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Abstract
In this paper some noise models for stochastic control systems are described that
differ from the well known model of Brownian motion. Some of the processes are
Gaussian such as the family of fractional Brownian motions and other processes are
non-Gaussian, especially Rosenblatt processes. These processes have a long range
dependence property that can be described by a slow decay of the covariance process.
A stochastic calculus for these processes exists that is more limited than the calculus
for Brownian motion that is inherited from the martingale property but nevertheless
is sufficient for addressing some stochastic control problems. In many physical sit-
uations the data demonstrates a long range dependence which can justify a choice
from these non-Brownian processes. Explicit solutions of stochastic control problems
with quadratic cost functionals having driving noise from the Rosenblatt processes are
given.

Keywords Stochastic control · Rosenblatt processes · Linear–quadratic stochastic
control
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1 Introduction

Linear–quadratic stochastic control problems are formulated and the optimal controls
are explicitly described where the noise driving the systems are Rosenblatt processes.
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A major difficulty for the control solution is typically finding an explicit optimal
control for the controlled stochastic models. The absence of the martingale property
for the noise processes presents a major difficulty to determine optimal controls and
complicates the stochastic calculus. Nonetheless it is shown here that for some families
of optimal controls, which are fairly natural for the noise models considered, optimal
controls can be explicitly described. A major motivation for considering these noise
models is that often the physical data does not support an assumption of a Brownian
motion noise. The data often does not even justify a Gaussian assumption for the noise
model.

Fractional Brownian motions are a family of Gaussian processes indexed by the
Hurst parameter H ∈ (0, 1). The process for the value H = 1

2 denotes a Brownian
motion and for H > 1

2 the Gaussian process has a long range dependence which can
be described as a slow decay of the covariance function as the time separation for the
random variables in the covariance becomes large. These processes were defined by
Kolmogorov and the initial empirical identification of these processes was made by H.
E. Hurst in his study of rainfall along the Nile River Valley. A Gaussian generalization
of these processes is called Gauss-Volterra processes because they are constructed
from Brownian motion by a singular integral operator as is the family of fractional
Brownianmotions. A non-Gaussian example is the family of Rosenblatt processes that
were introduced by Roseblatt in [12]. Some control problems with Rosenblatt process
noise are solved here. Not only control problems but also stochastic differential games
can be explicitly solved [11].

2 Gauss-Volterra Processes

Initially some Gaussian processes are introduced that have a long range dependence.
Gauss-Volterra processes are a family of Gaussian processes that includes a number of
interesting Gaussian processes such as fractional Brownianmotions for H > 1

2 . These
processes are obtained by a Wiener integral with a singular kernel. The definition and
some examples are given now.
The process (b(t), t ≥ 0) is a centered Gauss-Volterra process, which is described by
the covariance. The three conditions on the kernel of the Wiener integral are given
now.

(K1) K (t, s) = 0 for s > t , K (0, 0) = 0, and K (t, ·) ∈ L2(0, t) for each t ∈ R+.

R(t, s) = Eb(t)b(s) :=
∫ min(t,s)

0
K (t, r)K (s, r)dr

where the kernel K : R2+ → R satisfies
(K2) There are positive constants C, β such that for each T > 0

∫ T

0
(K (t, r) − K (s, r))2dr ≤ C |t − s|β

where s, t ∈ [0, T ].
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(K3) (i) K = K (t, s) is differentiable in the first variable in {0 < s < t < ∞}, both
K and ∂

∂t K are continuous and K (s+, s) = 0 for each s ∈ [0,∞)

(ii) | ∂K
∂t (t, s)| ≤ cT (t − s)α−1( ts )

α

(iii)
∫ t
0 K (t, u)2du ≤ cT (t − s)1−2α

on the set {0 < s < t < T }, T < ∞, for some constants cT > 0 and α ∈ (0, 1
2 ).

For simplicity it is assumed that there is a real-valuedWiener process (W (t), t ≥ 0)
such that (b(t), t ≥ 0) satisfies

b(t) =
∫ t

0
K (t, r)dW (r)

To indicate the usefulness of this family of processes, some examples are provided
now. The first one is a fractional Brownian motion with the Hurst parameter H ∈
( 12 , 1).

(i) A fractional Brownian motion (FBM) with the Hurst parameter H > 1
2 . In this

case

K (t, s) = CHs1/2−H
∫ t
s (u − s)H−3/2uH−1/2du, s < t,

= 0 s ≥ t .

where CH is a constant depending on H . The kernel satisfies conditions (K1)–(K3)
with α = H − 1

2 > 0.
(ii) A Liouville fractional Brownian motion (LFBM) for H > 1

2 , in which case

K (t, s) = CH (t − s)H− 1
2 1(0,t](s), t, s ∈ R+

satisfies (K1)–(K3) with α = H − 1
2 .

(iii) Amultifractional Brownianmotion (MBM) [2]. A simplified version analogous
to LFBM in (ii) is considered. The kernel K : R+ × R+ → R+ is defined as

K (t, s) = (t − s)H(t)− 1
2 1(0,t](s), t, s ∈ R+,

where H : R+ → [ 12 , 1) is the “time-dependent Hurst parameter”. It is assumed that
H ∈ C1(R+) and (a) there exists a constant ε ∈ (

0, 1
2

)
such that H(t) ∈ [ 12 + ε, 1),

t ∈ R+
(b) For each t > 0 there is a constant Cε,t such that

|H ′(t)| ≤ Cε,t min
u∈(0,t)

[( t

u

)ε 1

|log(t − u)|(t − u)

]
.

It has been shown that the conditions (K1)–(K3) are satisfied in this case (the latter
with α = ε).

Clearly all of these processes are Gaussian and also have a long range dependence
which can be defined by the covariance function.

123



688 La Matematica (2022) 1:685–695

3 Rosenblatt Processes

Rosenblatt processes are a family of non-Gaussian processes that have a long range
dependence and provide a non-Gaussian alternative for modeling noise processes.
These processes are defined as follows.
Let (u)+ = max(u, 0) be the positive part of u and define

hH
k (u, y) =

k∏
j=1

(u − y j )
H
k −

(
1
k + 1

2

)
+

for H ∈ ( 12 , 1), u ∈ R and y = (y1, y2, . . . , yk) ∈ Rk .
Initially a fractional Brownian motion is given in terms of h.

Definition Let H ∈ (1/2, 1). The fractional Brownian motion BH = (BH
t )t∈R is

defined by

BH
t = CB

H

∫
R

(∫ t

0
h1(u, y)du

)
dWy (1)

for t ≥ 0 (and similarly for t < 0) where CB
H is a constant such that E(BH

1 )2 = 1 and
W is a standard Wiener process (Brownian motion).

Definition Let H ∈ (1/2, 1). The Rosenblatt process RH = (RH
t )t∈R is defined by

RH
t = CR

H

∫
R2

(∫ t

0
h2(u, y1, y2)du

)
dWy1dWy2 (2)

for t ≥ 0 (and similarly for t < 0) where CR
H is a constant such that E(RH

1 )2 = 1 and
the integral is the Wiener-Itô multiple integral of order two with respect to the Wiener
process W .

The normalizing constants CB
H and CR

H are defined so that these processes have
second moment one at t = 1 are given explicitly by

CB
H =

√
H(2H − 1)

B
(
2 − 2H , H − 1

2

) , CR
H =

√
2H(2H − 1)

2B
(
1 − H , H

2

)

where B is the Beta function. For the Itô-type formula [4] used below, it is also
convenient to denote

cBH = CB
H �

(
H − 1

2

)
, cRH = CR

H �2
(
H

2

)
,
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and

cB,R
H = cHR

cBH
2 + 1

2

=
√

(2H − 1)

(H + 1)

�
(
1 − H

2

)
�

( H
2

)
�(1 − H)

where � is the Gamma function.
The Rosenblatt processes have a useful stochastic calculus [4] with some prior

development in [1, 15].

4 Linear–Quadratic Control with Roseblatt Noise

A major motivation for the use of a Rosenblatt noise model is that empirical evidence
provided in [5] shows that for many control systems that have operations in various
locations in the world a Gaussian model for the noise is not appropriate. The Rosen-
blatt processes have continuous sample paths and have a useful stochastic calculus
with a stochastic integration and a change of variables formula. Specifically they have
a stochastic integration theory that has developed in recent years [1, 4, 15] so that the
integrals of a suitable family of functions using a Rosenblatt process as integrator have
expectation zero and are Skorokhod integrals. Furthermore there is a change of vari-
ables formula for smooth functions of these processes which is explicit though more
complicated than the well known formula for a Brownian motion or other continuous
martingales [4]. While a suitable family of random functions can be integrated with
respect to a Rosenblatt process, these integrals are not martingales though they are
Skorokhod integrals and thereby have expectation zero. Fractional Brownian motions
are probably the closest family of Gaussian processes to Rosenblatt processes because
such a Gaussian process can be described as a singular integral with respect to a single
Brownian motion. Rosenblatt processes can be expressed as double singular integrals
with respect to a Brownian motion. Since Rosenblatt processes are not martingales the
family of controls are restricted to be functions of only the current state because other-
wise the controls would be functionals of the past of the observed process. This family
of controls has been used to obtain optimal controls for systems with fractional Brow-
nian motions [8] and also Gauss-Volterra processes [7]. An ergodic control problem
has been explicitly solved for a scalar system with a Rosenblatt noise [3]. For scalar
systems some stochastic differential games have been solved with a Rosenblatt noise
where the strategies of the two players are linear transformations of the current state
[11]

The problem considered in this paper is the quadratic cost control of an n-
dimensional linear stochastic system where the n-dimensional noise is a vector of
n real-valued independent Rosenblatt processes with the same parameter H . It seems
that no results for the optimal control of multidimensional stochastic equations driven
by Rosenblatt processes or other continuous non-Gaussian and non-Markovian pro-
cesses are available. However a result for ergodic control of a scalar system has been
obtained [4] and a two player scalar system with an ergodic payoff has been solved
[11]. Since the Rosenblatt processes are not Markov processes, Hamilton–Jacobi–
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Bellman equations are not applicable as well as other methods for Markov processes.
Furthermore a stochastic maximum principle with forward-backward stochastic dif-
ferential equations is not available. Thus it seems necessary to apply a direct method
to determine optimal controls that has been successfully used for linear–quadratic
control problems with Brownian motions and fractional Brownian motions e.g. [6],
[9], and control with Gauss-Volterra noise [7]. However the extension of this direct
method is not immediate or even clear because of the stochastic calculus for Rosenblatt
processes. In addition to the stochastic calculus used here for Rosenblatt processes
there is another notion of stochastic integrals for Rosenblatt processes that can be
considered the analog of Stratonovich integrals for Brownian motion [13].

5 Optimal Control Problem

The control problem considered here is formulated now using an n dimensional
stochastic system driven by a Rosenblatt process and having a quadratic cost. The
controlled stochastic system satisfies the following linear stochastic equation

dX(t) = AX(t)dt + BU (t)dt + dRH (t) (3)

X(0) = x0 (4)

where X(t) ∈ R
n, A ∈ L(Rn,Rn), B ∈ L(Rn,Rn) is B = I , (RH (t), t ≥ 0) is

a standard n dimensional Rosenblatt process defined as having the same parameter
H ∈ ( 1

2 , 1
)
for all independent components of the n dimensional Rosenblatt process.

It is noted here that the noise components can be correlated and the components can
have different H values. These extensions are fairly straightforward. All of the random
variables are defined on the complete probability space (�,F ,P).

The quadratic cost, JT (U ), is

JT (U ) = E

∫ T

0
(〈QX(t), X(t)〉 + 〈RU (t),U (t)〉)dt (5)

where Q and R are symmetric and positive definite linear transformations and T > 0
is fixed. There could also be easily a final time cost term.

The family of admissible controls, U , is the collection of constant linear feedbacks
of the state X , that is,

U = {U (t) = K X(t)|K ∈ L(Rn,Rn)} (6)

This family of feedback controls is quite natural from the result for a Brownian motion
noise. However allowing the controls to be adapted to the past of the state process in
this case would imply functional optimal controls with functional dependence on the
past of the state because the control would be predicting the future of the state process
as is the case with fractional Brownian motions [9]. Such controls are not easily
implementable. Furthermore the approach in this paper has been successful for scalar
linear systems driven by a Rosenblatt process and for multidimensional linear and
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bilinear systems driven by fractional Brownian motions and Gauss-Volterra processes
[3, 10].

A change of variables (Itô formula) is used for the optimal control solution that
is verified in [4]. The subsequent change of variables formula contains the following
two differential operators,

∇ H
2 = I

H
2+ D (7)

∇ H
2 , H2 = I

H
2 , H2+,+ D2. (8)

where D is the Malliavin derivative and

I α+( f (x)) =
∫ x

−∞
f (u, v)(x − u)α−1du (9)

(I α1,α2+,+ f )(x1, x2) = 1

�(α1)�(α2)

∫ x1

−∞

∫ x2

−∞
f (u, v) (10)

(x1 − u)α1−1(x2 − v)α2−1 du dv

and α > 0, α1 > 0, α2 > 0 are constants. These operators reflect the singular integral
definition of a Rosenblatt process.

6 Optimal Feedback Control

The Riccati equation that is used for some computations here is the one used for a
Brownian motion noise so it is not intrinsic for a Rosenblatt noise but it suffices for
some computations. It is the following equation.

dP

dt
− −AT P − PA + BT PR−1BP − Q (11)

P(T ) = 0 (12)

The solution of the optimal feedback control for the finite time horizon control
problem described by (3) and (5) is given in the following theorem.

Theorem 6.1 The stochastic control problem with the stochastic equation (3) and the
quadratic cost (5) has an optimal feedback control, K ∗, given by the minimum of
the following expression which can be obtained by differentiation. The expression is
strictly convex in K so the optimal K is determined by the unique zero of the derivative.

g(K ) =
∫ T

0
|R− 1

2 (RK X + BT PX)|2]dt (13)

+ C̃H

∫ T

0
e(A+BK+AT +KT BT )r r2H−2dr
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where P is the unique solution of the Riccati equation (11) and

C̃H = B(
H

2
, 1 − H)

√
(2H(2H − 1)) (14)

Proof Initially a change of variables formula for Rosenblatt processes is applied to
(〈P(t)X(t), X(t)〉, t ∈ [0, T ]) using the result in [4]. This change of variables result
is also stated in [3]. While the result in [4] is given for a scalar process, using n linear
functionals that form a basis in Rn , the change of variables is reduced to considering
a sum of real-valued processes. The result is the following:

〈P(T )X(T ), X(T )〉 − 〈P(0)x0, x0〉
=

∫ T

0
[〈P(A + BK + AT + KT BT )X , X〉

+2cRH tr(∇
H
2 , H2 Xs(s, s))]ds

+2
∫ T

0
〈∇ H

2 Xs(s), dB
H 〉

+2
∫ T

0
〈X , dRH 〉

+
∫ T

0
〈dP
dt

X(s), X(s)〉ds

=
∫ T

0
[〈P(A + BK + AT + KT BT )X , X〉

+2cRH tr∇
H
2 , H2 Xs(s, s))]ds

+2
∫ T

0
〈∇ H

2 Xs(s), dB
H 〉

+2
∫ T

0
〈X , dRH 〉

+
∫ T

0
〈dP
dt

X(s), X(s)〉ds

cRH = �2( H2 )
√
2H(2H − 1)

2B(1 − H , H
2 )

(15)

and tr is the trace of a linear transformation and BH and RH are vectors of n inde-
pendent fractional Brownian motions and Rosenblatt processes respectively.

The two stochastic integrals in the above equality are Skorokhod integrals [14] so

they have expectation zero. It is necessary to compute ∇ H
2 , H2 Xt (u, u). This term is

the analog of the second derivative in the change of variables formula for a Brownian
motion noise. Initially the process X in the second derivative term is replaced by the

Rosenblatt process RH to determine ∇ H
2 , H2 Xt (u, u) because X is a linear transfor-

mation of RH . Thus compute ∇ H
2 , H2 RH where RH is an n-vector of independent

123



La Matematica (2022) 1:685–695 693

real-valued Rosenblatt processes each with the same parameter H . It follows from
computations in [3] that

∇ H
2 , H2 RH

t (u, u) = C̃H

∫ t

0
|u − r |2H−2dr (16)

where the constant, C̃H , is given by

C̃H = 2cRH
B2

( H
2 , 1 − H

)
�2

( H
2

) . (17)

and B is the Beta function. Note that the integral on the RHS of (16) is an n-vector

each element having the same integrand. Let �t (u) = ∇ H
2 , H2 Xt (u, u) for notational

simplicity. Then it follows from the solution of (3) by linearity of the above differential
operator that

�t (u) =
∫ t

0
[(A + BK ) + (AT + KT BT )]�s(u)ds

+∇ H
2 , H2 RH

t (u, u) (18)

because the operator ∇ H
2 , H2 Xt (u, u) is symmetric. Solving this integral equation, it

follows directly from the linearity of (18) using (16) that

�t (u) = C̃H

∫ t

0
e(A+BK+AT +KT BT )(t−r)|u − r |2H−2dr (19)

which by an elementary change of variables letting t = u = s that

�s(s) = ∇ H
2 , H2 Xs(s, s) = C̃H

∫ s

0
e(A+BK+AT +KT BT )r r2H−2dr (20)

Note that the term |u − r |2H−2 in (19) is an n vector which has this same scalar term
in all elements. Since A + K B + AT + BT K T is symmetric, it can be diagonalized.
Fix K and diagonalize the linear operator A + K B + AT + KT BT which is denoted
diag(a1, . . . , an).

Substituting the Riccati equation (11) in (15) and taking expectation, the following
equation results.

E〈P(T )X(T ), X(T )〉 + E

∫ T

0
〈QX , X〉dt (21)

+E

∫ T

0
〈RK X , K X〉dt

= E〈P(0)x0, x0〉 + E

∫ T

0
(〈RK X , K X〉dt
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+〈P(BK + KT BT )X , X〉dt
+

∫ T

0
tr(C̃H

∫ t

0
e(A+BK+AT +KT BT )r r2H−2dr))dt

= E[〈P(0)x0, x0〉 +
∫ T

0
|R− 1

2 (RK X + BT PX)|2]dt

+C̃H

∫ T

0
tr(

∫ t

0
e(A+BK+AT +KT BT )r r2H−2dr)dt

This completes the proof. �
It is briefly noted how an ergodic cost functional can be addressed. Initially consider

a limit of the inner integral for the last term on the RHS of the above equality, that is,

limt→∞tr(
∫ t

0
e(A+BK+AT +KT BT )r r2H−2dr)

= 	n
i=1

�(2H − 1)

a2H−1
i

(22)

where (ai , i = 1 . . . , n) are the eigenvalues of the symmetric transformation (A +
BK + AT + KT BT ). Clearly averaging of this result as 1

T

∫ T
o converges to the same

value. Now divide the previous equality by T and let T → ∞.

limT→∞
1

T
EJ∞(K ) (23)

= limT→∞
1

T
E

∫ T

0
〈QX , X〉dt + E

∫ T

0
〈RK X , K X〉dt

= limT→∞
∫ T

0
|R−1(RK X + BT PX |2dt

+C̃H	n
i=1

�(2H − 1)

a2H−1
i

The result in this paper allows for the use of a Rosenblatt noise for an n dimensional
linear–quadratic control problem so that the noise can better model the noise observed
in control systems for physical systems. It is important to consider the case where
the Rosenblatt noise components are correlated and have different H parameters. It is
also important to address some computational questions about these control problems
with Rosenblatt noise as well as to provide numerical studies to justify Rosenblatt
processes as opposed to other non-Gaussian processes. The authors thank the referee
for his/her comments that clarified some items in the paper.
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3. Čoupek, P., Duncan, T.E., Maslowski, B., Pasik-Duncan, B.: An infinite time horizon linear-quadratic
control with a Rosenblatt process. In: Proc. IEEE Conf. on Decision and Control, Miami (2018)
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