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Abstract
This comprehensive review aims to explore and elucidate the pivotal role of biotechnology in biofuel production, spe-
cifically focusing on its contribution to enhancing sustainability, efficiency, and productivity in the energy sector. By 
examining various biotechnological approaches like genetic engineering, metabolic engineering, and synthetic biol-
ogy, it seeks to provide insights into effectively harnessing biofuel generation processes, including the integration of 
machine learning and life cycle assessment for microalgae cultivation and harvesting. Additionally, it sheds light on the 
multifaceted implications surrounding biofuel production and consumption, addressing technological, ethical, social, 
and economic considerations. Through critical analysis of the advantages and challenges associated with biotechnology-
driven biofuel development, it offers a balanced perspective on the true potential of biofuels as a viable, sustainable, 
and equitable energy source for the future. This examination provides a holistic analysis of the symbiotic relationship 
between biotechnology and biofuels, highlighting how advancements in biotechnological techniques can pave the way 
for a more sustainable and resilient energy future. By addressing both the promises and limitations of biotechnology in 
this context, it aims to contribute to informed decision-making and policy formulation to drive the transition toward a 
cleaner and more equitable energy paradigm.
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1 Introduction

Biotechnology has emerged as a pivotal tool in developing sustainable solutions for a renewable energy future, focus-
ing primarily on the advancement of biofuels. Utilization of biomass, which includes wood, charcoal, and agricultural 
residues, has been used in various applications, such as cooking, heating, and the generation of both biofuels and 
electricity. Through appropriate processing, biomass can be converted into solid forms such as wood pellets or biochar, 
which, when burned, contribute to energy production [1]. Furthermore, biomass serves as a precursor for liquid products 
such as bio-oils, such as biodiesel, offering a sustainable substitute for conventional crude oil [2]. Moreover, the potential 
of biomass extends to the production of biogas, including methane or syngas, further diversifying the range of viable 
bioenergy resources [3].

The use of biofuels has gained significant attention in recent years due to growing concerns about climate change, 
energy security, and sustainability [4]. Biofuels have several advantages over conventional fossil fuels, including lower 
greenhouse gas emissions, reduced dependence on foreign oil, and improved rural economies [5]. Biofuels are also more 
sustainable, as they are derived from renewable sources and can be produced locally, reducing the need for long-distance 
fuel transportation [6]. In addition, biofuels can be used in existing infrastructure without significant modifications, mak-
ing them a practical alternative to fossil fuels.

Biotechnology-based approaches such as genetic engineering, metabolic engineering, and synthetic biology have 
been used to enhance the productivity and efficiency of biofuel generation processes. These technologies enable the 
development of high-yield, low-cost, and sustainable biofuel generation systems. For example, genetic engineering 
has been used to modify plant genes to increase their oil content [7, 8], while metabolic engineering has been used 
to optimize ethanol production of ethanol from various feedstocks [9]. Synthetic biology has been used to design and 
construct new biological systems for the production of biofuels [10]. Enzymes [11, 12], fermentation [13, 14] and algae 
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[15, 16] are promising sources of biofuels due to their high yield and versatility. Enzymes can break down complex car-
bohydrates in plants and other feedstocks into simpler sugars that can be fermented into biofuels. Some fermentative 
microorganisms, such as yeast or bacteria, are being used industrially to convert sugars into biofuels, such as ethanol 
[17]. Algae can produce high yields of oil, which can be converted to biofuels. Biotechnology also enables the design 
and operation of biorefineries, leading to more efficient and sustainable operations [8]. Biorefineries are facilities that 
convert biomass into a variety of value-added products, including biofuels and chemicals. Biorefineries can help reduce 
waste and enhance the overall sustainability of the biofuel generation process.

However, biofuel production and consumption pose complex ethical, social and economic implications, which require 
careful consideration to promote sustainable and equitable economic growth while mitigating the effects of climate 
change. For example, there are concerns about the impact of biofuel production on land use, food security, and biodiver-
sity. Additionally, the economics of biofuel production can be challenging, with high capital costs and uncertain returns 
on investment. The present review aims to provide a comprehensive understanding of recent advances in biotechnol-
ogy and biofuel research, specifically focusing on the development of sustainable solutions for a future of renewable 
energy. The objective is to explore the role of biotechnology in addressing the technical, economic, and environmental 
challenges associated with biofuel production.

2  Types of biofuels

Biofuels are renewable energy sources derived from organic matter such as plants, algae, and waste materials, making 
them a promising alternative to conventional fossil fuels [18]. They are considered a promising alternative to fossil fuels 
because of their lower carbon emissions and sustainable production methods. There are four categories of biofuels based 
on the type of raw materials used in their production (Fig. 1), which are classified as first-generation, second-generation, 
third-generation and fourth-generation biofuels [5, 19].

2.1  First‑generation biofuels

First-generation biofuels are derived from food crops such as corn, sugarcane and soybeans [5]. They are produced 
through conventional technologies, such as fermentation or transesterification, to convert plant materials into ethanol, 
biodiesel, or vegetable oil. While first-generation biofuels can help reduce greenhouse gas emissions, they have been 
held responsible for causing land use changes, deforestation, and competition for food crops (Table 1).

2.2  Second‑generation biofuels

Second-generation biofuels are produced from non-food biomass, such as agricultural and forest residues, energy crops 
and municipal waste [4]. They are produced using advanced technologies, such as gasification, pyrolysis, and hydrother-
mal liquefaction, to convert biomass into liquid fuels, such as bioethanol, biodiesel or biogas [5]. Second-generation 
biofuels are more sustainable than first-generation biofuels, as they do not compete with food crops and can use waste 
materials as feedstock. Second-generation biofuels face challenges such as complex processing due to lignocellulosic 
feedstocks, which leads to higher production costs and technical hurdles [20]. Developing infrastructure and supply 
chains for dispersed biomass can be difficult, and commercial-scale production requires significant investment and 
market stability. Additionally, improperly managed feedstock production can pose environmental risks, such as change 
in land use, water usage, and biodiversity loss [21].

2.3  Third‑generation biofuels

Third-generation biofuels are produced from algae or other microorganisms [4, 15]. They are grown in ponds or photobio-
reactors and can produce large amounts of oil or biomass per unit area. Third-generation biofuels are seen as promising 
due to their high productivity, low land use, and ability to grow in non-arable land [22]. However, they are still in the early 
stages of development and their commercial viability has yet to be established.
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2.4  Fourth‑generation biofuels

Fourth-generation biofuels are produced using synthetic biology and genetic engineering techniques [23]. Biofuels 
undergo processing by using genetically modified algae (GM), as well as photobiological solar and electrofuels [24, 25]. 
They have the potential to be more efficient and cost-effective than other biofuels, as they can be designed to produce 
specific types of fuel with higher energy densities [23]. However, there are concerns about the potential risks associated 
with genetically modified organisms and the environmental impacts of large-scale production.

3  Enzyme production: a key factor in biofuel generation

Enzymes are essential for the production of biofuels, as they catalyze the chemical reactions required to break down 
organic materials into simpler compounds that can be used to produce biofuels [26]. Enzymes used in biofuel generation 
include cellulases, amylases, and lipases [27]. Enzymes also improve the efficiency of biofuel generation by reducing the 
energy required to convert organic materials into biofuels. The widely used method for enzyme production is micro-
bial fermentation, where microorganisms such as bacteria or yeast are grown in large-scale fermentation tanks under 

Fig. 1  Schematic representation of different generation of biofuels
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controlled conditions [16]. Microorganisms consume organic material, such as sugars or starch, and produce enzymes 
as waste products [28]. The enzymes are then harvested and purified for biofuel generation (Fig. S1).

Microbial fermentation is a cost-effective and scalable process [29], which can also be optimized by genetic engi-
neering, to produce enzymes with specific properties or improved efficiency [30]. However, the production of enzymes 
through microbial fermentation may be limited by the availability of suitable microorganisms and the requirement for 
specific growth conditions [31]. Enzymes also facilitate the use of renewable organic materials, including agricultural 
waste and non-food crops, as biofuel feedstocks [32], thereby reducing dependence on non-renewable resources such 
as fossil fuels. Ultimately, the use of enzymes in the generation of biofuels drives us toward a more sustainable and envi-
ronmentally friendly energy future and helps contribute to a more secure and sustainable energy system.

4  Role of fermentation in the generation of biofuels

Fermentation is a key process in producing biofuels from various sources, such as sugars, starch, and cellulose. During 
fermentation, microorganisms, such as bacteria [13], yeast [17], or fungi [33], convert the raw materials into biofuels, 
such as ethanol or butanol. For example, fermentation transforms sugars obtained from corn, sugarcane, or other bio-
mass into ethanol. This process involves the combination of yeast with water and sugar, where yeast consumes sugar 
and generates ethanol and carbon dioxide as byproducts [17]. Similarly, when producing biofuels from lignocellulosic 
biomass, fermentation is used to break down complex sugars in biomass into simpler sugars that can be converted into 
biofuels [34]. This process involves using enzymes or microorganisms to break down the cellulose and hemicellulose in 
the biomass into sugars, which are then fermented into biofuels. Fermentation thus enables the conversion of biomass 
into usable fuels that can help reduce dependence on fossil fuels and mitigate the impact of greenhouse gas emissions 
on the environment.

4.1  Fermentation process

The fermentation process for the generation of biofuels is a complex and multistep process that requires careful attention 
to detail at each stage to ensure maximum efficiency and productivity. This process can occur under anaerobic or aero-
bic conditions, depending on the microorganism and the type of substrate used. During fermentation, microorganisms 
such as yeast or bacteria consume carbohydrates or other organic compounds and produce energy and waste products 
such as ethanol, butanol, or methane. A schematic representation of the fermentation process for biofuel generation is 
represented in Fig. 2, which typically involves the following steps.

4.1.1  Feedstock preparation

The initial stage of the process involves the preparation of the feedstock, which is selected based on the specific bio-
fuel being produced. Feedstocks with an abundant sugar or starch content, such as corn, sugarcane, or other biomass 
sources, are utilized for bioethanol production. However, when working with lignocellulosic biomass such as wood chips 
or agricultural residues, the feedstock requires pretreatment to break down complex sugars into simpler forms that can 
be effectively fermented [34].

4.1.2  Fermentation

Once the feedstock is prepared, it is mixed with water and yeast or other microorganisms to initiate the fermentation 
process [35]. During fermentation, the microorganisms consume the sugars in the feedstock and convert them into 
ethanol or other organic compounds. The temperature and pH of the fermentation process are critical [31] as they can 
affect the efficiency and productivity of the process.

4.1.3  Distillation and purification

After fermentation, the resulting biofuel solution is distilled to separate the biofuel from the water and other impurities. 
Among the different liquid phase separation techniques, membrane processes have been reported as a major technol-
ogy for process intensification in biomolecule separation and purification. These processes are recognized for their 
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robustness, energy efficiency, and environmentally friendly nature, aligning with sustainability goals. Among these, 
membrane distillation (MD) is attracting significant interest, which employs hydrophobic microporous membranes and 
utilizes temperature differences to facilitate the vapour pressure-driven separation of volatile compounds from non-
volatile ones. There are four primary configurations of MD modules: Direct-Contact Membrane Distillation (DCMD) [36], 
Air-Gap Membrane Distillation (AGMD) [37], Vacuum Membrane Distillation (VMD) [38], and Sweeping Gas Membrane 
Distillation (SGMD) [39]. These configurations differ in how they condense vaporized molecules on the permeate side. 
DCMD employs a condensing fluid directly in contact with the membrane, while AGMD uses an air gap and cold plate for 
condensation. The VMD and SGMD involve transporting vaporized molecules outside the module via a vacuum pump or 
inert gas flow for subsequent condensation. Loulergue et al. [37] conducted a study assessing AGMD for the extraction 
of ethanol from algal-based fermentation broths. The AGMD process effectively achieved the concentration of ethanol 
in the permeate while retaining glycerol, sugar, and salts. The study highlighted the potential to optimize process pro-
ductivity and selectivity by carefully selecting operational parameters.

Fig. 2  Schematic representation of the process of fermentation for biofuel generation
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4.1.4  Blending and distribution

Biofuel preparation for distribution and use incorporates a crucial process called blending. The process involves merging 
the biofuel with additional compounds to amplify specific attributes to meet precise standards before becoming a viable 
transportation fuel. A frequently adjusted attribute during blending is the octane rating of biofuels [40]. The octane rating 
measures the resistance of a fuel to engine knocking, which is an undesirable phenomenon in internal combustion engines. 
The mixing of biofuels with higher-octane compounds such as dimethylfuran, 2-methylfuran, prenol, 2-methyl-2-butene, and 
ethanol has been reported to improve the octane rating of the mixture, resulting in better engine performance and reduced 
risk of engine knocking [41]. The mixture is also used to modify the oxygen content of biofuels, which contributes to improved 
combustion efficiency and reduced emissions [42]. Following the blending procedures, the biofuel transforms into a custom-
ized product that meets performance, emissions, and compatibility suitable for vehicle and machinery deployment [43].

4.2  Types of biofuels produced using fermentation

Fermentation produces a wide range of biofuels, from ethanol and butanol to biogas and methane. The choice of biofuel 
produced depends on several factors, including the availability of feedstock, the type of microorganisms used, and the 
desired end-use of the biofuel. Some of the most commonly produced biofuels through fermentation are discussed below:

4.2.1  Bioethanol

Bioethanol is a widely produced renewable fuel on a global scale and is predominantly utilized as a fuel additive to 
gasoline. It is usually produced through the fermentation of sugars or starches obtained from feedstocks such as corn, 
sugarcane, or other biomass sources. Microorganisms such as yeast (eg. Saccharomyces cerevisiae) [44] and bacteria (e.g., 
Zymomonas mobilis) [45] are typically used in the fermentation process.

4.2.2  Butanol

Butanol is another type of biofuel that can be produced through fermentation. It has several advantages over bioethanol, 
including its higher energy content and compatibility with the existing gasoline infrastructure. Butanol can be produced 
by fermentation of sugars, starch, or lignocellulosic biomass. Different bacterial species, such as Clostridium acetobutyli-
cum [46], Clostridium beijerinckii [47], and Butyribacterium methylotrophicum [48] can be used in the fermentation process.

4.2.3  Biogas

Biogas is a mixture of gases, primarily methane and carbon dioxide, produced through anaerobic digestion of organic 
matter, such as animal waste, food waste, or sewage [49]. Microorganisms, such as methanogenic archaea [50], and 
bacteria, such as Bacteroidetes and Firmicutes [51], are typically involved in the fermentation process.

4.2.4  Biodiesel

Biodiesel is usually produced through a chemical process called transesterification [14], which involves reacting vegetable 
oils or animal fats with alcohol, such as methanol or ethanol, in the presence of a catalyst. However, biodiesel can also 
be produced by fermenting lipids, such as algae or other microorganisms [15]. Yeasts, such as Rhodotorula glutinis [52] 
and Lipomyces starkeyi [53] are commonly used in fermentation.

4.2.5  Methane

Methane can be produced through the anaerobic digestion of organic matter. It is commonly referred to as biogas and 
can be used as a fuel for electricity or heat production [54]. Methane-producing microorganisms, such as Methanosarcina 
acetivorans [55] and Methanobacterium thermaggregans [56], are typically used for the production of methane as biofuel.
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5  Exploring the potential of algae in biofuel generation

Macroalgae, with their high carbohydrate content, hold promise as a potential source for biofuel production. In addition, 
algae have a high lipid content, making them ideal for the production of biodiesel, with some species of algae containing 
up to 80% lipids by weight [57]. Algae can also absorb carbon dioxide from the atmosphere, mitigate greenhouse gas 
emissions, and absorb up to five times more carbon dioxide than other biofuel crops, reducing the carbon footprint of 
biofuels [8]. Macroalgae can also grow in various environments, including saltwater, freshwater, and wastewater, making 
them an attractive source of biofuels, including biodiesel, bioethanol, and biogas. A list of macroalgae used in biofuel 
production and yield is represented in Table 2. However, the use of marine macroalgae faces a significant challenge due 
to their robust hydrocolloid cell walls. Therefore, pretreatment is essential to break down these hydrocolloid-protected 
cellular structures and convert carbohydrates into suitable sugars for bioethanol production [58].

5.1  Production methods

Microalgae are a promising feedstock for biodiesel production, as they can be grown quickly and have high lipid content 
[59]. In addition, algae can be grown on non-agricultural land and can even use wastewater as a nutrient source [60], 
making them a more sustainable and environmentally friendly option for biofuel production. The process of producing 
biofuels from microalgae involves three main steps: algae cultivation, harvesting, and conversion (Fig. 3A). Algae can 
be grown in open ponds or closed photobioreactors, and once they have reached maturity, they need to be harvested 
using methods such as centrifugation, filtration, or flocculation. The harvested algae can then be converted to biofuels 
using various methods, such as pyrolysis, hydrothermal liquefaction or transesterification (Fig. 3B). Each of these steps 
has its advantages and disadvantages in terms of cost, efficiency, and yield. The various approaches that can be used to 
produce biofuels from algae are as follows.

5.1.1  Direct oil extraction

Direct oil extraction involves the mechanical or chemical extraction of oils from biomass or organic material [16, 61]. 
Mechanical methods of oil extraction from algae include sonication, high-pressure homogenization, and centrifugation. 
Chemical methods include solvent extraction using non-hexane solvents such as ethanol or supercritical carbon dioxide. 
In a study by Jeyakumar et al. [2], the Soxhlet extraction method was demonstrated, which involved mixing dried and 
ground biomass with distilled water and subjecting it to sonication. The extraction process involves the use of a Soxhlet 

Table 2  List of macroalgae 
used in biofuel production 
and yield

Algae species Biofuel type Biofuel yield References

Chlorella vulgaris Biodiesel 0.44 g/L [178]
Chlorella vulgaris Biobutanol 8.05 g/L [179]
Nannochloropsis gaditana Bioethanol 89 mg/g [180]
Scenedesmus obliquus Bioethanol 5.58 g/L [181]
Dunaliella salina Biodiesel 844 kg/L [182]
Dunaliella tertiolecta Biodiesel 0.91 g/L [183]
Dunaliella tertiolecta Bioethanol 0.615 ml/g [184]
Botryococcus braunii Hydrocarbons 14 mg/L [185]
Spirulina platensis Bioethanol 68.8 g/L [186]
Chlamydomonas reinhardtii Bioethanol 106.6 mg/L [187]
Defluviitalea phaphyphila Bioethanol 7.8 g/L [188]
Arthrospira platensis Bioethanol 48 g/L [189]
Hydrodictyon reticulatum Bioethanol 54.3 g/L [190]
Clostridium sp. Biobutanol 13.96 g/L [191]
Nannochloropsis sp. Bioethanol 6.74 g/L [192]
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apparatus with powdered algae placed in a filter paper thimble. A mixture of chloroform and methanol (2:1) solvent is 
used, which evaporates, condenses and drips back into the solid material chamber, accumulating warm solvents. This 
cyclic process is repeated over several hours. The dissolved compounds are then filtered, and distillation separates the 
crude algal lipids from the solvents. The non-soluble solid is discarded, while the remaining biomass, rich in carbohy-
drates, can be used as a biofertilizer or recycled for bioethanol production [62]. The oils obtained by direct extraction of 
oil from algae typically have a high energy density, making them an attractive option for use as biofuels.

5.1.2  Transesterification

Transesterification is a process that is used to convert lipids or oils from algae into biodiesel. In this process, the lipids or 
oils in algae are mixed with an alcohol, usually methanol, along with a catalyst such as sodium hydroxide (NaOH), potas-
sium hydroxide (KOH), or enzymes. This mixture undergoes a reaction that produces fatty acid methyl esters (FAMEs) or 
biodiesel and glycerin as a byproduct [59, 63]. However, when the microalgal oil contains a significant level of free fatty 
acids, alkaline catalysts like NaOH and KOH are unsuitable for biodiesel production because of their tendency to produce 
soap. In such situations, acid catalysts such as sulfuric acid  (H2SO4) and hydrochloric acid (HCl) are used [64]. Enzymes have 
also been used successfully in the conversion of microalgal oils to biodiesel. Li et al. [65] achieved a biodiesel conversion 
yield of 98% using immobilized lipase from Candidiasis sp. for oils extracted from C. protothecoides. In another study, Lai 
et al. [66] examined the catalytic efficiency of two immobilized lipases, namely Penicillium expansum lipase and Candida 
antarctica lipase B, to synthesize biodiesel from microalgal oil.

Advanced approaches to direct transesterification include microwave or ultrasound to enhance the mass transfer rates 
and reduce reaction times. Microwave-assisted transesterification utilizes quick redirection of microwave-absorbing 
methanol molecules, resulting in rapid heating throughout the sample [67]. Ultrasound disrupts the oil-alcohol phase 
boundary by generating cavitation bubbles, which improves the extraction of oil from cells and enhances the transes-
terification process [68]. Supercritical conditions and the application of surfactants have also been explored to increase 
conversion yields [69].

5.1.3  Pyrolysis

Pyrolysis is a thermal decomposition process that occurs in the absence of oxygen. It involves heating biomass, such as 
wood, crop residues or waste materials, at high temperatures (typically between 400 and 600 °C) to break it into three 
main products: bio-oil, biochar and gases. During pyrolysis, the biomass undergoes chemical and physical changes. The 

Fig. 3  Production of biofuels from algae. A Algae are cultivated, harvested, and converted into various forms of biofuels, B different tech-
niques and approaches for algae-based biofuel production
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absence of oxygen prevents complete combustion, resulting in the production of bio-oil, which is a liquid mixture of 
various organic compounds. Biochar, a solid residue rich in carbon, is also generated during the process. Gases such as 
methane, carbon dioxide, and carbon monoxide are also released as by-products.

The specific mode of pyrolysis (e.g., slow, fast, or flash) and the operating parameters, such as the heating rate, tem-
perature, residence time, and particle size, determine the type and quantity of the products obtained. Slow pyrolysis at 
lower temperatures for longer heating times produces more biochar, while fast and flash pyrolysis at higher temperatures 
for a shorter time yields higher amounts of bio-oil [2]. Fast pyrolysis has proven effective in producing concentrated fuel 
oils and recovering biofuels with medium to low calorific power [70]. The decomposition temperatures vary for different 
components of biomass. Hemicelluloses decompose between 190 and 350 °C, cellulose between 240 and 400 °C, and 
lignin over a broader temperature range [71]. Algal biomass is advantageous for pyrolysis due to its high lipid content, 
ranging from 20 to 50% of dry cell weight and reaching up to 80% under specific conditions. This abundant lipid content 
in the biomass of lignocellulosic algae contributes to a greater bio-oil yield than other traditional biomass [72]. Depend-
ing on the type of reactor used, the process can be carried out using different heating methods, such as microwave [73], 
fluidized bed [74], or entrained flow [70].

Pyrolysis offers several advantages as a biomass conversion process. It allows the production of valuable bio-oil, which 
can be further processed into fuels or chemicals. The biochar produced during pyrolysis can be used as a soil amend-
ment or as a carbon sequestration. Additionally, the gases released during pyrolysis can be used as a source of energy. 
The bio-oil produced can be improved through hydrodeoxygenation or catalytic cracking to improve its quality [75]. 
One significant advantage of pyrolysis is the conversion of solid materials into gases and vapours that are convenient 
to handle, transport, and store. This is also considered a sustainable and green method of biomass use, as it can reduce 
greenhouse gas emissions and provide an alternative to fossil fuels [58].

5.1.4  Hydrothermal liquefaction

Hydrothermal liquefaction (HTL) is a thermochemical conversion process that uses hot and pressurized water to convert 
solid biomass, such as microalgae into biofuels [76]. HTL involves reactions like hydrolysis, dehydration, decarboxylation 
and repolymerization, resulting in the formation of water-soluble compounds and eventually water-insoluble biofuels 
[77]. Gu et al. [78] reported that the composition of microalgae, including their protein, lipid and carbohydrate content, 
affects the yield, quality, and composition of the bio-oil produced by HTL. In a similar study, Koley et al. [79] reported 
that high-protein microalgae are more suitable for the synthesizing of bio-oil, while lipids and carbohydrates can also 
be converted to bio-oil through the HTL process. The HTL temperature range of 250 to 375 °C is generally considered 
suitable for the production of high-yield bio-oil from microalgae [80].

Pretreatment processes and catalysts can enhance the yield and quality of bio-oil obtained through HTL [81]. Catalysts, 
such as noble metals, transition metals, solid acids, and zeolites, play a crucial role in the conversion of bio-oil into long-
chain hydrocarbons by facilitating deoxygenation and hydrogenation reactions [77]. The selection of catalysts depends 
on their ability to break C-O bonds and promote specific reactions. Thus, HTL shows promise as a commercial process for 
microalgae bio-oil production, but further research is needed to optimize the process and improve efficiency.

5.1.5  Supercritical water gasification

Supercritical water gasification (SCWG) involves subjecting biomass to high temperatures and pressures, transforming 
water into a supercritical state with unique solvent properties [82]. In this state, water efficiently breaks down organic 
matter, including microalgae, into simpler compounds such as gases (primarily hydrogen and methane) and liquid 
hydrocarbons. SCWG offers advantages such as high efficiency, minimal by-products, feedstock flexibility, and the ability 
to recover energy through clean gas products [83]. However, the process requires high-pressure and high-temperature 
conditions, resulting in increased capital and operating costs, and requires durable materials and equipment that can 
withstand harsh operating conditions [84].
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5.1.6  Fermentation

The anaerobic fermentation process can be used to produce algae ethanol, which is an attractive feedstock option for 
ethanol production due to its high carbohydrate content and rapid growth rate [60]. The first step involves the breakdown 
of carbohydrates into simple sugars, which can be accomplished using acid or enzymatic hydrolysis. The resulting sug-
ars can then be fermented by microorganisms, such as yeast, bacteria, or fungi, to produce ethanol [4]. The process can 
also be optimized by adjusting the pH, temperature, or nutrient levels to improve the yield and quality of ethanol [16]. 
Solid residues left after fermentation can be used for various purposes, such as a source of protein for animal feed or as 
a soil amendment. Algal fermentation for ethanol production has been explored as a potential alternative to traditional 
feedstocks such as sugarcane and corn.

5.1.7  Anaerobic digestion

Anaerobic digestion is a natural process that occurs in an oxygen-free environment and involves various archaea and 
microorganisms. It consists of four essential stages: hydrolysis, acetogenesis, methanogenesis, and acetogenesis, which 
break down macromolecules into simpler units, particularly during the hydrolysis phase [1]. This breakdown process ena-
bles the conversion of organic matter into biogas, primarily composed of methane  (CH4) and carbon dioxide  (CO2) [85]. 
Anaerobic digestion is widely recognized as a valuable approach to harnessing the energy potential of biowastes. It has 
been used successfully in the treatment of various waste streams, including municipal solid waste, domestic wastewater, 
agricultural residues, and industrial wastewater [86]. Furthermore, research has shown that microalgae can be utilized 
to produce high-quality biodiesel through aerobic digestion of livestock wastewater [87]. The biomass of algae can be 
digested in large tanks under controlled conditions for several days. After digestion, the remaining solid digestate can 
be used as a fertilizer, while the released biogas can be used as fuel for the generation of heat and/or electricity genera-
tion [88]. The process can be enhanced by adding other organic waste streams to algae, such as animal manure or food 
waste, to increase biogas production. Additionally, the process can be combined with other methods, such as microbial 
electrolysis or microbial fuel cells, to produce electricity or hydrogen [89]. Anaerobic digestion is considered an energy-
efficient and environmentally friendly way to produce biogas and valuable by-products from algae.

6  Biotechnology in the design and optimization of biorefineries

Biorefineries aim to convert biomass into a variety of products, including fuels, chemicals, and materials [90]. Biotechnol-
ogy plays a crucial role in the design and operation of biorefineries. It enables the optimization of microbial strains, the 
development of novel enzymes, and the manipulation of metabolic pathways to improve product yields and reduce 
costs (Fig. 4).

Fig. 4  Diagrammatic representation of the role of biotechnology in the design and optimization of biorefineries
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6.1  Microbial strain development

Microorganisms are essential in biorefinery for converting biomass into valuable products. The development of micro-
bial strains is a multistep process that involves the identification, selection, and modification of microorganisms for the 
efficient conversion of biomass into target products [83]. It involves screening microorganisms for desirable traits, such 
as high product yields and tolerance to harsh conditions. Once suitable microorganisms are identified, genetic engineer-
ing techniques can be used to optimize their genetic makeup and enhance their overall performance. Researchers have 
developed consortiums consisting of the yeast Scheffersomyces stipitis and the bacterium Zymomonas mobilis to enhance 
ethanol production from lignocellulosic biomass. By maintaining an inoculation ratio of 1:3 between S. stipitis and Z. 
mobilis, the consortium achieved a 5.52% increase in xylose consumption and a 6.52% higher ethanol titer compared 
to Z. mobilis alone. Furthermore, inserting metabolic genes for xylose into the genome of Z. mobilis improved xylose 
consumption and ethanol titer by 15.36% and 6.81%, respectively [91]. In another study, Tran et al. [92] demonstrated 
that engineered Saccharomyces cerevisiae can co-produce ethanol and polyhydroxybutyrate (PHB) from lignocellulosic 
biomass. The strain was modified to ferment both glucose and xylose and also to synthesize PHB, a biodegradable 
polymer. This yeast accumulated PHB at a content of 64 mg/g of dry cell weight while maintaining a high ethanol yield 
of 0.43 g of ethanol/g of sugar. A comprehensive studies on microbial metabolic pathway engineering for biofuels pro-
duction is represented in Table 3.

6.2  Enzyme development

Genetic engineering enables the modification of microorganisms to enhance or introduce the production of various 
enzymes and other bioactive compounds that are not naturally produced in significant amounts by these organisms 
[93, 94]. This method involves transferring genes responsible for enzyme production from one organism to another, 
expanding the potential for biofuel generation and increasing the yield from natural producers (Fig. S2). In a study by 
Quayson et al. [95], a recombinant Fusarium heterosporum lipase from Aspergillus oryzae was used to combine degum-
ming and transesterification in a single step with a 1:1 molar ratio of crude palm oil (CPO) to biodiesel. This approach 
achieved a high biodiesel yield of 98.8% while improving catalytic activity and allowing reuse of immobilized lipase in 
nine consecutive batches. Researchers optimized enzyme and pretreatment strategies to reduce the energy consump-
tion of lignocellulosic biorefining for biofuels. Through directed evolution, You et al. [96] developed a dominant mutant 
M137E/N269G of Bispora sp. MEY-1 XYL10C_ΔN with high catalytic efficiency (970 mL/s mg) and specific activity (2090 
U/mg) at 37 °C, as well as improved thermostability (T50 increased by 5 °C). In another study, Wang et al. [97] overex-
pressed an indigenous xylanase (XynB) encoded by the CA_P0053 gene in Clostridium acetobutylicum, resulting in an 
88-fold increase in extracellular xylanase activity. This highly soluble and fully secreted xylanase enabled the production 
of 4.03 g/L of butanol from hemicellulose.

6.3  Metabolic pathway engineering

The engineering of metabolic pathways allows for the optimization of metabolic flux within cells to enhance the pro-
duction of desired products. This is achievable through various genetic engineering techniques, such as gene silencing, 
insertion, or modification [8, 9]. Novak et al. [98] successfully established isobutanol production in Escherichia coli on a 
chemically defined medium by building a plasmid library and screening for a robust E. coli W strain with high isobutanol 
yields. The study also employed a combination of different aeration strategies, strain improvement, and pulsed fed-batch 
to optimize the production process, achieving 20 g/L of isobutanol using cheese whey as raw material. Studies have 
demonstrated the potential of advanced biofuels such as butanol, isobutanol, fatty acid, and isoprenoid derivatives 
due to their energy dense properties and compatibility with existing infrastructure. Through metabolic engineering, 
the microbial synthesis of these biofuels can be improved using strategies such as protein engineering and in silico 
approaches [99]. In another study, Meliawati et al. [100] investigated isobutanol production in Paenibacillus polymyxa 
using CRISPR-Cas9-based genome editing, resulting in successful isobutanol production under microaerobic conditions. 
Furthermore, metabolic pathway engineering has been applied to optimize lipid production in microalgae for biodiesel 
production [101].
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6.4  Process optimization

Optimizing biorefinery processes involves adjusting various parameters such as temperature, pH, and nutrient concentra-
tions [102], as well as integrating different unit operations, including fermentation, separation, and purification [28, 31]. The 
biotechnological intervention relies on computational models and simulation software to design and optimize processes 
[103] and monitor and control the production process in real time using sensors and automation systems [104]. Studies 
have shown that optimizing feed rates in fed-batch fermentations can lead to significant improvements in yields. Real-time 
monitoring and control using sensors and automation systems allow for precise management of conditions such as dis-
solved oxygen levels and nutrient availability [105, 106]. Studies have demonstrated the potential of Lactiplantibacillus casei 
E1 as a biocatalyst in bioethanol production, using cane molasses as substrate. The bacterium was fermented anaerobically 
at 37 °C for 36 h in molasses with a controlled pH of 6.0, resulting in an ethanol yield of 13.77 g/L and a carbohydrate utili-
zation rate of 78.60% [107]. Controlled environmental factors, including the optimal pH level, allowed the strain to rapidly 
ferment sugars such as glucose and fructose into ethanol. Additionally, the use of artificial intelligence algorithms such as 
active learning, semi-supervised learning, and metalearning can optimize microalgae cultivation, system design, and supply 
chain management [108].

7  Machine learning and life cycle assessment for microalgae cultivation and harvesting

Machine learning and life cycle assessment (LCA) play crucial roles in optimizing biofuel production and minimizing 
environmental impacts across various types of biofuels, such as those derived from corn, sugarcane, cellulosic materials, 
and waste products. In corn ethanol production, LCA evaluates greenhouse gas emissions, energy balance, and water 
usage, revealing a significant reduction in emissions, approximately 40–50% compared to gasoline [109]. The life cycle 
assessment study in South-Central Brazil evaluated different scenarios for expanding ethanol production, including 
increasing sugarcane cultivation area, increasing yields, and adopting precision agriculture (PA) technologies such as 
fertilizer management and systematization. The study found that without yield gains, 4.5 million acres of expanded sug-
arcane cultivation would be needed. Increasing the average yield from 76.2 to 122.4 Mg  ha− 1 could reduce production 
costs by 26% and greenhouse gas emissions by 14% [110]. In another study, the LCA study evaluated the environmental 
performance of the ethanol produced from cassava pulp and its use as a transport fuel [111]. The study indicated that the 
most favorable scenario is an ethanol factory that substitutes biogas for fuel oil to produce steam and allocates cassava 
pulp based on its economic value. The use of ethanol-based fuel in vehicles demonstrated a lower impact of climate 
change compared to gasoline, with reductions in greenhouse gas emissions of 6%, 10% and 48% for mixtures of 10%, 
20% and 85% ethanol with gasoline, respectively. The reduction in fossil depletion was also significant at 14%, 19%, 
and 59% for the same mixtures. The lower blends of ethanol and gasoline showed slightly different impacts in terms of 
terrestrial acidification (TA), human toxicity (HT), and photochemical oxidation formation (POF) compared to gasoline. 
However, higher blends of ethanol led to increased negative impacts in freshwater eutrophication, TA, HT, and POF [111].

In waste-to-biofuel processes, LCA assesses the conversion of municipal solid waste or agricultural residues into 
biofuels, reducing waste and emissions while producing valuable biofuels. These processes can achieve greenhouse 
gas reductions of up to 80% compared to conventional fossil fuels [112, 113]. In another study, Moradiya, Marathe [114] 
conducted a LCA to evaluate the cultivation and harvesting processes of marine microalgae in the Indian context. The 
findings revealed that microalgae-based technology could mitigate approximately 1.28 kg  CO2 eq./kg of algae produced. 
Among the various environmental impacts assessed, marine aquatic ecotoxicity potential (MAETP) was identified as the 
most significant, with a value of 612 kg 1,4-dichlorobenzene (DCB) eq./kg of algae. The study highlighted that the source 
of electricity played a significant role in contributing to MAETP. Furthermore, the results indicated that higher productiv-
ity and lower feed concentration correlated with greater mitigation of  CO2.

Machine learning (ML) can improve feedstock production efficiency by analyzing data on soil health, weather patterns, 
and nutrient levels, contributing to yield increases of up to 10–20% [115]. ML is also gaining popularity in bioenergy and 
biorefinary for its ability to optimize processes. del Rio‐Chanona et al. [116] developed a deep learning model based on a 
convolutional neural network (CNN) that optimized a photobioreactor and microalgal production, significantly reducing 
time compared to traditional simulation calculations. Mujtaba et al. [117] combined an extreme learning machine (ELM) 
and a cuckoo search algorithm to predict optimal biodiesel yield, achieving an error margin of less than 0.26% between 
predicted and experimental values. In microbial metabolic production processes, ML focuses on maximizing the yield 
of desired products. ML models can guide different production scales, from gene-annotated strain planning to modify 
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metabolic pathways to optimizing fermentation parameters for improved metabolite production [115, 118]. Furthermore, 
the ML and decision tree models successfully identified specific combinations of microalgae cultivation parameters that 
led to high biomass production, efficient nitrogen removal, and effective phosphorus removal for each microalgae class 
[119]. These advances offer exciting opportunities to advance microalgae-based technologies and drive the transition 
towards a more environmentally conscious and sustainable future.

8  Challenges in biofuel generation

8.1  Feedstock availability and cost

The availability and cost of feedstock pose significant challenges in biofuel generation, affecting the stability and sustain-
ability of production chains [120, 121].. The availability of feedstock can be influenced by geographic location, seasonal 
changes, and competing uses such as food production, leading to fluctuations in the supply of crops, forest residues, and 
waste materials. Corn supply for ethanol production in the United States has been reported to fluctuate with weather 
patterns and demand for corn as a food source [122]. Seasonal variability in crop yields can disrupt consistent feedstock 
supply, making it difficult to scale up biofuel production to meet rising demand. Feedstock costs can also vary signifi-
cantly due to market conditions and competition from other industries. Corn prices can vary widely from around $3.50 
to $5.30 per bushel, affecting the profitability of corn ethanol production [123]. Additionally, transporting feedstocks 
can be expensive, especially for bulky materials like straw or wood chips that require long-distance hauling. According 
to the report, biofuels are likely to account for 27% of the world’s liquid transportation fuel supply by 2050 [124].

8.2  Impact on land use and food security

The impact of biofuel generation on land use and food security presents significant challenges that can undermine the 
environmental and social benefits of biofuels. Biofuel production often requires large areas of land, which can compete 
with food production for the same resources such as land, water, and nutrients [14, 125]. This competition can contribute 
to deforestation and soil degradation, particularly when natural habitats are cleared to make way for biofuel crops. Lima 
et al. [126] reported that the the expansion of sugarcane fields for ethanol production in Brazil has been linked to defor-
estation in the Amazon rainforest and Cerrado region, leading to a significant loss of biodiversity and carbon storage. 
This change in land use not only impacts local ecosystems but also displaces indigenous and local farming communities. 
Furthermore, the diversion of crops such as corn or soybeans from food to fuel production can lead to increased food 
prices and reduced availability, exacerbating food insecurity in some regions. During the 2007–2008 global food crisis, 
increased demand for biofuel crops contributed to increased food prices, affecting millions of people worldwide [127].

8.3  Energy and greenhouse balance

The balance of energy and greenhouse gas (GHG) from biofuels is a complex and critical aspect of evaluating their overall 
environmental impact. The entire production chain, from feedstock cultivation to biofuel processing, transportation and 
distribution, can affect net energy return and carbon emissions associated with biofuels [128].

A study comparing bioethanol production from corn in the US and sugarcane in Brazil found notable differences 
in their environmental impacts. US corn bioethanol has a smaller water footprint, requiring 541 L of water per liter of 
bioethanol, compared to Brazilian sugarcane bioethanol, which requires 1115 L of water per liter of bioethanol. How-
ever, Brazilian sugarcane bioethanol boasts a superior energy balance of 17.7 MJ/L of bioethanol and a smaller carbon 
footprint of 38.5 g  CO2e/MJ, whereas US corn bioethanol has an energy balance of 11.2 MJ/L and a carbon footprint of 
44.9 g  CO2e/MJ. These regional differences highlight the need to consider local water resources, net energy production, 
and mitigation of climate change mitigation in biofuel production [129]. In another study in the Tokachi region of Hok-
kaido, northern Japan, the energy balance of a crop rotation of winter wheat, sugar beet, adzuki beans, and potatoes 
was assessed. Tractor operations, transportation, and grain drying consumed 6.09 and 11.50 GJ/ha/year in fossil fuels for 
adzuki beans and winter wheat, respectively. Energy use from materials such as chemical fertilizers ranged from 11.01 
to 24.38 GJ GJ/ha/year. Energy output/input ratios varied between crops: 6.72 for winter wheat, 10.50 for sugar beet, 
2.03 for adzuki bean, and 6.70 for potato [130]. The study reported that sugar beet had the highest energy efficiency 
and net energy gain, but bioethanol production from sugar beet could face lower energy output/input ratios due to 
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high transformation energy requirements. Advanced biofuels derived from waste feedstocks, algae, or lignocellulosic 
materials can demonstrate more favorable energy balances and lower GHG emissions due to the utilization of non-food 
sources and innovative, energy-efficient processing methods [131, 132]. These biofuels often have higher energy returns 
on investment and smaller carbon footprints, as they utilize waste products or non-edible parts of plants.

Although biofuels have the potential to reduce fossil fuel consumption and reduce greenhouse gas emissions, their 
production can have unintended consequences that undermine these benefits. A major challenge is the indirect change 
in land use (ILUC) associated with the expansion of biofuels, which can lead to the conversion of natural habitats into 
agricultural land for the production of biofuel feedstock production [133]. This conversion can result in increased car-
bon emissions, loss of biodiversity, and disruption of ecosystems. Another challenge lies in the energy inputs required 
for biofuel production, including cultivation, harvesting, processing, and transportation. The energy-intensive nature 
of these stages, especially when coupled with the use of chemical fertilizers and pesticides, can offset the energy gains 
from biofuels. Studies have reported that certain crops such as corn, wheat, sugarcane, and sugar beet may have a higher 
energy balance, but their production processes often involve significant energy expenditures [134]. Furthermore, the 
use of fertilizers and pesticides in the cultivation of biofuel feedstock can lead to environmental degradation such as 
water pollution, soil degradation, and increased sediment loads [135]. These impacts not only affect local ecosystems, 
but also contribute to a higher carbon footprint.

8.4  Technical challenges

The generation of biofuels presents various technical challenges that can affect efficiency and cost-effectiveness. One 
major challenge is the variability of feedstocks, such as corn, sugarcane, or cellulosic materials, each of which has differ-
ent chemical compositions and moisture levels, affecting the consistency of production processes [8, 136]. Lignocellu-
losic feedstocks, such as agricultural residues, require complex pretreatment processes such as steam explosion or acid 
hydrolysis to break down structural components before fermentation can occur [137]. Optimizing enzymes for specific 
feedstocks is another technical hurdle, as it requires advanced protein engineering techniques to enhance catalytic activ-
ity and specificity [138]. Furthermore, fermentation parameters such as pH, temperature, moisture content, aeration, etc. 
The levels of biofuels must be maintained at an optimal level to produce high yields while maintaining the viability of 
the microbial strains. Scaling up production from laboratory to industrial scales introduces additional challenges, such 
as maintaining efficient heat and mass transfer in larger equipment [139].

8.5  Policy and market conditions

The policy and market conditions present significant challenges to the generation of biofuels, which impact both pro-
duction and distribution. Biofuel generation is influenced by various policy and market factors, such as subsidies, taxes, 
trade restrictions and consumer demand [140, 141]. Previous studies have indicated that a sudden reduction in ethanol 
tax credits in the US in 2012 led to uncertainty in the corn ethanol market [142]. In another study, researchers have raised 
concerns about the global impact of US biofuel production on land use, suggesting that US biofuel policies may drive 
land use changes in countries such as Malaysia and Indonesia [143]. These policies have been associated with claims of 
deforestation in Malaysia and Indonesia, although the US does not use palm oil for biodiesel production and imports 
only a small portion of the global supply (around 2.2% in 2017) for food uses [144, 145]. Sajid in 2020 [146] revealed 
that the COVID-19 pandemic significantly impacted the biomass supply chain of a US biofuel company, with an 85.01% 
chance of collecting low quality biomass during the pandemic. This risk decreased to 54.23% with the development of 
vaccines and partial reopenings of businesses. Low quality biomass increased the preprocessing cost of biomass feed-
stock by 84.60% during the pandemic. Furthermore, fuel prices fell to 89% of their regular levels due to lockdowns and 
decreased demand for fossil fuels [146]. Market conditions such as fluctuating oil prices also influence consumer demand 
for biofuels [147]. When oil prices are low, biofuels may struggle to compete economically with conventional fossil fuels, 
reducing their market share. Storage and transportation pose additional challenges, as biofuels such as ethanol are more 
susceptible to contamination and water absorption, which can lead to quality degradation [148]. Therefore, consistent 
policy support and clear market signals are essential to foster a stable and sustainable biofuel industry.
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9  Navigating the ethical, social and economic implications of biofuel generation 
and consumption

Biofuel production and consumption have significant ethical, social, and economic implications that must be carefully 
considered. Although biofuels offer many potential benefits, such as reducing carbon emissions and promoting energy 
security, there are concerns about their impact on food security, land use, and social equity.

9.1  Ethical implications

The production of biofuels raises ethical concerns related to the use of resources and the distribution of benefits and 
harms. For example, using land and water resources to produce biofuels can come at the expense of food production, 
potentially exacerbating global hunger and poverty [149]. The expansion of croplands for biofuel production has been 
reported to often result in deforestation and habitat destruction, threatening biodiversity, and releasing stored carbon 
[150]. Intensive agricultural practices can degrade soil quality and cause erosion, while the use of pesticides and fertilizers 
can contaminate water sources [151]. Additionally, large-scale biofuel production can also displace local communities 
from their land, disrupting their livelihoods and traditional practices [152].

9.2  Social implications

The social implications of the production and consumption of biofuels are also significant. Biofuels can create economic 
opportunities in rural areas, promoting job creation and income generation [153, 154]. However, there are concerns 
about the potential of biofuels to exacerbate social inequality, particularly if the benefits of biofuel generation are not 
equitably distributed [155]. Furthermore, the use of crops for the production of biofuels may lead to higher food prices, 
which can disproportionately impact vulnerable populations [156].

9.3  Economic implications

Biofuel production and consumption have significant economic implications, both positive and negative. On the positive 
side, biofuels can reduce dependence on foreign oil and promote the growth of domestic industries [15]. Furthermore, 
corn bioethanol can contribute positively to food security by producing byproducts such as corn distiller oil and distill-
ers grains [157]. Corn distillers oil is a food-grade oil that can be used in food manufacturing, while distillers grains are 
a high-protein animal feed, which can support the livestock industry. These by-products create a more efficient use of 
resources by allowing the production of both fuel and food-related products from the same raw materials. This inte-
grated approach to biofuel production supports the agricultural sector and can improve overall food security. Biofuels 
can also generate revenue for farmers and rural communities, supporting local economies [153]. However, there are also 
concerns about the economic viability of biofuels, particularly in the face of fluctuating oil prices and uncertain govern-
ment policies [140]. Moreover, there is a risk that biofuels could lead to the displacement of other important industries, 
such as food production.

10  Opportunities associated with the development and commercialization of biofuels

The development and commercialization of biofuels offer significant opportunities for economic, social, and environmen-
tal advancement (Fig. 5). One of the most compelling benefits of biofuels is their potential to reduce carbon emissions 
and mitigate the effects of climate change. The use of biofuels instead of traditional fossil fuels can significantly reduce 
greenhouse gas emissions, which is essential for achieving global climate goals [18, 93]. Furthermore, the production of 
biofuels can increase energy security by reducing dependence on foreign oil and diversifying our energy sources. Hoang 
et al. [158] emphasize the potential of rice bran oil-based biodiesel as a renewable alternative to petrodiesel. The study 
suggests that a blend of 20% rice bran oil biodiesel and 80% petrodiesel offers the best techno-economic composition 
for existing diesel engines, striking a balance between environmental benefits and cost-effectiveness. In another study, 
Hoang [159] describes the catalytic production process of 2-methylfuran from biomass, specifically through furfural, 
highlighting its viability as a green solution. Although 2-methylfuran exhibits properties similar to those of fossil fuels 
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and can be derived from renewable biomass sources, further research is needed to explore aspects such as engine dura-
bility, material compatibility, and tribology behaviors. These investigations will be crucial in determining the long-term 
viability of 2-methylfuran and its practical implementation as a biofuel.

In addition to these environmental and energy security benefits, the development of biofuels also presents economic 
opportunities. The production of biofuels can create new revenue streams for local farmers and businesses, particularly in 
rural areas where agricultural feedstocks can be grown [160]. This can help revitalize rural economies and create new jobs 
[161, 162]. Furthermore, the development of biofuels requires innovation in biotechnology, agronomy, and engineering 
[163], leading to technological advancements that can be applied in other industries [8]. This can drive further economic 
growth and job creation, particularly in high-tech sectors. Countries like India and Nigeria are experiencing overproduc-
tion of sugarcane, which can disrupt market balance and reduce the profitability of farmers. In response, governments in 
these regions are encouraging farmers to shift to bioethanol production as a way to utilize excess sugarcane [164, 165]. 
This transition not only helps stabilize the sugar market but also supports the production of renewable fuels, aligning 
with global efforts to reduce dependence on fossil fuels and promote sustainable energy sources.

Finally, the development of biofuels can also promote international cooperation and partnerships, leading to increased 
opportunities for trade and investment opportunities between countries [166]. Biofuels are a global commodity and their 
production can help create new markets for agricultural products and foster international collaboration on sustainable 
development goals. By capitalizing on these opportunities, it is possible to accelerate the transition to a more sustainable 
and low-carbon economy [154] while also creating new economic and social opportunities for people around the world.

11  Conclusions

Integrating biotechnology into biofuel production offers substantial potential to achieve sustainable and equitable 
energy solutions. The use of techniques such as enzymatic catalysis, fermentation, and innovative algae-based systems 
presents tangible pathways to biofuel production with benefits such as sustainability, increased yields, and versatile appli-
cations. Biotechnology also extends beyond refining processes, involving the orchestration of biorefineries by designing 
innovative microbial strains, specialized enzymes, and optimized metabolic pathways. This synthesis improves yields and 
streamlines costs, significantly contributing to the overall economic feasibility of biofuel production. Additionally, the 

Fig. 5  Challenges and opportunities in biofuel generation



Vol.:(0123456789)

Discover Energy             (2024) 4:8  | https://doi.org/10.1007/s43937-024-00032-w Review

integration of machine learning into biofuel production processes holds promise for enhancing efficiency, predicting 
optimal conditions, and optimizing resource utilization. Despite these advances, a comprehensive evaluation of the ethi-
cal, social, and economic dimensions related to biofuel production remains crucial. Collaborative participation among 
diverse stakeholders is pivotal in directing biofuel production toward harmonious integration within broader renew-
able energy frameworks. By carefully addressing these complex issues and continually improving biotechnology-based 
solutions, it is possible to create a future centered on sustainable energy practices that exceed conventional limitations.
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