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Abstract
In this paper, we provide a couple of solutions for the vector variational inequality
problem, adopting a topological approach. We consider here a more general frame-
work, where X and Y are topological vector spaces. Topological concepts including
continuity, compactness, closedness, and so on are used for obtaining our results. The
condition of admissibility of the function space topology is found to play an important
role in achieving the results. It is found that the solution sets so obtained are closed as
well as compact.
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1 Introduction

The notion of variational inequality was initially introduced by Stampacchia [25] and
Fichera [10] in 1964. Variational inequality theory has a variety of applications includ-
ing in mathematics, physics, economics, and in engineering. In 1980, this concept was
extended by F. Gianessi [11] for finite dimensional spaces. Since then, the vector
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variational inequalities (VVI) and their generalizations have become an important
tool to solve vector optimization problems. In particular, several relations between
vector variational inequalities and vector optimization problems have been investi-
gated in [18, 19, 26, 28, 29]. Further, the concept of vector variational inequalities was
studied and extended for abstract spaces by Chen along with Cheng and Craven [4–6]
and many others [24, 27].

In [3] and in [1, 20], researchers have studied the generalized variational-type
inequality and VVI, respectively, in the framework of topological vector spaces. Hung
and others studied the concept of generalized quasi-variational inequalities [14–16].
In 2017, Salahuddin [23] provided the existence conditions for the solution of general
set-valued vector variational inequalities. In the same year, Li and Yu [21] introduced
a class of generalized invex functions, termed as (α-ρ-η)-invex functions and pro-
posed the existence results for two types of vector variational-like inequalities. On
the other hand, in 2018, Kim et al. [17] introduced a class of η-generalized operator
variational-like inequalities. In 2019, Farajzadeh, Chen, and others [7, 9] studied vec-
tor equilibrium problem for set-valued mappings. Recently, Gupta et al. [12] provided
existence conditions for the solution of two variants of generalized non-linear vector
variational-like inequality problem by adopting topological approach.

In [6, 30], the authors have studied vector variational inequalities for real Banach
spaces X and Y by taking a mapping F : X → L(X ,Y ), where L(X ,Y ) is the space
of all bounded linear operators from X to Y .

In the following, we denote a set-valued map F from X to Y by the notation
F : X ⇒ Y , where domain of F is X and co-domain is the power set of Y .

The vector variational inequality problem (VVIP) proposed by Chen in [6] can be
presented as:

Vector variational inequality problem: Let X and Y be two real Banach spaces and
let K be a nonempty closed convex subset of X . Let T : K → L(X ,Y ) be a mapping,
where L(X ,Y ) denotes the space of all continuous linear mappings from X to Y .
Further, letC : X ⇒ Y be a set-valued map such that for each x ∈ K ,C(x) is a closed
convex pointed cone in Y with int C(x) �= ∅, where int C(x) denotes the interior of
C(x). Then the vector variational inequality problem (VVIP) is to find x0 ∈ K such
that

〈T (x0), x − x0〉 /∈ −intC(x0) ∀ x ∈ K .

Chen gave conditions for existence of solutions for the above-mentioned VVIP by
using the monotonicity and hemicontinuity of the map T . In [4], Chen and Cheng have
taken a closed convex pointed cone C instead of C(x) to study VVIP. Motivated by
their work, we study here vector variational inequalities in a more general framework
by taking X , Y as topological vector spaces instead of Banach spaces. In this paper,
we consider two variants of VVIP as follows:

Let X andY be two topological vector spaces and let K be a nonempty closed convex
subset of X . Let T : K → C(X ,Y ) be a single-valued mapping, where C(X ,Y ) is the
space of all continuous linear mappings from X to Y .
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VVIP(I) If C is a closed convex pointed cone in Y with int C �= ∅, then the vector
variational inequality problem is to find x0 ∈ K such that

Tx0(x − x0) /∈ −intC ∀ x ∈ K .

VVIP(II) IfC : K ⇒ Y is a set-valuedmap such that for each x ∈ K ,C(x) is a closed
convex pointed cone in Y with int C(x) �= ∅, then the vector variational
inequality problem is to find x0 ∈ K such that

Tx0(x − x0) /∈ −intC(x0) ∀ x ∈ K ,

where Tx0 denotes the value of T at x0, that is Tx0 = T (x0).

In this study, we provide the conditions for existence of solutions for both the variants
of the VVIP by using topological approach by assuming the continuity of the map T .
The concepts of net theory, topology of the function space (admissible topology) and
KKM-Theorem play an important role in obtaining our results.

The remaining part of the paper is organized as follows: In section 2, we recall some
preliminaries required in the sequel. In section 3, we provide the existence theorems
for theVVIP(I) andVVIP(II).We then give some topological properties of the solution
sets so obtained. Also, we give an example to illustrate our results.

2 Preliminaries

In this section, we provide some definitions and basic results which will be used later
to obtain our main results.

Definition 2.1 Suppose F : X ⇒ Y is a set-valued map from X to Y . The graph of
F , denoted by G(F), is

G(F) = {(x, y) ∈ X × Y | x ∈ X , y ∈ F(x)} .

Definition 2.2 [8] Suppose S is a nonempty subset of some topological vector space
X . A set-valued map F : S ⇒ X is called a KKM-mapping if, for every nonempty
finite set {x1, x2, . . . , xn} of S, we have

co{x1, x2, . . . , xn} ⊆
n⋃

j=1

F(x j ),

where co{x1, x2, . . . , xn} denotes the convex hull of x1, x2, . . ., xn .

The following result is taken from [8].

Lemma 2.3 (KKM-Theorem) Suppose S is a nonempty subset of some topological
vector space X and F : S ⇒ X is a KKM-mapping such that for every x ∈ S, F(x)
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is a closed subset of X. If there exists a point x0 ∈ S such that F(x0) is compact, then⋂

x∈S
F(x) �= ∅.

Definition 2.4 [22] Let (X , τ ) be a topological space. Then

(i) a set J is said to be directed set with a partial order 
 such that for each pair
α, β in J , there exists an element γ in J such that α 
 γ and β 
 γ .

(ii) a net in X is a function f from a directed set J into X ;
We usually denote f (α) by xα and the net f itself is represented by {xα}α∈J .

(iii) a net {xα} is said to converge to be the point x ∈ X if, for each neighborhood
U of x , there exists some α ∈ J such that for α 
 β, we have

xβ ∈ U .

Definition 2.5 [2, 13] Let (Y , μ1) and (Z , μ2) be two topological spaces. Let C(Y , Z)

be the space of all continuousmappings from Y to Z . A topology τ on C(Y , Z) is called
admissible, if the evaluation map e : C(Y , Z) × Y → Z , defined by e( f , y) = f (y),
is continuous.

Lemma 2.6 [13] A function space topology on C(X ,Y ) is admissible if and only if for
any net { fn}n∈D1 in C(X ,Y ), convergence of { fn} to f in C(X ,Y ) implies continu-
ous convergence of { fn} to f . That is, if { fn}n∈D1 converges to f in C(X ,Y ), then
{ fn(xm)}(n,m)∈D1×D2 converges to f (x) in Y and vice-versa, where {xm}m∈D2 is any
net in X converging to x ∈ X.

Here, it may be mentioned that the above characterization of admissibility remains
valid for the family of continuous linear mappings from X to Y , where X and Y are
topological vector spaces.

3 Existence Theorems for VVI Problems

Theorem 3.1 Let (X , τ1) and (Y , τ2) be any two topological vector spaces. Let
C(X ,Y ) denote the space of all continuous linear mappings from X to Y , equipped
with an admissible topology. Let K ⊆ X be a nonempty closed convex compact sub-
set of X. Let C ⊆ Y be a closed convex pointed cone with intC �= ∅. Further, let
T : K → C(X ,Y ) be a single-valued continuous mapping. Then the vector varia-
tional inequality problem (VVIP(I)) has a solution. That is, there exists x0 ∈ K such
that

Tx0(u − x0) /∈ −intC,

for every u ∈ K .

Proof We define a set-valued map F : K ⇒ K as

F(u) = {x ∈ K : Tx (u − x) /∈ −intC}.
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We complete the proof of the theorem in two parts:

(i) F is a KKM-mapping on K :
Let {u1, u2, . . . , un} ⊆ K be any finite subset of K . We show that

co{u1, u2, . . . , un} ⊆
n⋃

i=1

F(ui ). Let if possible, x̄ /∈
n⋃

i=1

F(ui ) for some x̄ ∈

co{u1, u2, . . . , un}. Then, we have x̄ =
n∑

i=1

λi ui where λi ≥ 0 and
n∑

i=1

λi = 1.

As x̄ /∈ F(ui ), we have Tx̄ (ui − x̄) ∈ −intC , for each i = 1, 2, . . . , n.

Since−intC is convex and λi ≥ 0with
n∑

i=1

λi = 1,
n∑

i=1

λi (Tx̄ (ui − x̄)) ∈ −intC .

We have, 0̂ = Tx̄ (x̄ − x̄) = Tx̄

(
n∑

i=1

λi ui −
n∑

i=1

λi x̄

)
= Tx̄

(
n∑

i=1

λi (ui − x̄)

)

=
n∑

i=1

λi (Tx̄ (ui − x̄)) ∈ −intC , where 0̂ is the zero vector in Y . This implies

0̂ ∈ intC , which is a contradiction as C is pointed. Therefore, we have

co{u1, u2, . . . , un} ⊆
n⋃

i=1

F(ui ). Hence, F is a KKM-mapping on K .

(ii) F(u) is closed:
Let {xn} be a net in F(u)with xn → x . As K is closed, x ∈ K .We shall show that
x ∈ F(u), that is, Tx (u − x) /∈ −intC . Since T is continuous, xn → x implies
Txn → Tx . Also, we have, u − xn → u − x . As C(X ,Y ) has an admissible
topology, we have, Txn (u − xn) → Tx (u − x). Now, if Tx (u − x) ∈ −intC , then
Txn (u − xn) ∈ −intC eventually, which leads to a contradiction as xn ∈ F(u).
Hence, Tx (u − x) /∈ −intC , that is, x ∈ F(u).
Now, F(u) being a closed subset of a compact set K is compact. Therefore by
the KKM-Theorem, we have

⋂

u∈K
F(u) �= ∅. Hence, there exists x0 ∈ K such

that x0 ∈
⋂

u∈K
F(u), that is, Tx0(u − x0) /∈ −intC for every u ∈ K .

�
In the next theorem, we provide an existence condition for a solution of VVIP(II).

Theorem 3.2 Let (X , τ1) and (Y , τ2) be two topological vector spaces and C(X ,Y ) be
the space of all continuous linear mappings from X to Y , equipped with an admissible
topology. Let K be a nonempty closed convex compact subset of X. Let C : K ⇒ Y
be a set-valued map such that for every x ∈ K , C(x) is a closed convex pointed
cone with intC(x) �= ∅. Also, let W : K ⇒ Y be a set-valued map defined by
W (x) = Y \ (−intC(x)) such that the graph of W , G(W ), is a closed set in X × Y .
Let T : K → C(X ,Y ) be a single-valued continuous mapping. Then the vector
variational inequality problem (VVIP(II)) has a solution. That is, there exists x0 ∈ K
such that
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Tx0(u − x0) /∈ −intC(x0),

for every u ∈ K .

Proof Consider a set-valued map F : K ⇒ K defined as

F(u) = {x ∈ K : Tx (u − x) /∈ −intC(x)}.

The proof of the theorem is divided into two parts:

(i) F is a KKM-mapping on K .
(ii) F(u) is closed for each u ∈ K .

The proof of part (i) is similar to that of the Theorem 3.1. So, we are giving the
proof of part (ii) only.

Let {xn} be a net in F(u)with xn → x . As K is closed, x ∈ K .We have to show that
x ∈ F(u), that is, Tx (u−x) /∈ −intC(x). Since xn ∈ F(u), Txn (u−xn) /∈ −intC(xn),
which implies Txn (u − xn) ∈ W (xn), which gives {(xn, Txn (u − xn))} ⊆ G(W ).
Now, as xn → x and T is continuous, we have Txn → Tx . Also, xn → x , implies
u− xn → u− x . Since the topology of C(X ,Y ) is admissible, we have Txn (u− xn) →
Tx (u − x), which gives {(xn, Txn (u − xn))} → (x, Tx (u − x)). Since G(W ) is closed,
(x, Tx (u − x)) ∈ G(W ), which implies Tx (u − x) /∈ −intC(x). Hence, x ∈ F(u) and
hence F(u) is closed.

Now, for each u ∈ K , F(u) is a closed subset of K . As K is compact, F(u) is
compact. Therefore by KKM-Theorem, we have

⋂

u∈K
F(u) �= ∅. Hence, there exists

x0 ∈ K such that x0 ∈
⋂

u∈K
F(u), that is, Tx0(u − x0) /∈ −intC(x0) for every u ∈ K .

�
Here, we provide an example to illustrate our results as well as to show that our result
is independent of the result obtained by Chen in [6].

Example 3.3 Consider X = l2, the set of all square summable sequences in R under
the usual norm ‖ · ‖ and Y = R, the set of all real numbers. Let K ⊂ X , be the Hilbert
cube of l2, that is, x ∈ K if and only if x = {xn}n∈N with | xn |≤ 1

n for n ∈ N.
Clearly, K is nonempty, closed, convex, and compact. Let C : K ⇒ Y be defined by
C(x) = R

+ ∪ {0}, for every x ∈ K . Then C(x) is a closed convex pointed cone with
int C(x) �= ∅, and −intC(x) = (−∞, 0), for each x ∈ K . Let T : K → C(X ,Y ) be
defined by Tx (u) = −〈x, u〉 = −∑

xiui , where x = {xi } in K and u = {ui } is in X .
That the induced topology of C(X ,Y ) is admissible can be verified by the fact that if
{xn} converges to x in X and { fn} converges to f in C(X ,Y ), then we have

‖ fn(xn) − f (x)‖ = ‖ fn(xn) − fn(x) + fn(x) − f (x)‖
≤ ‖ fn(xn) − fn(x)‖ + ‖ fn(x) − f (x)‖
≤ ‖ fn‖‖xn − x‖ + ‖ fn(x) − f (x)‖.

Hence, fn(xn) → f (x).
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We take x0 = {− 1
n }. Then for any x = {xn} in K , we have, Tx0(x − x0) =

−〈x0, x − x0〉 = −∑
(− 1

n )(xn + 1
n ) = ∑ 1

n (xn + 1
n ) ≥ 0, as | xn |≤ 1

n . Therefore
Tx0(x − x0) /∈ −intC(x0). Hence, x0 is a solution for the vector variational inequality
problem.

T is not C-monotone: Let T : X → C(X ,Y ) be a mapping and let C be a closed
convex pointed cone. T is calledC-monotone [6] if and only if for every pair x, u ∈ X ,
we have 〈T (u) − T (x), u − x〉 ∈ C .

Now, 〈T (u)−T (x), u−x〉 = 〈T (u−x), u−x〉 = Tu−x (u−x) = −∑
(ui −xi )2 /∈

C , for ui �= xi for some i . Hence, T is not C-monotone.

In the following result, we discuss some topological properties of the solution sets
obtained above.

Theorem 3.4 The solution set for the vector variational inequality problem VVIP(I)
(resp. VVIP(II)) obtained using the method provided in Theorem 3.1 (resp. Theorem
3.2) is closed as well as compact.

Proof Let F : K ⇒ K , be the set-valued map defined by

F(u) = {x ∈ K : Tx (u − x) /∈ −intC}.

Then by Theorem 3.1, the solution set S of the vector variational inequality problem
(VVIP(I)) is given by S =

⋂

u∈K
F(u). As shown in Theorem 3.1 (resp. Theorem 3.2)

that F(u) is closed for every u ∈ K . Therefore
⋂

u∈K
F(u) is closed, that is, S is closed.

Also, S being a closed subset of a compact set K , is compact. �

Conclusion

Our study here shows that the vector variational inequality problems can be studied
from a purely topological point of view. The authors have not come across any such
results so far in the literature where function space topology is being used to establish
the existence of solution of such problems. It would be interesting to see whether this
approach may be used for other variants of variational inequality problems.
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