

−, (1.22)

where (v)± denote the trace of v taken from�±, respectively. The proof of the estimate
(1.20) again relies on the observation that the normal component of (1.21) is of form
(1.18).

Theorem 1.2 is proved under the assumption that {Y �
s : 1 ≤ � ≤ L} are subdomains

of Y with Lipschitz boundaries. The C2,1/2 condition and the geometric condition
(1.12) for � and subdomains {��} are dictated by the smoothness requirement in its
proof for P0 in each subdomain. Note that P0 is a solution of an elliptic equation with
piecewise constant coefficients in�. Notmuch is known about the boundary regularity
of P0 if the interface intersects with the boundary ∂� or with each other.

The paper is organized as follows. In Sect. 2 we collect several useful estimates
that are more or less known. In Sect. 3 we establish the energy estimates for the
Dirichlet problem (1.1). Theorem 1.1 is proved in Sect. 4. In Sect. 5 we give the proof
of Theorem 1.2, assuming the existence of suitable correctors. Finally, we construct
correctors�

(1)
ε ,�(2)

ε , and�
(3)
ε , described above, in the last three sections of the paper.

Throughout the paper we will use C to denote constants that may depend on d, μ,
�, {��}, and {Y �

s }. Since the viscosity constant μ is irrelevant in our study, we will
assume μ = 1 in the rest of the paper.

2 Preliminaries

Let Y = [−1/2, 1/2]d and {Y �
s : 1 ≤ � ≤ L} be a finite number of open subsets of Y

with Lipschitz boundaries. We assume that dist(∂Y , ∂Y �
s ) > 0 and that Y �

f = Y \ Y �
s

is connected. Let

ω� =
⋃

z∈Zd

(
Y �
f + z

)

be the periodic repetition of Y �
f . For 1 ≤ j ≤ d and 1 ≤ � ≤ L , let

(
W �

j (y), π
�
j (y)

)
=

(
W �

1 j (y), . . . ,W
�
d j (y), π

�
j (y)

)
∈ H1

loc(ω
�;Rd) × L2

loc(ω
�)

be the 1-periodic solution of

⎧
⎪⎪⎨

⎪⎪⎩

− �W �
j + ∇π�

j = e j in ω�,

div(W �
j ) = 0 in ω�,

W �
j = 0 on ∂ω�,

(2.1)
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with
´
Y �
f
π�
j dy = 0, where e j = (0, . . . , 1, . . . , 0) with 1 in the j th place. We extend

the d × d matrix W � = (W �
i j ) to R

d by zero and define

K �
i j =

ˆ

Y
W �

i j (y) dy. (2.2)

Since

K �
i j =

ˆ

Y
∇W �

ik · ∇W �
jk dy

(the repeated index k is summed from 1 to d), it follows that K � = (K �
i j ) is symmetric

and positive definite.
The existence and uniqueness of solutions to (2.1) can be proved by applying the

Lax-Milgram Theorem on the closure of the set,

{
u ∈ C∞(Rd ;Rd) : u is 1-periodic, u = 0 in Y �

s , and div(u) = 0 in Rd
}

,

in H1(Y ;Rd). By energy estimates,

ˆ

Y

(
|∇W �|2 + |W �|2 + |π�|2

)
dy ≤ C, (2.3)

where we have also extended π� to Rd by zero. By periodicity this implies that

ˆ

D

(
|∇W �(x/ε)|2 + |W �(x/ε)|2 + |π�(x/ε)|2

)
dx ≤ C, (2.4)

where D is a bounded domain and C depends on diam(D).

Lemma 2.1 Let D be a bounded Lipschitz domain in Rd . Then

ˆ

∂D

(
|∇W �(x/ε)|2 + |W �(x/ε)|2 + |π�(x/ε)|2

)
dσ ≤ C, (2.5)

where C depends on D.

Proof IfY �
s is ofC

1,α , the inequality above follows directly from the fact that∇W � and
π� are bounded in Y . To treat the case where ∂Y �

s is merely Lipschitz, by periodicity,
we may assume that ε = 1 and D is a subdomain of Y . Note that the bound for the
integral of |W �|2 on ∂D follows from (2.3). Indeed, if D is a subdomain of Y with
Lipschitz boundary,

ˆ

∂D
|W �|2 dσ ≤ C

ˆ

D

(
|∇W �|2 + |W �|2

)
dy.
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The estimates for ∇W � and π� are a bit more involved. By using the fundamental
solutions for the Stokes equations in Rd , we may reduce the problem to the estimate

‖∇u‖L2(∂D) + ‖p‖L2(∂D) ≤ C
{
‖∇u‖L2(Ỹ\Y �

s ) + ‖p‖L2(Ỹ\Y �
s ) + ‖h‖H1(∂Y �

s )

}
,

for solutions of the Stokes equations,

⎧
⎪⎪⎨

⎪⎪⎩

− �u + ∇ p = 0 in Ỹ \ Y �
s ,

div(u) = 0 in Ỹ \ Y �
s ,

u = h on ∂Y �
s ,

where h ∈ H1(∂Y �
s ;Rd) and Ỹ = (1 + c)Y . The desired estimates follow from the

interior estimates as well as the nontangential-maximal-function estimate,

‖(∇u)∗‖L2(∂Y �
s ) + ‖(p)∗‖L2(∂Y �

s ) ≤ C
{
‖h‖H1(∂Y �

s ) + ‖u‖L2(Ỹ\Y �
s ) + ‖p‖L2(Ỹ\Y �

s )

}
,

(2.6)
where the nontangential maximal function (v)∗ is defined by

(v)∗(x) = sup
{
|v(y)| : y ∈ Y \ Y �

s and |y − x | < C0 dist
(
y, ∂Y �

s

)}

for x ∈ ∂Y �
s . The estimate (2.6) is a consequence of the nontangential-maximal-

function estimates, established in [7], for solutions of the Dirichlet problem for the
Stokes equations in a bounded Lipschitz domain. ��
Lemma 2.2 Fix 1 ≤ j ≤ d and 1 ≤ � ≤ L. There exist 1-periodic functions φ�

ki j (y),

i, k = 1, 2, . . . , d, such that φ�
ki j ∈ H1(Y ),

´
Y φ�

ki j dy = 0,

∂

∂ yk

(
φ�
ki j

)
= W �

i j − K �
i j and φ�

ki j = −φ�
ik j , (2.7)

where the repeated index k is summed from 1 to d. Moreover,

ˆ

∂D

∣
∣
∣φ

�
ki j (x/ε)

∣
∣
∣
2
dσ ≤ C, (2.8)

where D is a bounded Lipschitz domain in Rd and C depends on D.

Proof See [14, Lemma 5.3] for the proof of (2.7). Indeed, φ�
ki j is given by

φ�
ki j = ∂h�

i j

∂ yk
− ∂h�

k j

∂ yi
,
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where h�
i j satisfies

{
�h�

i j = W �
i j − K �

i j in Y ,

h�
i j is 1-periodic.

The estimate (2.8) follows from the observation,

‖∇φ�
ki j‖L2(Y ) + ‖φ�

ki j‖L2(Y ) ≤ C‖∇2h�
i j‖L2(Y ) + C‖∇2h�

k j‖L2(Y )

≤ C‖W �‖L2(Y ) ≤ C .

��
Let � be a bounded Lipschitz domain in R

d and {�� : 1 ≤ � ≤ L} be disjoint
subdomains of �, each with Lipschitz boundary, and satisfying the condition,

� = ∪L
�=1�

�. (2.9)

Define

K =
L∑

�=1

K �χ��, (2.10)

where K � is given by (2.2) and χ�� denotes the characteristic function of ��.

Lemma 2.3 Let f ∈ L2(�;Rd). Then there exists P0 ∈ H1(�), unique up to con-
stants, such that {

div (K ( f − ∇P0)) = 0 in �,

n · K ( f − ∇P0) = 0 on ∂�,
(2.11)

in the sense that ˆ

�

K ( f − ∇P0) · ∇ϕ dx = 0 (2.12)

for any ϕ ∈ H1(�).

Proof This is standard since the coefficient matrix K is positive-definite in each sub-
domain �� and thus in �. ��

For each 1 ≤ � ≤ L and 0 < ε < 1, let ��
ε be the perforated domain defined by

(1.3), using Y �
s . Let �ε be given by (1.4). Note that

∂�ε = ∂� ∪ 	ε, (2.13)

where 	ε = ∪L
�=1	

�
ε and 	�

ε consists of the boundaries of holes ε(Y �
s + z) that are

removed from ��.

Lemma 2.4 Let u ∈ H1(�ε) with u = 0 on 	ε. Assume 	�
ε �= ∅ for all 1 ≤ � ≤ L.

Then
‖u‖L2(�ε)

≤ Cε‖∇uε‖L2(�ε)
. (2.14)
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Proof It follows from Lemma 2.2 in [14] that for 1 ≤ � ≤ L ,

‖u‖2L2(��
ε)

≤ Cε2‖∇u‖2L2(��
ε)

,

which yields (2.14) by summation. Note that we do not assume u = 0 on ∂��. ��
From now on we will assume that ε > 0 is sufficiently small so that 	�

ε �= ∅ for all
1 ≤ � ≤ L . The main results in this paper are only relevant for small ε.

Lemma 2.5 Let � be a bounded Lipschitz domain and �ε be given by (1.4). There
exists a bounded linear operator,

Rε : H1(�;Rd) → H1
(
�ε;Rd

)
, (2.15)

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rε(u) = 0 on 	ε and Rε(u) = u on ∂�,

Rε(u) ∈ H1
0 (�ε;Rd) if u ∈ H1

0 (�;Rd),

Rε(u) = u in � if u = 0 on 	ε,

div(Rε(u)) = div(u) in �ε if div(u) = 0 in � \ �ε,

(2.16)

and

ε‖∇Rε(u)‖L2(�ε)
+ ‖Rε(u)‖L2(�ε)

≤ C
{
ε‖∇u‖L2(�) + ‖u‖L2(�)

}
. (2.17)

Moreover,
‖div(Rε(u))‖L2(�ε)

≤ C‖div(u)‖L2(�). (2.18)

Proof A proof for the case L = 1, which is similar to that of a lemma due to Tartar (in
an appendix of [13]), may be found in [14, Lemma 2.3]. Also see [1, 10]. The same
proof works equally well for the case L ≥ 2. Indeed, let u ∈ H1(�;Rd). For each
ε(Y + z) ⊂ �� with 1 ≤ � ≤ L and z ∈ Z

d , we define Rε(u) on ε(Y �
f + z) by the

Dirichlet problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ε2�Rε(u) + ∇q = −ε2�u in ε
(
Y �
f + z

)
,

div(Rε(u)) = div(u) + 1

|ε(Y �
f + z)|

ˆ

ε(Y �
s +z)

div(u) dx in ε
(
Y �
f + z

)
,

Rε(u) = 0 on ∂
(
ε(Y �

s + z)
)

,

Rε(u) = u on ∂ (ε(Y + z)) .

(2.19)

If x ∈ �ε and x /∈ ε(Y f + z) for any ε(Y + z) ⊂ ��, we let Rε(u) = u. ��
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Lemma 2.6 Let f ∈ L2(�ε) with
´
�ε

f dx = 0. Then there exists uε ∈ H1
0 (�ε;Rd)

such that div(uε) = f in �ε and

‖uε‖L2(�ε)
+ ε‖∇uε‖L2(�ε)

≤ C‖ f ‖L2(�ε)
. (2.20)

Proof Let F be the zero extension of f to �. Since F ∈ L2(�) and
´
�
F dx = 0,

there exists u ∈ H1
0 (�;Rd) such that div(u) = F in � and ‖u‖L2(�) + ‖∇u‖L2(�) ≤

C‖F‖L2(�). Let uε = Rε(u). Then uε ∈ H1
0 (�ε,R

d), and by (2.17),

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

≤ C
{
ε‖∇u‖L2(�) + ‖u‖L2(�)

}

≤ C‖ f ‖L2(�ε)
.

Since div(u) = F = 0 in �\�ε, by the last line in (2.16), we obtain div(uε) =
div(u) = f in �ε. ��

For p ∈ L2(�ε), as in [10], we define an extension P of p to L2(�) by

P(x) =

⎧
⎪⎨

⎪⎩

p(x) if x ∈ �ε,
 

ε(Y �
f +z)

p if x ∈ ε(Y �
s + z) ⊂ ε(Y + z) ⊂ �� for some 1 ≤ � ≤ L and z ∈ Z

d .

(2.21)

Lemma 2.7 Let p ∈ L2(�ε) and P be its extension given by (2.21). Then

〈∇ p, Rε(u)〉H−1(�ε)×H1
0 (�ε)

= 〈∇P, u〉H−1(�)×H1
0 (�), (2.22)

where u ∈ H1
0 (�;Rd) and Rε(u) is given by Lemma 2.5.

Proof We use an argument found in [1, 2, 10]. Note that if u ∈ H1
0 (�;Rd), we have

Rε(u) ∈ H1
0 (�ε;Rd) and

|〈∇ p, Rε(u)〉H−1(�ε)×H1
0 (�ε)

| = |〈p, div(Rε(u))〉L2(�ε)×L2(�ε)
|

≤ ‖p‖L2(�ε)
‖div(Rε(u))‖L2(�ε)

≤ C‖p‖L2(�ε)
‖div(u)‖L2(�),

where we have used the estimate (2.18) for the last inequality. Thus there exists � ∈
H−1(�;Rd) such that

〈∇ p, Rε(u)〉H−1(�ε)×H1
0 (�ε)

= 〈�, u〉H−1(�)×H1
0 (�)

for any u ∈ H1
0 (�;Rd). Since 〈�, u〉 = 0 if div(u) = 0 in�, it follows that� = ∇Q

for some Q ∈ L2(�).
Next, using the fact that Rε(u) = u for u ∈ H1

0 (�ε;Rd), we obtain

〈∇ p − ∇Q, u〉H−1(�ε)×H1
0 (�ε)

= 0
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for any u ∈ H1
0 (�ε;Rd). This implies that p − Q is constant in �ε. Since Q is only

determined up to a constant, we may assume that Q = p in �ε. Moreover, we note
that if ε(Y + z) ⊂ �� for some 1 ≤ � ≤ L and z ∈ Z

d , and u ∈ C1
0(ε(Y

�
s + z),Rd),

then Rε(u) = 0 in �ε. It follows that ∇Q = 0 in ε(Y �
s + z). Thus Q is constant in

each ε(Y �
s + z).

Finally, for any u ∈ C1
0(ε(Y + z);Rd) with ε(Y + z) ⊂ ��, we have

Rε(u) ∈ H1
0

(
ε(Y �

f + z);Rd
)

,

and by (2.19),

div(Rε(u)) = div(u) + 1
∣
∣
∣ε

(
Y �
f + z

)∣
∣
∣

ˆ

ε(Y �
s +z)

div(u) dx

in ε(Y �
f + z). This, together with

ˆ

ε(Y �
f +z)

p · div(Rε(u)) dx =
ˆ

ε(Y+z)
Q · div(u) dx

and the fact that Q = p in �ε, yields

ˆ

ε(Y �
s +z)

(

Q −
 

ε(Y �
f +z)

p

)

div(u) dx = 0.

Consequently,

Q =
 

ε(Y �
f +z)

p in ε
(
Y �
s + z

)
.

As a result, we have proved that Q = P , an extension of p given by (2.21). ��

3 Energy Estimates

Let �ε be given by (1.4). Recall that ∂�ε = ∂� ∪ 	ε, where 	ε consists of the
boundaries of the holes of size ε that are removed from �. In this section we establish
the energy estimates for the Dirichlet problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ε2�uε + ∇ pε = f + ε div(F) in �ε,

div(uε) = g in �ε,

uε = 0 on 	ε,

uε = h on ∂�,

(3.1)
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where (g, h) satisfies the compatibility condition,

ˆ

�ε

g dx =
ˆ

∂�

h · n dσ. (3.2)

Throughout this section we assume that�,�� and Y �
s for 1 ≤ � ≤ L are domains with

Lipschitz boundaries. We use L2
0(�ε) to denote the subspace of functions in L2(�ε)

with mean value zero.

Theorem 3.1 Let f ∈ L2(�ε;Rd) and F ∈ L2(�ε;Rd×d). Let g ∈ L2(�ε) and
h ∈ H1/2(∂�;Rd) satisfy the condition (3.2). Let (uε, pε) ∈ H1(�ε;Rd) × L2

0(�ε)

be a weak solution of (3.1). Then

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
{
‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ‖g‖L2(�ε)

+ ‖H‖L2(�)

+ ‖div(H)‖L2(�) + ε‖∇H‖L2(�)

}
, (3.3)

where H is any function in H1(�;Rd) with the property H = h on ∂�.

Proof This theorem was proved in [14, Sect. 3] for the case L = 1. The proof for the
case L ≥ 2 is similar. We provide a proof here for the reader’s convenience.

Step 1. We show that

‖pε‖L2(�ε)
≤ C

{
ε‖∇uε‖L2(�ε)

+ ‖ f ‖L2(�ε)
+ ‖F‖L2(�ε)

}
. (3.4)

To this end we use Lemma 2.6 to find vε ∈ H1
0 (�ε;Rd) such that div(vε) = pε in �ε

and
ε‖∇vε‖L2(�ε)

+ ‖vε‖L2(�ε)
≤ C‖pε‖L2(�ε)

. (3.5)

By using vε as a test function we obtain

‖pε‖2L2(�ε)
≤ ε2‖∇uε‖L2(�ε)

‖∇vε‖L2(�ε)
+ ‖ f ‖L2(�ε)

‖vε‖L2(�ε)

+ ε‖F‖L2(�ε)
‖∇vε‖L2(�ε)

≤ C‖pε‖L2(�ε)

{
ε‖∇uε‖L2(�ε)

+ ‖ f ‖L2(�ε)
+ ‖F‖L2(�ε)

}
,

where we have used (3.5) for the last inequality. This yields (3.4).
Step 2. We prove (3.3) in the case h = 0. In this case we may use uε ∈ H1

0 (�ε;Rd)

as a test function to obtain

ε2‖∇uε‖2L2(�ε)
≤ ‖pε‖L2(�ε)

‖g‖L2(�ε)
+ ‖ f ‖L2(�ε)

‖uε‖L2(�ε)

+ ε‖F‖L2(�ε)
‖∇uε‖L2(�ε)

.
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By using the Cauchy inequality as well as the estimate ‖uε‖L2(�ε)
≤ Cε‖∇uε‖L2(�ε)

,
we deduce that

‖uε‖L2(�ε)
+ ε‖∇uε‖L2(�ε)

≤ C
{
‖pε‖1/2L2(�ε)

‖g‖1/2
L2(�ε)

+ ‖ f ‖L2(�ε)
+ ‖F‖L2(�ε)

}
.

This, together with (3.4), gives (3.3) for the case h = 0.
Step 3. We consider the general case h ∈ H1/2(∂�;Rd). Let H be a function in

H1(�;Rd) such that H = h on ∂�. Let wε = uε − Rε(H), where Rε(H) is given
by Lemma 2.5. Then wε ∈ H1

0 (�ε;Rd) and

{
− ε2�wε + ∇ pε = f + ε div(F) + ε2�Rε(H),

div(wε) = g − div(Rε(H)),

in �ε. By Step 2 we obtain

ε‖∇wε‖L2(�ε)
+ ‖wε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
{
‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ε‖∇Rε(H)‖L2(�ε)

+ ‖g‖L2(�ε)

+ ‖div(Rε(H))‖L2(�ε)

}
.

It follows that

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
{
‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ‖g‖L2(�ε)

+ ε‖∇Rε(H)‖L2(�ε)
+ ‖Rε(H)‖L2(�ε)

+ ‖div(Rε(H))‖L2(�ε)

}

≤ C
{
‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ‖g‖L2(�ε)

+ ε‖∇H‖L2(�)

+ ‖H‖L2(�) + ‖div(H)‖L2(�)

}
,

where we have used estimates (2.17) and (2.18) for the last inequality. ��
Corollary 3.2 Let (uε, pε) be the same as in Theorem 3.1. Then

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
{
‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ‖g‖L2(�ε)

+ ‖h‖L2(∂�) + ε‖h‖H1/2(∂�)

}
. (3.6)

Proof For h ∈ H1/2(∂�;Rd), let H be the weak solution in H1(�;Rd) of the Dirich-
let problem,

⎧
⎪⎨

⎪⎩

− �H + ∇q = 0 in �,

div(H) = γ in �,

u = h on ∂�,
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where the constant

γ = 1

|�|
ˆ

∂�

h · n dσ

is chosen so that the compatibility condition (3.2) is satisfied. Note that

‖div(H)‖L2(�) = C |γ | ≤ C‖h‖L2(∂�),

and by the standard energy estimates, ‖∇H‖L2(�) ≤ C‖h‖H1/2(∂�). In view of (3.3)
we only need to show that

‖H‖L2(�) ≤ C‖h‖L2(∂�). (3.7)

To this end, let

H1 = H − γ (x − x0)/d,

where x0 ∈ �. Since −�H1 +∇q = 0 and div(H1) = 0 in �, it follows from [7] that

‖H1‖L2(�) ≤ C‖(H1)
∗‖L2(∂�)

≤ C‖H1‖L2(∂�) ≤ C‖h‖L2(∂�),

where (H1)
∗ denotes the nontangential maximal function of H1. As a result, we obtain

‖H‖L2(�) ≤ ‖H1‖L2(�) + C |γ |
≤ C‖h‖L2(∂�),

which completes the proof. ��
Corollary 3.3 Let (uε, pε) be the same as in Theorem 3.1. Let Pε be the extension of
pε, defined by (2.21). Then

‖Pε‖L2(�) ≤ C
{‖ f ‖L2(�ε)

+ ‖F‖L2(�ε)
+ ‖g‖L2(�ε)

+ ‖h‖L2(∂�) + ε‖h‖H1/2(∂�)

}
.

(3.8)

Proof By the definition of Pε, we have

ˆ

�

|Pε|2 dx =
ˆ

�ε

|pε|2 dx +
L∑

�=1

∑

z

|ε(Y �
s + z)|

( 

ε(Y �
f +z)

pε

)2

≤
L∑

�=1

1

|Y �
f |
ˆ

��
ε

|pε|2 dx,

which, together with (3.6), gives (3.8). ��
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4 Homogenization and Proof of Theorem 1.1

Let f ∈ L2(�;Rd) and h ∈ H1/2(∂�;Rd) with
´
∂�

h · n dσ = 0, where n denotes
the outward unit normal to ∂�. Consider the Dirichlet problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ε2�uε + ∇ pε = f in �ε,

div(uε) = 0 in �ε,

uε = 0 on 	ε,

uε = h on ∂�,

(4.1)

where �ε is given by (1.4) and ∂�ε = ∂� ∪ 	ε. Throughout the section we assume
that �, �� and Y �

s for 1 ≤ � ≤ L , are domains with Lipschitz boundaries. As before,
we extend uε to� by zero and still denote the extension by uε. We use Pε to denote the
extension of pε to�, given by (2.21). The goal of this section is to prove the following
theorem, which contains Theorem 1.1 as a special case h = 0.

Theorem 4.1 Let f ∈ L2(�;Rd) and h ∈ H1/2(∂�;Rd) with
´
∂�

h · n dσ = 0. Let
(uε, pε) ∈ H1(�ε;Rd) × L2

0(�ε) be the weak solution of (4.1). Let (uε, Pε) be the
extension of (uε, pε). Then uε → u0 weakly in L2(�;Rd) and Pε − ffl

�
Pε → P0

strongly in L2(�), as ε → 0, where P0 ∈ H1(�),
´
�
P0 dx = 0, (u0, P0) is governed

by a Darcy law, ⎧
⎪⎨

⎪⎩

u0 = K ( f − ∇P0) in �,

div(u0) = 0 in �,

u0 · n = h · n on ∂�,

(4.2)

with the permeability matrix K given by (1.10).

We begin with the strong convergence of Pε.

Lemma 4.2 Let (uεk , pεk ) be a weak solution of (4.1) with ε = εk . Suppose that as
εk → 0, Pεk → P weakly in L2(�) for some P ∈ L2(�). Then Pεk → P strongly in
L2(�).

Proof The proof is similar to that for the classical case L = 1 (see e.g. [4]). One argues
by contradiction. Suppose that Pεk does not converge strongly to P in L2(�). Since

‖∇Pεk − ∇P‖H−1(�) ∼
∥
∥
∥
∥Pεk − P −

 

�

(Pεk − P)

∥
∥
∥
∥
L2(�)

and
´
�
Pεk dx → ´

�
P dx , it follows that ∇Pεk does not converge to ∇P strongly in

H−1(�;Rd). By passing to a subsequence, this implies that there exists a sequence
{ψk} ⊂ H1

0 (�;Rd) such that ‖ψk‖H1
0 (�) = 1 and

|〈∇Pεk − ∇P, ψk〉H−1(�)×H1
0 (�)| ≥ c0 > 0.
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By passing to another subsequence, we may assume that ψk → ψ0 weakly in
H1
0 (�;Rd). Let ϕk = ψk − ψ0. Using Pεk → P weakly in L2(�), we obtain

|〈∇Pεk − ∇P, ϕk〉H−1(�)×H1
0 (�)| ≥ c0/2, (4.3)

if k is sufficiently large. Since ϕk → 0weakly in H1
0 (�;Rd), wemay conclude further

that
|〈∇Pεk , ϕk〉H−1(�)×H1

0 (�)| ≥ c0/4, (4.4)

if k is sufficiently large. On the other hand, by (2.7), we have

∣
∣
∣〈∇Pεk , ϕk〉H−1(�)×H1

0 (�)

∣
∣
∣ =

∣
∣
∣〈∇ pεk , Rεk (ϕk)〉H−1(�εk )×H1

0 (�εk )

∣
∣
∣

=
∣
∣
∣〈ε2k�uεk + f , Rεk (ϕk)〉H−1(�εk )×H1

0 (�εk )

∣
∣
∣

≤ ε2k‖∇uεk‖L2(�εk )‖∇Rεk (ϕk)‖L2(�εk ) + ‖ f ‖L2(�)‖Rεk (ϕk)‖L2(�εk )

≤ C
(‖ f ‖L2(�) + ‖h‖H1/2(∂�)

) (
εk‖∇Rεk (ϕk)‖L2(�εk ) + ‖Rεk (ϕk)‖L2(�εk )

)

≤ C
(‖ f ‖L2(�) + ‖h‖H1/2(∂�)

) (
εk‖∇ϕk‖L2(�) + ‖ϕk‖L2(�)

)
, (4.5)

where we have used the estimate (3.6) for the second inequality and (2.17) for the last.
This contradicts with (4.4) as the right-hand side of (4.5) goes to zero. ��

By Corollaries 3.2 and 3.3, the sets {uε : 0 < ε < 1} and {Pε : 0 < ε < 1}
are bounded in L2(�;Rd) and L2(�), respectively. It follows that for any sequence
εk → 0, there exists a subsequence, still denoted by {εk}, such that uεk → u and
Pεk → P weakly in L2(�;Rd) and L2(�), respectively. By Lemma 4.2, Pεk → P
strongly in L2(�). Thus, as in the classical case L = 1, to prove Theorem 4.1, it
suffices to show that if εk → 0, uεk → u weakly in L2(�;Rd), and Pεk → P
strongly in L2(�), then P ∈ H1(�) and (u, P) is a weak solution of (4.2). Since the
solution of (4.2) is unique under the conditions that P0 ∈ H1(�) and

´
�
P0 dx = 0,

one concludes that as ε → 0, uε → u0 weakly in L2(�;Rd) and Pε − ffl
�
Pε → P0

strongly in L2(�), where (u0, P0) is the unique solution of (4.2) with the property
P0 ∈ H1(�) and

´
�
P0 dx = 0.

Lemma 4.3 Let {εk} be a sequence such that εk → 0. Suppose that uεk → u weakly
in L2(�;Rd) and Pεk → P strongly in L2(�). Then P ∈ H1(��) for 1 ≤ � ≤ L
and (u, P) is a solution of (4.2).

Proof Since
ˆ

�

uεk · ∇ϕ dx =
ˆ

∂�

(h · n)ϕ dσ

for any ϕ ∈ C∞(Rd), by letting k → ∞, we see that

ˆ

�

u · ∇ϕ dx =
ˆ

∂�

(h · n)ϕ dσ
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for any ϕ ∈ C∞(Rd). It follows that div(u) = 0 in � and u · n = h · n on ∂�.
Next, we show that P ∈ H1(��) for each subdomain �� and that

u = K �( f − ∇P) in ��, (4.6)

where K � = (K �
i j ) is defined by (2.2). The argument is the same as that of Tartar

for the case L = 1 (see [13]). Fix 1 ≤ � ≤ L , 1 ≤ j ≤ d, and ϕ ∈ C∞
0 (��). We

assume k > 1 is sufficiently large that supp(ϕ) ⊂ {x ∈ �� : dist(x, ∂��) ≥ Cdεk}.
Let (W �

j (y), π
�
j (y)) be the 1-periodic functions given by (2.1). By using W �

j (x/εk)ϕ
as a test function, we obtain

εk

ˆ

��

∇uεk · ∇W �
j (x/εk)ϕ dx + ε2k

ˆ

��

∇uεk · W �
j (x/εk)∇ϕ dx

−
ˆ

��

PεkW
�
j (x/εk) · ∇ϕ dx

=
ˆ

��

f · W �
j (x/εk)ϕ dx, (4.7)

where we have used the facts that div(W �
j (x/ε)) = 0 in Rd and W �

j (x/ε) = 0 on 	ε.

Since W �
i j (x/εk) → K �

i j weakly in L2(��) and Pεk → P strongly in L2(��), we
deduce from (4.7) that

lim
k→∞ εk

ˆ

��

∇uεk · ∇W �
j (x/εk)ϕ dx =

ˆ

��

PK �
i j

∂ϕ

∂xi
dx +

ˆ

��

fi K
�
i jϕ dx, (4.8)

where the repeated index i is summed from 1 to d.
Note that

−ε2�
(
W �

j (x/ε)
)

+ ∇
(
επ�

j (x/ε)
)

= e j

in the set {x ∈ ��
ε : dist(x, ∂��) ≥ cdε}. By using uεkϕ as a test function, we see that

εk

ˆ

��

∇W �
j (x/εk) · (∇uεk )ϕ dx + εk

ˆ

��

∇W �
j (x/εk) · uεk (∇ϕ) dx

− εk

ˆ

��

π�
j (x/εk)uεk (∇ϕ) dx =

ˆ

��

e j · uεkϕ dx, (4.9)

which leads to

lim
k→∞ εk

ˆ

��

∇W �
j (x/εk) · (∇uεk )ϕ dx =

ˆ

��

e j · uϕ dx . (4.10)

In view of (4.8) and (4.10) we obtain

ˆ

��

e j · uϕ dx =
ˆ

��

PK �
i j

∂ϕ

∂xi
dx +

ˆ

��

fi K
�
i jϕ dx .
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Since ϕ ∈ C∞
0 (��) is arbitrary and the constant matrix K � = (K �

i j ) is invertible, we

conclude that P ∈ H1(��) and

u j = K �
i j

(
fi − ∂P

∂xi

)

in ��. Since K � is also symmetric, this gives (4.6). ��
To prove the effective pressure in Lemma 4.3 P ∈ H1(�), it remains to show that

P is continuous across the interface � = � \ ∪L
�=1�

� between subdomains.

Lemma 4.4 Let f ∈ Cm(B(x0, 2cε);Rd) for some x0 ∈ R
d , m ≥ 0 and c > 0.

Suppose that {
− ε2�uε + ∇ pε = f in B(x0, 2cε),

div(uε) = 0 in B(x0, 2cε).
(4.11)

Then

εm+2
( 

B(x0,cε)
|∇m+2uε|2

)1/2

≤ C

( 

B(x0,2cε)
|uε|2

)1/2

+ C
m∑

k=0

εk‖∇k f ‖∞,

(4.12)

where C depends only on d, m and c.

Proof The case ε = 1 is given by interior estimates for the Stokes equations. The
general case follows by a simple rescaling argument. ��

Define
γε = {

x ∈ � : dist(x, ∂�) ≥ ε
}
, (4.13)

where � is the interface given by (1.5)

Lemma 4.5 Let (uε, pε) be a solution of (4.1) with f ∈ C∞(Rd ;Rd) and h ∈
H1/2(∂�;Rd). Then, for m ≥ 0,

‖∇muε‖L2(γε)
≤ C( f , h)ε−m− 1

2 ,

‖pε‖L2(γε)
≤ C( f , h)ε− 1

2 ,

‖∇ pε‖L2(γε)
≤ C( f , h)ε− 1

2 , (4.14)

where C( f , h) depends on m, f and h, but not on ε.

Proof Recall that

� = ∪L
�=1∂�� \ ∂�.

It follows that γε = ∪L
�=1γ

�
ε , where

γ �
ε = {

x ∈ ∂�� : dist(x, ∂�) ≥ ε
}
.
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Thus, it suffices to prove (4.14) with γ �
ε in the place of γε. Let

D�
ε =

{
x ∈ �� : dist

(
x, γ �

ε

)
< c ε

}
.

Using the assumption that �� is a bounded Lipschitz domain, one may show that

ˆ

γ �
ε

|∇muε|2 dσ ≤ C

ε

ˆ

D�
ε

|∇muε|2 dx + Cε

ˆ

D�
ε

|∇m+1uε|2 dx

≤ C

ε1+2m

{ˆ

�ε

|uε|2 dx + C( f )

}

, (4.15)

where C( f ) depends on f . We point out that the second inequality in (4.15) follows
by covering D�

ε with balls of radius cε and using (4.12). This, together with the energy
estimate (3.6), yields

‖∇muε‖L2(γ �
ε ) ≤ C( f , h)ε−m− 1

2 ,

where C( f , h) depends on f and h. Next, using the equation −ε2�uε + ∇ pε = f ,
we obtain

‖∇ pε‖L2(γ �
ε ) ≤ ε2‖�uε‖L2(γ �

ε ) + ‖ f ‖L2(γ �
ε )

≤ C( f , h)ε−1/2.

Finally, observe that

ˆ

γ �
ε

|pε|2 dσ ≤ C

ε

ˆ

D�
ε

|pε|2 dx + Cε

ˆ

D�
ε

|∇ pε|2 dx

≤ C

ε

ˆ

�ε

|pε|2 dx + Cε5
ˆ

D�
ε

|�uε|2 dx + C( f )

≤ C

ε

ˆ

�ε

|pε|2 dx + Cε

ˆ

�ε

|uε|2 dx + C( f ).

This, together with the energy estimate (3.6), yields the second inequality in (4.14).

��
The following is the main technical lemma in the proof of Theorem 4.1.

Lemma 4.6 Let (uεk , pεk ), Pεk , and (u, P) be the same as in Lemma 4.3. Also assume
that f ∈ C∞(Rd ;Rd). Let P� denote the trace of P, as a function in H1(��), on
∂��. Then, for any ϕ ∈ C∞

0 (�),

ˆ

∂��

n j P
�ϕ dx = lim

k→∞

ˆ

∂��

n j pεkϕ dσ, (4.16)
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where 1 ≤ � ≤ L, 1 ≤ j ≤ d, and n = (n1, n2, . . . , nd) denotes the outward unit
normal to ∂��.

Proof For notational simplicity we use ε to denote εk . Fix 1 ≤ j ≤ d and 1 ≤ � ≤ L .
Let ϕ ∈ C∞

0 (�). Then

ε2
ˆ

��
ε

∇uε · ∇
(
W �

j (x/ε)ϕ
)
dx

= ε

ˆ

��
ε

∇uε · ∇W �
j (x/ε)ϕ dx + ε2

ˆ

��
ε

∇uε · W �
j (x/ε)(∇ϕ) dx,

and by integration by parts,

ε2
ˆ

��
ε

∇uε · ∇
(
W �

j (x/ε)ϕ
)
dx

=
ˆ

��

f · W �
j (x/ε)ϕ dx +

ˆ

��

PεW
�
j (x/ε) · ∇ϕ dx +

ˆ

∂��

∂uε

∂ν
· W �

j (x/ε)ϕ dσ,

where
∂uε

∂ν
= ε2

∂uε

∂n
− pεn.

By letting ε → 0 we obtain

lim
ε→0

ε

ˆ

��
ε

∇uε · ∇W �
j (x/ε)ϕ dx

=
ˆ

��

f · K �
jϕ dx +

ˆ

��

PK �
j · ∇ϕ dx + lim

ε→0

ˆ

∂��

∂uε

∂ν
· W �

j (x/ε)ϕ dσ.

(4.17)

It follows by Lemma 2.1 that ‖W �
j (x/ε)‖L2(∂��) ≤ C . This, together with the first

inequality in (4.14) with m = 1, show that

∣
∣
∣
∣ε

2
ˆ

∂��

∂uε

∂n
· W �

j (x/ε)ϕ dσ

∣
∣
∣
∣ ≤ Cε2‖(∇uε)ϕ‖L2(∂��) = O(ε1/2).

Hence, by (4.17),

lim
ε→0

ε

ˆ

��
ε

∇uε · ∇W �
j (x/ε)ϕ dx

=
ˆ

��

f · K �
jϕ dx +

ˆ

��

PK �
j · ∇ϕ dx − lim

ε→0

ˆ

∂��

pεn · W �
j (x/ε)ϕ dσ.

(4.18)
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Next, note that

ε2
ˆ

��
ε

∇
(
W �

j (x/ε)
)

· ∇(uεϕ) dx

= ε

ˆ

��
ε

∇W �
j (x/ε) · (∇uε)ϕ dx + ε

ˆ

��
ε

∇W �
j (x/ε) · uε(∇ϕ) dx . (4.19)

Choose a cut-off function ηε such that supp(ηε) ⊂ {x ∈ R
d : dist(x, ∂��) ≤ 2Cε},

ηε(x) = 1 if dist(x, ∂��) ≤ Cε, and |∇ηε| ≤ Cε−1. Thenv

ε2
ˆ

��
ε

∇
(
W �

j (x/ε)
)

· ∇(uεϕ) dx

= ε2
ˆ

��
ε

∇
(
W �

j (x/ε)
)

· ∇(uε(1 − ηε)ϕ) dx + ε2
ˆ

��
ε

∇
(
W �

j (x/ε)
)

· ∇(uεηεϕ) dx

= J1 + J2. (4.20)

Using (4.19), (4.20), and

|J2| ≤ Cε

(ˆ

{x∈Rd : dist(x,∂��)≤Cε}
|∇W �

j (x/ε)|2 dx
)1/2 {‖∇uε‖L2(�) + ε−1‖uε‖L2(�)

}

≤ Cε3/2
{‖∇uε‖L2(�) + ε−1‖uε‖L2(�)

}

≤ ε1/2C( f , h),

we obtain

lim
ε→0

ε

ˆ

��
ε

∇W �
j (x/ε) · (∇uε)ϕ dx = lim

ε→0
J1. (4.21)

To handle the term J1, we use integration by parts as well as the fact that

−ε2�
(
W �

j (x/ε)
)

+ ∇
(
επ�

j (x/ε)
)

= e j

in the set {x ∈ ��
ε : dist(x, ∂��) ≥ Cε}, to obtain

J1 =
ˆ

��
ε

επ�
j (x/ε)uε · ∇((1 − ηε)ϕ) dx +

ˆ

��

e j · uεϕ(1 − ηε) dx

= J11 + J12,

where we have used the fact div(uε) = 0 in �ε. Since

|J11| ≤ C

(ˆ

{x∈Rd : dist(x,∂��)≤Cε}
|π�

j (x/ε)|2 dx
)1/2

‖uε‖L2(��) + Cε‖uε‖L2(��)

≤ Cε1/2C( f , h),
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we see that

lim
ε→0

J1 = lim
ε→0

J12 =
ˆ

��

e j · uϕ dx . (4.22)

In view of (4.18), (4.21) and (4.22), we have proved that

lim
ε→0

ˆ

∂��

pεn ·W �
j (x/ε)ϕ dσ =

ˆ

��

f ·K �
jϕ dx +

ˆ

��

PK �
j ·∇ϕ dx −

ˆ

��

e j ·uϕ dx .

(4.23)
Recall that K � = (K �

i j ) is symmetric and by Lemma 4.3,

u = K �( f − ∇P) in ��.

Thus, by (4.23),

lim
ε→0

ˆ

∂��

pεn · W �
j (x/ε)ϕ dσ =

ˆ

∂��

P�(n · K �
j )ϕ dσ, (4.24)

where P� denotes the trace of P on ∂��.
Finally, we use Lemma 2.2 to obtain

n ·
(
W �

j (x/ε) − K �
j

)
= ε

2

(

nβ

∂

∂xα

− nα

∂

∂xβ

) (
φ�

αβ j (x/ε)
)

, (4.25)

where the repeated indices α and β are summed from 1 to d. Since nβ
∂

∂xα
− nα

∂
∂xβ

is

a tangential derivative on ∂��, we obtain

∣
∣
∣
∣

ˆ

∂��

pεn ·
(
W �

j (x/ε) − K �
j

)
ϕ dσ

∣
∣
∣
∣

= ε

2

∣
∣
∣
∣

ˆ

∂��

φ�
αβ j (x/ε)

(

nβ

∂

∂xα

− nα

∂

∂xβ

)

(pεϕ) dσ

∣
∣
∣
∣

≤ Cε‖∇(pεϕ)‖L2(∂��)

≤ C( f , h)ε1/2,

where we have used (2.8) for the first inequality and (4.14) for the last. This, together
with (4.24), yields

lim
ε→0

ˆ

∂��

pε

(
n · K �

j

)
ϕ dσ =

ˆ

∂��

P�
(
n · K �

j

)
ϕ dσ. (4.26)

Since the constant matrix K � = (K �
i j ) is invertible, the desired Eq.(4.16) follows

readily from (4.26). ��
We are now in a position to give the proof of Theorem 4.1.
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Proof of Theorem 4.1 We first prove Theorem 4.1 under the additional assumption
f ∈ C∞(Rd;Rd). Let {εk} be a sequence such that εk → 0, uεk → u weakly in
L2(�;Rd) and Pεk → P strongly in L2(�). By Lemma 4.3, P ∈ H1(��) and
u = K �( f − ∇P) in �� for 1 ≤ � ≤ L . It suffices to show that P ∈ H1(�). This
would imply that P is a weak solution of the Neumann problem,

{
div(K ( f − ∇P)) = 0 in �,

n · K ( f − ∇P) = n · h on ∂�.
(4.27)

As a result, we may deduce that as ε → 0, uε → u0 weakly in L2(�;Rd) and
Pε − ffl

�
Pε → P0 strongly in L2(�), where u0 = K ( f − ∇P0) in � and P0 is the

unique weak solution of (4.27) with
´
�
P0 dx = 0.

To prove P ∈ H1(�), we use the assumption f ∈ C∞(Rd ;Rd) and Lemma 4.6 to
obtain

L∑

�=1

ˆ

∂��

n j P
�ϕ dσ = lim

k→∞

L∑

�=1

ˆ

∂��

n j pεkϕ dσ,

for any ϕ ∈ C∞
0 (�) and 1 ≤ j ≤ d, where P� denotes the trace of P , as a function

in H1(��), on ∂��. Since pε is continuous in �ε, we have

L∑

�=1

ˆ

∂��

n j pεϕ dσ = 0.

It follows that

L∑

�=1

ˆ

∂��

n j P
�ϕ dσ = 0

for 1 ≤ j ≤ d and for any ϕ ∈ C∞
0 (�). This, together with the fact that P ∈ H1(��)

for 1 ≤ � ≤ L , gives

ˆ

�

P
∂ϕ

∂x j
dx =

L∑

�=1

ˆ

��

P
∂ϕ

∂x j
dx

= −
L∑

�=1

ˆ

��

∂P

∂x j
ϕ dx +

L∑

�=1

ˆ

∂��

n j P
�ϕ dσ

= −
L∑

�=1

ˆ

��

∂P

∂x j
ϕ dx .

As a result, we obtain P ∈ H1(�).
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In the general case f ∈ L2(�;Rd), we choose a sequence of functions { fm} in
C∞(Rd ;Rd) such that ‖ fm − f ‖L2(�) → 0 as m → ∞. Let (uε,m, pε,m) denote the
weak solution of (4.1) with fm in the place of f and with

´
�ε

pε,m dx = 0. By the
energy estimates (3.6) and (3.8) we obtain

‖uε − uε,m‖L2(�) + ‖Pε − Pε,m‖L2(�) ≤ C‖ f − fm‖L2(�), (4.28)

where Pε,m denotes the extension of pε,m , defined by (2.21). Let u0,m = K ( fm −
∇P0,m), where P0,m is the unique solution of (4.27) with fm in the place of f and
with

´
�
P0,m dx = 0. Note that

‖Pε −
 

�

Pε − P0‖L2(�) ≤ ‖Pε − Pε,m −
 

�

(Pε − Pε,m)‖L2(�)

+ ‖Pε,m −
 

�

Pε,m − P0,m‖L2(�) + ‖P0,m − P0‖L2(�)

≤ C‖ f − fm‖L2(�) + ‖Pε,m −
 

�

Pε,m − P0,m‖L2(�).

Since Pε,m − ffl
�
Pε,m → P0,m in L2(�), as ε → 0, we see that

lim sup
ε→0

‖Pε −
 

�

Pε − P0‖L2(�) ≤ C‖ f − fm‖L2(�).

By letting m → ∞, we obtain Pε − ffl
�
Pε → P0 in L2(�), as ε → 0.

Finally, let v ∈ L2(�;Rd). Note that

∣
∣
∣

ˆ

�

(uε − u0)v dx
∣
∣
∣

≤
∣
∣
∣

ˆ

�

(uε − uε,m)v dx
∣
∣
∣ +

∣
∣
∣

ˆ

�

(uε,m − u0,m)v dx
∣
∣
∣ +

∣
∣
∣

ˆ

�

(u0,m − u0)v dx
∣
∣
∣

≤ ‖uε − uε,m‖L2(�)‖v‖L2(�) +
∣
∣
∣

ˆ

�

(uε,m − u0,m)v dx
∣
∣
∣ + ‖u0,m − u0‖L2(�)‖v‖L2(�)

≤ C‖ f − fm‖L2(�)‖v‖L2(�) +
∣
∣
∣
∣

ˆ

�

(uε,m − u0,m)v dx

∣
∣
∣
∣ .

By letting ε → 0 and then m → ∞, we see that uε → u0 weakly in L2(�;Rd). ��

5 Convergence Rates and Proof of Theorem 1.2

Throughout the rest of this paper, unless indicated otherwise, we will assume that
��, 1 ≤ � ≤ L , are C2,1/2 domains satisfying the interface condition (1.12). Given
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f ∈ L2(�;Rd), let P0 ∈ H1(�) be the weak solution of

{
− div (K ( f − ∇P0)) = 0 in �,

n · K ( f − ∇P0) = 0 on ∂�,
(5.1)

with
´
�
P0 dx = 0, where the coefficient matrix K is given by (1.10). Since the

interface � and ∂� are of C2,1/2, it follows from [15, Theorem 1.1] that

‖∇P0‖Cα(�) ≤ C‖ f ‖Cα(�),

‖∇P0‖C1,β (�) ≤ C‖ f ‖C1,β (�),
(5.2)

for 0 < α < 1 and 0 < β ≤ 1/2.
Let

Vε(x) =
L∑

�=1

W �(x/ε)( f − ∇P0)χ�� in �, (5.3)

where the 1-periodic matrix W �(y) is defined by (2.1). Note that Vε = 0 in 	ε. For
each �, using

− ε2�
{
W �

j (x/ε)
}

+ ∇
{
επ�

j (x/ε)
}

= e j in
⋃

z∈Zd

ε
(
z + Y �

f

)
, (5.4)

one may show that for any ψ ∈ H1(��
ε;Rd) with ψ = 0 on 	�

ε ,

∣
∣
∣ε

ˆ

��
ε

∇W �
j (x/ε) · ∇ψ dx − ε

ˆ

��
ε

π�
j (x/ε) div(ψ) dx −

ˆ

��
ε

ψ j dx
∣
∣
∣

≤ Cε3/2‖∇ψ‖L2(��
ε)

.

(5.5)

To see (5.5), let

O�
ε =

⋃

z

ε
(
z + Y �

f

)
,

where z ∈ Z
d and the union is taken over those z’s for which ε(z + Y ) ⊂ ��. Using

|��
ε\O�

ε | ≤ Cε and ‖ψ‖L2(��
ε)

≤ Cε‖∇ψ‖L2(��
ε)
, one may show that each integral in

the left-hand side of (5.5), with��
ε\O�

ε in the place of�
�
ε, is bounded by the right-hand

side of (5.5). By using integration by parts and (5.4), it follows that the left-hand side
of (5.5) with O�

ε in the place of ��
ε is bounded by

Cε

(ˆ

∂O�
ε

(
|∇W �(x/ε)| + |π�(x/ε)|

)2
dσ

)1/2 (ˆ

∂O�
ε

|ψ |2 dσ
)1/2

≤ Cε3/2‖∇ψ‖L2(��
ε)

,
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where we have used (2.5) and the observation,

‖ψ‖L2(∂O�
ε)

≤ Cε−1/2‖ψ‖L2(��
ε)

+ Cε1/2‖∇ψ‖L2(��
ε)

≤ Cε1/2‖∇ψ‖L2(��
ε)

.

From (5.5) we deduce further that

∣
∣
∣ε

ˆ

��
ε

∇W �
j (x/ε) · ∇ψ dx −

ˆ

��
ε

ψ j dx
∣
∣
∣

≤ Cε1/2
{
ε‖∇ψ‖L2(��

ε)
+ ε1/2‖div(ψ)‖L2(��

ε)

}
(5.6)

for any ψ ∈ H1(��
ε;Rd) with ψ = 0 on 	�

ε .

Theorem 5.1 Let (uε, pε) ∈ H1
0 (�ε;Rd) × L2

0(�ε) be a weak solution of (1.1). Let
Vε be given by (5.3). Then

∣
∣
∣ε

2
L∑

�=1

ˆ

��
ε

(∇uε − ∇Vε) · ∇ψ dx −
ˆ

�ε

(pε − P0) div(ψ) dx
∣
∣
∣

≤ Cε1/2‖ f ‖C1,1/2(�)

{
ε‖∇ψ‖L2(�ε)

+ ε1/2‖div(ψ)‖L2(�ε)

}
, (5.7)

for any ψ ∈ H1
0 (�ε;Rd).

Proof We apply (5.6) with ψ( f j − ∂P0
∂x j

) in the place of ψ . Using

|ε2∇Vε · ∇ψ − ε∇W �(x/ε) · ∇ (ψ( f − ∇P0)) |
≤ C

{
ε2|W �(x/ε)||∇ψ | + Cε|∇W �(x/ε)||ψ |

}
|∇( f − ∇P0)|

in ��
ε, we obtain

∣
∣
∣ε

2
ˆ

��
ε

∇Vε · ∇ψ dx −
ˆ

��
ε

( f − ∇P0) · ψ dx
∣
∣
∣

≤ Cε3/2
(
‖ f ‖∞ + ‖∇ f ‖∞ + ‖∇P0‖∞ + ‖∇2P0‖∞

)
‖∇ψ‖L2(��

ε)

+ Cε(‖ f ‖∞ + ‖∇P0‖∞)‖div(ψ)‖L2(��
ε)

.

This, together with

ˆ

�ε

( f − ∇P0) · ψ dx = ε2
ˆ

�ε

∇uε · ∇ψ dx −
ˆ

�ε

(pε − P0) div(ψ) dx,

gives (5.7). ��
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Let
Uε = Vε + �ε, (5.8)

where �ε is a corrector to be constructed so that Uε ∈ H1
0 (�ε;Rd),

‖div(Uε)‖L2(�ε)
≤ Cε1/2‖ f ‖C1,1/2(�), (5.9)

and that
ε‖∇�ε‖L2(��

ε)
≤ Cε1/2‖ f ‖C1,1/2(�) (5.10)

for 1 ≤ � ≤ L .
Assuming that such corrector �ε exists, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By letting ψ = uε − Uε = uε − Vε − �ε ∈ H1
0 (�ε;Rd) in

(5.7), we obtain

ε2‖∇uε − ∇Vε‖2L2(�ε)

≤ ε2‖∇uε − ∇Vε‖L2(�ε)
‖∇�ε‖L2(�ε)

+ ‖pε − P0 − β‖L2(�ε)
‖div(Uε)‖L2(�ε)

+ Cε1/2 ‖ f ‖C1,1/2(�)

{
ε‖∇uε − ∇Vε‖L2(�ε)

+ ε‖∇�ε‖L2(�ε)
+ ε1/2‖div(Uε)‖L2(�ε)

}

≤ Cε3/2‖ f ‖C1,1/2(�)‖∇uε − ∇Vε‖L2(�ε)

+ Cε1/2‖ f ‖C1,1/2(�)‖pε − P0 − β‖L2(�ε)
+ Cε‖ f ‖2C1,1/2(�)

,

for any β ∈ R, where we have used (5.9) and (5.10) for the last inequality. By the
Cauchy inequality, this implies that

ε2‖∇uε−∇Vε‖2L2(�ε)
≤Cε‖ f ‖2C1,1/2(�)

+Cε1/2‖ f ‖C1,1/2(�)‖pε − P0 − β‖L2(�ε)
.

(5.11)

We should point out that both Vε and �ε are not in H1(�ε;Rd). In the estimates
above (and thereafter) we have used the convention that

‖ ∇ψ‖L2(�ε)
=

(
L∑

�=1

‖∇ψ‖2L2(��
ε)

)1/2

,

where ψ ∈ H1(��
ε) for 1 ≤ � ≤ L .

Next, we choose β = ffl
�ε

(pε − P0). By Lemma 2.6, there exists vε ∈ H1
0 (�ε;Rd)

such that

div(vε) = pε − P0 − β in �ε,

ε‖∇vε‖L2(�ε)
≤ C‖pε − P0 − β‖L2(�ε)

.

By letting ψε = vε in (5.7), we obtain

‖pε − P0 − β‖L2(�ε)
≤ Cε‖∇uε − ∇Vε‖L2(�ε)

+ Cε1/2‖ f ‖C1,1/2(�). (5.12)
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By combining (5.11) with (5.12), it is not hard to see that

ε‖∇uε − ∇Vε‖L2(�ε)
+ ‖pε − P0 − β‖L2(�ε)

≤ Cε1/2‖ f ‖C1,1/2(�). (5.13)

This, together with ‖uε − Vε‖L2(��
ε)

≤ Cε‖∇uε − ∇Vε‖L2(��
ε)
, gives the bound for

the first term in (1.13). Also, note that

‖ε∇Vε − ∇W �(x/ε)( f − ∇P0)‖L2(��
ε)

≤ Cε‖∇( f − ∇P0)‖∞.

Thus,

‖ε∇uε − ∇W �(x/ε)( f − ∇P0)‖L2(��
ε)

≤ Cε1/2‖ f ‖C1,1/2(�).

Finally, to estimate the pressure, we let Qε be the extension of (P0 + β)|�ε to �,
using the formula in (2.21). Note that

‖Qε − (P0 + β)‖2L2(�)
=

∑

�,z

ˆ

ε(Y �
s +z)

∣
∣
∣P0 −

 

ε(Y �
f +z)

P0
∣
∣
∣
2
dx,

where the sum is taken over those (�, z)’s for which z ∈ Z
d and ε(Y + z) ⊂ ��. It

follows that

‖Qε − (P0 + β)‖L2(�) ≤ Cε‖∇P0‖L∞(�)

≤ Cε‖ f ‖C1,1/2(�).

As a result, by (5.13), we obtain

‖Pε − P0 − β‖L2(�) ≤ ‖Pε − Qε‖L2(�) + ‖Qε − (P0 + β)‖L2(�)

≤ C‖pε − P0 − β‖L2(�ε)
+ Cε‖ f ‖C1,1/2(�)

≤ Cε1/2‖ f ‖C1,1/2(�),

where β = − ffl
�ε

P0. Clearly, we may replace β by
ffl
�
(Pε − P0) = ffl

�
Pε. This gives

the bound for the second term in (1.13). ��
To complete the proof of Theorem 1.2, it remains to construct a corrector �ε such

that Vε +�ε ∈ H1
0 (�ε;Rd) and (5.9)–(5.10) hold. This will be done in the next three

sections. More precisely, we let

�ε = �(1)
ε + �(2)

ε + �(3)
ε , (5.14)

where �
(1)
ε is a corrector for the divergence operator with the properties that

⎧
⎪⎪⎨

⎪⎪⎩

�(1)
ε ∈ H1

0 (�ε;Rd),

ε‖∇�(1)
ε ‖L2(�ε)

≤ Cε1/2‖ f ‖C1,1/2(�),

‖div(�(1)
ε + Vε)‖L2(��

ε)
≤ Cε1/2‖ f ‖C1,1/2(�),

(5.15)
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�
(2)
ε is a corrector for the boundary data of Vε on ∂� with the properties that

⎧
⎪⎪⎨

⎪⎪⎩

�(2)
ε ∈ H1(�ε;Rd) and �(2)

ε = 0 on 	ε,

�(2)
ε + Vε = 0 on ∂�,

ε‖∇�(2)
ε ‖L2(�ε)

+ ‖div(�(2)
ε )‖L2(�ε)

≤ Cε1/2‖ f ‖C1,1/2(�),

(5.16)

and �
(3)
ε is a corrector for the interface � with the properties that

⎧
⎪⎪⎨

⎪⎪⎩

�(3)
ε ∈ H1(��

ε;Rd) and �(3)
ε = 0 on ∂�ε,

Vε + �(3)
ε ∈ H1(�ε;Rd),

ε‖∇�(3)
ε ‖L2(��

ε)
+ ‖div(�(3)

ε )‖L2(��
ε)

≤ Cε1/2‖ f ‖C1,1/2(�),

(5.17)

for 1 ≤ � ≤ L . It is not hard to verify that the desired property Vε +�ε ∈ H1
0 (�ε;Rd)

as well as the estimates (5.9) and (5.10) follows from (5.15)and(5.17).

6 Correctors for the Divergence Operator

Let Vε be given by (5.3). Note that since div(W �
j (x/ε)) = 0 in Rd ,

div(Vε) = W �(x/ε)∇( f − ∇P0) in ��
ε. (6.1)

In this section we construct a corrector �
(1)
ε that satisfies (5.15). The approach is

similar to that used in [11, 14].
For 1 ≤ � ≤ L and 1 ≤ i, j ≤ d, let ��

i j = (��
1i j , . . . , �

�
di j ) be a 1-periodic

function in H1
loc(R

d;Rd) such that

{
div(��

i j ) = −W �
i j + |Y f |−1K �

i j in Y f ,

��
i j = 0 in Ys .

(6.2)

Fix ϕ ∈ C∞
0 (B(0, 1/8)) such that ϕ ≥ 0 and

´
Rd ϕ dx = 1. Define

Sε(ψ)(x) = ψ ∗ ϕε(x) =
ˆ

Rd
ψ(y)ϕε(x − y) dy, (6.3)

where ϕε(x) = ε−dϕ(x). Let �(1)
ε = (�

(1)
ε,1, . . . , �

(1)
ε,d), where, for x ∈ ��

ε,

�
(1)
ε,k(x) = εη�

ε(x)�
�
ki j (x/ε)

∂

∂xi
Sε

(

f j − ∂P0
∂x j

)

, (6.4)
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and P0 is the solution of (5.1). The function η�
ε in (6.4) is a cut-off function inC

∞
0 (��)

with the properties that |∇η�
ε| ≤ Cε−1 and

{
η�

ε(x) = 0 if dist(x, ∂��) ≤ 2dε,

η�
ε(x) = 1 if x ∈ �� and dist(x, ∂��) ≥ 3dε.

As a result, �(1)
ε vanishes near ∂��.

Theorem 6.1 Let �(1)
ε be defined by (6.4). Then (5.15) holds.

Proof Clearly, �(1)
ε ∈ H1

0 (�ε;Rd). Note that

‖∇�(1)
ε ‖L2(��

ε)
≤ Cε1/2‖∇Sε( f − ∇P0)‖L∞(N3dε\N2dε) + C‖∇Sε( f − ∇P0)‖L∞(��\N2dε)

+ Cε‖∇2Sε( f − ∇P0)‖L∞(��\N2dε)
,

where Nr = {x ∈ �� : dist(x, ∂��) < r}. This, together with the observation that
∇Sε(ψ) = Sε(∇ψ) and

|Sε(ψ)(x)| + ε|∇Sε(ψ)(x)| ≤ C
 

B(x,ε/8)
|ψ |,

yields

ε‖∇�(1)
ε ‖L2(��

ε)
≤ Cε‖∇( f − ∇P0)‖L∞(��)

≤ Cε‖ f ‖C1,1/2(�).

Next, note that in ��
ε,

div(�(1)
ε ) = ε(∇η�

ε)�
�(x/ε)∇Sε( f − ∇P0) − η�

εW
�(x/ε)∇Sε( f − ∇P0)

+ εη�
ε�

�(x/ε)∇2Sε( f − ∇P0),

where we have used the fact that div(K �( f − ∇P0)) = 0 in ��
ε. It follows that

‖div(�(1)
ε ) + W �(x/ε)∇( f − ∇P0)‖L2(��

ε)

≤ Cε1/2‖∇( f − ∇P0)‖L∞(��) + ‖W �(x/ε)
{
∇( f − ∇P0) − η�

ε∇Sε( f − ∇P0)
}

‖L2(��
ε)

+ Cε‖∇2Sε( f − ∇P0)‖L∞(��
ε\N2dε)

≤ Cε1/2‖∇( f − ∇P0)‖L∞(��) + ‖∇( f − ∇P0) − ∇Sε( f − ∇P0)‖L∞(��\N2dε)

+ Cε‖∇2Sε( f − ∇P0)‖L∞(��\N2dε)

≤ Cε1/2‖∇( f − ∇P0)‖C1/2(��)

≤ Cε1/2‖ f ‖C1,1/2(�),
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where we have used (5.2) for the last inequality. In the third inequality above we also
used the observation that

∇Sε(ψ)(x) = −
ˆ

Rd
(ψ(x − y) − ψ(x)) ∇y(ϕε(y)) dy,

which gives

|∇Sε(ψ)(x)| ≤ Cεα−1‖ψ‖C0,α(B(x,ε)).

This completes the proof of (5.15). ��

7 Boundary Correctors

To construct the boundary corrector �
(2)
ε , we consider the Dirichlet problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ε2�uε + ∇ pε = 0 in �ε

div(uε) = γ in �ε,

uε = 0 on 	ε,

uε = h on ∂�,

(7.1)

where �ε is given by (1.4) and

γ = 1

|�ε|
ˆ

∂�

h · n dσ. (7.2)

Let �(2)
ε ∈ H1(�ε;Rd) be the solution of (7.1) with boundary value,

h = −Vε on ∂�, (7.3)

where Vε is given by (5.3). Thus, if ∂� ∩ ∂�� �= ∅ for some 1 ≤ � ≤ L ,

�(2)
ε = −W �(x/ε)( f − ∇P0) on ∂� ∩ ∂��. (7.4)

Theorem 7.1 Let �(2)
ε be defined as above. Then �

(2)
ε satisfies (5.16).

To show Theorem 7.1, we first prove some general results, which will be used also
in the construction of correctors for the interface.

Theorem 7.2 Let � be a bounded Lipschitz domain in R
d , d ≥ 2. Assume that ��

and Y �
s with 1 ≤ � ≤ L are subdomains of � and Y , respectively, with Lipschitz

boundaries. Let (uε, pε) be a weak solution in H1(�ε;Rd)× L2
0(�ε) of (7.1), where

h ∈ H1(∂�;Rd) and
h · n = 0 on ∂�. (7.5)
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Then

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)
≤ C

√
ε
{‖h‖L2(∂�) + ε‖∇tanh‖L2(∂�)

}
,

(7.6)
where ∇tanh denotes the tangential gradient of h on ∂�.

Proof This theorem was proved in [14, Theorem 4.1] for the case L = 1. The proof
only uses the energy estimate (3.6) and the fact that

−ε2�uε + ∇ pε = 0 and div(uε) = 0

in the set {x ∈ � : dist(x, ∂�) < c ε}. As a result, the same proof works equally
well for the case L ≥ 2. We mention that the argument relies on the Rellich estimates
in [7] for the Stokes equations in Lipschitz domains. The condition (7.5) allows us to
drop the pressure pε term in the conormal derivative ∂uε/∂ν for uε on ∂�. We omit
the details. ��

In the next theorem we consider the case where

h · n = ε (∇tanφε) · g on ∂�. (7.7)

By using integration by parts on ∂�, we see that

|γ | ≤ C
∣
∣
∣

ˆ

∂�

h · n dσ
∣
∣
∣

≤ Cε‖φε∇tang‖L2(∂�). (7.8)

Theorem 7.3 Let � be a bounded C2,α domain in R
d , d ≥ 2. Let (uε, pε) be a weak

solution in H1(�ε;Rd) × L2
0(�) of (7.1), where h ∈ H1(∂�) and h · n is given by

(7.7). Then

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
√

ε
{
‖h‖L2(∂�) + ε‖∇tanh‖L2(∂�) + ‖φεg‖L2(∂�) + ε1/2‖φε∇tang‖L2(∂�)

}
.

(7.9)

Proof A version of this theorem was proved in [14, Theorem 5.1] for the case L = 1.
We give the proof for the general case, using a somewhat different argument.

We first note that by writing

h = (h − (h · n)n) + (h · n)n

and applying Theorem 7.2 to the solution of (7.1) with boundary data h − (h · n)n,
we may reduce the problem to case where h = (h · n)n on ∂�.
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Next, by the energy estimate (3.3) and (7.8),

ε‖∇uε‖L2(�ε)
+ ‖uε‖L2(�ε)

+ ‖pε‖L2(�ε)

≤ C
{‖H‖L2(�) + ‖div(H)‖L2(�) + ε‖∇H‖L2(�) + ε‖φε∇tang‖L2(∂�)

}
,

(7.10)

where H is any function in H1(�;Rd) with H = h on ∂�. We choose H = H1 +
γ (x − x0)/d, where x0 ∈ � and H1 is the weak solution of

−�H1 + ∇q = 0 and div(H1) = 0 in �,

with the boundary value H1 = h − γ (x − x0)/d on ∂�. It follows that

ε‖∇uε‖L2(�) + ‖uε‖L2(∂�) + ‖pε‖L2(�)

≤ C
{‖H1‖L2(�) + ε‖∇H1‖L2(�) + ε‖φε∇tang‖L2(∂�)

}
, (7.11)

where we have used (7.8). By the energy estimates for the Stokes equations in �,

‖∇H1‖L2(�) ≤ C
{‖h‖H1/2(∂�) + |γ |}

≤ C
{
‖h‖1/2

L2(∂�)
‖h‖1/2

H1(∂�)
+ |γ |

}

≤ C
{
ε−1/2‖h‖L2(∂�) + ε1/2‖∇tanh‖L2(∂�) + |γ |

}
.

It follows that

ε‖∇H1‖L2(�) ≤ C
√

ε
{‖h‖L2(∂�) + ε‖∇tanh‖L2(∂�) + ε‖φε∇tang‖L2(∂�)

}
. (7.12)

To bound ‖H1‖L2(�), we use the following nontangential-maximal-function esti-
mate,

‖(H1)
∗‖L2(∂�) ≤ C‖H1‖L2(∂�), (7.13)

where the nontangential maximal function (H1)
∗ on ∂� is defined by

(H1)
∗(x) = sup

{|H1(y)| : y ∈ � and |y − x | < C0 dist(y, ∂�)
}

for x ∈ ∂�. The estimate (7.13) was proved in [7] for a bounded Lipschitz domain �.
Let

Nr = {
x ∈ � : dist(x, ∂�) < r

}
.

It follows from (7.13) that

‖H1‖L2(Nε)
≤ C

√
ε‖(H1)

∗‖L2(∂�)

≤ C
√

ε
{‖h‖L2(∂�) + ε‖φε∇tang‖L2(∂�)

}
. (7.14)
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It remains to bound ‖H1‖L2(�\Nε)
. To this end, we consider the Dirichlet problem,

⎧
⎪⎨

⎪⎩

− �G + ∇π = F in �,

div(G) = 0 in �,

G = 0 on ∂�,

where F ∈ C∞
0 (�\Nε) and

´
�

π dx = 0. Under the assumption that ∂� is of C2,α ,
we have the W 2,2 estimates,

‖G‖H2(�) + ‖π‖H1(�) ≤ C‖F‖L2(�). (7.15)

This implies that
‖∇G‖L2(∂�) + ‖π‖L2(∂�) ≤ C‖F‖L2(�). (7.16)

Moreover, since F = 0 in Nε, by covering ∂� with balls of radius cε, one may show
that

ˆ

∂�

(
|∇2G|2 + |∇π |2

)
dσ ≤ Cε−1‖F‖2L2(�)

. (7.17)

To see this, we use the Green function representation for G to obtain

|∇2G(x)| ≤ C
ˆ

�\Nε

|F(y)|
|x − y|d dy (7.18)

for x ∈ ∂�. See e.g. [8] for estimates of Green functions for the Stokes equations.
Choose α, β ∈ (0, 1) such that α + β = 1, α > (1/2) and β > (1/2) − (1/2d). It
follows by the Cauchy inequality that for x ∈ ∂�,

|∇2G(x)|2 ≤ C

(ˆ

�\Nε

dy

|x − y|2dα
) (ˆ

�\Nε

|F(y)|2
|x − y|2dβ dy

)

≤ Cεd−ddα

ˆ

�\Nε

|F(y)|2
|x − y|2dβ dy,

where we have used the conditions α + β = 1 and α > (1/2). Hence,

ˆ

∂�

|∇2G|2 dσ ≤ Cεd−2dα

ˆ

�\Nε

|F(y)|2 dy sup
y∈�\Nε

ˆ

∂�

dσ(x)

|x − y|2dβ

≤ Cε−1
ˆ

�

|F(y)|2 dy,

where we have used the condition β > (1/2) − (1/2d). This gives the estimate for
|∇2G| in (7.17). The estimate for ∇π follows from the equation −�G + ∇π = 0
near ∂�.
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Finally, using integration by parts, we see that

ˆ

�

H1 · F dx =
ˆ

�

H1 · (−�G + ∇π) dx

= −
ˆ

∂�

H1 ·
(∂G

∂n
− nπ

)
dσ

= −
ˆ

∂�

(
ε((∇tanφε) · g)n − γ (x − x0)/d

)
·
(∂G

∂n
− nπ

)
dσ.

It follows by using integration by parts on ∂� that

∣
∣
∣

ˆ

�

H1 · F dx
∣
∣
∣

≤ Cε

ˆ

∂�

|φε|
(|∇g||∇G| + |g||∇2G| + |g||∇G| + |∇g||π | + |g||∇π | + |g||π |) dσ

+ |γ |
ˆ

∂�

(|∇G| + |π |) dσ
≤ Cε‖φεg‖L2(∂�)

{‖∇2G‖L2(∂�) + ‖∇G‖L2(∂�) + ‖∇π‖L2(∂�) + ‖π‖L2(∂�)

}

+ Cε‖φε∇tang‖L2(∂�)

{‖∇G‖L2(∂�) + ‖π‖L2(∂�)

}
,

where we have used the Cauchy inequality and (7.8). This, together with (7.16) and
(7.17), gives

∣
∣
∣

ˆ

�

H1 · F dx
∣
∣
∣ ≤ Cε1/2‖F‖L2(�)

{
‖φεg‖L2(∂�) + ε1/2‖φε∇tang‖L2(∂�)

}
.

By duality we obtain

‖H1‖L2(�\Nε)
≤ Cε1/2

{
‖φεg‖L2(∂�) + ε1/2‖φε∇tang‖L2(∂�)

}
. (7.19)

The desired estimate (7.9) follows from (7.10), (7.12), (7.14) and (7.19). ��

Proof of Theorem 7.1 Clearly, by its definition, �(2)
ε ∈ H1(�ε;Rd), �(2)

ε = 0 on 	ε,
and �

(2)
ε + Vε = 0 on ∂�. Using the fact that n · K �( f − ∇P0) = 0 on ∂� ∩ ∂��,

we obtain

n · h = −n · W �(x/ε)( f − ∇P0)

= −n · (W �(x/ε) − K �)( f − ∇P0)

= −ε

2

(

ni
∂

∂xk
− nk

∂

∂xi

) (
φ�
ki j (x/ε)

) (

f j − ∂P0
∂x j

)

(7.20)
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on ∂� ∩ ∂��. It follows that

∣
∣
∣

ˆ

∂�

n · h dσ
∣
∣
∣ ≤ Cε‖∇( f − ∇P0)‖L∞(∂�).

Hence,

‖div(�(2)
ε )‖L2(�ε)

≤ C |γ | ≤ Cε‖∇( f − ∇P0)‖L∞(∂�)

≤ Cε‖ f ‖C1,1/2(�).

Finally, in view of (7.20), we apply Theorem 7.3 to obtain

ε‖∇�(2)
ε ‖L2(�) ≤ Cε1/2

{
‖ f − ∇P0‖L∞(∂�) + ε1/2‖∇( f − ∇P0)‖L∞(∂�)

}

≤ Cε1/2‖ f ‖C1,1/2(�).

��

8 Interface Correctors

In this section we construct a corrector�(3)
ε for the interface� and thus completes the

proof of Theorem 1.2. Let D = �� and Dε = ��
ε for some 1 ≤ � ≤ L . Assume that

∂D has no intersection with the boundary of the unbounded connected component of
R
d \ �. Consider the Dirichlet problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− �uε + ∇ pε = 0 in Dε,

div(uε) = γ in Dε,

uε = 0 on 	�
ε,

uε = h on ∂D,

(8.1)

where 	�
ε = 	ε ∩ D and

γ = 1

|Dε|
ˆ

∂D
h · n dσ.

Let W+(y) = W �(y). Fix 1 ≤ j ≤ d, the boundary data h on ∂D in (8.1) is given as
follows. Let ∂D = ∪k0

k=1�
k , where �k are the connected component of ∂D. On each

�k , either
h = 0 (8.2)

or
h = W−

j (x/ε) − W+
j (x/ε) − W−

i (x/ε)(K−
mj − K+

mj )
ninm

〈nK−, n〉 , (8.3)
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where W−(y) denotes the 1-periodic matrix defined by (2.1) for the subdomain on
the other side of �k , and

K+ =
ˆ

Y
W+(y) dy, K− =

ˆ

Y
W−(y) dy.

In particular, if �k ⊂ ∂�, we let h = 0 on �k . Note that the repeated indices i,m in
(8.3) are summed from 1 to d.

Lemma 8.1 Let D be a bounded C2,α domain in R
d , d ≥ 2. Let (uε, pε) be a weak

solution of (8.1) with
´
Dε

pε dx = 0, where h is given by (8.2) and (8.3). Then

ε‖∇uε‖L2(Dε)
+ ‖uε‖L2(Dε)

+ ‖pε‖L2(Dε)
≤ C

√
ε, (8.4)

and
‖div(uε)‖L2(Dε)

≤ Cε. (8.5)

Proof We apply Theorem 7.3 with � = D to establish (8.4). First, observe that by
(2.5),

‖h‖L2(∂D) + ε‖∇tanh‖L2(∂D) ≤ C . (8.6)

Next, we compute u · n on �k , assuming h is given by (8.3). Note that

h · n = ntW
−
t j (x/ε) − ntW

+
t j (x/ε) − ntW

−
ti (x/ε)(K

−
mj − K+

mj )
ninm

〈nK−, n〉
= nt

(
W−

t j (x/ε) − K−
t j

)
− nt

(
W+

t j (x/ε) − K+
t j

)

− nt
(
W−

ti (x/ε) − K−
ti

)
(K−

mj − K+
mj )

ninm
〈nK−, n〉 , (8.7)

where the repeated indices t, i,m are summed from 1 to d. We use Lemma 2.2 to write

nt
(
W±

ti (x/ε) − K±
ti

) = ε

2

(

nt
∂

∂xs
− ns

∂

∂xt

)
(
φ±
sti (x/ε)

)
. (8.8)

As a result, the function in the right-hand side of (8.7) may be written in the form
ε(∇tanφε) · g with (φε, g) satisfying

‖φε‖L2(∂D) + ‖g‖∞ + ‖∇tang‖∞ ≤ C .

Consequently, the estimate (8.4) follows from (7.9) in Theorem 7.3. Finally, note that
(8.7) and (8.8) yield

‖div(uε)‖L2(Dε)
≤ C

∣
∣
∣

ˆ

∂D
h · n dσ

∣
∣
∣

≤ Cε.

��
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Define

�(3)
ε =

L∑

�=1

I �
ε (x)( f − ∇P0)χ��

ε
in �ε, (8.9)

where I �
ε = (I �

ε,1, . . . , I
�
ε,d) is a solution of (8.1) in Dε = ��

ε with h given by (8.2) and
(8.3). To fix the boundary value h for each subdomain, we assume that the unbounded
connected component ofRd \� shares boundary with�1, and let h = 0 on ∂�1. Thus,
I 1ε (x) = 0 and �

(3)
ε = 0 in �1. Next, for each subdomain �� that shares boundaries

with ∂�1, we use the boundary data (8.3) for the common boundary with ∂�1 and
let h = 0 on other components of ∂��. We continue this process. More precisely,
at each step, we use (8.3) on the connected component �k of ∂�� if �k is also the
connected component of the boundary of a subdomain considered in the previous step,
and let h = 0 on the remaining components. We point out that at each interface �k ,
the nonzero data (8.3) is used only once. Also, h = 0 on ∂�.

Lemma 8.2 Let �
(3)
ε be given by (8.9) with f ∈ C1,1/2(�;Rd). Then Vε + �

(3)
ε ∈

H1(�ε;Rd).

Proof Let �ε = Vε + �
(3)
ε . Since f ∈ C1,1/2(�) implies that ∇2P0 is bounded in

each subdomain, it follows that �ε ∈ H1(��
ε;Rd) for 1 ≤ � ≤ L . Thus, to show

�ε ∈ H1(�ε;Rd), it suffices to show that the trace of �ε is continuous across each
interface �k .

Suppose that �k is the common boundary of subdomains �+ and �−. Let �±
ε

denote the trace of �ε on �k , taken from �± respectively. Recall that in the definition
of {I �

ε }, the non-zero data (8.3) is used once on each interface.Assume that the non-zero
data on �k is used for �+. Then

�+
ε − �−

ε = (
W+(x/ε) + I+

ε (x)
)
( f − ∇P0)

+ − W−(x/ε)( f − ∇P0)
−,

where I+
ε is given by (8.3). It follows that

�+
ε − �−

ε =
(

W−
j (x/ε) − W−

i (x/ε)(K−
mj − K+

mj )
ninm

〈nK−, n〉
) (

f j − ∂P0
∂x j

)+

− W−
j (x/ε)

(

f j − ∂P0
∂x j

)−

= W−
j (x/ε)

{(
∂P0
∂x j

)−
−

(
∂P0
∂x j

)+
− n jnm

〈nK−, n〉K
−
mi

(

fi − ∂P0
∂xi

)+}

+ W−
j (x/ε)

n jnm
〈nK−, n〉K

−
mi

(

fi − ∂P0
∂xi

)−
,

where we have used the observation that

nmK
+
mi

(

fi − ∂P0
∂xi

)+
= nmK

−
mi

(

fi − ∂P0
∂xi

)−
(8.10)
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on the interface. Thus,

�+
ε − �−

ε = W−
j (x/ε)

{(
∂P0
∂x j

)−
−

(
∂P0
∂x j

)+
− n j nm

〈nK−, n〉 K
−
mi

((
∂P0
∂xi

)−
−

(
∂P0
∂xi

)+)}

= W−
j (x/ε)

{

δi j − n j nm
〈nK−, n〉 K

−
mi

} ((
∂P0
∂xi

)−
−

(
∂P0
∂xi

)+)

.

Since

ni

{

δi j − n jnm
〈nK−, n〉K

−
mi

}

= 0

and (∇tanP0)+ = (∇tanP0)− on �k , we obtain �+
ε = �−

ε on �k . ��
Theorem 8.3 Let �(3)

ε be defined by (8.9) with f ∈ C1,1/2(�;Rd). Then Vε + �
(3)
ε ∈

H1(�;Rd) and

ε‖∇�(3)
ε ‖L2(��

ε)
+ ‖div(�(3)

ε )‖L2(��
ε)

≤ Cε1/2‖ f ‖C1,1/2(�) (8.11)

for 1 ≤ � ≤ L.

Proof By Lemma 8.2, we have Vε + �
(3)
ε ∈ H1(�;Rd). Note that by Lemma 8.1,

ε‖∇ I �
ε ‖L2(��

ε)
+ ‖I �

ε ‖L2(��
ε)

+ ‖div(I �
ε )‖L2(��

ε)
≤ Cε1/2

for 1 ≤ � ≤ L . It follows that

ε‖∇�(3)
ε ‖L2(��

ε)
≤ ε‖∇ I �

ε ‖L2(��
ε)

‖ f − ∇P0‖L∞(��
ε)

+ ε‖I �
ε ‖L2(��

ε)
‖∇( f − ∇P0)‖L∞(��

ε)

≤ Cε1/2‖ f ‖C1,1/2(�),

and

‖div(�(3)
ε )‖L2(��

ε)
≤ ‖div(I �

ε )‖L2(��
ε)

‖ f − ∇P0‖L∞(��) + ‖I �
ε ‖L2(��

ε)
‖∇( f − ∇P0)‖L∞(��

ε)

≤ Cε1/2‖ f ‖C1,1/2(�).

��
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