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Abstract
Physical adsorption takes place inside narrow pores where the attractive interaction between the surface of the adsor-
bent and the contaminant molecules is strong enough to retain the molecules. Adsorption columns involve a range of 
mass-transport mechanisms: advection through the free spaces between the adsorbent pellets, diffusion through the 
macro/mesopores of the adsorbent, and adsorption at the surface, where the micropores exist. The adsorbent specifica-
tions along with its assembly within the sorption column are key factors when optimizing the filtration of pollutants. In 
this work we present a mathematical model based on advection–diffusion equations coupled with Langmuir kinetics 
that accounts for a geometrical approach to the porosity structure inside the adsorbent, formed by a radial lattice of 
cylinders, and the channels through which the fluid flows surrounding the cylindrical pellets. The model is tested using 
typical lab-scale values based on VOC adsorption, and we use it to identify optimal macro/mesopore size and column 
porosity for energetic considerations.

Keywords Mesopores · Micropores · Process optimisation · Adsorption column · Mathematical model · Advection–
diffusion

1 Introduction

The reduction of pollutants from the environment is one of the main challenges of our society. Two tons of waste is 
released to water worldwide [1], and this value is increasing each year as population grows [2, 3]. Almost 900 mil-
lion people still do not have access to safe water and some 2.6 billion do not have access to adequate sanitation 
[3], with 14,000 people dying daily by causes directly related to water contamination [2]. Polluted water also affects 
the biosphere by poisoning plants and animals [1, 2]. Air pollution is also a matter of concern, since the emission 
of greenhouse gases, the main contributors to the global warming emergency, has been increasing since 1970 [4]. 
The high atmospheric levels of acidifying pollutants ( SO2 and NOx ) as well as other air contaminants such as volatile 
organic compounds (VOCs), ammonia, methane or particulate matter (PM) are also concerning [5]. Air pollution is 
a major cause of premature death and disease, and has a severe environmental impact in ecosystems by produc-
ing eutrophication and acidification of soil, lakes and rivers [5]. Indoor air pollution levels are commonly 2–5 times 
higher than outdoor levels, but can reach over 100 times higher [6]. In 2012, indoor air pollution was directly related 
to the cause of 4.3 million premature deaths, as well as several health problems related to breathing diseases and a 
reduction in decision-making performance [6].
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The removal of contaminants from air and water effluents is essential in accomplishing the UN Sustainable Develop-
ment Goals to ensure availability and sustainable management of water and sanitation for all, and to combat climate 
change and its impacts. The Paris Agreement at the COP21 conference in 2015 stated a need to keep the global tem-
perature rise below 2◦C above pre-industrial levels, and to pursue efforts to limit the temperature increase even further, 
to 1.5◦C . These new pledges for 2030 require a reduction of projected 2030 emissions by 30% for 2◦C and 55% for 1.5◦C 
[4]. The efficiency of the possible decontamination processes depends on the contaminant, the type of fluid and the 
required operating conditions. Some of the usual decontamination technologies are ultraviolet treatment, oxidation, 
clarification, biological treatment, membrane filtration, reverse osmosis, nanofiltration and adsorption. Among these, 
adsorption offers a higher removal efficiency than the others, allowing regeneration of the adsorbent and flexibility in 
designing the operation/disposal of both the spent media and the wastewater produced during regeneration [1]. Moreo-
ver, although high-performance adsorbents can be expensive, the disposal of more economical adsorbents extracted 
from geological rocks or carbonized wastes can make this technology very attractive [7].

Adsorption columns are a commonly used method for removing contaminants in water, such as fluoride and heavy 
metals, or gases such as CO2 and VOCs. In such devices, the fluid is fed into one end of the column, which is packed 
with small pellets onto which the contaminant adsorbs, thus removing the contaminant from the outlet stream. The 
performance of an adsorption column is strongly linked to the properties of the pellets used, in particular, their mate-
rial composition, size and porosity. The adsorption can be chemical or physical in nature. In chemical adsorption, the 
adsorbate (captured pollutant) reacts with certain radicals located at the surface of the adsorbent creating a chemical 
bond with it. In physical adsorption, the adsorbate molecules are captured inside small pores inside the adsorbent via 
the establishment of electrostatic bonds [8].

Adsorption is a multiscale problem: when the fluid is fed into the column, it traverses the gaps between particles while 
also penetrating into small pores within the pellets themselves; the former transport is largely dominated by advection 
while the latter takes place via diffusion. The size of the pores is usually inhomogeneous in conventional adsorbents, 
and usually consists of a pore distribution that accounts for micropores (up to 2 nm) where physical adsorption occurs, 
mesopores (2 to 50 nm), and macropores (over 50 nm) through where contaminant molecules diffuse to reach micropores 
located in the inner regions of the adsorbent [9–11]. The work of Nepryahin et al. [12] and Fennell et al. [13] suggests 
that diffusion through the micropores is limited, so the meso/macropore structure is key for the adsorption capacity of 
the adsorbent and determines the concentration profile of the effluent.

The modelling of adsorption processes usually consists of an advection–diffusion equation, with concentrations aver-
aged across the cross-section of the column, coupled with a sink term that accounts for either the average mass adsorbed 
inside the pellets [14–19], or the mass that diffuses through the boundary between the inner pores of the pellet and the 
region where the fluid is flowing. In the latter case, the concentration inside the pores might be volume averaged [20, 21] 
or a diffusion–reaction equation is also added to model the mass transport through the pores [7, 22, 23]. The adsorption 
kinetics are also highly dependent on the type of adsorption occurring. Although the Linear Driving Force approach 
[14–16] and Langmuir kinetics [17–20] are commonly used in the literature, some works use higher-order kinetic laws 
related to the type of adsorbate–adsorbent bonding [14, 17, 22, 23]. Although the velocity is usually assumed to be spa-
tially uniform, some authors account for variable velocity when high concentrations, and thus volumes, of contaminant 
are being removed [16, 19]. Single-component adsorption is extensively studied in the literature [24–27] compared to 
multiple-component adsorption [28].

Despite the extensive work undertaken on the mathematical modelling of such systems, these have not examined the 
effect of pore size on the concentration effluent. To this end, we provide a novel mathematical model that accounts for 
the packing structure of the adsorbent pellets inside the column as well as their internal structure. There is a fraction of 
adsorption sites directly accessible from the fluid flow while there is another fraction that requires a multi-scale transport 
via the diffusion through internal pores. Thus, a fraction of the contaminant is adsorbed directly at the external surface 
of the adsorbent pellets while the rest is adsorbed inside the pores. We assess the balance between external and internal 
adsorption to identify the micro and macrostructure conditions that optimize the performance of the adsorption column.

In Sect. 2 we first define the problem and the assumptions on which the following sections will rely. In Sect. 3 we pre-
sent the governing equations and the initial and boundary conditions of the model, considering momentum and mass 
conservation, and adsorption kinetics. In Sect. 4 we present a constrained reduced model considering the magnitude of 
the parameters defined in previous sections, which are based on lab-scale experimental data. In Sect. 5 we discuss the 
results obtained from the assessment of a range of parameters related to the structure and packing arrangement of the 
adsorbent. Finally, in Sect. 6 we conclude our work.
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2  Assumptions and definition of the physical system

We consider an adsorption system comprising a cylindrical column of a bed, of length Lb , loaded with cylindrical pellets 
of length Lb and radius Lp , made of a porous adsorbent (see Fig. 1 left). We model the full system by considering a single 
representative cell comprising a cylindrical pellet surrounded by a cylindrical channel through which the fluid flows 
axially with a velocity u from the inlet to the outlet of the column. The length and radius of the cell are Lb and Lp + Rc , 
respectively, where Rc is the radius of the channel (see Fig. 1 middle). We assume that the external perimeter of the 
channel coincides with the external perimeter of the surrounding cells. Thus, the points in this perimeter would be 
located in the middle point between two pellets.

The external surface of the pellets gives access to two different locations: adsorption sites onto which the molecules 
can be directly adsorbed, or pores through which the contaminant diffuses before subsequently attaching to adsorption 
sites on the pore walls. Physically, adsorption sites are micropores, which are narrow enough (diameter less than 2 nm) 
to establish bonds with the contaminant molecules and retain them inside (see Fig. 1 right). In this model, the pores 
are assumed to be cylinders with radius rp and length Lp , which represent the mean values from a pore distribution. The 
pores are assumed to extend radially, from the external surface of the pellet to its centre. Thus, Lp is assumed to be equal 
to the radius of the pellets.

The numbers in the detail at the bottom right of Fig. 1 indicate the steps of the process. These are: (1) adsorption in 
the adsorption sites at the external surface of the pellets in contact with the fluid flow; (2) molecular diffusion through 
the pores inside the pellets; (3) adsorption at the adsorption sites at the pore surface.

We use axisymmetric cylindrical polar coordinates to model the pellets, where the origin of the coordinate system is 
set in the centre of the pellet at the inlet of the column, and where the x axis coincides with the pellet axis. We denote 
the cylindrical coordinate variables inside the pores by (r,�,y), while the global coordinates are denoted by (R,Φ,x) (see 
Fig. 1). In Fig. 2 we show a transversal section and a cross-section of the cell considered in Fig. 1.

In the mathematical model that follows, we make the following conventional assumptions: 

 1. Since the contaminant molecules are adsorbed inside the micropores, the volume of the pores is not occupied by 
the adsorbate. This leads us to assume that the pellet and pore geometries remain constant over time.

 2. The distribution of the pores in the cross-section of the cell and x is assumed to be random (see Fig. 2). However, 
we assume that the number of pores per unit area of surface of the pellet n = N∕(2�LpLb) is constant, where N is 

Fig. 1  Schematic of the physi-
cal set-up. Left: adsorption 
column filled with adsorbent 
pellets. Middle: Representa-
tive cell accounting for the 
porous pellet surrounded by 
a channel through which the 
fluid flows. Right: detail of a 
pore (top) and a section of this 
that shows the microstructure 
(bottom)
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the total number of pores in the pellet. This way, the internal porosity of the pellet is the same in every transversal 
slice.

 3. The length of the pores is assumed to be orders of magnitude larger than its radius.
 4. The fluid is introduced parallel to the axis of the container and only exits at the outlet of the column.
 5. The column has been previously washed with clean solvent. This, combined with the previous assumption, leads 

to the assumption that the contaminant is driven solely by diffusion from the outer flow to the inside of the pore.
 6. The diffusion coefficient D ( m2/s ) is assumed to be equal in all directions.
 7. The inlet concentration of the contaminant in the fluid is low enough to neglect any effect of mass loss in the flow. 

This leads to the assumption of incompressible flow and constant diffusion coefficient of contaminant, D.
 8. The velocity field in the cell is assumed to be radially symmetric. This assumption together with the fluid flow being 

parallel to the axis of the column means that the velocity is unidirectional. We further assume that the velocity field 
is steady.

 9. The external boundary at Lp + Rc corresponds to the centre of the void regions through which the fluid flows from 
the inlet to the exit of the column. This boundary would in principle correspond to the intersection of multiple 
representative cells as the ones shown in Figs. 1 and 2. This leads us to assume axial symmetry at Lp + Rc.

 10. Given the length-to-width ratio of the column, the effect of the column wall on the fluid velocity is negligible in the 
representative cells.

3  Governing equations

In this section, the governing equations of the physical model in the channel and the pores of a representative cell will 
be derived.

3.1  Adsorption kinetics

The external and internal adsorption sink terms are both modelled using Langmuir kinetics [29]. This adsorption model is 
founded on the formation of a monolayer of adsorbate over the adsorbent surface. The adsorption rate is assumed to be 
proportional to the concentration of contaminant in the fluid and the available sites. The desorption rate is proportional 
only to the occupied sites, since the desorption potential increases as the surface becomes saturated. The available 
adsorption sites at the adsorbent surface are directly related to the surface concentration of contaminant. In Fig. 1 
bottom-right we distinguish between the external (step 1) and the internal (step 3) adsorption. Hence, we define the 
variables �E and �I as the surface concentration of contaminant on the external and the internal surface of the adsorbent, 
respectively, with units kg∕m2 . Note that this definition of the adsorption uptake as a surface density is convenient since 
we wish to assess the effect of pellet and pore dimensions. The considered areas are the lateral surfaces of the pellet and 

Fig. 2  Schematic of the cell 
in 2D. a Transversal section of 
the cell. b Cross-section of the 
cell. The pores are assumed 
to be distributed randomly in 
angle and all over the column 
length
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pore cylinders, not to be confused with the adsorption surface area (such as BET or Langmuir surface area), which also 
accounts for the internal area of the available sites (micropores). The adsorption–desorption equations for each case read

where kEa and kIa are the external and internal adsorption constants, kEd and kId are the external and internal desorption 
constants, and �m is the maximum value that the surface concentration could reach on any of the surfaces. This last 
parameter encapsulates the available sites depending on the pellet or pore surface, namely the maximum mass per 
surface area that could be retained into the micropores accessible in that surface. The variables c(R, x, t) and cp(r, y, x, t) 
denote the averaged concentrations of contaminant ( kg∕m3 ) in the channel and inside the pores, respectively. Equa-
tions governing their behaviour will be defined in Sects. 3.3 and 3.4. The adsorption and desorption constants usually 
depend on the velocity of the flow [17, 30]. Thus, the value of these constants could be different in the channel, where 
the fluid is advected, and inside the pores where the mass transport is driven by diffusion. Although the model accounts 
for this possibility, in Sect. 4.1, for simplicity, we consider a situation where the external and internal constants are equal. 
Equations (1) and (2) lead to the Langmuir isotherm when equilibrium is reached, i.e. when the time derivative is zero,

where �e and ce are the adsorbed surface density and the concentration in the fluid at equilibrium, respectively, and 
KL = kEa∕kEd = kIa∕kId is the Langmuir constant of equilibrium. Note that in column tests the concentration at equilib-
rium both in the fluid and inside the pores must be the inlet concentration, i.e. ce = cin , where cin is the concentration of 
contaminant in the fluid that is being introduced to the inlet of the column.

We non-dimensionalize eqs. (1) and (2) using the following scaled variables

where � = 1∕
(
kIacin

)
 is the internal adsorption time-scale. This gives

where k = kEa∕kIa.

3.2  Momentum conservation

As mentioned, we assume that the velocity field is purely axial and steady. We denote this velocity by u (m/s). Applying 
the incompressible flow condition gives �u∕�x = 0 and so u = u(R).

The momentum conservation for the fluid is modelled using the steady-state Navier–Stokes equation for 
incompressible flow in the absence of external forces,

where � and � are the density ( kg∕m3 ) and dynamic viscosity [kg/(ms)] of the carrier fluid, respectively, and 
G = −dp∕dx > 0 is the pressure gradient where p is the pressure (Pa).

(1)
��E

�t
= kEac(�m − �E) − kEd�E ,

(2)
��I

�t
= kIacp(�m − �I) − kId�I ,

(3)�e = �Ee = �Ie =
�mKLce

1 + KLce
,

(4)ĉ =
c

cin
, ĉp =

cp

cin
, �̂�E =

𝜎E

𝜎m
, �̂�I =

𝜎I

𝜎m
, t̂ =

t

𝜏
,

(5)
𝜕�̂�E

𝜕t̂
= k

[
ĉ(1 − �̂�E) − 𝛿�̂�E

]
,

(6)
𝜕�̂�I

𝜕t̂
= ĉp(1 − �̂�I) − 𝛿�̂�I ,

(7)
�

R

d

dR

(

R
du

dR

)

= −G ,
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We may integrate eq. (7) to obtain

where we have used the symmetry condition du∕dR = 0 at R = Lp + Rc.
Integrating again we get

where A is an integration constant. To determine this constant we apply a boundary condition at the surface of the pellet 
R = Lp . Here we choose to use the Beavers–Joseph condition [31],

where � ( m−1 ) is a parameter that determines the mechanism by which the slip velocity is induced. The parameter � can 
be determined experimentally and depends on other parameters that characterize the behaviour at the boundary of 
the permeable material, such as the viscosity of the fluid or the permeability of the material [31].

Applying (10) to eq. (8) we obtain

The average of u over the cross-section of the channel coincides with the interstitial velocity uin , namely

Thus, we can write

where � is the porosity or void fraction of the cell and, by extension, the column. This porosity is the same as the ratio 
between the void area and the occupied area in the cross-section of a cell. Thus, � can be expressed in terms of the pellet 
and cell size as

The interstitial velocity is related to the superficial velocity Us through the expression

The superficial velocity is related to the flow rate at the inlet of the column Q ( m3/s) through the expression 
Q = Us�

(
Lp + Rc

)2
.

We non-dimensionalize the velocity u with the superficial velocity Us:

which gives ûin = 1∕𝜙.
The dimensionless form of eq. (13) then reads

(8)−
[
R2 − (Lp + Rc)

2
]
G = 2�R

du

dR
,

(9)−
[
R2 − 2(Lp + Rc)

2 ln R
]
G = 4�u + A ,

(10)
du

dR

|
|
|
|
|R=Lp

= �u
|
|
|
|
|R=Lp

,

(11)u =
1

4�

[

L2
p
− R2 + 2(Lp + Rc)

2 ln

(
R

Lp

)

+
2Rc(Rc + 2Lp)

�Lp

]

G .

(12)uin =
1

�Rc(Rc + 2Lp) ∫
2�

0
∫

Lp+Rc

Lp

uR dR dΦ .

(13)uin =
G(Lp + Rc)

2

4�
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2�
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√
1 − �
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2
−
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�

�

,

(14)� = 1 −
L2
p

(Lp + Rc)
2
.

(15)uin =
Us

�
=

Us(Lp + Rc)
2

Rc(Rc + 2Lp)
.

(16)û =
u

Us

,
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where

with P = 4�UsLb∕
(
Lp + Rc

)2
.

3.3  Mass conservation in the channel

We denote the concentration of contaminant in the fluid in the channel by �(R,Φ, x, t) ( kg∕m3 ), and the diffusion 
coefficient of the contaminant by D ( m2/s), which is assumed to be constant.

Now, we define the azimuthal average of the concentration of contaminant in the channel, c(R, x, t) ( kg∕m3 ) as

Taking into account the periodicity condition

the azimuthally averaged advection–diffusion equation in a cylindrical coordinate system reads

We now define the dimensionless form of eq. (19) taking into account the scaled variables

where Lb is the column length-scale, Lp is the pore length-scale and R is the radial length-scale in the channel, all of 
them to be chosen.

The dimensionless form of eq. (22) reads

where

Here, � denotes the pore aspect ratio, Pe denotes the Péclet number, which is defined as the ratio of the rate of advection 
to the rate of diffusion, and Da denotes the Damköhler number, which is the ratio between the internal adsorption time-
scale and the advection rate.

(17)1 = Ĝ𝜙
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,
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P
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.
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The aspect ratio � is expected to be small and we will exploit this in our subsequent analysis. We treat Da and Pe as O(1) ; in 
practice Da≪ 1 , but our model captures this scenario too. Although the Péclet number is usually greater than 1, it is reason-
able to assume that Pe = O(1) since certain fluids such as gases usually exhibit high diffusivities [32].

We expand all dependent variables asymptotically in �2 via

for f = {ĉ, ĉp, �̂�E , �̂�I , û} . To leading order in � , eq. (24) reads

If we integrate eq. (27) and apply the axial symmetry condition at Lp + Rc , i.e.

we obtain that ĉ(0) = ĉ(0)(x̂, t̂).
At O(�2) , eq. (24) reads

We can integrate eq. (29) and exploit the fact that ĉ(0) is independent of R to obtain

where we have used the fact that

is the leading-order cross-sectionally averaged velocity. We have also made use of the symmetry condition in eq. (28).
The total amount of mass loss per column length at a given x [kg/(ms)] is divided into two sink terms: the mass sink by 

diffusion to the inside of the pellets through the base of the pores ( Qp(x, t) ), and the mass sink by adsorption to the external 
surface of the pellets ( QE(x, t) ). Mathematically, this reads

The mass sinks Qp and QE are related to the fraction of internal and external surface, respectively, compared with the total 
surface of the pellet that is available for adsorption. This fraction is defined as

The external sink QE can be defined in terms of the Langmuir sink term (1)

The sink term Qp must also equal the diffusive flux into the pores. Thus,

(26)f = f (0) + �2f (1) +O(�4) ,

(27)
1

R̂

𝜕

𝜕R̂

(
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𝜕R̂

)

= 0 .
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𝜕ĉ

𝜕R̂

|
|
|
|
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𝜕ĉ(0)
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+
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.

(30)Da𝜙
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||R̂=L̂p
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We expect an O(1) amount of contaminant to be removed from the channel via diffusive transport for an efficient filter. 
To achieve this requires the concentration to fall quickly over a small boundary layer near the adsorbent boundary. This 
means that the first-order boundary condition in eq. (30) must match with the leading-order QE and Qp from eqs. (34) 
and (35). Hence, the dimensionless condition that must be satisfied reads

where R = Lp�
2∕� . In this situation we assume �mLp(1 − �)∕(D�cin�) is O(1) since this model can also capture the situ-

ation where 𝜎mLp(1 − 𝜒)∕(D𝜏cin𝜒) ≪ 1 . In the case where 𝜎mLp(1 − 𝜒)∕(D𝜏cin𝜒) ≫ 1 , the scale R should be defined in 
terms of this external adsorption instead.

Thus, we find that R = �L2

b
∕Lp and � = �Lb∕Lp . These results indicate that this approach is applicable when the 

length-scale over which removal of contaminant into the pores occurs is smaller than the length-scale over which the 
adsorption happens inside the pore.

Now, eq. (30) can be rewritten using eq. (36) as

where we have defined the column length-scale as Lb = (Lp + Rc)
√

LpPe∕(2Lp�) = (Lp + Rc)
2LpUs∕(2DLp�) , and 

A =

�
�mkIa∕(2D

√
�n).

3.4  Mass conservation in the pores

Within the pores we assume that the contaminant molecules travel only by diffusion. Thus, the concentration of con-
taminant in a pore �p(�, r, y, x, t) ( kg∕m

3 ), satisfies

where we have assumed radial symmetry. Note that since the diffusion through the channels and the pores consist of 
the same contaminant and solvent, the diffusion coefficient is assumed to be the same.

We define the average concentration of contaminant in the pores, cp ( kg∕m
3 ), as

Integrating eq. (38) over the pore cross-section gives

The boundary term in eq. (40) at r = rp can be defined in terms of the Langmuir sink term (2) as

and so (40) becomes
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We non-dimensionalize eq. (41), using the scalings introduced in (4) and (23) along with r̂ = r∕Rp . The dimensionless 
form of eq. (42) then reads

where we have defined the pore length and radius scales as Lp =
√
Dcinrp�∕(2�m) and Rp = D�cin∕�m , respectively. The 

Fourier number Fo = D�∕L2

p
= 2�m∕(cinrp) is defined as the ratio of the internal adsorption time-scale to the diffusion 

time-scale.

3.5  Initial and boundary conditions

We consider the case where the channels, the pores inside the pellets and the adsorbent are all initially free of contaminant. 
Hence,

which in dimensionless form reads

We assume that at the inlet the fluid enters in the axial direction with a uniform distribution of contaminant. Conserving 
flux of contaminant at the inlet provides the Danckwerts condition [33] (see [18] for a derivation),

To leading order, the integral of (46) over the void region of fluid gives

where we have used the fact that the free surface at x = 0− consists of all the area �(Rc + Lp)
2 while the free surface at 

x = 0+ only accounts for the channel area �Rc(Rc + 2Lp).
Adopting the same approach at the outlet of the column gives

where c(0)
b

 is the concentration measured at the outlet ( kg∕m3 ), often called the breakthrough concentration. In order 
to use a practical boundary that avoids requiring knowing the concentration beyond the column outlet, we use the 
continuity condition c(0)(L−

b
, t) = c

(0)

b
 [18] so that (48) becomes

The dimensionless boundary conditions at the inlet and the outlet then read
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respectively, where

with � = Lb∕(Lp + Rc).
As for the pores, the boundary condition at y = 0 is based on the continuity condition between concentrations at the 

entrance of the pores:

while the boundary condition at y = Lp reads

and corresponds to a symmetry condition where all the pores communicate at the ends.
The dimensionless conditions within the pore then read

where

4  Reduced dimensionless model

In the previous sections we have derived the governing equations and initial and boundary conditions. Since eq. (37) 
corresponds to the leading-order variables, the dependent variables in the rest of the governing equations and the initial 
and boundary conditions must be also asymptotically expanded. In the subsequent section we use typical experimental 
values to confirm the orders of magnitude of the parameters in the problem, which will enable us to consider a reduced 
model description.

4.1  Experimental values and reduced model

In Table 1 we provide typical laboratory-scale experimental values of an adsorption column process [20]. The case in 
consideration concerns the adsorption of toluene from nitrogen gas on activated carbon.

The value chosen for the parameter � from the Beavers–Joseph condition in Table 1 will define the relation between flow 
rate and pressure drop (see eq. (13)). However, it does not affect the evaluation of the effect of the radius of the pores and 
the effect of the porosity that we consider in the following sections.

The experimental values validate the asymptotic analysis in � carried out in Sect. 3.3. The parameter Pe−1� is O(1) for the 
magnitude of rp where the mass sink is more relevant ( rp = 2.8 × 10−4 m). Since Da� and Fo−1 are both small we neglect these 
terms in (37) and (43) to obtain the reduced system 
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 where 

The dimensionless initial conditions read,

and the boundary conditions at the inlet and the outlet read
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𝜕ŷ2
=
𝜕

̂
𝜎
(0)

I

𝜕t̂
,

(56c)
𝜕�̂�

(0)

E

𝜕t̂
=k

[
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Table 1  Value of the 
parameters involved in a 
typical column adsorption 
process at laboratory scale 
[20]

The value of the diffusion coefficient is approximate to the ones reported by Erbil and Avci [34]

Parameter Value Parameter Value

cin [ kg∕m
3] 10−4 � [s] 2045.4

KL [ m3∕kg] 5000 R [m] 56.4 − 5.6 × 10−5

�m [ kg∕m2] 0.01 Rp [m] 10−4

�e [ kg∕m
2] 0.0033 Lb [m] 89 − 8.9 × 10−5

Lb [m] 0.004 Lp ( ×10−4 ) [m] 0.014-1.4

Rc [m] 8 × 10−5 � 0.635

Lp [m] 7 × 10−4 Da� 0.85 − 8.5 × 10−7

rp ( ×10−6 ) [m] 0.028–280 Fo−1 1.4 × 10−10 − 1.4 × 10−6

n [ m−2] 4 × 106 Pe−1� 1.5 × 10−6–1.5

Us [m/s] 0.01 � 5.13

D [ m2∕s] 6.8 × 10−6 � 10−8–1

kEa , kIa [ m3kg
−1
s−1] 4.9 � 0.2

kEd , kId [ m3kg
−1
s−1] 9.8 × 10−4 � 2

� [ kg m
−1
s−1] 1.85 × 10−5 k 1

� [ m−1] 1 A 1



Vol.:(0123456789)

Discover Chemical Engineering            (2024) 4:27  | https://doi.org/10.1007/s43938-024-00064-7 Research

Within the pore we have

4.2  Total adsorbed mass

In our results we will consider dimensionless adsorbed masses, m̂ by scaling the dimensional mass m with the mass 
introduced into the adsorption column per unit time:

The total mass of contaminant captured from x̂ = 0 to a certain x̂ can be calculated as

The previous expression accounts not only for the adsorbed mass but also for the absorbed mass in the pores in the 
pellet. To calculate only the adsorbed mass, we can define it as an integral of the adsorbed densities over the surface of 
adsorption. Thus, we shall write

where m̂Ia(x̂, t̂) and m̂Ea(x̂, t̂) are the mass adsorbed at the internal surface of the pores and the external surface of the 
pellet, respectively. The total adsorbed mass is m̂ad = m̂Ia + m̂Ea.

The mass retained inside the channel, m̂c(x̂, t̂) , and the pores, m̂p(x̂, t̂) , can also be calculated as

which are negligible due to the order of magnitude of Fo−1 and Da� reported in Table 1, respectively.

4.3  Parameter constraints

The size of the pores has an upper bound that depends on the available surface that surrounds the channel. In order to 
find the maximum surface that can be occupied by the base of the cylindrical pores, we consider a single cell of the size 
of the pore surrounded by pores in a hexagonal packing arrangement (see square in Fig. 3).

Since the hexagonal packing density of the circles is the one that minimizes the area between circles, we can find the 
maximum surface ratio occupied by the pores around the channel. Taking into account the situation shown in Fig. 3, we 
can determine the area of one of the corners inside the square (yellow area). This is Acorner = br2

p
 , where
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𝜕ĉ(0)

𝜕x̂

)|
|
|
|
|x̂=0+

,
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Vol:.(1234567890)

Research Discover Chemical Engineering            (2024) 4:27  | https://doi.org/10.1007/s43938-024-00064-7

Thus, the maximum surface ratio is

Now, the surface ratio retrieved from the parameters of the model must be less than the maximum found,

The equations above lead us to define the domain � ∈ [0,�∕4 + b).
Since the number of pores per unit area of pellet surface is fixed, the change in the porosity due to a change on Lp will 

lead to a change on the total number of pores in the cell N. This defines a constraint on � since there should be at least 
one pore, i.e. N ≥ 1 . This constraint is

Taking into account the values in Table 1, this defines the boundary 𝜙 ≲ 0.999842.

5  Results and discussion

We solve the model (56) subject to (58)–(60), using the method of lines in MATLAB. We discretize the spatial coordinate 
using the finite differences method with a central second-order scheme. The error committed in the discretization of 
time is controlled by the MATLAB function ode15s, which is a variable order method with default relative and absolute 
tolerances 10−3 and 10−6 , respectively. The error committed by the spatial discretizations are O(Δx2) and O(Δy2) , where 
Δx and Δy are the spatial steps throughout the column and the pores, respectively. Thus, the error in x is O(10−8) m with 
a bed length of 0.004 m, and for y is O(10−11) m with a pore length of 7 × 10−4 m. These values stem from discretizing the 
bed length and the pore length in 30 and 100 portions, respectively. Once the solution at different positions and times 
is obtained, the concentration at the outlet ( x̂ = L̂b ) is evaluated at certain times. The values of m̂Ia(L̂b, t̂) and m̂Ea(L̂b, t̂) 
are calculated using expressions (63) and (64) by numerical integration of the results using the trapezoidal method. The 
calculation of Ĝ is obtained using eq. (17). The regressions made to assess the trend of the optimal values have been 
carried out using MATLAB’s Curve Fitting Toolbox, with a nonlinear least-squares method.
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Fig. 3  Surface of a pellet with 
an optimum hexagonal pack-
ing arrangement of pores



Vol.:(0123456789)

Discover Chemical Engineering            (2024) 4:27  | https://doi.org/10.1007/s43938-024-00064-7 Research

5.1  Effect of the pore radius

In the dimensionless model, variations in rp correspond to variations in the parameter � . Possible values of rp range from 
the mean radius of the mesopore region (28 nm) to the macropore capillary region (280 � m) [35–38]. In dimensionless 
terms, this corresponds to 10−8 ≤ � ≤ �∕4 + b . To investigate the effect of the pore radius, the value of � is varied from 
10−8 to �∕4 + b . For each value of � , the values for the other dimensionless parameters are calculated, and the model 
in (56) with initial and boundary conditions (58)–(60) is then solved. Since we assume that the change in � is due to the 
change in rp , the rest of the dimensional values in Table 1 used to calculate the dimensionless parameters remain constant.

In Fig. 4 we show the dependence of the internal and the external mass adsorbed, m̂Ia and m̂Ea , respectively, for increas-
ing � . The internal adsorbed mass follows a power-law relation of the form m̂Ia ∝ 𝜒0.7 in most of the studied domain 
(see Fig. 4a). The external adsorbed mass though, is approximately constant with � until � ≈ 10−1 (see Fig. 4b), when it 
sharply drops until � = 1.

Summing the internal and external adsorbed masses uncovers an optimal pore radius � that maximizes the total 
adsorption (Fig. 5). The optimum value of � increases with increasing adsorption time until it disappears. This behaviour 

Fig. 4  Values of the dimensionless a internal mIa and b external mEa adsorbed mass using the parameter values in Table 1. From blue lines 
(early times) to red lines (later times): t̂ = 0.022 , 0.044, 0.088, 0.176, 0.264, 0.352, 0.44, 0.66, 0.88, 1.1, 1.32, 1.54, 1.76, 1.98, 2.2, 2.42, 2.64, 2.86, 
3.08, 3.3, 3.52, 3.74, 3.96, 4.18, 4.4. The dimensionless times correspond to a time span from 45 s to 2.5 h

Fig. 5  Values of the dimen-
sionless total adsorbed mass 
for a t̂ = 0.088 , b t̂ = 0.264 
and c t̂ = 1.76 . The dimen-
sionless times correspond to 
3 min, 9 min and 1 h respec-
tively
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can be seen in Fig. 6, which shows the minima obtained in the outlet concentration, ĉout , at different times (a), and 
the evolution of the optimal � with time (b). There is a monotonic and exponential increase in the optimum � as time 
increases until t̂ ≈ 1.13 , beyond which, the optimal � coincides with the maximum possible value, � = 1.

The optimum values for � are all between 10−1 and 1. This indicates that the optimum radius of pore is between 20 
and 200 � m, which correlates to the macropore region of a capillary size. Although this is higher than the typical pore 
size of common adsorbents [39–41], it is appropriate for crafted materials with controlled structures [42–45]. Moreover, 
it indicates that the model is capable of predicting optimal pore size conditions, which will change with the physical 
parameters of a particular system.

5.2  Effect of the porosity

To assess the effect of the porosity we consider a value of � near the optimum region obtained in the previous section. 
We set a pore radius of 200 � m ( � = 0.5 ), which corresponds to a bed and pore length-scale Lb = 1.36 × 10−4 m and 
Lp = 1.17 × 10−4 m, respectively, and so �2 = 0.4 . To investigate the effect of the porosity, we assume that the size of the 
representative cell remains constant. Hence, the value of Lp + Rc = 7.8 × 10−4 is held constant, so when Lp is changed 
Rc varies accordingly. We use eq. (14) to calculate the value of � as we vary Lp , considering a variation of 1 − � between 
10−8 and 0.9998, to ensure that we do not surpass the upper limit of � enforced by (70) (which requires 𝜙 ≲ 0.999842 ). 
When calculating all other dimensionless parameters, we vary Lp and Rc but hold all other parameters in Table 1 fixed. 
The model in (56) with initial and boundary conditions (58)–(60) is then solved for each value of �.

In Fig. 7 we show the dependence of the dimensionless adsorbed mass on � . Both the internal and the external 
adsorbed masses, m̂Ia and m̂Ea , start at a non-zero value when � = 0 and tend to zero when � → 1 (Fig. 7a and 7b, 
respectively). Since the parameter � does not change with � (the number of pores per unit area is held constant), this 
relationship arises due to the effect of the porosity on the dimensionless column and pore lengths, i.e. L̂b and L̂p (eqs. 
(51) and (55), respectively). The dimensionless column length L̂b is affected by � because of the column length-scale 
Lb , which depends on the length of the pore. Both L̂b and L̂p are proportional to 

√
1 − � , so if � increases then these 

lengths decrease. This correlation is translated to the calculation of the dimensionless internal and external adsorbed 
masses via eqs. (63) and (64), respectively. The external adsorbed mass displays an optimum close to � = 1 , before 
dropping down to 0 (Fig. 7b). This is because of the effect of the linearly increasing diffusivity term with increasing � . 
Since Pe−1 is O(1) , the increase of � counteracts the decrease of the dimensionless column length L̂b . However, since 
the amount of internal adsorbed mass is generally higher than the external one, the total adsorbed mass is always 
decreasing for increasing � (Fig. 7c), and so there does not exist an optimum.

Fig. 6  a Evolution of outlet concentration ĉout with � . The values of the parameters used are given in Table 1. The black dashed line indicates 
the trend of the optimum of each line. From blue lines (early times) to red lines (later times): t̂ = 0.022 , 0.044, 0.088, 0.176, 0.264, 0.352, 0.44, 
0.66, 0.88, 1.1, 1.32, 1.54, 1.76, 1.98, 2.2, 2.42, 2.64, 2.86, 3.08, 3.3, 3.52, 3.74, 3.96, 4.18, 4.4. The dimensionless times correspond to a time 
span from 45 s to 2.5 h. b Optimum � versus time t̂  . The red solid line is the regression of the optimum � with time
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In Fig. 8 we show the relationship between the outlet concentration and porosity for different times. Here we see that 
higher values of � lead to higher concentrations at the column outlet. This is consistent with the total adsorbed mass 
shown in Fig. 7 (right).

5.3  Energetic considerations

In Fig. 9a we show the evolution of the pressure drop with the outlet concentration for a range of inlet flow rates. To obtain 
different flow rates the superficial velocity Us is varied from 0.001 m/s to 0.05 m/s. The rest of the dimensional values in 
Table 1 used to calculate the dimensionless parameters remain constant. The model in (56) with initial and boundary 
conditions (58)–(60) is then solved for each Us for the associated values of the dimensionless parameters. We see that 
if we are willing to treat higher flow rates (red lines) and accept high outlet concentrations, we can input a significant 
flow rate for a low pressure drop, i.e. low energy cost. However, if we need to obtain low concentrations at the outlet, 
the energetic cost will be higher with a lower flow rate treated. This uncovers a trade-off between the required outlet 
concentration, the flow rate, and the energetic cost. Note that the dependence of Ĝ on ĉout shown in Fig. 9a does not 
obey a power law. This is because the cost of maintaining ĉout constant is to decrease � when a higher flow rate is treated. 
Thus, Ĝ rapidly diverges when this happens [see eq. (17)].

In Fig. 9b we show the dependence of the product of the pressure drop Ĝ and the concentration ĉ on the porosity � , 
when flow rate is fixed. We choose to vary � in the same way as described in Sect. 5.2. As seen previously, the concentra-
tion increases with increasing � (see Fig. 8) whereas the pressure drop decreases with increasing � if flow rate is fixed 
(see Fig. 9a). Thus, the product of these two magnitudes exhibits an optimum porosity, �opt , as shown in Fig. 9b by the 

black dashed line. The location of this optimum obeys the approximate power-law relation (Ĝĉ)opt ∝ (1 − 𝜙opt)
0.75 . This is 

shown with more detail in Fig. 10a. In Fig. 10b we also show the dependence of �opt with time. The identification of this 
optimal porosity is significant since in practice there is always a trade-off between the maximum permissible concentra-
tion from the filter and the energetic demand. These results indicate the suitability of the model presented in this work 
to determine the optimal packing arrangement of the column.

Fig. 7  Values of internal (a), 
external (b) and total (c) 
dimensionless adsorbed mass 
with different porosity values 
at the conditions given in 
Table 1 for � = 0.5 . From blue 
lines (early times) to red lines 
(later times): t̂ = 0.022 , 0.044, 
0.088, 0.176, 0.264, 0.352, 
0.44, 0.88, 1.76, 2.64, 3.52, 4.4. 
The dimensionless times cor-
respond to a time span from 
45 s to 2.5 h

Fig. 8  Evolution of outlet 
concentration with porosity 
at the conditions given in 
Table 1 for � = 0.5 . From blue 
lines (early times) to red lines 
(later times): t̂ = 0.022 , 0.044, 
0.088, 0.176, 0.264, 0.352, 
0.44, 0.88, 1.76, 2.64, 3.52, 4.4. 
The dimensionless times cor-
respond to a time span from 
45 s to 2.5 h
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6  Conclusions

In this manuscript, we have presented a mathematical model to predict the behaviour of an adsorption column. The 
model is formed from equations that describe the fundamental laws of an advection–diffusion–reaction system. The 
approach as a multi-scale processes where adsorption can take place at both the external and internal surfaces of the 
pellets has shown the trade-off between these two when the size of the pores and the porosity of the column change. 
The conclusions obtained can be summarized in the following points: 

1. The model presented is capable of predicting the optimal pore size of the adsorbent under given experimental con-
ditions. The optimal pore radius is contained in the macropore region ( rp ≈ 200 �m), which makes the model useful 
for filtering applications where the pore size can be controlled and designed to create a capillary lattice.

2. The assessment of the effect of the porosity leads to the conclusion that a lower porosity provides a higher adsorption 
capacity. This means that a higher packing density and better packaging of the pellets is desirable for optimum 
adsorption.

Fig. 9  a Pressure drop against outlet concentration when t̂ = 4.4 (2.5 h) for different values of inlet flow rate. From blue lines [low Us ) to red 
lines (high Us)]: 0.005, 0.009, 0.013, 0.017, 0.021, 0.025, 0.029, 0.033, 0.037, 0.041, 0.045, 0.05 m/s. b Evolution of the product between the 
pressure drop and the outlet concentration with 1 − � , for fixed Us . The black dashed line indicates the trend of the optimum of each line. 
From blue lines (early times) to red lines (later times): t̂ = 0.022 , 0.044, 0.088, 0.176, 0.264, 0.352, 0.44, 0.88, 1.76, 2.64, 3.52, 4.4. The dimen-
sionless times correspond to a time span from 45 s to 2.5 h. In both figures, the parameter values used are given in Table 1, and we take 
� = 0.5

Fig. 10  a Evolution of the optimum value of the product between the pressure drop and the outlet concentration with 1 − � , for fixed Us . 
b Optimum porosity �opt versus dimensionless time. The red solid line is the regression of �opt with respect to t̂  . The black dots indicate 
the different optima and the red line indicates the regression. In both figures, the parameter values used are given in Table 1, and we take 
� = 0.5
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3. The model provides a relation between pressure drop, inlet flow rate and outlet concentration. This allows us to 
determine the optimal packing arrangement for an optimal performance of the column given certain energetic 
constraints.

Since not all adsorbent pellets are cylindrical, different geometries and packing arrangements, such as spheres in a 
column, should be studied in the future. Moreover, although the results of the cell problem may be generalized to 
the whole column, the full column problem is also restricted by the packing arrangement of the different pellets of 
the column. Future work should also include testing for different applications.

In summary, the model presented in this work is capable of providing the optimal design and operating conditions 
of an adsorption filter.
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Appendix A

Relation with experimental magnitudes
In this section we provide a set of relationships between quantities introduced in this manuscript and others that 

are commonly used experimentally.
In Table 2, �b is the bulk density ( kgadsorbent∕m3 column), �a is the apparent density of the pellet ( kgadsorbent∕m3 

pellet), vp is the volume of pores per mass of adsorbent ( m3 pores/kg adsorbent), � is the fraction of macropores over 
all the pores, mad is the initial mass of adsorbent in the column (kg) and qm is the maximum adsorbed fraction (kg 
adsorbate/kg adsorbent).

Table 2  Relation between 
experimental quantities and 
those used in the model 
presented in the manuscript

Parameter Relation

Pellet porosity �p = �avp�

Radius of the channel Rc = Lp((1∕
√
1 − �) − 1)

Total number of pores N = (1 − �)�p(Lb∕Lp)(Lp + Rc)
2∕r2

p

Total number of channels Nc = mad∕(�b�Lb(Rc + Lp)
2)

Max. adsorbed density �m = qmmad∕(�Nc(2NrpLp + 2LpLb − Nr2
p
))
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