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Abstract
This study focuses on the flow of viscous, electrically conducting incompressible fluid over a stretching plate. The Falkner–
Skan equation is a nonlinear, third-order boundary value problem. No closed-form solutions are available for this two-
point boundary value problem. Here, we developed a new functional matrix of integration using the Bernoulli wavelet 
and also generated a new technique called Bernoulli wavelet collocation method (BWCM) to solve the nonlinear dif-
ferential equation that arises in the fluid flow over a stretching plate. The boundary layer model is transformed to a non-
linear ordinary differential equation called the Falkner-Skan type equation using suitable transformation. Using BWCM, 
we have solved the unbounded governing equations of different types that arise in the MHD boundary-layer flow of a 
viscous fluid over a stretching plate. Several aspects of this problem are justified using the Haar wavelet and the previ-
ously obtained theoretical results. It is observed that the boundary-layer thickness decreases as the pressure gradient 
and magnetic field parameters increase. The overshoots and undershoots are observed for some particular parameters 
using BWCM. Furthermore, our research yields dual solutions for some physical parameters, which are investigated for 
the first time in the literature using the Bernoulli wavelet approach. The nature of the flow problem is discussed through 
the graphs by varying the physical parameters.
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1  Introduction

The boundary layer flow (BLF) of a fluid over a stretching 
area has many applications in mathematical engineering 
and other fields, such as condensation of liquid film, aero-
dynamics, drawing of plastic films, wire drawing, cooling 
of films or sheets, insulating materials, metallic plates, 
and conveyor belts, etc., The first work in this field is done 
by B. C. Sakiadis [1] to examine the BLF on a continuous 
solid surface. B. K. Datta [2] derived an approximate solu-
tion for the Blasius equation using �-perturbation tech-
nique. Abbasbandy [3] used the Adomian decomposition 

method (ADM) to solve the Blasius equation. Abbasbandy 
and T. Hayat [4, 5] gave the solution for MHD Falkner Skan 
equations by employing the Hankel-Pade and homotopy 
analysis methods (HAM), respectively. M. Khan et al. [6] 
proposed a new technique known as the homotopy analy-
sis transform method, a combination of HAM and Laplace 
decomposition approach, to find an approximate solution 
for Blasius equations. H. Zeb et al. [7] studied the nature 
of Non-Newtonian Ferrofluid over a stretching plate using 
the Runge–Kutta method. T. Anusha et al.[8] provided the 
exact solution for the MHD of nanofluid over stretching 
or shrinking plate with mass transpiration and Brinkman 
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ratio. S. Liao applied HAM to study incompressible viscous 
fluid flow over a stretching plate [9, 10] and the MHD flow 
of non-Newtonian fluid over a stretching sheet[11]. Asaith-
ambi studied the Falkner-Skan problem using the finite 
difference method [12] and the recursive evaluation of 
Taylor coefficients [13]. R. B. Kudenatti et al. investigated 
MHD flow over a stretching plate [14] and with suction 
and injection [15]. R. B. Kudenatti et al. [16] gave approxi-
mate analytical solutions for the equations that arise in the 
nonlinear stretching surface using the asymptotic func-
tion method, method of stretching variables, and Dirichlet 
series. R. B. Kudenatti [17] proposed the exact solution for 
BLF over a stretching plate. P. L. Sachdev [18] investigated 
the Falkner Skan equation by solving exactly. The investi-
gation on heat transfer of incompressible electrically con-
ducting fluid was done by A. Chakrabarti [19] and with a 
power-law velocity by Chiam [20]. Many researchers have 
studied MHD stretching sheets in quiescent fluid, micropo-
lar fluids, magneto-convection, nonlinear radiation, and 
diffusion (M. J. Uddin et al.[21–23]). Some other tech-
niques, such as modified ADM, pade approximation (Hayat 
et al. [24]), and differential transform method (Rashidi [25]), 
are employed to study the flow over a stretching sheet.

Here, the boundary layer model is transformed into a 
nonlinear ordinary differential equation called the Falkner-
Skan type equation using suitable transformation. The 
Falkner–Skan equation, originally derived in 1931 by 
Falkner and Skan, is of central importance to the fluid 
mechanics of wall-bounded viscous flows. It is derived 
from the two-dimensional incompressible Navier–Stokes 
equations for a one-sided bounded flow using similar-
ity analysis. Its solution describes the form of an external 
laminar boundary layer in the presence of an adverse 
or favorable streamwise pressure gradient. Despite the 
apparent simplicity of the Falkner-Skan equation solving 
it accurately can be fraught with difficulty; these prob-
lems mainly stem from its non-linearity and third-degree 
order. There are some examples of analytical solutions to 
the Falkner-Skan equations for special cases, but most 
studies have focused either on demonstrating a solution’s 
existence and uniqueness or finding a numerical/compu-
tational solution for particular boundary-layer conditions.

During the terminating year of the twentieth era, the 
abundant and philosophical theory of wavelets was created 
due to the efforts of mathematicians, physicists, and engi-
neers. Wavelet methods have been widely used in image 
and signal processing, approximation theory, geophysics, 
and many more. Wavelet-based numerical techniques have 
become a popular method for solving differential equa-
tions. In the latest centuries, much consideration has been 
dedicated to the newly established approaches for the 
numerical solution of an equation such approaches include 
the wavelet methods to solve nonlinear equations arising 

in fluid problems [26–38]. Some other techniques, such as 
Perturbation techniques, are too strongly hooked on ‘‘small 
parameters’’. Thus, developing some new numerical tech-
niques is advisable, not dependent on small parameters. In 
this article, we use the Bernoulli wavelet operational method 
of integration to solve the nonlinear ordinary differential 
equations. P. Rahimkhani et al. proposed an operational 
matrix based on Bernoulli wavelets for solving delay differ-
ential equations [39] and fractional-order Bernoulli wavelet 
method to solve pantograph differential equations [40]. Adel 
and Sabir [41] investigated Lane–Emden pantograph delay 
differential model using the Bernoulli collocation method. 
Lal and Kumar [42] numerically investigated Volterra integral 
equation via the Bernoulli wavelet. A numerical investiga-
tion of Volterra Integro-Differential Equations by employing 
the Bernoulli wavelet method was done by Sahu and Saha 
Ray [43]. Many researchers have solved nonlinear singular 
Lane–Emden equations [44], fractional-order differential 
equations [45], linear and nonlinear problems in the calcu-
lus of variations (Hedayati [46]), Fractional Diffusion Wave 
Equations [47] using the Bernoulli wavelet method. Here, 
we developed a new operational matrix; using BWCM, we 
have solved the unbounded governing equations of differ-
ent types that arise in the MHD BLF of a viscous fluid. Usually, 
ordinary differential equations (ODEs) describe many physi-
cal phenomena in fluid dynamics, mathematical biology, 
chemical theory, and bio-modeling. Several mathematicians 
have considered these models in past decades, and many 
techniques have been developed to describe the above 
model. But the Falkner Skan type equation is highly nonlin-
ear ODE, so anticipating the exact solution is always impos-
sible. We need to switch to numerical methods to crack 
such a model. Because of this, we proposed a new novel 
approach called BWCM to solve the Falkner–Skan type 
equation. The primary purpose of this study is to present 
and explain a new BWCM for obtaining the numerical solu-
tion to nonlinear ODE that cannot be solved exactly. Here, 
the magnetohydrodynamic BLF of a viscous fluid is consid-
ered to analyze the effects of M, � and � of fluid flow. This 
work aims to solve a nonlinear differential equation govern-
ing the magnetohydrodynamic BLF of a viscous fluid using 
a novel approach called the BWCM. Nonlinear differential 
equations are solved through this technique and compared 
with the exact solution and the Haar wavelet solution. Some 
plots and tables are presented to show the reliability and 
simplicity of the method. Here, we computed the solution 
of the Falkner-Skan equation using a wavelet scheme. There 
are several previously reported many approaches, such as 
shooting, Taylor series, Runge–Kutta, and other semi-ana-
lytic methods. Interestingly, the methods that directly solve 
the original non-reduced third-order equation are absent 
from the literature; to our knowledge, this is the first time 
a continuous wavelet scheme has been presented to find 
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numerical solutions to the Falkner–Skan equation directly. 
This approach avoids complicated numerical algorithms and 
presents valuable information about the numerical behav-
ior of the equation. The accuracy and effectiveness of this 
approach are established by comparison with published 
work.

2 � Problem formulation

The continuity equation and Navier–Stokes equation for a 
two-dimensional steady flow of an incompressible viscous 
fluid in the absence of body force are given by [48]:

where q⃗ is the velocity, � is the viscosity, � is the density, 
and p is the pressure.

To find (q⃗ .∇) q⃗, ∇2q⃗:

With these (1) and (2) becomes,

where � =
�
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 is kinematic viscosity.
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(
î
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To compare the order of magnitude of each term 
in Eqs.  (3),(4),(5), it is more advantageous to put the 
Eqs. (3),(4),(5) in dimensionless form by letting,

where L, �, U, V , and p∞ are certain values of the corre-
sponding quantities x, y, u, v, and p . All dimensionless 
quantities are of order unity.

Using (6) in (3), we get,

Integrating Eq. (7), after making use of the condition 
(v∗)y∗=1 = 1,

Since the integral in Eq. (8) is of order unity, the order of 
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Using (6) in (5),
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 . 

Neglecting the terms of order of � and smaller from Eqs. (9) 
and (10) and reverting to dimensional variables, we get,

Now we will consider a two-dimensional steady and lami-
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the boundary-layer flow and to its normal, respectively. Here, 
the physical properties of the fluid are taken to be constant.

Using the above magnitude analysis along with bound-
ary-layer approximations, we get,

Subjected to the boundary conditions:

where the velocity components u and v are the stream-
wise and normal velocity components in directions x and 
y , respectively, U∞(x) is the velocity at the edge of the 
boundary layer of thickness � , Uw(x) is the velocity of the 
bounding surface.

At y = �,
�u

�y
= 0 , then Eq. (15) reduces to

Using (17) in (15),

It is observed that, at the bounding surface, the fluid’s 
velocity will decompose into the mainstream flows either 
exponentially or algebraically, and that depends on the 
imposed pressure gradient on the flow. The similarity solu-
tions exist if Uw(x) , U∞(x) , and B(x) obey the following 
power-law relations

where Uow , U0∞,B0 are non-negative constants and n is 
associated with either non-uniform stretching speed or 
pressure gradient. The nondimensional coordinate trans-
formation and stream function are introduced [18, 48],
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Using the above transformations, Eqs. (18) and (16) 
become,

where ∈ is a composite velocity parameter given by,

� =
2n

n + 1
 measures the stretch rate of the moving 

boundary and M =
√
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B0 is the magnetic param-

eter (Hartmann number).

3 � Preliminaries of Bernoulli wavelet and its 
properties

The Bernoulli wavelets are defined as [45],

with
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Few Bernoulli polynomials are given by

Theorem 1:  Let H be a Hilbert space and W  be a closed sub-
space of H such that dimW < ∞ and {w1,w2, ...,wn} is any 
basis for W  . Let g ∈H be arbitrary and g0 be the unique best 
approximation to g out of W  . Then[45]

‖‖g − g0
‖‖2 = Gg, Where Gg =

(
Z(g,w1,w2,...wn)

Z(g,w1,w2,...wn)

) 1

2 and Z  is 

introduced in [49] as follows:
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best approximation of f  out of Y  , then the error bound is given 
by:
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Bernoulli wavelet basis. Let �(x) be the continuous bounded 

b0 = 1, b1 = −
1

2
+ x, b2 =

1

6
− x + x2, b3 =

x

2
−

3x

2
+ x3,

b4 = −
1

30
+ x2 − 2x3 + x4, b5 = −

x

6
+

5x3

3
−

5x4

2
+ x5,

b6 =
1

42
−

x2

2
+

5x4

2
− 3x5 + x6, b7 =

x

6
−

7x3

6
+

7x5

2
−

7x6

2
+ x7,

b
8
= −

1

30
+

2x2

3
−

7x4

3
+

14x6

3
− 4x7 + x8,

b
9
= −

3x

10
+ 2x3 −

21x5

5
+ 6x7 −

9x8

2
+ x9,

b10 =
5

66
−

3x2

2
+ 5x4 − 7x6 +

15x8

2
− 5x9 + x10,… ,

Z , (g, w
1
, w

2
, ...wn)

=

|||||||||

< g, g > < g,w
1
> ... < g,wn >

< w
1
, g > < w

1
, w

1
> ... < w

1
, wn >

... ... ... ...

< wn, g > < wn,w1
> ... < wn,wn >

|||||||||
.

‖‖‖‖‖‖‖

t

�
0

f ( t� ) dt� − CT P�( t )

‖‖‖‖‖‖‖ 2

≤ Gf + �f

function in L2 [0, 1 ] . Then the Bernoulli wavelet expansion of 
�(x) converges to it.

Proof:  Let � ∶ [0, 1] → R be a continuous function and 
|�(x)| ≤ � , where � be any real number. Then Bernoulli 
wavelet expansion of y(x) is as follows,

an,m =
⟨
�(x), �n, m (x)

⟩
 denotes inner product.

Since �n,m are the orthogonal basis.

an,m = ∫
I

�(x)
2
k−1
2√

(−1)m−1(m!)2�2m
(2m)!

�m
(
2k−1x − n + 1

)
dx, 

where, I =
[
n−1

2 k−1
,

n

2 k−1

)
.

The substitute 2k−1x − n + 1 = y then we get,

By generalized mean value theorem,

an,m =
2
−k+1
2√

(−1)m−1(m ! )2�2m
(2m)!

�
(

�+ n−1

2 k − 1

) 1∫
0

�m(y)dy, for some 

� ∈ (0, 1),

Since �m(y) is a bounded continuous function. Put 
1∫
0

�m(y)dy = h,

Since, � is bounded

Hence, ||an,m || =

|||||||
2
−k+1
2 �h√

(−1)m−1(m !)2�2m
( 2m)!

|||||||
.

Therefore, 
∑∞

n,m=0
an,m is absolutely convergent. Hence 

the Bernoulli wavelet series expansion of �(x) converges 
uniformly to it.

�(x) =

2
k−1
2∑

n=1

M−1∑
m = 0

an,m �n, m (x).

an,m =

1

∫
0

�(x) �n,m(x) dx.

an, m =
2

k−1

2√
(− 1)m−1(m !) 2 �2m

(2m) !

1

∫
0

�

(
y + n − 1

2 k−1

)
�m (y)

dy

2k−1
,

an,m =
2

1−k

2√
(−1)m−1(m !)2�2m

(2m)!

1

∫
0

�

(
y + n − 1

2k−1

)
�m(y)dy.

||an,m|| =
||||||||

2
−k+1

2√
(−1)m−1 (m !)2 �2m

(2m)!

||||||||

|||||
�

(
� + n − 1

2k−1

)|||||
h.



6Vol:.(1234567890)

Original Article	 J.Umm Al-Qura Univ. Appll. Sci. (2023) 9:1–14 | https://doi.org/10.1007/s43994-022-00013-6

1 3

4 � Functional matrix of Bernoulli wavelets

Bernoulli wavelet basis at k = 1 is as follows:

where,

Integrating the above first ten basis concerning x limit 
from 0 to x , then expressing as a linear combination of Ber-
noulli wavelet basis as
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�
,

�1,3(x) =
√
210

�
x − 3x2 + 2x3

�
,

�1,4(x) = 10
√
21

�
−

1

30
+ x2 − 2x3 + x4

�
,

�1,5(x) =

√
462

5

(
−x + 10x3 − 15x4 + 6x5

)
,

�1,6(x) =

√
1430

691

(
1 − 21x2 + 105x4 − 126x5 + 42x6

)
,

�1,7(x) = 2

√
143

7

(
x − 7x3 + 21x5 − 21x6 + 6x7

)
,

�1,8(x) =

√
7293

3617

(
−1 + 20x2 − 70x4 + 140x6 − 120x7 + 30x8

)
,

�1,9(x) =

√
1939938

219335

(
−3x + 20x3 − 42x5 + 60x7 − 45x8 + 10x9

)
,

�1,10(x) = 22

√
125970

174611

(
5

66
−

3x2

2
+ 5x4 − 7x6 +

15x8

2
− 5x9 + x10

)
,

�1,11(x) = 2

√
676039

854513

(
5x − 33x3 + 66x5 − 66x7 + 55x9 − 33x10 + 6x11

)
.

�10(x) = [�1,0(x), �1,1(x), �1,2(x), �1,3(x), �1,4(x), �1,5(x), �1,6(x), �1,7(x), �1,8(x), �1,9(x)]
T
.

x

∫
0

�1,0(x)dx =
�

1

2

1

2
√
3
0 0 0 0 0 0 0 0

�
�10(x),

Hence,

where

x

∫
0

�1,1(x)dx =
�
−

1

2
√
3
0

1

2
√
15

0 0 0 0 0 0 0
�
�10(x),

x

∫
0

�1,2(x)dx =
�
0 0 0

1√
42

0 0 0 0 0 0
�
�10(x),

x

∫
0

�1,3(x)dx =
� √

7

2
√
30

0 0 0
1

2
√
10

0 0 0 0 0

�
�10(x),

x

∫
0

�1,4(x)dx =
�
0 0 0 0 0

√
5

3
√
22

0 0 0 0

�
�10(x),

x

∫
0

�1,5(x)dx =
�
−

�
11

210
0 0 0 0 0

√
691

10
√
273

0 0 0

�
�10(x),

x

∫
0

�1,6(x)dx =
[
0 0 0 0 0 0 0

√
35

1382
0 0

]
�10(x),

x

∫
0

�1,7(x)dx =
� √

143

20
√
7
0 0 0 0 0 0 0

√
3617

20
√
357

0

�
�10(x),

x

∫
0

�1,8(x)dx =
�
0 0 0 00 0 0 00 0 0

√
219335

3
√
962122

�
�10(x),

x

∫
0

�1,9(x)dx =
�
−
�

146965

2895222
0 0 00 0 00 0 00 0 0

�

�
10(x) +

√
1222277

10

√
482537

�1,10(x).

x

∫
0

�(x)dx = B10×10�10(x) + �10(x),
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In general, the first integration of the Bernoulli wavelet 
can be represented as;

Next, integrating the above ten basis twice, we get,

B10×10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

1

2
√
3

0 0 0 0 0 0 0 0

−
1

2
√
3

0
1

2
√
15

0 0 0 0 0 0 0

0 0 0
1√
42

0 0 0 0 0 0
√
7

2
√
30

0 0 0
1

2
√
10

0 0 0 0 0

0 0 0 0 0

√
5

3
√
22

0 0 0 0

−
�

11

210
0 0 0 0 0

√
691

10
√
273

0 0 0

0 0 0 0 0 0 0

�
35

1382
0 0

√
143

20
√
7

0 0 0 0 0 0 0

√
3617

20
√
357

0

0 0 0 0 0 0 0 0 0

√
219335

3
√
962122

−

�
146965

2895222
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�10(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0

0√
1222277

10
√
482537

�1,10(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

∫
0

�(x)dx = Bn×n�n(x) + �n(x).

t

∫
0

t

∫
0

�1,0(t)dtdt =
�

1

6

1

4
√
3

1

12
√
5
0 0 0 0 0 0 0

�
�10(t),

t

∫
0

t

∫
0

�1,1(t)dtdt =
�
−

1

4
√
3
−

1

12
0

1

6
√
70

0 0 0 0 0 0
�
�10(t),

t

∫
0

t

∫
0

�1,2(t)dtdt =
�

1

12
√
5
0 0 0

1

4
√
105

0 0 0 0 0
�
�10(t),

t

∫
0

t

∫
0

�1,3(t)dtdt =
� √

7

4
√
30

√
7

12
√
10

0 0 0
1

12
√
11

0 0 0 0

�
�10(t),

t

∫
0

t

∫
0

�1,4(t)dtdt =
�
−

1

6
√
21

0 0 0 0 0

√
691

6
√
30030

0 0 0

�
�10(t),

t

∫
0

t

∫
0

�1,5(t)dtdt =
�
−

√
11

2
√
210

−
√
11

6
√
70

0 0 0 0 0
1

2
√
390

0 0

�
�10(t),

t

∫
0

t

∫
0

�1,6(t)dtdt =
� √

143

4
√
6910

0 0 0 0 0 0 0

√
3617

4
√
352410

0

�
�10(t),

t

∫
0

t

∫
0

�1,7(t)dtdt =
� √

143

40
√
7

√
143

40
√
21

0 0 0 0 0 0 0

√
43867

84
√
9690

�
�10(t),

t

∫
0

t

∫
0

�1,8(t)dtdt =
�
−

5
√
221

6
√
119361

0 0 0 0 0 0 0 0 0

�
�10(t) +

√
174611

6
√
7559530

�1,10(t),

t

∫
0

t

∫
0

�1,9(t)dtdt =
�
−

√
146965

2
√
2895222

−
√
146965

6
√
965074

0 0 0 0 0 0 0 0

�
�10(t) +

√
77683

2
√
30268230

�1,11(t).
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Hence,

where

t

∫
0

t

∫
0

�(t)dtdt = B
�

10×10
�10(t) + �10

�

(t),

B
�

10×10
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

6

1

4
√
3

1

12
√
5

0 0 0 0 0 0 0

−
1

4
√
3

−
1

12
0

1

6
√
70

0 0 0 0 0 0

1

12
√
5

0 0 0
1

4
√
105

0 0 0 0 0
√
7

4
√
30

√
7

12
√
10

0 0 0
1

12
√
11

0 0 0 0

−
1

6
√
21

0 0 0 0 0

√
691

6
√
30030

0 0 0

−

√
11

2
√
210

−

√
11

6
√
70

0 0 0 0 0
1

2
√
390

0 0
√
143

4
√
6910

0 0 0 0 0 0 0

√
3617

4
√
352410

0
√
143

40
√
7

√
143

40
√
21

0 0 0 0 0 0 0

√
43867

84
√
9690

−
5
√
221

6
√
119361

0 0 0 0 0 0 0 0 0

−
√
146965

2
√
2895222

−
√
146965

6
√
965074

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

In the same way, we can create matrices of various sizes 
for our comfort.

5 � Method of solution

The semi-infinite domain [0, ∞) in (23) has to be trans-
formed to [0, 1] by using the coordinate transformation 
� =

�

�∞
 and change of variable F(�) = f (�)

�∞
 . Under this trans-

formation (23) becomes

where �
∞

 is an unknown finite boundary which is assumed 
to satisfy the asymptotic condition f �� ( �∞) = 0 . Also �∞ 

�10

�

(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

0

0√
174611

6
√
7559530

�1,10(t)√
77683

2
√
30268230

�1,11(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
F
���(�) + �2

∞
F(�) F��(�) + � �2

∞

(
∈2 −(F�(�)2

)
+M

2 �2
∞

(
∈ −F�(�)

)
= 0.

varies with the parameters � , M, and ∈ . The boundary con-
ditions (24) are transformed to

6 � Numerical solution by Bernoulli wavelet 
collocation method (BWCM)

Consider the model

with boundary conditions

Let 

Integrate (30) concerning � from 0 to �,

Integrate (31) concerning � from 0 to �,

Integrate (32) concerning � from 0 to �,

(27)
F ( 0 ) = 0 , F� ( 0 ) = 1− ∈ , F� ( 1 ) = ∈ .

(28)

F
���(�) + �2

∞
F(�) F��(�) + � �2

∞

(
∈2 −(F�(�)2

)
+M

2

�2
∞

(
∈ −F�(�)

)
= 0,

(29)
F ( 0 ) = 0 , F� ( 0 ) = 1− ∈ , F� ( 1 ) = ∈ .

(30)F���(�) = AT G (�).

(31)F��(�) = F��( 0 ) + AT
(
P G(�) + P(�)

)
.

(32)F�(�) = 1− ∈ + � F��(0) + AT
(
P� G(�) + P

�
(�)

)
.

(33)

F (�) = � (1− ∈) +
�2

2
F��( 0 ) + AT

(
P�� G(�) + P

��
(�)

)
.
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Put � = 1 in (32), we get,

Fit the Eqs.  (30) – (34) in Eq.  (28) and discretize the 
resultant equation using the collocation point �i =

2 i−1

2M
 

where i = 1, 2, ..., M we get the M system of equations in 
M unknown coefficients. Solving this system by Newton 
Raphson method, the value of AT  is obtained. Substituting 
this value in Eq. (33) to get an approximate solution F(�).

The wall shear stress or skin-friction coefficient f ��(0) is 
given by,

7 � Results and discussion

Case (i): Solution for ∈= 0 and general �.
The two-dimensional laminar flow due to stretching 

sheet without magnetic field is given by [16, 17, 50],

Equation (36) has an exact solution for some particular 
values of �[26]:

Figures 1 and 2 show that the solution from BWCM coin-
cides with the exact solution.

Case(ii): Solution for ∈= 0 and general � and M.
The two-dimensional boundary layer flow due to the 

stretching plate with the magnetic field is given by [24, 
25]:

The exact solution for � = 1 and general M is given by 
[11]:

(34)F��(0) = 2 ∈ −1 − AT
(
P� G(�) + P

�
(�)

)
|�=1.

(35)f �� ( 0 ) =
1

�∞

[
2 ∈ −1 − AT

(
P� G(�) + P

�
(�)

)
|�=1

]
.

(36)f ��� (�) + f (�) f �� (�) − � f �(�)2 = 0,

f (0) = 0 , f � (0) = 1 , f � (∞) = 0.

(37)For �= 1,f (�) = 1 − e−� .

(38)For � = −1, f (�) =
√
2 tanh

�
�√
2

�
.

(39)

f ��� ( � ) + f ( � ) f �� ( � ) − � f �(�)2 −M2 f �( � ) = 0,

f ( 0 ) = 0 , f � ( 0 ) = 1 , f � (∞ ) = 0.

}

(40)f (�) =
1 − e− �

√
1+M2

√
1 +M2

.

From Table 1, we can say that BWCM yields a better 
solution and consumes less time when compared to the 
Haar wavelet method.

Figures 3 and 4 show that the basic solution and veloc-
ity profiles satisfy the solution in (40).

Case (iii): Solution for ∈= 1 and general � and M.
This case is described by the MHD Falkner-Skan equa-

tion [4]:

The velocity profile f � ( � ) and shear flow f ��(�) for 
the various values of pressure gradient � with and with-
out magnetic field are shown in Figs. 5 and 6. It is noted 

(41)

f ��� ( � ) + f ( � ) f �� ( � ) + �
�
1 − f �(�)2

�
+ M2

�
1 − f �(�)

�
= 0,

f ( 0 ) = 0 , f � ( 0 ) = 0 , f � (∞ ) = 1.

⎫
⎪⎬⎪⎭

Fig. 1   Comparison of f (�) with analytic solution (37) for � = 1.

Fig. 2   Comparison of f (�) with analytic solution (38) for � = −1.
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that as the pressure gradient � increases from zero, the 
boundary-layer thickness becomes smaller and smaller. 
The boundary-layer thickness further becomes smaller in 
the presence of the magnetic field because more energy 
is released into the flow by the applied magnetic which 
accelerates the motion of the fluid particles, hence fluid 
particles move faster. Further increase in M makes the flow 
more stable. From the Fig. 6, we can also observe that in 
both cases M2 = 0 and M2 = 10 f ��(�) asymptotically tends 
to zero as� → ∞.

Table 1   Comparison of values 
of f ��(0) for � = 1 and different 
values of M

M
2 BWCM Haar wavelet (J = 6) Exact[11] BWCM computa-

tion time
Haar wavelet 
computation 
time

0 − 1.00006 − 0.99594 − 1 1.11 10.468
0.1 − 1.04883 − 1.04542 − 1.04881 1.062 10.874
0.2 − 1.09545 − 1.09264 − 1.09545 0.969 10.843
0.3 − 1.14017 − 1.13787 − 1.14018 1.079 10.797
0.4 − 1.1832 − 1.18131 − 1.18322 1.109 10.858
0.5 − 1.22472 − 1.22315 − 1.22474 1.219 10.94
0.6 − 1.26488 − 1.26356 − 1.26491 1.047 10.562
0.7 − 1.30379 − 1.30268 − 1.30384 1.156 10.829
0.8 − 1.34158 − 1.34062 − 1.34641 1.047 10.703
0.9 − 1.37832 − 1.37749 − 1.37840 1.094 10.719
1.0 − 1.41411 − 1.41338 − 1.41421 1.047 10.812
2.0 − 1.73138 − 1.73129 − 1.73205 1.141 10.844
3.0 − 1.9977 − 1.99892 − 2 1.157 10.579
4.0 − 2.23064 − 2.23457 − 2.23607 1.249 10.53
5.0 − 2.43885 − 2.44751 − 2.44949 1.218 10.656

Fig. 3   Comparison of solution f (�) with analytic solution (40) for 
different magnetic parameters

Fig. 4   Comparison of solution f �(�) with analytic solution (40) for 
different magnetic parameters

Fig. 5   Variation of velocity profiles for various values of � and M in 
(41)
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Case (iv): Solution for 0 <∈< 1 and general � and M.
The basic solution f (�) is calculated for two sets of 

values of M (without magnetic field and with magnetic 
field) and different values of ∈ which are shown in Figs. 7 
and 8. Figures 9 and 10 are obtained by taking � = −1 
and � = −0.4 are the same as those produced in [17]. 
Also, whenM2 = 0 , the velocity profiles experience both 
undershoots and overshoots near the wedge, and when 
M2 > 0 , the flow becomes more stable. As the magnetic 
field increases, the point of intersection of these solu-
tions is very much closer to the wedge surface. It is seen 
that when M2 = 0 the thickness of the boundary layer 
is a little large when compared to M2 = 10 because the 
magnetic field releases the energy to flow, thereby mak-
ing the fluid particles move fast; as a result, the bound-
ary-layer thickness becomes small and makes the flow 
more stable and mild. It is also seen that as � increases 
from negative ( � = −1,−0.4 ) to positive ( � = 0.5, 1.5 ), the undershoots 

(
f
�

(𝜂) <∈
)
 and overshoots 

(
f
�

(𝜂) >∈
)
 van-

ishes and the flow become mild. This is seen in Figs. 11 

Fig. 6   Shear stress profiles for 
various values of � and M in 
(41)

Fig. 7   Graph of solution f (�) for the class of the Falkner-Skan prob-
lem at � = 1.5,M2 = 0 and different values of ∈

Fig. 8   Graph of solution f (�) for the class of the Falkner-Skan prob-
lem at � = 1.5,M2 = 10 and different values of ∈

Fig. 9   Variation of a velocity profile for � = −1 in the absence (first 
set of solution) and presence of the magnetic field
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and 12 for two different values ofM . Also, the point of 
intersection is still nearer to the wedge surface because 
the flow is accelerated, and the boundary layer thick-
ness becomes smaller and smaller. In addition to this, 
we can notice that when ∈> 1

2
 and∈< 1

2
 , all the velocity 

profiles move toward the endpoints. From Fig. 13, we can 
say BWCM successfully predicts the double solution for 
some set of physical parameters when �∞ is taken to be 
as large as possible. The double solution is observed only 
in the absence of a magnetic field, and in the presence of 
a magnetic field, we found only a single solution.

8 � Conclusion

In this study, we developed a new operational matrix of 
integration by the Bernoulli wavelet and the new tech-
nique called BWCM. This proposed method studied the 

two-dimensional boundary layer flow of viscous fluid in 
the presence of a magnetic field. As we know, many semi-
analytical techniques are needed for small parameters, 
but such difficulties don’t arise in the proposed technique. 
Here, we found the wavelet solution, including the double 
solution, by varying the parameters such as, ∈ , � , and M. 
The following are the important findings from this study:

•	 As the pressure gradient �  increases from zero, 
the boundary-layer thickness becomes smaller 
and smaller. The boundary-layer thickness further 
becomes smaller in the presence of the magnetic 
field M.

•	 The velocity profile experiences both overshoots and 
undershoots and vanishes when � increases from 
negative to positive.

Fig. 10   Variation of a velocity profile for � = −0.4 in the absence 
and presence of the magnetic field

Fig. 11   Velocity profiles with and without magnetic field at � = 0.5

Fig. 12   Velocity profiles with and without magnetic field at � = 1.5

Fig. 13   Variation of velocity profiles for � = −1 in the absence of 
magnetic field (second set solutions)
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•	 Dual solutions are observed only in the absence of 
the magnetic field. In the presence of a magnetic 
field, we found only one solution.
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