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Abstract
The key idea and contribution of this study are to present the innovative functional matrix approach for solving the 
two chemical, mathematical problems such as the absorption of CO

2
 into phenyl glycidyl ether (PGE) and the chemical 

kinetic problem. These chemical problems are characterized as a system of nonlinear ODEs with initial and boundary 
conditions. Numerical outcomes are obtained to establish the simplicity and efficacy of the developed scheme. Graphs 
and tables show how consistently and effectively the developed strategy works. Results obtained show that the newly 
adopted technique is more precise and effective than other methods such as Adam–Bashforth–Moultan method (ABM), 
Runge–Kutta method (RK4), Adomian Decomposition method (ADM), and residual method (RM). Mathematical software 
called Mathematica 11.3 has been used to perform all calculations. Theorems explain the convergence of this approach.

Keywords  Chemical problems · Chemical kinetic problem · Operational matrix of integration (OMI) · Collocation 
technique · System of ordinary differential equations (SODEs) · Fibonacci wavelet collocation method (FWCM)

Mathematics Subject Classification  34B16 · 34A12 · 65L05 · 65L10 · 34A34

1  Introduction

In real life, many variables and parameters are connected 
under certain circumstances. When we mathematically 
represent the relationship between these variables and  
parameters, we usually arrive at a mathematical model of 
the problem: a differential equation, an integral equation,  
a system of differential or integral equations, etc. Math-
ematical modelling is the best way to formulate real-world 
problems. It is familiar that numerous mathematical char-
acterizations of enormous growth in physical and chemical 
sciences are represented by SODEs. In the field of chemis-
try, the above-considered two models that are nonlinear  

SODEs can describe different kinds of Dirichlet and Neu-
mann-type boundary conditions. Carbon dioxide is vital in 
plant photosynthesis and the industrial of carbonated soft 
drinks, removing caffeine from coffee, used in fire extin-
guishers, and energizing pneumatic models in robotics [1, 
2]. CO2 is a beneficial gas that forms one carbon atom and 
two oxygen atoms. In recent times the chemical fascina-
tion of CO2 is a significant research focus since the hazard 
postured by global warming and the conversion of CO2  
into valuable substances is a tremendously elegant result.

Consider the general form of the SODEs, which repre-
sents the CO2 absorbed into the PGE problem [3]:
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With Dirichlet boundary conditions: yi(x) = �i  , 
yi(x) = �i , i = 1, 2,… n.

Mixed set of Dirichlet and Neumann boundary condi-
tions: y�

i
(x) = �i , yi(x) = �i . Where f1, f2,… fn are homoge-

neous parts of the equation, yn(x) are the concentrations 
of CO2 and PGE, respectively, �i’s, �i’s, �i ’s and �i ’s are the 
specified values at the different boundaries.

The mathematical model of the chemical kinetic prob-
lem is one of the well-described nonlinear SODEs that 
Robertson introduced in 1966. There are three spaces in 
the model of chemical procedure, which are indicated by 
P, Q, and R. We can define the three reactions as:

The concentration of P, Q, and R can be denoted by 
u1, u2 and u3 respectively. It is worth considering that these 
are the combinations of three concentrations in one. Let 
b1 denote the reaction rate of Eq. (2), and this means that 
the rate at which u2 rises and at which u1 reduces, due of 
the above reaction, it will be equivalent to b1u1 . R acts as 
a catalyst in the production of P from Q and b2 represents 
reaction rate in the reaction Eq.  (3), meaning that the 
decrease of u3 and the increase of u1 this reaction will be 
equivalent to b2u2u3 . At last, the rate at which this reaction 
will be equal to b3u

2
3
. Due to the production of R from Q 

will have a constant rate equivalent to b3.
Consider the general form of the nonlinear SODEs, 

which represents the chemical kinetic problem: [4, 5]

where ( ′ ) represents the derivative of the dependent vari-
able ui concerning the independent variable x and corre-
sponding initial conditions; ui(x)x=0 = �i , where �i ’s are the 
specified constant vector and ui(x) is the solution vector 
and i = 1, 2, 3,… q . Different published works were carried 
out on the above models, such as the Chemistry problem 
by Abbasbandy and Shirzadi [6], the chemistry problem 
by Matinfar et al. [7], An analytical approximation to the 
solution of the chemical kinetic problem by Hossein A 
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[4], chemistry problems by Jawary and Raham [8], Kumar 
et al. [9] implemented a comparative study for fractional 
chemical kinetics and carbon dioxide CO2 absorbed into 
phenyl glycidyl ether problems, CO2 absorbed into the PGE 
problem by Robertson [10], Ganji et al. [5] proposed He’s 
Homotopy Perturbation method for the chemistry kinetic 
problem, Jawary et al. implemented an effective iteration 
method and VIM (Variational Iteration Method) for the 
chemical kinetic problem, and the absorption of carbon 
dioxide into phenyl glycidyl ether problem respectively 
[11]. The ADM method was used for the simple steady-
state condensations of CO2 and PGE, and it is presented 
in [3], Duan et al. [12] successfully attempted the simple 
steady-state condensations of CO2 and PGE by the ADM 
Method, Kaya [13] attempted the Adomian decomposi-
tion method to the chemical kinetic problem, Khader [14] 
applied the Laplace–Pade approximation technique to 
improve the performance of the Chemical Kinetic Problem 
(CKP) model, MSH Chowdary implemented a novel itera-
tive method for the CK System [15], Boundary domain inte-
gral method and HAM for nonlinear BVP’s were proposed 
by Jawary et al. [16], Singha and Wazwaz [17] proposed an 
optimal Homotopy analysis method for steady-state con-
centrations of absorption of carbon dioxide into phenyl 
glycidyl ether problem.

The wavelet theory is a relatively renewed and 
emerging theory in mathematical research. Wave-
let analysis is a great tool that significantly impacts 
study and engineering. The primary criteria that draw 
researchers to the wavelet are orthogonality and effec-
tive localization. With the help of wavelets that are 
mathematical operations, data may be divided into 
several frequency components, each of which can then 
be analyzed at a different resolution. It is possible to 
employ wavelets as a mathematical tool to extract infor-
mation from various data formats. Wavelet acquired the 
attention of many mathematics researchers for solving 
various types of highly nonlinear typical problems. Dif-
ferent wavelet collocation schemes applied for some 
of the common mathematical problems are Hermite, 
Legendre, and Laguerre wavelets [18–26], Bernoulli 
wavelets [28], Fractional delay differential equations 
[27], Fractional Riccati differential equation [29]. Few 
wavelet collocation methods generally used for solv-
ing various engineering, physical and biological models 
include Legendre wavelets [30], Haar wavelets [31–33], 
Chebyshev wavelets [34], Bernoulli wavelets [27, 43–45], 
and Ultraspherical wavelets [35, 36].

Fibonacci wavelets produced by Fibonacci polynomi-
als are a new accumulation to the field of wavelet fami-
lies. It has an added advantage in contrast with the other 
wavelet methods as follows [39]:
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•	 The number of terms of the Fibonacci polynomials Pm(x) 
is less than the number of the terms of the Legendre pol-
ynomials Lm(x). It helps to reduce CPU time.

•	 Error components in the OMI representing Fibonacci 
polynomials are less than that of Legendre polynomials.

•	 Fibonacci polynomials Pm(x) have less coefficient of indi-
vidual terms than in Legendre polynomials Lm(x). Com-
putational errors can be reduced using this property.

•	 Using the Mathematica command Fibonacci [m, x], the 
coefficients of the Fibonacci polynomials can be easily 
obtained in computer programs.

Due to its superior properties and advantages over other 
wavelets, it grabs the attention of many researchers. As a 
consequence, researchers start using this package to solve 
mathematical problems such as the Nonlinear Hunter–Sax-
ton Equation [48], fractional order optimal control prob-
lems [37], time-varying delay problems [36], nonlinear Stra-
tonovich Volterra integral equations [38], time-fractional 
telegraph equations [39], time-fractional bioheat transfer 
model [40], nonlinear Volterra integral equations [41], 
Dual-phase lag heat transfer model [42]. Also, some articles 
referred to the improvisation of concept [49–51].

This paper is organized as follows. Section 2, named “Pre-
liminaries,” defines Fibonacci wavelets. OMI of Fibonacci 
wavelets carried out in Sect. 3. The method of solution and 
application of the proposed scheme is explained in Sects. 4 
and 5, respectively. Finally, Sect. 6 gives the conclusion of 
the article.

2 � Preliminaries of the Fibonacci wavelets

On the interval [0, 1] , Fibonacci wavelets are defined as [36, 
39],

with

where Pm(x) is the Fibonacci polynomial of degree 
m = 0, 1, 2… ,M − 1 ,  t r a n s l a t i o n  p a r a m e t e r 
n = 1, 2,… , 2k−1 and k represents the level of resolution 
k = 1, 2,… , respectively. The quantity 1√

Sm
 is a normaliza-

tion factor. The Fibonacci polynomials are defined as fol-
lows in the form of the recurrence relation for every x ∈ R+

:

𝜑n,m(x) =

⎧
⎪⎨⎪⎩

2
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2√
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�
2k−1x − �n

�
,

�n

2k−1
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0, Otherwise,

Sm =

1

∫
0

(
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)2
dx,

with initial conditions P0(x) = 1, P1(x) = x.
Fibonacci wavelets are compactly supported wavelets 

formed by Fibonacci polynomials over the interval [0,1].
Basic Definitions [46, 47]:
Convergence: A real sequence {an} converges to a limit 

a if for given 𝜖 > 0 , there exists N ∈ ℕ such that if n > N 
then ||an − a|| < 𝜖.

Uniform Convergence: Let E be a nonempty subset of 
ℝ . A sequence of functions fn ∶ E → ℝ is said to converge 
uniformly on E to a function f  if and only if for every 𝜖 > 0 
there is an N ∈ ℕ such that

Absolute Continuity: A real-valued function f  defined 
on [a, b] is said to be absolutely continuous on [a, b] if, 
given 𝜖 > 0, there is a 𝛿 > 0 such that

Outer Measure: Let A be any set of real numbers, 
then the outer measure of A written as m∗A is defined by 
m∗A = infA⊆

⋃
In

∑∞

n=1
l(In) , where infimum is taken over the 

countable covering of A by open intervals.

Theorem 1  [27] Let L2[0, 1] be the Hilbert space generated 
by the Fibonacci wavelet basis. Let �(x) be the continuous 
bounded function in L2[0, 1] . Then the Fibonacci wavelet 
expansion of �(x) converges with it.

Proof  Let � ∶ [0, 1] → R be a continuous function and 
|�(x)| ≤ � , where � be any real number. Then Fibonacci 
wavelet dilation of y(x) can be expressed as,

an,m− = ⟨�(x),�n,m(x)⟩ denotes inner product:

Since �n,m are the orthogonal basis:

Then substitute 2k−1x − n + 1 = y then we get,

Pm+2(x) = xPm+1(x) + Pm(x), ∀m ≥ 0,

n ≥ ℕ implies ||fn(x) − f (x)|| < 𝜖 ∀x ∈ E .

n∑
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By generalized mean value theorem,

Since �m(y) is a bounded continuous function. Put 
∫ 1

0
�m(y)dy = h

Since � remains bounded.

Hence, ||an,m|| =
|||||||

2
−k+1
2 �h√

(−1)m−1(m!)2�2m
(2m)!

|||||||
.

Therefore, 
∑∞

n,m=0
an,m is absolutely convergent. Hence 

the Fibonacci wavelet series expansion �(x) converges 
uniformly to it.

Theorem 2  [27] Let I ⊂ R be a finite interval with length 
m(I) . Furthermore, f (x) is an integrable function defined on I 
and 

∑M−1

i=0
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j=1
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approximation of  f  on  I  with for some  𝜖 > 0 , ���f (x) −
∑M−1

i=0

∑2k−1

j=1
ai,j�i,j(x)

��� ≤ �,∀x ∈ I   .  T h e n 

−�m(I) + ∫
I

∑∑
ai,j�i,j(x)dx ≤ 

∫
I
f (x)dx ≤ �m(I) + ∫

I

∑∑
ai,j�i,j(x)dx.

3 � Operational matrix of integration (OMI)

At k = 1 and M = 10, the Fibonacci wavelet basis is examined 
as follows:
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Integrating the first ten bases described above for the 
range of x limits from 0 to x in the form of a linear combina-
tion of Fibonacci wavelet basis. We obtain,
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Hence,

where,
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Again, integrating the above ten basis, we obtain,
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5655766

0
2

63
0

√
5016284989

72
√
913406209

�
�10(x),

x

∫
0

x

∫
0

�1,8(x)dxdx =

�
−

3
√
17017

8
√
140977105

0 0 0 0 0
√
21559553

144
√
28195421

0
1

40
0
�
�10(x) +

√
11941544471

180
√
535712999

�1,10(x),

x

∫
0

x

∫
0

�1,9(x)dxdx =

�
0 −

�
969969

25081424945
0 0 0 0 0

√
913406209

90
√
5016284989

0
2

99

�
�10(x) +

4
√
10276002038

55
√
115374554747

�1,11(x).

Hence,

where

(7)∫
x

0
∫

x

0

�(x)dxdx = |B��10(x) + ��
10(x)

�B�
10×10

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1

2
0

�
7

15
0 0 0 0 0 0 0

0 −
1

3
0

√
239

6
√
35

0 0 0 0 0 0

−

√
5

2
√
21

0
1

4
0

√
1943

168
√
3

0 0 0 0 0

0 −
5
√
35

12
√
239

0
2

15
0

√
2582

5
√
7887

0 0 0 0

−

√
35

2
√
1943

0
7
√
3

10
√
1943

0
1

12
0

√
1268209

30
√
277849

0 0 0

0 −

√
385

4
√
7746

0
√
2629

40
√
7746

0
2

35
0

√
2827883

168
√
33566

0 0

−

√
5005

4
√
1268209

0 0 0
√
277849

42
√
1268209

0
1

24
0

√
28195421

28
√
21559553

0

0 −

√
15015

4
√
2827883

0 0 0
√
16783

7
√
5655766

0
2

63
0

√
5016284989

72
√
913406209

−
3
√
17017

8
√
140977105

0 0 0 0 0
√
21559553

144
√
28195421

0
1

40
0

0 −

�
969969

25081424945
0 0 0 0 0

√
913406209

90
√
5016284989

0
2

99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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In the same way, we can generate matrices of different 
sizes for our handiness.

4 � Fibonacci wavelet method

Consider the two non-linear reactions in normalized form

and boundary conditions will become:

where �1, �2, �1, �2 are normalized arguments, z(x) denotes 
the condensation of PGE and y(x) denotes the condensa-
tion of CO2 . Here, we would like to bring the solution of 
system (8) that is extracted from the CO2 absorbed into the 
PGE problem (1) in the Fibonacci wavelet space.

Assume that,

where, AT = [a
1,0
,… a

1,M−1, a2,0,… a
2,M−1, a2k−1 ,0 ,… a

2k−1 ,M−1],

��
10(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0√
11941544471

180
√
535712999

�1,10(x)

4
√
10276002038

55
√
115374554747

�1,11(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)
y��(x) =

�1y(x)z(x)

1+�1y(x)+�2z(x)

z��(x) =
�2y(x)z(x)

1+�1y(x)+�2z(x)

}

(9)y(0) = �, y(1) = � , z�(0) = � , z(1) = �

(10)
d2y

d2x
≈ AT�(x)

(11)
d2z

d2x
≈ BT�(x)

BT = [b1,0,… b1,M−1, b2,0,… b2,M−1, b2k−1,0,… b2k−1,M−1],

Integrating the Eqs. (10) and (11) with respect to ‘ x ’ from 
‘ 0 ’ to ‘ x ’. We get

Approximating z�(0) = � by the Fibonacci wavelets as 
z�(0) = CT�(x) , we get

Integrating Eq. (12) concerning ‘ x ’ between ‘ 0 ’ and ‘ x ’ 
and approximating y(0) = � by the Fibonacci wavelets as 
y(0) = DT�(x). We obtain

We again express y(1) and z(1) in the Fibonacci wavelet 
as y(1) = ET�(x) and z(1) = FT�(x) ∶

Substituting Eqs. (14) into (13), we obtain

Now collocate (8) after substituting the above equa-
tions by following grid points xi =

2i−1

2kM
, i = 1, 2…M . The 

system with 2kM algebraic equations is obtained as shown 
below,

�(x) =[�(x)
1,0
,…�(x)

1,M−1,�(x)2,0,…�(x)
2,M−1,

�(x)
2k−1,0

,…�(x)
2k−1,M−1].

y�(x) ≈ y�(0) +

x

∫
0

AT�(x)dx

z�(x) ≈ z�(0) +

x

∫
0

BT�(x)dx.

(12)
y�(x) ≈ y�(0) + AT [ |B�(x) + �(x)]

z�(x) ≈ CT�(x) + BT [ |B�(x�) + �(x)]

}
.

(13)
y(x) ≈ DT�(x) + xy�(0) + AT [ |B��(x) + ��(x)]

z(x) ≈ z(0) + xCT�(x) + BT [ |B��(x) + ��(x)]

}
.

(14)
y
�(0) ≈ E

T�(x) − D
T�(1) − A

T
� �B��(1) + ��(1)

�
z(0) ≈ F

T�(x) − CT [ �B�(1) + �
�
(1)]

−BT [ �B��(1) + �
�
(1)]

⎫
⎪⎬⎪⎭
.

(15)

y(x) ≈ D
T�(x) + x(E

T
�(x) − D

T�(1)

−AT
� �B��(1) + �

�
(1)

�
) + A

T
��B��(x) + �(x)

�
z(x) ≈ F

T�(x) − CT [ �B��(1) + �
�
(1)]

−BT
� �B��(1) + �

�
(1)

�
+ B

T
� �B�(x) + �(x)

�

⎫
⎪⎪⎬⎪⎪⎭

.

AT�(xi) =
�1(D

T�(xi )+xi (E
T
�(xi)−DT�(1)−AT

� �B��(1)+��
(1)

�
)+AT [ �B��(xi)+�(xi)])(FT�(xi )−CT [ �B��(1)+��

(1)]−BT
� �B��(1)+��

(1)
�
+BT [ �B�(xi)+�(xi)])

1+�1(D
T�(xi )+xi (E

T
�(xi)−DT�(1)−AT

� �B��(1)+��
(1)

�
)+AT [ �B��(xi)+�(xi)])+�2(FT�(xi )−CT [ �B��(1)+��

(1)]−BT
� �B��(1)+��

(1)
�
+BT [ �B�(xi)+�(xi)])

BT�(xi) =
�2(D

T�(xi )+xi (E
T
�(xi)−DT�(1)−AT

� �B��(1)+��
(1)

�
)+AT [ �B��(xi)+�(xi)])(FT�(xi )−CT [ �B��(1)+��

(1)]−BT
� �B��(1)+��

(1)
�
+BT [ �B�(xi)+�(xi)])

1+�1(D
T�(xi )+xi (E

T
�(xi)−DT�(1)−AT

� �B��(1)+��
(1)

�
)+AT [ �B��(xi)+�(xi)])+�2(FT�(xi )−CT [ �B��(1)+��

(1)]−BT
� �B��(1)+��

(1)
�
+BT [ �B�(xi)+�(xi)])

⎫⎪⎬⎪⎭
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Utilizing the Secant method, solve the aforementioned 
equations to determine the values of the unknown Fibo-
nacci wavelet coefficients. The numerical solution of the 
system (8) using the Fibonacci wavelet is obtained by sub-
stituting these coefficient values into (13).

Next, we will consider the system of ODEs, which repre-
sents the Chemical kinetic problem as follows:

We want to bring the solution of the SODEs in the Fib-
onacci wavelet space that is extracted from a chemical 
kinetic problem (5).

Assume that,

where, AT = [a
1,0
,… a

1,M−1, a2,0,… a
2,M−1, a2k−1 ,0,… a

2k−1 ,M−1],

(16)
u�
1
(x) = −b1u1(x) + b2u2(x)u3(x)

u�
2
(x) = b1u1(x) − b2u2(x)u3(x) − b3u2 (x)

2

u�
3
(x) = b3u2(x)

2

⎫
⎪⎬⎪⎭

(17)
and the initial conditions are ∶ u1(0) = �1, u2(0) = �2, u3(0) = �3.

(18)u1
�(x) ≈ AT�(x)

(19)u2
�(x) ≈ BT�(x)

(20)u3
�(x) ≈ CT�(x)

BT = [b1,0,… b1,M−1, b2,0,… b2,M−1, b2k−1,0,… b2k−1,M−1],

We obtain the following set of equations on integrating 
the Eqs. (18)–(20) with respect ‘ x ’ from ‘ 0 ’ to ‘ x’.

Using Eq. (6) and physical constraints in Eq. (17) formu-
lated in terms of �(x) . We obtain,

where F, D, and E are the known vectors. On Substituting 
Eqs. (18), (19), (20), and (21) in (16), we obtain,

CT = [c1,0,… c1,M−1, c2,0,… c2,M−1, c2k−1,0,… c2k−1,M−1],

�(x) =[�(x)
1,0
,…�(x)

1,M−1,�(x)2,0,…

�(x)
2,M−1,�(x)2k−1,0,…�

(
x)

2k−1,M−1

]
.

u1(x) ≈ u1(0) + ∫
x

0

AT�(x)dx

u2(x) ≈ u2(0) + ∫
x

0

BT�(x)dx

u3(x) ≈ u3(0) + ∫
x

0

CT�(x)dx.

(21)
u1(x) ≈ DT�(x) + AT [ �B�(x) + �(x)]

u2(x) ≈ ET�(x) + BT [ �B�(x) + �(x)]

u3(x) ≈ FT�(x) + CT [ �B�(x) + �(x)]

⎫⎪⎬⎪⎭

Table 1   FWCM solution compared with the various methods for y(x)

x FWCM solution 
k = 1, M = 6

NDSolve solution OHAM [17] ADM [17] AE of FWCM with 
NDSolve

AE of OHAM with 
NDSolve

AE of 
ADM with 
NDSolve

0 0.839920073 0.839920073 0.8397515 0.8396746 6.90 × 10
−12

1.68 × 10
−4

2.45 × 10
−4

0.1 0.841750755 0.841750755 0.8415794 0.8415027 6.17 × 10
−12

1.71 × 10
−4

2.48 × 10
−4

0.2 0.847134671 0.847134671 0.8469568 0.8468806 5.47 × 10
−12

1.77 × 10
−4

2.54 × 10
−4

0.3 0.855914439 0.855914439 0.8557293 0.8556549 4.76 × 10
−12

1.85 × 10
−4

2.59 × 10
−4

0.4 0.867937884 0.867937884 0.8677478 0.8676770 4.07 × 10
−12

1.90 × 10
−4

2.60 × 10
−4

0.5 0.883056615 0.883056615 0.8828670 0.8828019 3.38 × 10
−12

1.89 × 10
−4

2.54 × 10
−4

0.6 0.901124738 0.901124738 0.9009442 0.9008874 2.70 × 10
−12

1.80 × 10
−4

2.37 × 10
−4

0.7 0.921997697 0.921997697 0.9218381 0.9217922 2.02 × 10
−12

1.59 × 10
−4

2.05 × 10
−4

0.8 0.945531270 0.945531270 0.9454074 0.9453750 1.34 × 10
−12

1.23 × 10
−4

2.56 × 10
−4

0.9 0.971580704 0.971580704 0.9715097 0.9714928 6.65 × 10
−12

7.10 × 10
−4

8.79 × 10
−5

1.0 1.000000000 1.000000000 1.0000000 1.0000000 0 0 0
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Table 2   FWCM solution compared with the various methods for z(x)

x FWCM solution 
k = 1, M = 6

NDSolve solution OHAM [17] ADM [17] AE of FWCM with 
NDSolve

AE of OHAM with 
NDSolve

AE of 
ADM with 
NDSolve

0 1.000000000 1.000000000 1.0000000 1.0000000 0 0 0
0.1 0.942911344 0.942911344 0.9428972 0.9428979 4.15 × 10

−14
1.41 × 10

−5
1.31 × 10

−5

0.2 0.887599306 0.887599306 0.8875699 0.8875704 4.97 × 10
−14

2.94 × 10
−5

2.89 × 10
−5

0.3 0.833985194 0.833985194 0.8339414 0.8339413 6.28 × 10
−14

4.37 × 10
−5

4.30 × 10
−5

0.4 0.781992920 0.781992920 0.7819371 0.7819361 6.39 × 10
−14

5.82 × 10
−5

5.68 × 10
−5

0.5 0.731548289 0.731548289 0.7314845 0.7314823 6.21 × 10
−14

6.37 × 10
−5

6.59 × 10
−5

0.6 0.682578354 0.682578354 0.6825121 0.6825087 5.42 × 10
−14

6.62 × 10
−5

6.96 × 10
−5

0.7 0.635010837 0.635010837 0.6349490 0.6349449 4.55 × 10
−14

6.18 × 10
−5

6.59 × 10
−5

0.8 0.588773627 0.588773627 0.5887240 0.5887200 3.17 × 10
−14

4.96 × 10
−5

5.36 × 10
−5

0.9 0.543794348 0.543794348 0.5437652 0.5437627 2.44 × 10
−14

2.91 × 10
−5

3.16 × 10
−5

1.0 0.500000000 0.500000000 0.4999991 0.5000000 0 9.91 × 10
−7 0

Fig. 1   The plot of FWCM solution at k = 1 for y(x) with different 
methods of solution

Fig. 2   A plot of FWCM solution at k = 1 for z(x) with different meth-
ods of solution

Fig. 3   Absolute error (AE) comparison of y(x) at k = 1 and M = 6

Fig. 4   Absolute error (AE) comparison of z(x) at k = 1 and M = 6
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On collocating all the equations of (22) by using the 
grid points xi =

2i−1

2kM
, i = 1, 2…M , we arrive the system 

with 2kM algebraic equations as below:

(22)

AT�(x) ≈ −b1
�
DT�(x) + AT

� �B�(x) + �(x)
��

+ b2
�
ET�(x) + BT

� �B�(x) + �(x)
��

�
FT�(x) + CT

� �B�(x) + �(x)
��

BT�(x) ≈ b1
�
DT�(x) + AT

� �B�(x) + �(x)
��

− b2
�
ET�(x) + BT

� �B�(x) + �(x)
��

�
FT�(x) + CT

� �B�(x) + �(x)
��

− b3
�
ET�(x) + BT

� �B�(x) + �(x)
��2

CT�(x) ≈ b3
�
ET�(x) + BT

� �B�(x) + �(x)
��2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

Table 3   FWCM solution compared with the various methods for y(x)

x FWCM solution 
k = 1, M = 6

NDSolve solution ADM [3] RM [42] AE of FWCM with 
NDSolve

AE of ADM with 
NDSolve

AE of RM with NDSolve

0 1.000000000 1.000000000 1.0000 1.0000 0 0 0
0.2 0.875548854 0.875548854 0.8734 0.8730 4.97 × 10

−14
2.14 × 10

−3
2.14 × 10

−3

0.4 0.764556398 0.764556398 0.7614 0.7610 6.39 × 10
−14

3.15 × 10
−3

3.15 × 10
−3

0.6 0.665735378 0.665735378 0.6629 0.6626 5.42 × 10
−14

2.83 × 10
−3

2.83 × 10
−3

0.8 0.577912192 0.577912192 0.5762 0.5761 3.17 × 10
−14

1.71 × 10
−3

1.71 × 10
−3

1.0 0.500000000 0.500000000 0.5000 0.5000 0 5.55 × 10
−17

5.55 × 10
−17

Table 4   FWCM solution compared with the various methods for z(x)

x FWCM solution 
k = 1, M = 6

NDSolve solution ADM [3] RM [42] AE of FWCM with 
NDSolve

AE of ADM with 
NDSolve

AE of RM with NDSolve

0 0.841773796 0.841773796 0.8420 0.8426 6.90 × 10
−12

2.26 × 10
−4

8.26 × 10
−4

0.2 0.848967891 0.848967891 0.8491 0.8497 5.47 × 10
−12

1.32 × 10
−4

7.32 × 10
−4

0.4 0.869620676 0.869620676 0.8698 0.8701 4.07 × 10
−12

1.79 × 10
−4

4.79 × 10
−4

0.6 0.902444897 0.902444897 0.9021 0.9026 2.70 × 10
−12

3.44 × 10
−4

1.55 × 10
−4

0.8 0.946266951 0.946266951 0.9459 0.9462 1.34 × 10
−12

3.66 × 10
−4

0.66 × 10
−4

1.0 1.000000000 1.000000000 0.1000 0.1000 0 0 0

Fig. 5   The plot of FWCM solution at k = 1 for y(x) with different 
methods of solution

Fig. 6   The plot of FWCM solution at k = 1 for z(x) with different 
methods of solution
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Utilizing the Newton–Raphson/Secant method, solve 
the aforementioned equations to determine the values of 
the unknown Fibonacci wavelet coefficients. The numeri-
cal solution of the system (16) using the Fibonacci wavelet 
is obtained by substituting these coefficient values into 
(21).

(23)

AT�(xi) ≈ −b1
�
DT�(xi) + AT

� �B��xi
�
+ �

�
xi
���

+ b2
�
ET�(xi) + BT

� �B��xi
�
+ �

�
xi
���

�
FT�(xi) + CT

� �B�(xi) + �
�
xi
���

BT�(xi) ≈ b1

�
DT�(xi) + AT

�
�B�(xi)+

−
�
�
xi
���

− b2
�
ET�(xi) + BT

� �B�(xi) + �
�
xi
���

�
FT�(xi) + CT

� �B�(xi) + �
�
xi
���

− b3
�
ET�(xi) + BT

� �B��xi
�
+ �

�
xi
���2

CT�(xi) ≈ b3
�
ET�(xi) + BT

� �B�(xi) + �
�
xi
���2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

5 � Numerical results and discussion

Example 5.1  The non-linear SODEs of the CO2 absorbed 
into phenyl glycidyl ether problem is of the form

(24)
y��(x) =

�1y(x)z(x)

1+�1y(x)+�2z(x)

z��(x) =
�2y(x)z(x)

1+�1y(x)+�2z(x)

}

Fig. 7   Absolute error (AE) comparison of y(x) at k = 1 and M = 6 with 
different methods in the literature

Fig. 8   Absolute error (AE) comparison of z(x) at k = 1 and M = 6 with 
different methods in the literature

Table 5   FWCM solution compared with the various approaches for u
1
(x)

x FWCM solution 
k = 1, M = 6

ND Solve solution Runge–Kutta method ABM [9] AE of FWCM 
with NDSolve

AE of RK4 with NDSolve AE of 
ABM with 
NDSolve

0 0.000000000 0.000000000 0.000000000 0.0000000 0.0000000 6.61 × 10
−24

6.61 × 10
−24

0.1 2.9775 × 10
−8

3.2018 × 10
−8

2.9776 × 10
−8

4.0 × 10
−8

1.18 × 10
−14

4.69 × 10
−13

1.02 × 10
−8

0.2 2.3643 × 10
−7

2.3617 × 10
−7

2.3643 × 10
−7

2.7 × 10
−7

1.19 × 10
−14

4.69 × 10
−13

3.35 × 10
−8

0.3 7.0292 × 10
−7

7.9135 × 10
−7

7.9202 × 10
−7

8.6 × 10
−7

1.36 × 10
−14

5.16 × 10
−11

6.79 × 10
−8

0.4 1.8634 × 10
−6

1.8625 × 10
−6

1.8635 × 10
−6

1.9 × 10
−6

1.46 × 10
−14

2.13 × 10
−10

3.66 × 10
−8

0.5 3.6126 × 10
−6

3.6115 × 10
−6

3.6129 × 10
−6

3.8 × 10
−6

1.43 × 10
−14

6.42 × 10
−10

1.87 × 10
−7

0.6 6.1964 × 10
−6

6.1954 × 10
−6

6.1971 × 10
−6

6.4 × 10
−6

1.77 × 10
−14

1.58 × 10
−9

2.04 × 10
−7

0.7 9.7671 × 10
−6

9.7661 × 10
−6

9.7686 × 10
−6

1.0 × 10
−5

2.37 × 10
−14

3.37 × 10
−9

2.34 × 10
−7

0.8 1.4472 × 10
−5

1.4471 × 10
−5

1.4475 × 10
−5

1.5 × 10
−5

2.37 × 10
−14

6.51 × 10
−9

5.31 × 10
−7

0.9 2.0454 × 10
−5

2.0453 × 10
−5

2.0459 × 10
−5

2.0 × 10
−5

2.37 × 10
−14

1.16 × 10
−8

4.48 × 10
−7

1.0 2.7857 × 10
−5

2.7851 × 10
−5

2.7861 × 10
−5

2.8 × 10
−5

2.37 × 10
−14

1.94 × 10
−8

1.58 × 10
−7
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Table 6   FWCM solution compared with the various approaches for u
2
(x)

x FWCM solution 
k = 1, M = 6

ND Solve solution Runge–Kutta ABM [9] AE of FWCM with 
NDSolve

AE of RK4 with 
NDSolve

AE of 
ABM with 
NDSolve

0 0.000000000 0.000000000 0.000000000 0.0000 0 0 0
0.1 0.009950136 0.009950182 0.009950196 0.0107 3.46 × 10

−14
5.95 × 10

−8
7.49 × 10

−4

0.2 0.019801090 0.019801350 0.019801563 0.0206 3.46 × 10
−14

4.72 × 10
−7

7.98 × 10
−4

0.3 0.029553674 0.029554544 0.029555258 0.0303 6.93 × 10
−14

1.58 × 10
−6

7.46 × 10
−4

0.4 0.039208697 0.039210743 0.039212424 0.0400 6.93 × 10
−14

3.72 × 10
−6

7.91 × 10
−4

0.5 0.048766962 0.048770923 0.048774188 0.0495 6.93 × 10
−14

7.22 × 10
−6

7.33 × 10
−4

0.6 0.058229269 0.058236048 0.058241664 0.0590 6.93 × 10
−14

1.23 × 10
−5

7.70 × 10
−4

0.7 0.067596412 0.067607072 0.067615950 0.0683 2.41 × 10
−14

1.95 × 10
−5

7.03 × 10
−4

0.8 0.076869181 0.076884937 0.076898132 0.0776 1.38 × 10
−14

2.89 × 10
−5

7.30 × 10
−4

0.9 0.086048360 0.086070573 0.086089280 0.0868 1.38 × 10
−14

4.09 × 10
−5

7.51 × 10
−4

1.0 0.095134729 0.095164901 0.095190453 0.0962 4.84 × 10
−14

5.57 × 10
−5

1.06 × 10
−3

Table 7   FWCM solution compared with the various approaches for u
3
(x)

x FWCM solution 
k = 1, M = 6

NDSolve solution Runge–Kutta ABM [9] AE of FWCM 
with NDSolve

AE of RK4 with NDSolve AE of 
ABM with 
NDSolve

0 1.000000000 1.000000000 1.000000000 1.0000 0 0 0
0.1 0.990049833 0.990049833 0.990049833 0.9893 0 6.02 × 10

−13
7.49 × 10

−4

0.2 0.980198673 0.980198673 0.980198673 0.9794 1.11 × 10
−14

5.83 × 10
−12

7.98 × 10
−4

0.3 0.970445533 0.970445533 0.970445533 0.9697 1.11 × 10
−14

5.37 × 10
−11

7.45 × 10
−4

0.4 0.960789432 0.960789439 0.960789439 0.9600 1.11 × 10
−14

2.30 × 10
−10

7.89 × 10
−4

0.5 0.951229424 0.951229424 0.951229424 0.9505 1.11 × 10
−14

7.02 × 10
−10

7.29 × 10
−4

0.6 0.941764534 0.941764534 0.941764532 0.9410 1.11 × 10
−14

1.73 × 10
−9

7.64 × 10
−4

0.7 0.932393821 0.932393821 0.932393818 0.9317 1.11 × 10
−14

3.70 × 10
−9

6.93 × 10
−4

0.8 0.923116345 0.923116349 0.923116342 0.9224 1.11 × 10
−14

7.13 × 10
−9

7.16 × 10
−4

0.9 0.913931191 0.913931191 0.913931178 0.9132 1.11 × 10
−14

1.27 × 10
−8

7.31 × 10
−4

1.0 0.904837428 0.904837428 0.904837407 0.9041 1.11 × 10
−14

2.12 × 10
−8

7.37 × 10
−4

Fig. 9   The plot of the FWCM solution at k = 1 for u
1
(x) with different 

methods of solution
Fig. 10   The plot of the FWCM solution at k = 1 for u

2
(x) with differ-

ent methods of solution
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Case 1:  �
1
= 1, �

2
= 2, �

1
= 1, �

2
= 3, � = 1, � = 0.5, � = 0, � = 1. 

Tables  1 and 2 and Figs.  1, 2, 3, and 4 depict all the 

(25)
and the boundary conditions will be ∶

y(0) = �, y(1) = � , z�(0) = � , z(1) = �

numerical simulations and graphical results of this particu-
lar case. We have compared the proposed method with 
the optimal homotopy analysis method (OHAM) [17], the 
Adomian decomposition method (ADM) [17], and the ND 
Solve solution due to the non-availability of the exact solu-
tion. It can be observed that the FWCM solution is very 
much close to the NDSolve solution. The CPU time taken 
is 1.017 s for the two tables of values together.

Case 2:  �
1
= 2, �

2
= 2, �

1
= 1, �

2
= 3, � = 1, � = 0.5,

� = 0, �1 = 2, �2 = 2, �1 = 1, �2 = 3, � = 1, � = 0.5, � = 0, 
� = 1. Tables 3 and 4 and Figs. 5, 6, 7 and 8 depict this 
case’s numerical simulations and graphical results. We 
have compared the proposed method (FWCM) with the 
Adomian Decomposition method (ADM), Residual method 
(RM), and ND solve solution due to the non-availability of 
the exact solution. It can be observed that the FWCM solu-
tion is very close to the NDSolve solution. The CPU time 
taken is 1.827 s for the two tables of values together.

Example 5.2  Next, Consider the system of ODEs of Chemi-
cal Kinetic Problem as follows:

A n d  t h e  p h y s i c a l  c o n s t r a i n t s  a r e : 
u1(0) = 1, u2(0) = 0, u3(0) = 0.

Tables 5, 6 and 7 and Figs. 9, 10, 11, 12, 13 and 14 depict 
this problem’s numerical simulations and graphical results. 
We have compared the proposed method (FWCM) solu-
tion with the Adam–Bashforth–Moultan method (ABM), 
Runge–Kutta method (RK4), and ND Solve solution due 
to the non-availability of the exact solution. It can be 

u�
1
(x) = −b1u1(x) + b2u2(x)u3(x)

u�
2
(x) = b1u1(x) − b2u2(x)u3(x) − b3u2(x)

2

u�
3
(x) = b3u2(x)

2.

Fig. 11   The plot of the FWCM solution at k = 1 for u
3
(x) with differ-

ent methods of solution

Fig. 12   Absolute error (AE) comparison of u
1
(x) at k = 1 and M = 6 

with different methods in the literature

Fig. 13   Absolute error (AE) comparison of u
2
(x) at k = 1 and M = 6 

with distinct approaches in the literature

Fig. 14   Absolute error (AE) comparison of u
3
(x) at k = 1 and M = 6 

with distinct approaches in the literature
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Table 8   Comparison of 
Absolute error (AE) with 
different values of k and M for 
u
1
(x)

x AE of FWCM (k = 1, 
M = 4) with NDSolve

AE of FWCM (k = 2, 
M = 4) with NDSolve

AE of FWCM (k = 1, 
M = 6) with NDSolve

AE of FWCM 
(k = 2, M = 6) with 
NDSolve

0 0 0 0 0
0.1 4.36 × 10

−10
4.42 × 10

−14
1.20 × 10

−11
2.22 × 10

−16

0.2 3.80 × 10
−10

3.13 × 10
−14

7.20 × 10
−12

3.33 × 10
−16

0.3 2.54 × 10
−10

3.04 × 10
−14

1.08 × 10
−11

2.22 × 10
−16

0.4 2.22 × 10
−10

3.34 × 10
−14

5.98 × 10
−12

3.33 × 10
−16

0.5 2.80 × 10
−10

3.16 × 10
−14

1.20 × 10
−16

2.22 × 10
−16

0.6 3.37 × 10
−10

2.97 × 10
−14

1.20 × 10
−11

3.33 × 10
−16

0.7 3.04 × 10
−10

3.27 × 10
−14

7.16 × 10
−12

3.33 × 10
−16

0.8 1.77 × 10
−10

3.18 × 10
−14

1.08 × 10
−11

3.33 × 10
−16

0.9 1.24 × 10
−10

1.95 × 10
−14

5.95 × 10
−12

1.95 × 10
−16

1.0 5.67 × 10
−10

6.18 × 10
−14

1.80 × 10
−11

4.44 × 10
−16

Table 9   Comparison of 
Absolute error (AE) with 
different values of k and M for 
u
2
(x)

x AE of FWCM (k = 1, 
M = 4) with NDSolve

AE of FWCM (k = 2, 
M = 4) with NDSolve

AE of FWCM (k = 1, 
M = 6) with NDSolve

AE of FWCM 
(k = 2, M = 6) with 
NDSolve

0 0 0 0 0
0.1 1.11 × 10

−10
7.67 × 10

−14
3.56 × 10

−12
4.56 × 10

−16

0.2 1.03 × 10
−10

5.46 × 10
−14

2.33 × 10
−12

4.96 × 10
−16

0.3 7.76 × 10
−10

5.32 × 10
−14

3.43 × 10
−12

4.51 × 10
−16

0.4 7.32 × 10
−11

5.88 × 10
−14

2.28 × 10
−12

4.92 × 10
−16

0.5 8.89 × 10
−11

5.57 × 10
−14

6.98 × 10
−16

6.93 × 10
−16

0.6 1.05 × 10
−10

5.27 × 10
−14

2.35 × 10
−12

4.02 × 10
−16

0.7 1.02 × 10
−10

5.83 × 10
−14

1.59 × 10
−11

4.44 × 10
−16

0.8 7.99 × 10
−11

5.68 × 10
−14

2.32 × 10
−12

3.88 × 10
−16

0.9 7.09 × 10
−11

3.52 × 10
−14

1.64 × 10
−12

4.02 × 10
−16

1.0 1.57 × 10
−10

1.10 × 10
−13

3.61 × 10
−12

8.18 × 10
−16

Table 10   Comparison of 
Absolute error (AE) with 
different values of k and M for 
u
3
(x)

x AE of FWCM (k = 1, 
M = 4) with NDSolve

AE of FWCM (k = 2, 
M = 4) with NDSolve

AE of FWCM (k = 1, 
M = 6) with NDSolve

AE of FWCM 
(k = 2, M = 6) with 
NDSolve

0 6.61 × 10
−24

6.61 × 10
−24

6.61 × 10
−24

6.61 × 10
−24

0.1 5.47 × 10
−10

3.25 × 10
−14

1.56 × 10
−11

1.81 × 10
−16

0.2 4.83 × 10
−10

2.33 × 10
−14

9.53 × 10
−12

1.97 × 10
−16

0.3 3.31 × 10
−10

2.28 × 10
−14

1.43 × 10
−11

1.79 × 10
−16

0.4 2.95 × 10
−11

2.53 × 10
−14

8.27 × 10
−12

1.95 × 10
−16

0.5 3.61 × 10
−11

2.41 × 10
−14

1.35 × 10
−20

1.48 × 10
−16

0.6 4.42 × 10
−10

2.30 × 10
−14

1.43 × 10
−11

1.82 × 10
−16

0.7 4.06 × 10
−10

2.55 × 10
−14

8.57 × 10
−12

1.98 × 10
−16

0.8 2.57 × 10
−11

2.50 × 10
−14

1.31 × 10
−11

1.80 × 10
−16

0.9 1.95 × 10
−11

1.58 × 10
−14

7.59 × 10
−12

1.96 × 10
−16

1.0 7.25 × 10
−10

4.84 × 10
−14

2.17 × 10
−11

3.78 × 10
−16
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observed that the FWCM solution is very much close to the 
ND Solve solution. It is clear from the Tables and Graphs 
that the approximate solution obtained from the FWCM is 
close to the ND Solve solution, which shows the efficiency 

of the proposed method. Also, we got a better solution 
by increasing the value of M and k, which can be seen in 
Tables 8, 9 and 10. Comparison of AE with distinct values 

Table 11   FWCM solution 
compared with the various 
approaches for w

1
(x)

x Exact solution FWCM k = 1, M = 6 NDSolve solution AE of FWCM with 
Exact solution

AE of NDSolve 
with Exact solu-
tion

0 0 0 0 0 0
0.1 −0.099 −0.099 −0.09900000 2.77 × 10

−17
2.44 × 10

−15

0.2 −0.192 −0.192 −0.1920000 0 8.32 × 10
−17

3.21 × 10
−15

0.3 −0.273 −0.273 −0.2730000 0 5.55 × 10
−17

3.99 × 10
−15

0.4 −0.336 −0.336 −0.3360000 0 1.11 × 10
−16

4.88 × 10
−15

0.5 −0.375 −0.375 −0.37500000 1.66 × 10
−16

6.05 × 10
−15

0.6 −0.384 −0.384 −0.38400000 2.22 × 10
−16

7.43 × 10
−15

0.7 −0.357 −0.357 −0.35700000 3.88 × 10
−16

8.88 × 10
−15

0.8 −0.288 −0.288 −0.28800000 2.22 × 10
−16

9.71 × 10
−15

0.9 −0.171 −0.171 −0.17100000 3.05 × 10
−16

8.02 × 10
−15

1.0 0 4.79 × 10
−16 −1.57 × 10

−15
4.79 × 10

−16
1.54 × 10

−15

Table 12   FWCM solution 
compared with the various 
approaches for w

2
(x)

x Exact solution FWCM k = 1, M = 6 NDSolve solution AE of FWCM with 
exact solution

AE of NDSolve 
with exact solu-
tion

0 0 0 0 0 0
0.1 0.09 0.09 0.0900000 2.77 × 10

−17
2.44 × 10

−15

0.2 −0.16 − 0.16 − 0.1600000 8.32 × 10
−17

3.21 × 10
−15

0.3 −0.21 − 0.21 − 0.2100000 5.55 × 10
−17

3.99 × 10
−15

0.4 −0.24 − 0.24 - 0.2400000 1.11 × 10
−16

4.88 × 10
−15

0.5 −0.25 − 0.25 − 0.2500000 1.66 × 10
−16

6.05 × 10
−15

0.6 −0.24 − 0.24 − 0.2400000 2.22 × 10
−16

7.43 × 10
−15

0.7 −0.21 − 0.21 − 0.2100000 3.88 × 10
−16

8.88 × 10
−15

0.8 −0.16 − 0.16 − 0.1600000 2.22 × 10
−16

9.71 × 10
−15

0.9 −0.09 − 0.09 − 0.0900000 3.05 × 10
−16

8.02 × 10
−15

1.0 0 3.7 × 10
−17 1.41 ×10−15 4.79 × 10

−16
1.54 × 10

−15

Fig. 15   AE comparison for u
1
(x) at various values of M and k Fig. 16   AE comparison for u

2
(x) at various values of M and k
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of M and k are presented in graphs 15–17. The CPU time 
taken is 0.891 s for all three tables of values together.

Example 5.3  Perhaps we will consider one more system of 
nonlinear ODEs in which the exact solution is available to 
examine the performance of the novel technique FWCM 
[4]:

With boundary conditions: w
1(0) = 0,w

1(1) = 0,

w
2(0) = 0,w

2(1) = 0.

The Exact solutions of the above system are: 
w1(x) = x3 − x,w2(x) = x2 − x . We compared the solutions 
obtained from the FWCM and ND Solve methods with 
the Exact solutions in Tables 11 and 12. Also, we brought 
the Absolute Errors of FWCM and NDSolve method with 
the exact solutions in the same tables. Graphical com-
parison of solutions and absolute errors are exposed in 
Graphs 18–21. Tables and Graphs reveal the precision and 

w��
1
(x) = xw�

1
(x) − w1 + x3 − 2x2 + 6x

w��
2
(x) = −xw�

1
− w1w2 + x5 − x4 + 2x3 + x2 − x + 2

Fig. 17   AE comparison for u
3
(x) at various values of M and k

Fig. 18   The plot of the FWCM solution at k = 1 for w
1
(x) with exact 

and NDsolve solutions

Fig. 19   The plot of the FWCM solution at k = 1 for w
2
(x) with exact 

and NDsolve solutions

Fig. 20   Absolute error (AE) comparison of w
1
(x) at k = 1 and M = 6 

with ND solve

Fig. 21   Absolute error (AE) comparison of w
2
(x) at k = 1 and M = 6 

with ND solve
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efficacy of the developed method. The CPU time taken is 
0.594 s for the tables of values together.

6 � Conclusion

In this article, we have implemented a new colloca-
tion approach called the Fibonacci wavelet collocation 
method (FWCM). The functional matrix of integration is 
obtained by using the Fibonacci wavelets. We solved two 
nonlinear SODEs representing the two familiar chemis-
try models using this matrix. The accuracy and profi-
ciency of this novel technique were demonstrated by 
comparing the obtained solutions with other standard 
methods such as RK4 and ND Solve. Tables and Graphs 
reveal that the FWCM converges rapidly compared to 
other existing techniques (ADM, RM, HPM, and VIM) in 
the literature. Also, numerical illustrations support the 
claim that only a few Fibonacci wavelets are sufficient to 
obtain satisfactory results. Hence the proposed method 
is a very attractive and efficient numerical technique to 
solve different chemical, biological, and physical prob-
lems. From Tables 8, 9, and 10 and Figs. 15, 16, and 17, 
we can see that the values of k and M incresases the 
accuracy of the solution. The future recommendation 
of the proposed scheme is that it is suitable for solu-
tions with sharp edge/jump discontinuities. By slightly 
modifying the method, the Fibonacci wavelet method 
can solve the higher-order system of ordinary differential 
equations and extend to PDEs and other mathematical 
models with different physical conditions. It is used to 
obtain the solution of the differential equation in the 
universal domain by taking the suitable transformation 
(Figs. 18, 19, 20, 21).
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