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Abstract
Youssef introduced two-temperature thermoelasticity without energy dissipation theorem. This theorem depends upon 
two distinct temperatures: the conductive temperature and the thermo-dynamical temperature. Through this work, the 
variational principle theorem will be obtained for an isotropic, homogeneous, and thermoelastic body in the context of 
two-temperature thermoelasticity without energy dissipation theorem.
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Abbreviations
� , �  Lamé’s constants
�  Density
cE  Specific heat at constant strain
αT  Coefficient of linear thermal expansion
�ij  The Kronecker delta symbol
t   Time
T   Temperature
To  Reference temperature
�  =

(
T − To

)
 Increment temperature such that 

||
|
𝜃

To

||
|
<< 1

�ij  Components of the stress tensor
eij  Components of the strain tensor
ui  Components of the displacement vector
Fi  Body force vector
qi  The components of the heat flux
�  The entropy
k∗  The characteristic of the theorem
�  Conductive temperature
a  a > 0  Two- temperature parameter

1 Introduction

Thermoelasticity without energy dissipation is a novel 
theory in extended thermoelasticity proposed by Green 
and Naghdi [1]. The main characteristic of this theory is 
that the heat flow does not entail energy dissipation, 
in contrast to the traditional thermoelasticity related to 
Fourier’s equation of heat conduction. The constitutive 
equation for the entropy flow vector is also determined 
using the same potential function that was constructed 
to produce the stress tensor. The theory also allows for 
the limited-speed transport of heat as thermal waves. 
The linear theory is then provided once the broad dis-
cussion is obtained from the nonlinear theory. Green 
and Naghdi’s broad hypothesis is based on the general 
entropy balance [2]. While the basic developments in [2] 
are general, the application is confined to the flow of 
heat in a stationary rigid solid transmitted by conduc-
tion and by the heat pulse propagated as thermal waves 
at a finite speed. Three types of constitutive response 
functions are suggested. Type I, after linearization of the 
theory, is the same as the classical heat conduction the-
ory (based on Fourier’s law), while types II and III permit 
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propagation of thermoelastic disturbances with a finite 
speed. Although both types II and III theories for heat 
flow in a stationary rigid solid accommodate finite wave 
speed, only type II is without energy dissipation [3].

In the context of the Green and Naghdi model, many 
applications have been found. Chandrasekharaiah and 
Srinath [4] discussed thermoelastic waves without energy 
dissipation in an unbounded body with a spherical cavity. 
Kumar and Deswal [5] studied surface wave propagation 
in a micropolar thermoelastic medium without energy dis-
sipation. Quintanilla [6] proposed a model of the thermoe-
lastic theory without energy dissipation for materials with 
affine microstructure. Roychoudhuri and Dutta [7] solved 
the problem of thermo-elastic interaction without energy 
dissipation in an infinite solid with distributed periodically 
varying heat sources. Choudhuri and Bandyopadhyay [7, 8] 
solved a model of radially symmetric thermo-elastic wave 
propagation without energy dissipation in an infinitely 
extended thin plate with a circular hole.

Chen and Gurtin [9], Chen et al. [10] and [11] have for-
mulated a theory of heat conduction in deformable bod-
ies, which depends upon two distinct temperatures, the 
conductive temperature � and the thermo-dynamical 
temperature T  . For time-independent situations, the dif-
ference between these two temperatures is proportional 
to the heat supply, and in the absence of any heat supply, 
the two temperatures are identical Chen and Gurtin [9]. 
However, regardless of the presence of a heat source, the 
two temperatures are often different for time-dependent 
issues and wave propagation difficulties in particular. The 
two temperatures T , � and the strain are found to have 
representations in the form of a travelling wave plus a 
response, which occurs instantaneously throughout the 
body [12], and Warren and Chen [13] investigated the 
wave propagation in the classical theory of two-temper-
ature thermoelasticity while Youssef [14] investigated 
two-temperature generalized thermoelasticity theory 
together with a general uniqueness theorem and solved 
many applications in the context of this theory [15–17].

The two-temperature thermoelasticity without energy 
dissipation theory is obeyed by a homogeneous, isotropic 
body, and the variational principle theorem will be proven 
for this body in this study.

1.1  The basic equations

We will consider an isotropic and homogeneous elastic 
body in the context of two-temperature thermoelasticity 
without energy dissipation theorem with zero initial condi-
tions of all state functions. Hence, the governing equations 
will take the following forms [18, 19]:

The equations of motion

The heat equations

The two-temperature equations

The constitutive equations

The entropy satisfies the following relation for unit 
mass

The entropy balance equations without internal heat 
generation take the form

The heat conduction equations take the form

Formulation of the variational principle.
Under the assumption of small deviations of the 

thermo-dynamics system from the state of equilibrium, 
we will consider the statement of virtual external work:

where v is an arbitrary material volume bounded by 
a closed and bounded surface s,  Fi is the external forces 
per unit mass and  pi is the components of surface trac-
tion applied to the surface s.

We have the relation

where  ni are the normal components to the surfaces.
Using Eq. (2) and Gauss’s divergence theorem in the 

second term of the relation (1), we obtain

Since the stress tensor is symmetric, we have 
�ji � eij = �ji�ui,j.

Using the equation of motion (1), Eq. (3) will take the 
form

(1)𝜎ji,j + Fi = 𝜌üi , i, j = 1, 2, 3

(2)k∗𝜑,ii = To 𝛾 𝛿ij �̈�ij + 𝜌 cE �̈� , i, j = 1, 2, 3

(3)� − � = a�,ii , i = 1, 2, 3

(4)�ij = 2� eij +
(
� ekk − � �

)
�ij , i, j, k = 1, 2, 3

(5)To� = cE� + To�eij�ij , i, j = 1, 2, 3

(6)qi,i = −To�̇� , i = 1, 2, 3

(7)q̇i,i = −k∗𝜑,ii , i = 1, 2, 3

(8)∫
v

Fi� ui d v + ∫
s

pi� ui d s,

(9)�ji nj = pi ,

(10)

∫
s

pi � uids = ∫
s

�ji nj � uids = ∫
v

�ji,j � uidv + ∫
v

�ji � eijdv,
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Using Eq. (4), the second term on the right-hand side 
of Eq. (11) takes the form

We arrive at the theorem of virtual work from Eqs. (8) and 
(12), we obtain

where

The function W implies the work of the deformation may 
be expressed by Noda et al. [20] and takes the form

The three terms on the left-hand side of Eq. (13) express 
the virtual external work of the body forces, tractions on the 
boundary and inertia forces, respectively, while the right-
hand side expresses the virtual internal work.

We introduce an entropy flux H, which is related to the 
heat flux through the equation

By eliminating the entropy and the heat flux between 
Eqs. (5), (6) and (16), we get

By eliminating qi Eqs. (7) and (16), we obtain

Without loss of generality, we can put a parameter for the 
time derivatives, i.e.

hence, Eq. (18) takes the form

(11)

∫
s

pi 𝛿 uids + ∫
v

Fi 𝛿 uidv = ∫
v

𝜌 üi 𝛿 uidv + ∫
v

𝜎ji 𝛿 eijdv,

(12)

∫
v

�ji � eijdv = ∫
v

(
2� eij + � ekk �ij

)
� eij dv − ∫

v

� � � ekk dv

(13)

∫
s

pi 𝛿 uids + ∫
v

Fi 𝛿 uidv − ∫
v

𝜌 üi 𝛿 uidv = 𝛿W − ∫
v

𝛾 𝜃 𝛿 ekkdv

(14)�W = ∫
v

(
2� eij � eij + � ekk� eii

)
dv

(15)W = ∫
v

(
� eij eij +

�

2
ekk eii

)
dv

(16)qi = ToḢi ,

(17)−ToHi,i = cE� + To�eii

(18)To Ḧi = −k∗𝜑 ,
i

�2

� t2
= � ,

(19)
To �

k∗
Hi + �,i = 0

Multiplying by �Hi the above equation and integrating 
over volume v of the body, we get

The second term of the Eq. (20) by using Gauss’s diver-
gence theorem and Eq. (3) reduced to.

which gives

From Eq. (17), we have

Using Eq. (19) and Eq. (22) in the middle term of the 
right-hand side of Eq. (21), we get

Now, Eq. (20) takes the form

We introduced the heat potential P in the form [20]:

where

and the dissipation function D in the form [20]:

(20)∫
v

To �

k∗
Hi� Hi dv + ∫

v

�,i� Hi dv = 0

∫
v

�,i �Hi dv = ∫
v

(
��Hi

)
,i
dv − ∫

v

� �Hi,i dv

= ∫
s

� ni �Hi ds − ∫
v

(
� + a�,ii

)
�Hi,i dv

(21)

∫
v

�,i �Hi dv = ∫
s

� ni �Hi ds − ∫
v

� �Hi,i dv − ∫
v

a�,ii �Hi,i dv

(22)� Hi,i = −
cE

To
�� − � �eii

(23)

∫
v

�,i �Hi dv = ∫
s

� ni �Hi ds +
cE

To ∫
v

� �� dv

+ � ∫
v

� �eii dv +
To � a

k∗ ∫
v

Hi,i �Hi,i dv

(24)
∫
v

(
To �

k∗
Hi + �,i

)

� Hi dv =
To �

k∗ ∫
v

Hi � Hi dv + ∫
s

� ni �Hi ds

+
cE

To ∫
v

� �� dv + � ∫
v

� �eii dv +
To � a

k∗ ∫
v

Hi,i �Hi,i dv = 0

(25)P =
cE

2 To ∫
v

�2 dv,

(26)� P =
cE

To ∫
v

� �� dv

(27)

D =
To �

2 k∗ ∫
v

(
H2

i
+ aH2

i,i

)
dv =

To

2 k∗
�2

� t2 ∫
v

(
H2

i
+ aH2

i,i

)
dv,
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Hence, we get

The dissipation function D which is defined above is 
a new dissipation function because it contains a new 
parameter a. If we let a = 0, we get the old dissipation 
function D that is defined by [20].

Introducing Eqs. (26) and (28) into Eq. (24), we obtain 
the variational equation for heat conduction

Elimination of the term � ∫
v

� �eii dv from Eqs. (13) and 

(29) leads to

The terms on the right-hand side of Eq. (30) express the vir-
tual external work of the body forces, tractions on the bound-
ary, inertia forces, and heating of the boundary, respectively, 
while the left-hand side expresses the virtual internal work of 
deformation, the variation of heat potential, and the variation 
of the dissipation function, respectively [20].

Introducing the Biot thermoelastic potential � [ 20]:

which gives:

The above equation is the variational principle for the 
two-temperature thermoelasticity without energy dissipa-
tion theory problem.
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(28)�D =
To

k∗
�2

� t2 ∫
v

(
Hi �Hi + aHi,i �Hi,i

)
dv,

(29)�P + �D + � ∫
v

� �eii dv = −∫
s

� ni �Hi ds,

(30)

𝛿W + 𝛿P + 𝛿D = ∫
s

pi 𝛿 uids + ∫
v

Fi 𝛿 uidv

− ∫
v

𝜌 üi 𝛿 uidv − ∫
s

𝜑 ni 𝛿Hids

(31)� = W + P = ∫
v

(

�eij eij +
�

2
eii ejj +

cE

2 To
�2
)

dv

(32)

𝛿(𝜙 + D) = ∫
s

(
pi 𝛿 ui − 𝜑 ni 𝛿Hi

)
ds + ∫

v

(
Fi − 𝜌 üi

)
𝛿 ui dv
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