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Abstract
In this pioneering study, we have systematically derived traveling wave solutions for the highly intricate Zoomeron equation, 
employing well-established mathematical frameworks, notably the modified (G′/G)-expansion technique. Twenty distinct 
mathematical solutions have been revealed, each distinguished by distinguishable characteristics in the domains of hyperbolic, 
trigonometric, and irrational expressions. Furthermore, we have used the formidable computational capabilities of Maple 
software to construct depictions of these solutions, both in two-dimensional and three-dimensional visualizations. The visual 
representations vividly capture the essence of our findings, showcasing a diverse spectrum of wave profiles, including the 
kink-type shape, soliton solutions, bell-shaped waveforms, and periodic traveling wave profiles, all of which are clarified 
with careful precision.

Keywords Zoomeron equation · Modified 
(
G�∕G

)
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differential equations · Kink wave · Bell wave

1 Introduction

Albert Einstein once said, "The most incomprehensible thing 
about the world is that it is at all comprehensible. But how 
do we fully understand incomprehensible things?" In this 
sense, nonlinear science offers some hints[1]. The environ-
ment we live in is intrinsically nonlinear. In several scientific 

disciplines, such as fluid mechanics, solid-state physics, 
plasma physics, plasma waves, and biology, nonlinear evo-
lution equations (NEEs) are frequently employed as models 
to describe complicated physical events.

Academics are currently focusing on nonlinear wave 
equations for the mathematical description and examination 
of real-world occurrences. To have a deeper understanding 
of actual events, the exact solutions of the conforming math-
ematical models should be obtained. Many scholars have 
worked hard to provide a universal approach to dealing with 
all types of NLEEs.

In particular, a variety of techniques have been used to 
investigate distinct physical model solutions that are mod-
eled by nonlinear partial differential equations (NPDEs)., 
notably the Exp(-Phi)-Expansion method[2, 3], Bifurcation 
Analysis [4], the unified technique[5], Sine–Gordon expan-
sion method [6], Kudryashov schemes [7], Jacobi elliptic 
task technique [8], the Jacobi elliptic ansatz technique [9], 
fractional iteration algorithm [10, 11], variation of 

(
G�∕G

)
-expansion method [12], modified decomposition schemes 
[13], the hyperbolic and exponential ansatz method [14], 
natural transformation technique [15], Hirota’s simple 
schemes [16, 17], the modified extended tanh expansion 
system [18], and significantly more[19–24]. Previous papers 
handled the solution procedure of nonlinear Riccati equa-
tions, Jimbo–Miwa equation, the Kadomtsev–Petviashvili 
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equation [25–29], more systematically and conveniently, 
and these solutions are close to the aforementioned equa-
tion and helped us in this study to investigate more novel 
soliton solutions.

In order to convey the reasonability and simplicity of 
the cycle, we instrument the modified (G�∕G)−-expansion 
schemes in the current study to produce accurate solutions 
to the Zoomeron equation. The key advantage of this cycle 
over other designs is that it contributes more innovative 
precise solutions, including additional independent factors, 
and we also produce a few novel results. The exact reactions 
are crucial in disclosing the key element of the real events. 
In addition to its considerable significance, fractional order 
nonlinear population's particular responses.

To the best of our knowledge, modified (G�∕G)−
expansion method has not been previously employed in the 
derivation of soliton solutions for the nonlinear Zoomeron 
equation. To provide a visual representation, select instances 
are graphically illustrated through the utilization of Maple, a 
widely used commercial software platform. This innovative 
approach serves as a potent tool for generating traveling 
wave solutions across a broad spectrum of nonlinear partial 
differential equations.

2  The modified (G'/G)‑expansion method

We are considering:

where T  is a polynomial in u.
Family I: Implement the traveling variable:

where p3 and V  are a constant to be determined later. 
Implementing Eq. (2) into Eq. (1), we find:

Family II: Considering the ansatz form:

where Δ =
(

G�

G
+

�

2

)
, ||A−N

|| + ||AN
|| ≠ 0 and G = G(�) 

satisfies the equation

where Vi(±1,±2, ......,±N) , � and � are coefficient constants 
later. Implementing homogeneous balance principle in Eq. 
(3), the positive integer N  can be determined. From the 
Eq. (5), we find that

(1)T
(
u, ux, uxx, ut, utt, uxt, .....

)
= 0,

(2)u = u(x, t) = u(�), � = p3(x − Vt),

(3)S
(
u, p3u�, p

2

3
u��,−p3Vu�, ...

)
= 0.

(4)u(�) =
∑N

i=−N
ViΔ

i,

(5)G
��

+ �G� + �G = 0,

where r = �2−4�

4
  and  r is calculated by  � and � . So, Δ 

satisfies (6), which produces:
Family III: By implementing Eq. (5) and Eq. (4) and 

Eq. (3) and collecting all terms with the same order of Δ 
together, the left-hand side of Eq. (3) is converted into 
polynomial in Δ. Equating each coefficient of the polynomial 
to zero, we can get a set of algebraic equations which can be 
solved to find the values of the studied method.

3  Application of the modified 
(G'/G)‑expansion method

The modified (G'/G)-expansion approach is used in this 
subsection to solve the Zoomeron equation in the form.

where u(x,y,t) is the amplitude of the relative wave mood. 
This equation is one of incognito evolution equation. The 
equation was introduced by Calogero and Degasperis [21]. 
Using the wave variable

Equation (7) is carried to an ODE

where the prime denotes the derivation with respect to Δ and  
R is the integration constant.

Balancing the highest- order derivative term U′′  with 
the nonlinear term U3 of Eq. (8) yields N = 1 According to 
modified G

�
∕G expansion method,

Now the solution of Eq. (8) is,

Putting Eq. (9) in Eq. (8) with the help of the proposed 
methods we get,

Set of solutions:
Case-1:

Substituting the values of case (1) into Eq. (9) then we 
achieve,
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Case-2:

Substituting the values of case (2) into Eq. (9) then we 
achieve,

Case-3:
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Substituting the values of case (3) into Eq. (9) then we 
achieve,

Case-4:

Substituting the values of case (4) into Eq. (9) then we 
achieve,
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4  Graphical representation

Graphs are a useful tool for advising and for calling prob-
lems' solutions calmly. A blueprint is a visible depiction of 
incomplete or imperfect solutions, or other data, typically 
used for allusive purposes. When assuming addition in 
routine activity, we need the fundamental capacity to use 
graphs effectively. We will discuss the graphical depiction 
of the discovered solutions in this section. Figure 1 exhib-
its the unique presentation of Eq. (11) using the param-
eters � = −4, � = 2, R = 2,W = 0.5, y = 0.5. Specifically, 
Fig. 1 shows the 3D form (real and complex), 2D form 
(real and complex), and density form (real and complex) 
 of.Eq. (11). The real part of this shape addresses the wave 
profile, and complex part represents the anti-kink wave 
profile. The solution attributes of Eq. (10) are displayed 

in Fig. 2 using � = 3, � = 1, R = 0.5,W = −0.9, y = 0.5. 
This shape addresses the bell shape and kink wave pro-
file. The nature of the result of Eq. (13) is shown in 
Fig. 3 using � = 2, � = 2, R = 0.5,W = 0.9, y = 0.5. This 
shape addresses the periodic wave profile. The solu-
tion attributes of Eq. (11) are displayed in Fig. 4 using 
� = 3, � = 1, R = 0.5,W = −0.9, y = 0.5. Th i s  shape 
addresses cusp wave of multiple wings shape and kink 
wave profile.

5  Comparison

The paper compares the findings of the Zoomeron 
equation obtained by the proposed approach with 
solutions discovered in past research in this section. 

Fig. 1  The graphical repre-
sentation of Eq. (11): a real 
3D shape, b real 2D shape, c 
complex 3D shape, d complex 
2D shape
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The comparison, as shown in Table, reveals differences 
between the obtained results and those documented by 
Reza Abazari et al. [30] obtained by (G�∕G)−expansion 
method. The table shows that for some values of arbitrary 
parameters, the derived solutions deviate from those 

described in previous literature [30]. This highlights the 
consistency with previous results while emphasizing the 
novelty of the remaining outcomes. This work provides 
several innovative soliton solutions to the aforementioned 
equation utilizing the modified (G�∕G)−expansion strategy, 
as illustrated by the comparison table below.

Fig. 2  The graphical represen-
tation of Eq. (10): a real 3D 
shape, b real 2D shape, c com-
plex 3D shape, and d complex 
2D shape
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Solutions of Reza Abazari et al.[30] Solutions attained in this study
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Fig. 3  The graphical represen-
tation of Eq. (13): a real 3D 
shape, b real 2D shape, c com-
plex 3D shape, and d complex 
2D shape
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6  Conclusion

Our study thoroughly evaluated the innovative computa-
tional solutions related with the Zoomeron equation using 
the proposed approaches. We have shown a plethora of new 
computational outcomes over a spectrum encompassing 
hyperbolic, rational, and trigonometric equations, showing 
patterns such as the king-type form, singular king shape, 
periodic waves, and bell-shaped wave profiles. Utilizing 
Maple, this study employs the powerful capabilities of the 
software to present captivating two- and three-dimensional 
(2-D and 3-D) visual representations of these solutions. 
To emphasize the uniqueness of our study, we conducted 
comparison analyses, comparing our observed responses 
to those published in recent research papers. The demon-
stration of the efficacy of these established methodologies 
highlights its appropriateness, impact, and adaptability in 
dealing with various nonlinear models, necessitating addi-
tional investigation and inspection.
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