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Abstract
Solar photovoltaic microgrids are reliable and efficient systems without the need for energy storage. However, dur-
ing power outages, the generated solar power cannot be used by consumers, which is one of the major limitations of 
conventional solar microgrids. This results in power disruption, developing hotspots in PV modules, and significant 
loss of generated power, thus affecting the efficiency of the system. These issues can be resolved by implementing a 
smart energy management system for such microgrids. In this study, a smart energy management system is proposed 
for conventional microgrids, which consists of two stages. First power production forecasting is done using an artificial 
neural network technique and then using a smart load demand management controller system which uses Grey Wolf 
optimiser to optimize the load consumption. To demonstrate the proposed system, an experimental microgrid setup is 
established to simulate and evaluate its performance under real outdoor conditions. The results show a promising system 
performance by reducing the conventional solar microgrids losses by 100% during clear sunny conditions and 42.6% 
under cloudy conditions. The study results are of relevance to further develop a smart energy management system for 
conventional microgrid Industry and to achieve the targets of sustainable development goals.

Keywords Photovoltaics · Artificial Neural Network · Metaheuristics · Smart Energy Management System · Grey Wolf 
optimiser · Microgrid

1 Introduction

Photovoltaic technology (PV) based microgrids have become widely viable due to the availability of solar energy, reli-
ability and cost reduction of PV modules and user-friendly policies and incentives by most countries worldwide [1]. 
These microgrids also lower the electricity bills of consumers through several user-friendly policies in some countries. 
However, solar power generation exhibits variability caused by a number of variables, like PV panel orientation, location, 
temperature, humidity, and fluctuating radiation levels [2].

These changes lead to large differences between the minimum and maximum generation within 15 min to an hour, 
as well as significant variations in the generated power in the short time scale (1 s to 1 min), known as solar ramps. As a 
result, a sudden decrease in energy output could harm or hasten the depreciation of traditional backup power sources 
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such as diesel generators [3]. On the other hand, predicting solar generation is complicated due to the need to consider 
the aforementioned factors [4].

Smart energy management systems (EMSs), which are supported by AI, are used to address these issues [5]. By utilising 
forecasting and optimisation techniques, EMSs play a significant part in effectively regulating the generation sources and 
load demand [6, 37]. EMSs provide efficient answers to problems that conventional solar microgrids face, such as the best 
network setup, real-time power flow control [7], load scheduling, peak shaving, and other concerns. Furthermore, EMSs 
can be modified to accomplish different goals spanning economic, environmental, social, and technical elements [8].

In addition to its operational advantages, EMSs offer a supervisory interactive user-machine interface that enables 
users to securely monitor and regulate their energy consumption [9]. Moreover, EMSs provide trustworthy decentralised 
trading options that are safe and dependable for users and the main grid, enabling an energy exchange system that is 
more effective and resilient [10].

The fact that the inverters must synchronise with the grid in order to operate means that when there is a power outage, 
the generated power cannot be used, which is one of the main issues with conventional grid-connected solar microgrids 
[11]. This causes large losses and has the potential to speed up system degradation [12]. This issue can be resolved in 
a variety of ways, including by switching out the inverters, adding storage, or synchronising the inverters with diesel 
generators. However, from an economic or environmental standpoint, these solutions are expensive and do not serve 
the primary goal of installing solar panels [13].

The term "optimal power flow" (OPF) of microgrids is used when a controlling system is employed to provide the 
ideal operation state of microgrids by maintaining steady power flow while abiding by all restrictions and limitations 
[14]. It can be modelled in three different ways: scheduling, where the EMS is assigned to determine the best schedule 
for every grid component while abiding by all limitations over a certain time horizon [15]. The second problem is known 
as a unit commitment (UC) problem, where the goal is to reduce overall operating expenses which is likely to have ESSs 
[16]. Finally, dispatching is the process of reducing the cost of fuel and gas emissions from diesel generators or any other 
pollution generators used in microgrids [17].

Moreover, EMS for peak-shaving and tariff reduction is proposed in [18] by adding ESS. Customers are divided into 
classes based on their consumption using the extreme learning machine (ELM) and k-means algorithms. Load forecast-
ing is done using SVR, and system reliability and peak shaving requirements are optimised using a MILP model and 
linearization technique.

Optimal network configuration (ONC) refers to the process of determining the locations and capacity of each com-
ponent in microgrids that are optimal [19]. In order to reduce power losses and system fluctuations, ONC can be imple-
mented using optimisation techniques [20, 21] or other software, such as HOMER [22]. Furthermore, ONC also includes 
transmission issues. As a result, EMSs are created to determine the best network configuration for new systems while 
taking into account all the variables and limitations [23].

Khan et al.’s [24] overview of microgrid-related issues and solutions was succinct, but it did not mention any research 
gaps or the benefits and drawbacks of the various approaches. Papadimitrakis et al. [25] present metaheuristic methods 
for handling the intricacy of microgrid management issues. Nosratabadi et al. [26] studied the microgrid and virtual power 
plant scheduling problem with a focus on dependability, modelling approaches, demand response, problem-solving 
approaches, uncertainty, etc.

A number of Metaheuristic techniques are implemented for developing smart energy management systems. Multi-
objective muti-Verse Optimizer (MVO) is presented in [27] to optimize the renewable factor, cost of electricity, and power 
losses of a microgrid and found to be superior. An adaptive Differential Evolution algorithm is used in [7] for OPF with 
real-time pricing. Bacterial Foraging Optimization is implemented in [28] for a unified OPF controller. The main challenge 
in metaheuristics is not to converge at local minima therefore, two methods are followed by metaheuristics that are 
exploration and exploitation. To achieve better optimisation results, the algorithm should balance between those two 
methods to ensure searching the neighbourhood space as well as the global space [29].

Grey Wolf Optimiser (GWO) has a great balance between those two methods and evaluated in the literature for many 
problems and found to be efficient. GWO is used in [30] for battery sizing for different scenarios, and compared with 
genetic algorithm (GA), particle swarm optimization (PSO), the Bat algorithm (BA), and the improved bat algorithm (IBA). 
GWO showed outstanding results and superior performance compared with other algorithms in terms of solution quality 
and computational efficiency. GWO is also utilised in [31] for microgrid battery sizing problems and compared to PSO, 
artificial bee colony, GA and gravitational search algorithm, and found to be more accurate. An ensemble short-term 
forecasting approach and GWO are proposed in [32] for microgrid scheduling. GWO aims to minimize the operating cost 
of a grid-connected residential microgrid and showed an excellent performance under three scenarios. Oppositional 
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Gradient-based GWO is proposed in [33] for optimal operation of microgrids and compared with other techniques show-
ing better performance for reducing the cost and pollution.

1.1  Novelty and contribution

The novelty of this study is to develop a smart energy management system that can control the load demand and the 
power supply in order to reduce the power losses and supply the loads when there are power outages. The model 
consists of two parts, first a forecasting model using ANN for solar power generation. The second part is a load demand 
controlling system that utilises the grey wolf optimization technique to control and decide which loads can be supplied 
based on the forecasted power generation. This system is developed in order to be further implemented for a 400kWp 
grid-connected solar system installed at the Centre of Excellence in Energy Science & Technology, Shoolini University in 
India to reduce the power loss and the use of diesel generators.

The rest of the article is divided into 3 sections; Sect. 2 explains methodology. Section 3 presents the results and 
discussion followed by conclusions drawn and follow-up research in the last section.

2  Methodology

In this section, the methodology followed to develop and evaluate a real-time smart energy management system under 
real conditions is described.

2.1  Experimental setup

This study aims to reduce the losses of a 400 kWp grid-connected solar system installed at Shoolini University in India by 
developing a smart EMS. Therefore, a lab. scale prototype is developed in order to test the behaviour of the EMS under 
real conditions and in real-time scenarios. A 12 V DC microgrid is established as shown in the schematic diagram Fig. 1 
to simulate the real system and study the expected benefits from the proposed system. A 40 Wp solar PV panel with 
a DC-DC converter are used to represent the solar PV system and a 12 V 10A power supply represents the main grid. 8 

Fig. 1  Block diagram of an experimental microgrid setup with a smart energy management system
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different loads, including different sets of LEDs, are connected using relays to simulate different buildings with different 
load profiles that vary from 0.35 W up to 5.5 W. The load profile of each building is generated randomly whereas each 
load rate is considered to be constant. Moreover, to simulate the net-metering concept, a separate resistor is connected 
individually to dump the surplus generation.

Two INA219 sensors are used to measure current, voltage, and power from the panel and grid, and a separate one to 
measure the power exported to the grid. A Raspberry Pi 4 module is used to control the system and the proposed EMS 
is implemented using Python. Moreover, a user-machine supervisory system is developed to allow users to add new 
loads and to monitor and display consumption and generation. The lab-scale experimental microgrid setup with a smart 
energy management system is shown in Fig. 2 and the components used are given in Table 1.

The experiments were conducted at the outdoor solar PV research facility of the Centre of Excellence in Energy Science 
and Technology, Shoolini University, Solan, India in June 2023.

2.2  Power generation forecasting using ANN

A simple time-series ANN model is designed to forecast the power generation by the PV module based on the previous 
data which are the last three readings. In this study, parameters like solar radiation, temperature, humidity, etc. are not 
considered as those sensors are not available. However, only one PV panel is used and other controllable parameters 
like tilt angle, azimuth, orientation, and cleanliness are fixed so that the ANN model can efficiently predict the genera-
tion [34]. Moreover, the model’s error is always subtracted from the output so that no damage can happen when the 
generation is less than the demand.

Fig. 2  Lab scale microgrid 
experimental setup with 
smart energy management 
system

Table 1  The components 
used in the setup

SN Components

1 Raspberry Pi 4
2 40 Wp solar photovoltaic 

(PV) panel and DC-DC 
converter

3 LEDs
4 Relays
5 12 V 10A power supply
6 INA219 sensors
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2.2.1  Artificial neural networks

The fundamental feed-forward neural network architecture consists of three layers (input, hidden, and output), each 
with a number of nodes, which only allows data to be fed in one direction [35]. Equation (1) uses weights "w" to connect 
these layers, mapping the inputs "x" to the desired output "Y" based on their correlation. where,′�′ denotes the bias, and 
′�′ denotes to the activation function used.

The weights of the ANNs are randomly initialised using a variety of methods, and during the training mode, they 
are changed using learning algorithms such as backpropagation, Levenberg–Marquardt, or occasionally metaheuristic 
methods employing Eq. (2).

where ’a’ stands for learning rate and ’E’ for error. The cost function, which can be any function, is used to calculate the 
error; however, mean squared error (MSE) is selected for this study.

2.3  Smart load demand controlling system

A smart decision-making system is developed to control the load demand when the main grid is off. Based on the power 
generation forecasts the system will decide which loads are to be supplied while it ensures that the maximum load is 
supplied.

The proposed system’s flow chart is shown in Fig. 3. First, the controller will read the sensors’ values, then it will check if 
the grid is on or off. If the grid is on, then the system will be dependent on the grid signals, and it will import and export 
the required and surplus power in accordance with the demand–supply values. On the other hand, when the grid is off, 
the proposed system will control both the demand and supply and make sure that the voltage remains stable at or above 
the threshold (10 V). When the voltage drops below this level, the controller will immediately interfere to stabilize the 
voltage. First, the ANN model will forecast the current power generation of the PV module, and based on that the GWO 
will assess whether the loads can be supplied or should be shed to maintain both objectives, first decrease losses by 
maximizing the used power from solar and second by keeping the system stable with voltage above 10 V.

(1)Y = �(w ∗ x + �)

(2)wnew = wold − aE

Fig. 3  Flow chart of the proposed smart energy management system
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Indeed, the performance of any optimizer varies significantly when the problem dimensions increase. However, in 
this study, a small number of decision variables are used that makes the optimization problem easier for any optimizer. 
Therefore, Grey Wolf Optimizer is chosen for this task due to its competitive behaviour, in terms of accuracy and speed, 
that is shown in the literature [31].

2.3.1  Grey wolf optimizer

GWO is a metaheuristic method that draws inspiration from the natural behaviour of grey wolves [36]. According to the 
hierarchy of wolves’ leadership, four different sorts of wolves are responsible for hunting, encircling, and attacking victims. 
Figure 4 depicts the procedure for locating the ideal solution, and it may be summarised as follows:

1. Initialise the population at random with N wolves, with each wolf standing in for a different load combination.
2. Calculate the fitness of each particle which is the difference between load and generation.
3. Sort the particles based on their fitness values.
4. Start phase one which is “Encircling prey”.
5. Calculate the value of �⃗a which decreases from 2 to 0 linearly as per the Eq. (3)

where “i” is the current iteration number, and “I” is the maximum iteration number.
Compute the value of coefficient vectors �⃗A and �⃗C

where ��⃗r1 and ��⃗r2 are random values between 0 and 1.

(3)�⃗a = 2 ∗ (1 −
i

I
)

(4)�⃗A = 2 ∗ �⃗a ∗ ��⃗r1 − �⃗a

(5)�⃗C = 2 ∗ ��⃗r2

Fig. 4  Flow chart for Grey Wolf Optimizer-based Smart Energy Management System
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Start the “Hunting” phase which requires updating the positions of the wolves according to the information from the 
best wolves

where �������⃗Xi(p) the prey position, and ��⃗Xi  the wolf position

8. Repeat steps 4 to 7 “I” times.
9. Return the best wolf in the population which is the optimum solution that gives the command to shed the loads or 

not.

The system aims to minimise the losses and stabilise the system during power outages, to achieve that GWO has to 
make sure that the generated power matches with the demand. In case the load is more than the generation, the algo-
rithm will shed some loads to keep the system stable. The objective function in (11) is employed to do this:

where N is the number of loads, xi  are the decision variables, ri  is the rate of load i, and  Ppv is the forecasted power 
generation. wi represents the priority of the loads which is considered to be the same for all loads in this study. However, 
this system can be employed when the solar plant’s capacity is insufficient to meet the entirety of the load demand. In 
such instances, it prioritizes supplying power exclusively to critical loads. Moreover, to maintain voltage stability, the 
system continually monitors the voltage level through a sensor. If a voltage drop is detected, the process is iterated with 
an alternative forecasting value, ensuring that critical loads receive an uninterrupted power supply and voltage stability 
is preserved.

3  Results and discussion

The power generation data of the module are collected for different days and conditions then the ANN model is trained 
on this data in order to predict the generation for the next minute based on the previous three readings. The ANN model’s 
behaviour is shown in Fig. 5, the forecasts as close to the real values with an error of 0.3 W of mean absolute error (MAE). 
It is noted that the error increases when there is a sudden change in the generation which is due to using a simple fore-
casting model and not taking into consideration other factors. However, this model is sufficient for the prototype as it 
serves the purpose of the study.

The value of MAE is considered to be the safety threshold that is subtracted from the generation forecasts in order 
to ensure a high level of forecasting confidence to protect the devices in case of low generation in case of any sudden 
voltage drop.

(6)��⃗D = | �⃗C ∗ �������⃗Xi(p) − ��⃗Xi|

(7)������⃗Xi+1 = �������⃗Xi(p) − �⃗A ∗ ��⃗D

(8)���⃗Da =
|||
���⃗C1 ∗ ���⃗Xa − ��⃗Xi

|||,
���⃗DB =

|||
���⃗C2 ∗ ���⃗XB − ��⃗Xi

|||,
���⃗Dg = |���⃗C3 ∗ ���⃗Xg − ��⃗Xi|

(9)���⃗X1 = ���⃗Xa − ���⃗A1 ∗
���⃗Da,

���⃗X2 = ���⃗XB − ���⃗A2 ∗
���⃗DB,

���⃗X3 = ���⃗Xg − ���⃗A3 ∗
���⃗Dg

(10)������⃗Xi+1 =
���⃗X1 + ���⃗X2 + ���⃗X3

3

(11)F(x) = min

||||||

N∑

i=0

xi ∗ ri ∗ wi − Ppv

||||||

s.t.

N∑

i=0

xi ∗ ri ≤ Ppv
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Then the entire setup is installed under real conditions in order to practically evaluate the proposed system considering 
random loads and two different conditions, cloudy and sunny days. Moreover, the solar generation is considered to start 
from 6:00 up to 18:00 in the day and the system is tested on two different days under two conditions cloudy and sunny.

The first test is carried out on a cloudy day, Fig. 6 shows the power plots for all the generated (185W), imported 
(927.5W) and exported (1.9W) power along with the actual load and the unsatisfied load. The negative value of the grid 
represents the exported power, which is much less in this scenario due to low generation from the PV module, whereas 
the percentage of the generation to the total load is 15% only. The unsatisfied load is found to be 111.2 W for the entire 
day and 37.4 W excluding the loads when there is no solar generation. This value represents about 33.6% of the total 
unsatisfied. The supplied load during power outages is 27.7 W which is 42.6% of the load demand during the power 
outage.

It was noted that the controller is most likely to shed all the loads in this scenario as the power generation is very 
low as compared to the load and at some points it has taken decisions to supply the demand according to the power 
generation forecasting model.
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Fig. 5  ANN forecasts as compared to the actual power generation from the PV module
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To evaluate the performance of the system in terms of voltage stability, the DC Bus voltage is analysed throughout 
the time when solar generation exists. As shown in Fig. 7 the EMS always tries to maintain the voltage above the 10 V 
threshold, however, due to faulty forecasts at some points the voltage drops below this level. This can be addressed 
by developing a more accurate model that considers all important parameters that impact the generation.

In the second scenario, the system is tested on a sunny day. The performance of the system is shown in Fig. 8. The 
total power generation is found to be (1513 W) which is higher than the total load therefore the exported power is 
more than the imported one with a 67W difference. As depicted by the yellow line, the sold (negative) power is high 
and in total the generation almost matches the consumption with a percentage equal to 102%. The unsatisfied load, 
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shown in green, is found to be 40W for the entire day all are found out of the solar time while 100% of the load is 
supplied during the existence of solar generation.

It was noted that the controller did not shed any of the loads in this scenario as the power generation matches the 
loads and at some points, it has taken decisions to supply the demand according to the power generation forecasting 
model.

To check the stability of the system, the DC voltage is plotted during the solar hours. As shown in Fig. 9, the system is 
more stable when it is fully sunny. This is due to higher forecasting accuracy and higher generation which can fulfil the 
load demand.

Table 2 represents the system’s measures under two different scenarios. The system can reduce the losses in the con-
ventional solar microgrid by 42.6% on a cloudy day and 100% on a sunny day.

The results show that forecasting errors have many effects on the system’s behaviour. When, forecasts are less than the 
actual generation, in this case, the system voltage will remain stable however, there will be partial losses in generation 
and some loads will be unsatisfied. In contrast, high forecast values result in connecting load demand more than the 
generation that is reflected by the voltage drop which may be harmful for the appliances.

4  Conclusions and follow up research

In this study, a novel smart energy management system is developed that forecasts power production using an artificial 
neural network and controls the load using Grey Wolf Optimiser. The system is tested for addressing conventional solar 
microgrid problems and enhancing its performance during grid outrage. The proposed system offers a promising solu-
tion that ensures reliable power supply, reduces energy losses, and hotspot development in PV modules. Based on the 
results following conclusions are drawn:
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Table 2  The system 
performance under different 
conditions

Cloudy day Sunny day

Solar generation 185W 1513 W
Imported power 927.5W 505 W
Exported power 1.9W 573 W
Total unsatisfied load 111.2 W 40 W
Load supplied when the power is off 27.7 W 382W
Unsatisfied load when there is solar generation 37.4W 0 W
Losses reduced compared to conventional microgrids 42.6% 100%



Vol.:(0123456789)

Discover Energy             (2023) 3:8  | https://doi.org/10.1007/s43937-023-00021-5 Research

1 3

• It is found that smart energy management systems empowered by AI can efficiently solve the conventional grid-
connected solar microgrid problems.

• ANN model is utilised to forecast the power generation for a lab-scale experimental microgrid and found to be effi-
cient. However, for large microgrid systems with more complicated conditions, a more robust model is required to 
be developed.

• Grey Wolf Optimizer has given accurate decisions for a small number of decision variables. However, it must be exten-
sively tested when implemented for large-scale conventional microgrids.

• This solution is less expensive than other available solutions as it requires few sensors and relays.
• The system has shown an efficiency of reducing the losses in conventional solar microgrids up to 42.5% on a cloudy 

day and 100% on a sunny day.
• It is found that the forecasting model plays a vital role in managing the load. It should be accurate enough to keep 

the system stable and prevent the voltage drops. Therefore, other parameters should be considered for more complex 
systems.

The prototype microgrid setup has shown promising behaviour under real conditions for controlling and monitoring 
the load demand and energy supply of conventional microgrids.

4.1  Follow up research

The developed smart energy management system will further be implemented to improve an existing conventional grid-
integrated 400 kWp solar microgrid installed on the rooftops of different buildings in the university campus, catering to 
the needs of different loads [37–39]. The present study results will further be utilised for follow-up of earlier microgrid-
related studies and conventional systems worldwide.
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