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Abstract
IoT and Embedded devices grow at an exponential rate, however, without adequate security mechanisms in place. One 
of the key challenges in the cyber world is the security of these devices. One of the main reasons that these devices 
are active targets for large-scale cyber-attacks is a lack of security standards and thorough testing by manufacturers. 
Manufacturer-specific operating systems or firmware of various architectures and characteristics are typically included 
with these devices. However, due to a lack of security testing and/or late patching, the underlying firmware or operating 
systems are vulnerable to numerous types of vulnerabilities. Reverse engineering and in-depth research of the firmware 
is required to detect the vulnerabilities. In this paper, we’ve delved into various aspects of IoT and embedded devices. This 
includes a comprehensive survey on the architecture of firmware, techniques for firmware extraction, and state-of-the-
art vulnerability analysis frameworks for the detection of vulnerabilities using various approaches like static, dynamic, 
and hybrid approaches. Furthermore, we’ve scrutinized the challenges of existing vulnerability analysis frameworks and 
proposed a novel framework to address these issues.
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1  Introduction

The Internet of Things (IoT) has experienced a swift surge in adoption, encompassing a diverse array of applications 
from personal health care and environmental monitoring to home automation, smart mobility, and Industry 4.0. Conse-
quently, there has been a notable increase in the deployment of IoT devices in both public and private settings, becoming 
increasingly prevalent in households. With this widespread integration comes an escalated vulnerability to cybersecurity 
threats, necessitating measures to avert risks such as data breaches, denial-of-service attacks, and unauthorized network 
access. Addressing these challenges is crucial to ensure the secure and reliable operation of IoT systems across various 
applications.

The amount of recent assaults on embedded & IoT systems demonstrates their security risk. The Mirai botnet, for exam-
ple, hijacked millions of IoT devices and coordinated them to conduct a distributed denial of service (DDoS) attack against 
several domain name system (DNS) servers, taking hundreds of thousands of websites offline throughout the world [1]. 
The Reaper malware, a more complex version of the Mirai, was originally disclosed in 2016 and specifically aimed at IoT 
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devices having certain vulnerabilities rather than just credentials [2]. An Advanced Persistent Threat (APT) known as 
Black Energy caused a blackout by gaining supervisory control over various operating stations in 2014 [3]. Various other 
countries have also witnessed similar threats. Intruders obtaining control of more than 50 power plants, for example, 
could potentially compromise the electrical supply to 93 million Americans [4]. These real-world attacks show how IoT 
and embedded systems in key infrastructures can be severely harmed. Unfortunately, many commercial IoT goods do 
not often include sufficient security procedures, and as a result, they can be the target of or even the source of a variety 
of security threats. IoT and Embedded devices share various technical characteristics which include system architecture 
based on ARM or MIPS CPUs, Ethernet, Wi-Fi, or Bluetooth-based connectivity, and On-chip debugging interfaces such 
as UART, JTAG, I2C, or SPI. Most of these devices are controlled by vendor-specific software which is rarely updated to 
fix security problems. For a thorough security examination of these devices, proper identification of key technological 
aspects is critical. Furthermore, due to the diverse and non-standardized nature of the hardware and software features 
of embedded and IoT devices, security evaluation provides a number of issues. Security evaluation of IoT devices has 
two main aspects: network-based evaluation and firmware-based evaluation. In this work, we have mainly focused on 
the firmware part. In order to perform firmware security evaluation researchers have to get hold of the firmware and 
perform reverse engineering to reveal the vulnerabilities in it.

One of the most common causes of attacks on embedded systems has been identified as software vulnerabilities, and 
new vulnerabilities are discovered on a regular basis. Most of the popular binaries that are reused in software projects 
and firmware images are usually found vulnerable due to lack of security updates and due to this most of the embed-
ded systems become implicitly vulnerable at an early stage. Several recent papers have also emphasised the importance 
of the analysis of firmware images [5]. Furthermore, in [6] Cui et al. claim that the third-party libraries used in firmware 
updates have been found to contain some of the famous vulnerabilities for years. They further reveal that about 80.4% of 
manufacturers distribute firmware with known flaws. As embedded systems manage critical components, compromising 
them could result in massive public system failures as well as serious security and safety implications, on a national or 
perhaps at a global scale. For example, 18 zero-day vulnerabilities were discovered in a Foscam IP camera, which includes 
insecure credentials, heap or stack buffer overflow, and command injection vulnerabilities [7].

Obsolete system architectures are also one of the main reasons for embedded systems being frequently vulnerable to 
attacks. Second, embedded systems’ internet connectivity, integration, and platform compatibility requirements make 
them more vulnerable to cyberattacks and exploitation. Finally, standard security techniques and traditional solutions, 
such as Intrusion detection or prevention systems cannot be used because these devices have limited computing power 
and memory. As a result, attackers take advantage of these flaws and create tailored malware for embedded systems 
and IoT devices.

Vulnerabilities in software can be found in both source and binary code. The latter techniques [8] use the source code 
to identify vulnerabilities. However, because most commercial software products are not open source, these techniques 
are not always viable. As a result, binary code analysis has become a necessity. Manual binary analysis, on the other hand, 
is a demanding, error-prone, and difficult process, particularly when dealing with a high number of embedded device 
firmware images. As a result, automated and scalable vulnerability identification is becoming increasingly important, in 
particular, it is highly desirable to scan a large number of firmware binaries for known and undiscovered vulnerabilities 
and produce a vulnerability analysis report in a timely manner. In this work, we have identified the architectural charac-
teristics of IoT and embedded device firmware which include processor architecture, operating systems, bootloaders, 
protocols, and communication interfaces. Further, we discussed various firmware extraction techniques that are crucial 
in getting hold of IoT firmware. Furthermore, a detailed review of various vulnerability analysis frameworks is presented. 
A comparative analysis of these frameworks based on some common parameters is also provided. In the end, a new 
vulnerability analysis framework is proposed addressing some of the issues in already existing frameworks.

1.1 � Research contributions

The following are the main contributions of this paper.

•	 We have presented the architectural characteristics of IoT and embedded devices.
•	 We have discussed the techniques for the extraction of firmware from IoT and embedded devices.
•	 A comprehensive review of the state-of-art vulnerability analysis frameworks is presented with comparative analysis.
•	 Finally, various challenges and gaps, facing in performing firmware analysis are given.
•	 A new vulnerability analysis framework is proposed to address some of the challenges in the existing frameworks.
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1.2 � Methods and materials

We have used an advanced search approach to identify the related papers for our survey. We have mostly included 
papers from the most reputed journals of the IEEE, ACM, Wiley, Elsevier, and Springer publishers. Proper search strings 
with appropriate Boolean operators have been used in the advanced search such as "all in title: (“Firmware”) AND (“Vul-
nerability” OR “Analysis” OR “Security” OR “Blockchain” OR “Extraction”) source:” Springer” OR source:” ACM” OR source:” 
IEEE” OR source:” Wiley” OR source:” Elsevier”. We then filtered the results using various filters such as year of publication 
range and name of journals. The results were then properly filtered and various irrelevant papers were also removed.

1.3 � Organisation

Table 1 presents the acronyms that are used in this paper. The rest of the paper is organized as follows. Section 2 is divided 
into three subparts—(A) Architecture of firmware and its various technical characteristics are discussed. (B) Various extrac-
tion methods are presented. (C) Various Firmware analysis frameworks are reviewed. Section 3 presents various challenges 
in firmware analysis. The proposed model is presented in Section 4. Conclusion and future work are given in Section 5.

2 � Background

This section focuses on the background of IoT-embedded firmware. This section is divided into four subsections. Firstly, 
we discuss IoT & Embedded Device Firmware Architecture. Secondly, we discuss the tools and techniques for the extrac-
tion of the firmware. In the third subsection, we focused on different types of vulnerability analysis methods. The fourth 
subsection presents various secure update mechanisms for the IoT device firmware.

2.1 � Firmware architecture of IoT & embedded devices

The term “firmware” refers to binary software stored in an EEPROM or FLASH chip. The two available forms of firmware 
are low-level and high-level firmware. EEPROM usually stores the low-level firmware making it difficult to modify 
or update, while high-level firmware is stored in Flash memory. Firmware resides between the hardware and the 
application layer software, it works as an interface program for the software layer by realising the hardware com-
mands. Firmware is the combination of various parts of binary files which include bootloader, OS kernel, file system, 
and various headers and because IoT devices have limited computational capabilities and storage space, firmware is 
frequently burnt in the compressed form [9]. IoT devices are more than just wireless sensors integrated into a gadget. 
The Internet of Things (IoT) is the connectivity of Wireless Sensor Network (WSN) devices with the Internet. The 
energy and memory resources available to IoT devices are typically limited. They’re usually tiny and battery-powered, 

Table 1   Acronyms used in the 
paper

Acronym Explanation

APT Advanced Persistent Threat
ISA Instruction Set Architecture
MIPS Million instructions per second
JTAG​ Joint Test Action Group
UART​ Universal Asynchronous 

Receiver Transmitter
GPIO General Purpose Input/Output
LE Little Endian
BE Big Endian
IED Intelligent Electronic Device
IoT Internet of Things
DNN Deep Neural Network
CNN Convolutional Neural Network
COTS Commercially of The Shelf
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IoT Devices

Home
Automa�on

Personal 
Assistant

s

Amazon Echo Dot
Amazon Echo Plus

Google Home
Sense Mother

Smart 
Plugs

D-Link DSp-W215
TP-Link HS110
Wemo Plug

Socket Edimax Plug
Smart 
Switch

Belkin Wemo
Amazon Dash Bu�ons

Smart 
Home 
Hubs

Hive Nano V2 Hub
Philips Hue Bridge

Swann OneTouch Hub

Haier Smart Care Home gateway
Osram  Ligh�fy Home gateway

Wink Hub
Samsung Smar�hings

Netgear Orbi

Entertain
ment

Infotainment ECU
Amazon Fire TV

Samsung Allshare Cast
Google Chromecast

Appliance 
& Control

Google Nest Thermostat
LG Smart Refridgerator

Provos PW103 Humidifier
Smart-I Doorbell August

Knox Video Doorbell
Yale alarm

August Doorbell Cam
MyQ smart Garage

Eversense Thermostat
Honeywell t9 Smart Thermostat

Nespresso Prodigio Silver Coffee Maker
Neurio Home Energy Monitor

Wemo Smart Crock-pot
Ring Doorbell

Danmini Wifi Doorbell
Ennio SYWIF1002

ECOBEE THERMOSTAT 3

Logitech Harmony Universal Remote

Smart Locks

Schlage Sense Smart Deadbolt

Yale Smartlock YDME50
August Smart Lock
Ellipse by La�s

Smart Lights

TP-Link LB100

Philips Smart Bulb

Mi Led Smart Bulb
Philips Lux

Limitless LED

Health/Fitness
Pumps/Moni

tors

Accu-Chek Insulin Pump

Withings Blood Pressure Monitor

Biotricity Bioflux ECG Device

Wearables

Fitbit Smart Watch
LG Watch

Apple Watch
Samsung Galaxy Watch

Nike+Fuelband SE Fitness Tracker
FitBit Charge

RTLS
LG Watch Urbane

Sony SmartWatch SWR50
Samsung Gear Fit

General 
Health

Breathometer Mint
Garmin Forerunner

Network/Router
s

IP Cameras

D-Link DCS-5010L
Dlink DCS 5030G

Netatmo Welcome Camera
Piper Home Security Camera

Mi MJSXJ02CM Camera
Logitech Circle 2
Xiomi Yi Dome

Provision PT 838 Provision PT737E

Samsung SNH 1011N
TP-Link NC250

Amazon Cloud Cam
Philips B120N

Foscam FI 9816P
Xtreamer Cloud Camera

Routers

NetGEAR N300 Home Router
Xiaomi Router

Linksys E1200 Home Router
TP Link Router

Dlink Router
Cisco Router

Safety Sensors

Nest Protect
Footbot Air Quality Monitor

Plume Labs Air Pollu�on Monitor

Fig. 1   Taxonomy of commonly used & most popular IoT devices [10–12, 28–30]
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having a memory capacity of around 100 kilobytes. Typical 8-bit microcontrollers are used in these machines, which 
are considerably behind the current generation of Windows/Unix/Mac-based PCs and laptops. Figure 1 presents the 
taxonomy of the commonly used IoT & embedded devices [10–12]. The devices have been classified under 4 broad 
categories viz Home Automation, Health/Fitness, Network/Routers, and Safety. These are further divided into 14 
subcategories. The architectural characteristics of IoT and Embedded Device firmware have been presented in the 
subsequent section in terms of processor architecture, operating systems, bootloaders, kernel modules, and protocols.

2.1.1 � Processor ISA

The architectures of embedded devices are quite varied. ARM and MIPS processors are widely used in the midrange 
to upper-class market sectors of processors that offer capabilities such as memory virtualization and high clock rates 
[13], and Intel is trying to catch up with its ATOM line. Processor designs with tiny memory and lower clock speeds, 
such as Atmel AVR or Intel 8051, are available in the lower-class market. The authors in [14] have analyzed approxi-
mately 9486 firmware images. The analysis resulted in identifying the various technical characteristics of the embed-
ded device firmware including the identification of processor architectures, device operating systems, and protocols 
through the machine learning approach. The authors have reported that the majority of the firmware images which 
constitute around 79.4% of the analyzed firmware are based on MIPS 32 bit (Big Endian & Little Endian) architecture. 
The next most popular processor architecture is ARM 32bit (LE) which constitutes approximately 8.9% of the ana-
lyzed firmware. Another report given by Costin et al. [13] shows that after an automatic analysis of about 172,751 
possible firmware images out of which 63% of them had ARM architecture and 7% were MIPS based. Together these 
constitute around 90% of the popular processor architectures used in IoT devices. The remaining portion consists of 
other different types of architectures. Figure 2 illustrates the architecture share among the analyzed firmware images 
presented by the authors in their research [14].

Fig. 2   Types of firmware 
Instruction Set Architectures 
(ISA)

49%

33%

9%

5%

2% 1% 1% 0%
0% 0% 0% 0%

1 MIPS 32 (LE) 2 MIPS 32 (BE) 3 ARM 32 (LE) 4 Unknown

5 x86-64 (LE) 6 ARM (BE) 7 PPC (BE) 8 MIPS 64 (BE)

9 X86 (LE) 10 Motorola 68k (BE) 11 ARC (LE) 12 TILE (LE)
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Table 2 presents the study of various popular IoT devices. This also points to the fact that these devices are based on 
the popular ARM and MIPS-based architectures. The processors mainly used in these devices are based on ARM, TI, and 
AVR microcontrollers. These companies are the leading producer of semiconductors for IoT & Embedded devices.

2.1.2 � Operating systems

Firmwares of various levels of complexity power embedded systems. A full-fledged operating system, such as Linux or 
Windows NT, is generally used for more complicated ones. Operating systems like as VxWorks or Windows CE are used 
by less sophisticated devices, and a variety of special-purpose operating systems are also available. According to the 
findings given by authors in [14], around 40% of devices had Linux OS, 9% had Unix, and 3.5% had firmware based on 
VxWorks OS following signature analysis of device firmware. Other firmware had monolithic designs that didn’t have a 

Table 2   Processor and ISA specification of various identified IoT devices

Device name Vendor Processor/microcontroller ISA Source

Nest Thermostat Nest Labs TI Sitara AM3703 system-on-chip (SoC)
• ST Microelectronics ARM Cortex-M3 based microcontroller
• ARM Cortex-A8 core, with ISA Version 7

ARM32
ISA Version 7

[15]

Fit Bit Smart Watch Fit Bit ARM cortex processor; the STMicroelectronics 32L151C6 ARM32 [16]
Nike + Fuelband Nike STM32L151QCH6 Microcontroller

ARM Cortex M3 core
ARM32 [15]

Haier SmartCare Haier TI AM3352BZCZ60 ARM Cortex A8 ARM32 [17]
ItronCentron smart meter Itron ATMega microcontroller Atmel AVR [17]
Amazon Echo Plus Amazon MT8163 processor ARMv8 (A32, A64) [11, 18]
Yale Easy Fit Smartphone Alarm Yale Freescale MK60 CPU ARM32 [11]
Philips Hue Bridge V2 Philips Qualcomm QCA4531 SoC MIPS [19–21]
Accu-Chek Insulin Pump Accu-Chek iMX233 (Soc)

ARM926EJ-S
ARM32 [22, 23]

Hive nano v2 Hive Home Texas Instruments AM3352BZCE30 (MPU ARM Cortex A8 
32-Bit RISC Processor)

ARM32 [24]

Samsung Smart Lock SHS-5230 Samsung Atmega64A(Main Board), Atmega88PA(Rf Board) AVR [24]
Swann
OneTouch hub

Swann NA ARM32 [24]

Amazon Echo Dot v2 Amazon TI DM3725CUS100 (ARM Cortex A8) ARM32 [25, 26]
Tp Link Router TL-WR841N TP-Link Mediatek MT7628NN SOC MIPS32 [27]

Fig. 3   Popular operating sys-
tems used in IoT devices

41%

9%

4%

46%

0%

1 Embedded Linux 2 Unix Like 3 VxWorks 4 Unknown 5 Windows CE
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particular kernel module. Figure 3 presents the most popular firmware OS used in IoT devices. Linux OS dominates the IoT 
landscape with a wide variety of library implementations/versions along with the same ABI-compatible Linux kernel with 
versions ranging (2.4 < x < 4.3) [31]. Table 3 presents the operating system specification of various identified IoT devices.

2.1.3 � Bootloaders

The bootloader is the first programme that a system runs. It puts the kernel into memory for execution and initializes 
various hardware components which include Flash storage, I/O, RAM. The boot process in embedded systems can be 
divided into one, two, or three phases, with each step performing a particular function during startup. In a three-step 
procedure, the first bootloader conducts necessary hardware startup and loads the second-stage bootloader, which is 
usually located in ROM and is specific to microcontroller. The second stage bootloader initialises all the board-specific 
components and it usually resides on flash memory. After initialization, it loads the third stage bootloader, which loads 
the kernel into primary memory, initialises device drivers for the identified system components, and runs the kernel. 
U-Boot among the most popular second stage bootloaders for embedded devices [34]. A command-line interface is also 
available in it. Bootloader specification of some of the various widely used IoT devices is given in Table 4. It is evident 
from this table that the widely used bootloader is U-Boot.

2.1.4 � Kernel modules

Kernel modules are small bits of code that may be loaded and unloaded from the kernel as needed. They improve the 
kernel’s functionality without requiring a system reset. Networking modules, cryptography modules, filesystem modules, 
and peripheral modules are some of the several types of kernel modules that may be found in embedded operating 

Table 3   Major operating 
systems of various IoT devices

Device name Embedded OS Source

Nest Thermostat Embedded Linux Version: 2.6.37 [15]
Haier SmartCare Embedded Linux [17]
Amazon Echo Plus Embedded Linux [11, 18]
UEI Smart-I Doorbell Embedded Linux [11]
Philips Hue Bridge V2 OpenWrt (Linux Based) [19–21]
Belkin Wemo
Switch

OpenWrt [32, 33]

Accu-Chek Insulin Pump Windows CE 6.0 [22, 23]
Swann OneTouch hub Embedded Linux [12]
Amazon Echo Dot v2 Fire OS v 5.5 [25, 26]
Tp Link Router TLWR84N1 Embedded Linux [27]

Table 4   Various Bootloaders 
used in IoT devices

Device name BootLoader Source

Nest Thermostat x-loader (Firststage), U-boot(second stage) [15]
Haier SmartCare U-Boot [17]
Amazon Echo Plus x-loader (first stage), U-boot (second stage) [11, 18]
UEI Smart-I Doorbell U-boot [11]
Philips Hue Bridge V2 U-Boot [19–21]
Belkin Wemo
Switch

U-boot [32, 33]

Accu-Chek Insulin Pump Windows CE Bootloader [22, 23]
Swann OneTouch hub Uboot [12]
Amazon Echo Dot v2 NA [25, 26]
Tp Link Router TLWR84N1 Uboot 1.1.4 [27]
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systems. The authors in [14] have analyzed that the networking modules consist of the largest share of the modules 
which approximates to 58.8% of the 504,815 identified firmware modules. The next largest part consists of peripheral 
related modules (12.6%) that include support for wireless adapters, chipsets, and I/O functionalities. Figure 4 shows the 
share of the kernel modules present in the analyzed IoT firmware.

2.1.5 � Protocols

IoT devices employ different application layer protocols from the TCP/IP protocol stack, such as HTTP/HTTPS, FTP, Telnet, 
and ssh for authentication and data transfer. The authors in [14] have performed a network analysis of around 1971 firm-
ware images and the analysis revealed that around 42% of the firmware supported the HTTP/HTTPS protocol. Remote 
shell access is supported by approximately 37% of the devices using the ssh or telnet protocol, however, 1.9% of the ssh 
supported devices also support telnet. Figure 5 presents a brief statistic of the commonly used TCP/IP stack protocols 
in the IoT devices.

2.2 � Extraction techniques

When evaluating the safety of IoT devices, extracting the firmware is a critical first step. Preventing the firmware from 
any adversary is always desired from the standpoint of a designer: for example, to protect cryptographic keys used to 
recognize a device and prevent device cloning or intellectual property theft. Because of the wide range of IoT devices, 
multiple techniques for firmware extraction are required depending on the device.

Fig. 4   Breakdown of types of 
kernel modules present in IoT 
devices

59%13%

9%

2%
6% 11%

Networking Peripheral Filesystems

Cryptography USB Other Modules

Fig. 5   Commonly used TCP/IP 
stack protocols in IoT devices
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28% 

21% 

5% 
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443/h�ps 5000/upnp 2602/ripd
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Having access to the firmware of an embedded device may provide a lot of information about how it works and 
what vulnerabilities it has. Firmware frequently contains sensitive data like passwords and static keys, indicating unsafe 
design and poor security overall. Furthermore, the methods used for extraction of firmware provide the device write 
access, thus enabling the firmware to be modified. The extraction of firmware isn’t a precise science. IoT devices are very 
diverse due to their manufacturer specific configurations and software stacks. The firmware extraction of IoT devices is 
complicated by these specifications.

A number of methods for extracting firmware from a variety of IoT devices were given at DEFCON 25 [35], while authors 
in [36] emphasised on using the eMMC interface. The Exploitee.rs project was the result of this work. According to the 
research, The UART debugging interface has been found as the most exploitable programming & debugging interface 
in IoT devices. UART being vulnerable to firmware extraction in over 45 percent of the devices evaluated. Flash memory 
access is becoming increasingly crucial for contemporary gadgets. Notably, in virtually all situations when a hardware 
mechanism for firmware extraction is available, the approach also allows for firmware change and therefore device 
“rooting”. Extraction of firmware raises a number of difficulties for IoT device makers. For starters, there’s a chance of 
losing intellectual property. More significantly, extraction of firmware can often lead to the discovery of security flaws in 
these devices. Due to severe vulnerabilities found, in some cases, this might have an impact not only on the examined 
device, but on all of the manufacturer’s products. The methods for extracting firmware are classified into three groups:

1.	 Utilising debug interfaces to get access to a local shell or read the contents of a memory.
2.	 Implementing a hardware memory dump on a flash chip.
3.	 Obtaining firmware access using software methods such as firmware upgrades and network eavesdropping.

2.2.1 � Hardware methods

Firmware extraction through hardware methods uses the on-chip debug interfaces which include UART, JTAG, SPI, and 
I2C. The hardware method is often complicated in the process as it requires device-specific tools for carrying out the 
extraction. The three commonly used hardware-based methods for firmware extraction are discussed as follows.

2.2.1.1  Using UART​  Direct access to an embedded device’s firmware through UART is usually a straightforward [37] 
method. Simply connecting to UART can lead directly to an unrestricted root shell. The Android debug interface ADB can 
sometimes provide access to a root shell on Android-based devices. Sometimes a root shell of a device is unavailable or 
is password secured then in that case a bootloader shell is used to get access to the firmware image. A internal dump of 
the complete filesystem is one of the main way to dump the firmware of a device with a live root access, all the archived 
files can then be unpacked using various open source tools. However, because embedded systems employ various types 
of flash storage with various filesystems, dumping block devices might cause issues. In general, the following steps are 
carried out when performing extraction of firmware through UART interface:

1.	 Visually inspect, oscilloscope probe, and trial-and-error to determine the UART interface;
2.	 An insecure shell can also be used to download the firmware image of a device. Netcat or related programmes and 

a computer on the same network can be used to download files.
3.	 If a shell is secured through password, guess all the default password pairing such as admin/admin. If shell is not 

accessible or no password is not accepted, try interrupting the boot process and entering the bootloader shell.
4.	 If you can’t get into the bootloader shell, try momentarily disrupting the flash interface by grounding a data or clock 

pin or any other method while the bootloader loads the kernel.

2.2.1.2  Using JTAG​  The JTAG connection that’s used to load firmware during production may well be used to read the 
chip’s entire memory. An appropriate programmer must be able to accept the memory dump and transfer it to a com-
puter in order to read a device’s memory through a JTAG connection. After the gadget is manufactured, some manufac-
turers prevent it from being read or reprogrammed. The device is vulnerable to firmware extraction and injection attacks 
if the JTAG port is attached and unlocked. The typical procedure for extracting firmware through JTAG is as follows:
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1.	 Manually identify JTAG or SWD debug port pins. JTAG offers variety of pin configuration ranging from 8 to 20 pins 
and SWD requires just two pins.

2.	 In using UART ground pin is identified first, when all the pins are identified a suitable UART debugger module is used 
to dump the contents of the internal memory.

3.	 Use datasheet to identify the pinout of specific microcontroller, JTAGulator [38] can also be used to identify the pins 
if datasheet is not available.

4.	 If no readout protection is activated, use an appropriate JTAG/SWD programmer to dump the internal memory.

Firmware extraction using JTAG becomes more complicated process due to the variety of pinouts and wide range 
of JTAG debuggers for different types of architectures. Thus, it is relatively easy to extract firmware through UART 
than JTAG.

2.2.1.3  Dumping flash  Directly accessing the flash storage is another method for hardware-based extraction. Older 
flash memory chips requires a lot of connections to the device and the use of specific programmer devices for trans-
ferring data efficiently. However, technologies like eMMC requires few connectors and can also be accessed with an 
SD card reader. Also, specific tools like easy RiffBox or JTAG Plus can also be used. A detailed process of extraction 
using eMMC can also be found in [39]. Some of the basic steps for performing flash dumps are as follows:

1.	 Determine the flash chip’s identity (based on a label, packaging type, and number of processor connections) and, if 
feasible, get a data sheet;

2.	 Use a datasheet or an oscilloscope to determine the pins. eMMC uses various pins which include CMD, CLK, and DAT0. 
CLK is a signal that repeats itself, whereas the CMD line includes brief data bursts that occurring before read or write 
of data on DAT0 pin.

3.	 Disable the processor’s access to eMMC first and link pins to an SD card, which may interface with using an SD card 
reader.

4.	 To access the contents of different flash chips, use an appropriate programmer, such as the MiniPro TL866;
5.	 If an in-circuit dump isn’t feasible, disassemble the flash chip and dump it using an appropriate reader.

It is necessary to restrict access from the board’s CPU when accessing the memory for in-circuit dumps. This can 
be accomplished, for example, by momentarily disconnecting the clock line and reconnecting it once the dump is 
finished. Simply attaching an eMMC interface (such as easy JTAG Plus) might sometimes block the CPU from starting. 
Alternatively, you may use the appropriate pin to maintain the CPU in reset mode.

2.2.2 � Software methods

Extraction of the firmware through software techniques does not require any access to the physical device. Examples 
include:

1.	 Browse for publicly accessible firmware on the device manufacturer’s website.
2.	 Analyze the device’s network activity while following direct download URLs for firmware upgrades.
3.	 Use network traffic to intercept firmware upgrades. If TLS is in use, try to decrypt communications using self-signed 

certificates in a man-in-the-middle attack.

Vendors often provide firmware updates that only include revised files in that case complete firmware retrieval 
becomes difficult and alternate methods need to be explored. However, in certain situations, firmware upgrades 
contain entire firmware images, making this approach a quick and easy way to extract the firmware. Sometimes it is 
difficult to unpack some firmware images due to the implementation of firmware encryption or use of proprietary 
formats in compressing of firmware.
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2.2.3 � Firmware extraction tools

Firmware Extraction tools are broadly categorized into two classes: (1) Hardware tools, and (2) Software tools. The 
software tools are used in combination with supported hardware tools. The software tools can be freely downloaded 
online from their respective websites. Table 1 lists the various hardware tools that have been identified for the extrac-
tion of firmware using hardware-based methods. The various interfaces that are supported by these tools are UART, 
JTAG, SPI, I2C, and SWD. The cost of these tools typically ranges from $40 to $200 in the global market. These tools 
are typically used with their software counterpart which is usually free and open source. The tools include OpenOCD, 
Urtag, easy JTAG, and AVRdude, the details are listed in Tables 5 and 6.

2.2.4 � Firmware unpacking & analysis tools

Firmware analysis is not quite straightforward and easy, and it necessitates a number of procedures prior to the analysis 
phase. Extraction, unpacking, and determining the file system, among other things, are all essential stages. After the 
firmware has been unpacked/extracted, it may be evaluated and analyzed for security. Using Binwalk [54], It is feasible 
to reverse engineer and do a rudimentary analysis on IoT device firmware images. Firmwalker [30] may be used to look 
for essential files such as private keys, certificates, and password files. IDA and Ghidra [55, 56] can be used to disassem-
ble and debug even obfuscated code. For the emulation of the firmware, we can use QEMU [57]. Most of these tools 
are open-source which can be downloaded online. Table 7 presents all the tools which are used to do firmware-based 
evaluation & security profiling of IoT Devices.

2.3 � Vulnerability analysis frameworks

The security vulnerabilities can be found in various parts of an IoT system which include hardware components, applica-
tion software [64, 65], underlying firmware, and cloud system [66–70]. Some of the various techniques used to find secu-
rity flaws in IoT system are Static analysis, Dynamic analysis, Penetration testing, Fuzzing, and various other techniques.

Different sorts of vulnerabilities can be discovered with each approach. Identification of vulnerabilities in the embed-
ded devices and in their underlying firmware serves a crucial role in securing embedded systems. To this end, there are 
a variety of methods for detecting and triggering possible vulnerabilities in deployed embedded system firmware. In 

Table 5   Various onboard 
programming & debugging 
tools

Tool Supported interfaces Supported device type References

The Shikra JTAG, SPI, I2C, UART, GPIO Not Specified [40]
Attify Badge UART, I2C, SPI, JTAG​ Not Specified [41]
Adafruit FT232H SPI, I2C, serial UART, JTAG​ Not Specified [42]
HydraBus v1.0 SWD & JTAG, SMART​CAR​D, 

NAND flash, SPI, I2C, UART​
Not Specified [43]

Keil ULINK2 JTAG, SWD, SWV ARM [44]
Flyswatter2 JTAG​ ARM, MIPS [45]
Bus Pirate—v3.6a UART, I2C, SPI, JTAG​ NA [46]
Black Magic Probe Mini V2.1 JTAG,SWD ARM [47]
JTAGulator JTAG, UART​ ARM,MIPS [48]
AVR Dragon SPI, JTAG, PDI Atmel AVR [49]

Table 6   Supported software 
tools for firmware extraction

S.No Tool Supported CPU Types Type References

1 OpenOCD ARM, MIPS Opensource [50]
2 UrJTAG​ Not Specified Opensource [51]
3 AVR Dude Atmel AVR Opensource [52]
4 Easy JTAG plus NA Free [53]
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this work, we give a detailed review of the some of the recent ideas, which utilize different analytic techniques, such as 
static, dynamic, and hybrid analysis approaches, to discover known and unknown firmware vulnerabilities.

2.3.1 � Static analysis frameworks

Static analysis is used to find security flaws in firmware by analyzing the programme, which includes control, data flow, 
lexical, grammatical, and semantic analysis, among other things. Static analysis is a notion that has been around for a 
long time. It involves lexically examining a program’s source code without running it [70]. Static analysis is used find 
various security flaws which include buffer overflows, type-checking errors, kernel deadlocks, susceptible function calls, 
and various other flaws. There are various analysis tools for such purposes which include Visual Code Grepper [71], CP-
PCheck [72], PMD [73], Ghidra, IDA pro, and various other tools. Based on its implementation and targeted programming 
languages, each tool has its own technique of detecting mistakes. As IoT is made up of a variety of software components, 
APKs, and firmware, analyzing and detecting security flaws in these components is critical. In the past years, a substantial 
amount of study has been focused on firmware in general [74]. Static analysis techniques usually suffer from various 
limitations [75]. Although static analysis techniques are more scalable than dynamic analysis approaches, researchers 
are increasingly combining the two approaches as they both have their own set of constraints.

2.3.1.1  discovRE  Authors in [5] have developed and implemented a framework called discovRE, that supports four 
instruction set architectures which include × 86, × 64, ARM, and MIPS. It is a cross-architecture bug search framework for 
binaries. It works by matching a known vulnerable binary function with target firmware binaries typically compiled for 
different architectures, that contain the same vulnerable function. Two types are features are extracted prior to match-
ing which are structural features and numerical features. Structural features are used to build a CFG (Control flow graph) 
of the binary. While numerical features represent the information about the number of instructions or number of basic 
blocks of a function. However, these CFG-based bug search approaches are far from being scalable to handle an enor-
mous amount of IoT devices in the wild, due to their expensive graph matching overhead. This framework was evaluated 
on three firmware images and bugs like Poodle or Heartbleed were detected. Figure 6 shows the main process of this 
approach.

2.3.1.2  Genius  A bug identification approach [76] that increases search accuracy while addressing the scalability chal-
lenge in existing tools like discoverRE. It constructs the attributed control flow graph using statistical and structural fac-

Fig. 6   Architecture of dis-
coverRE [5]

Match

Code 
Base Vulnerable 

Function

Numeric Features

Structural Features

Numeric Filter
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tors that are consistent across various CPU architectures and labels each basic block in a CFG with the set of attributes 
(ACFG). The ACFGs are transformed into codebooks using spectral clustering in order to do a more efficient search. 
However, it is stated by the authors that the creation of a codebook is computationally expensive.

2.3.1.3  BinArm  Authors in [77] presented a vulnerability detection technique called BinArm for smart grid IED firmware. 
It is a multistage detection engine that performs coarse to fine-grained detection as shown in Fig. 7. In the first stage, 
dissimilar functions having heterogeneous features are discarded. The second stage discards function based on different 
execution paths. The third stage identifies candidate functions using fuzzy graph matching based on weighted Jaccard 
similarity and Hungarian algorithm. It is proposed to be efficient in identifying vulnerabilities in IEDs in a smart grid 
system. However, the authors state that this system only performs analysis of ARM-based intelligent electronic devices 
and it fails to detect runtime exploits.

Fig. 7   Proposed Binarm [77]
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2.3.1.4  FirmUp  This method is given by David et al. [78]. It identifies the vulnerable procedures by considering proce-
dure-based relationships in firmware images. It establishes a correspondence between a set of procedures in a given 
binary and a target binary. An algorithm called Ehrenfeucht-Fraïssé [79] is used to establish a pairwise similarity between 
sets of procedures. This approach is tested on about 2000 firmware images and 373 vulnerabilities were discovered out 
of which 147 appeared in the latest firmware images.

2.3.1.5  XMATCH  This is a cross platform analysis framework given by Feng et all [80]. In this framework as shown in Fig. 8, 
three stage process is used for analysis. In the first stage, binary lifting is performed which produces an intermediate 
representation of the two binaries using usingMcSema [81] translator. In the next stage, conditional formulas are con-
structed from the lifted binaries. CF’s are used to capture two main factors of a bug, erroneous data dependency, and 
invalid conditional checks. Irrelevant variables are also discarded. In the third stage function matching is done using the 
already extracted conditional formulas and by employing integer programming techniques. After that one to one map-
ping is performed between the CF’s in addition to similarity scores.

2.3.1.6  VulSeeker  Vulseeker is given by Gao et al. [82]. It is also a cross-platform approach based on function matching. 
The target function is compared with a vulnerable function and based on the similarity score the output is decided. 
Labelled semantic flow graph’s (LSFG) is constructed from the two binary functions then 8 types of instruction features 
are extracted as a numerical vector for each block of LSFG. After this, the numerical vector is fed into a DNN model to 
generate function semantics. The output is then decided based on the Cosine similarity score. The architecture is shown 
in Fig. 9.

2.3.1.7  aDiff  This approach [83] extracts three types of features from binaries which are intra function, inter function, 
and inter-module features. The CNN and a Siamese network are used for the extraction of semantic features. After extrac-
tion of these features from two binaries, a distance measure is calculated between each pair of features of the two bina-
ries. An overall similarity score is then obtained based on the three calculated distances.

2.3.2 � Dynamic analysis frameworks

Dynamic analysis approaches rely on the firmware’s real execution on hardware devices or emulators. By providing appro-
priate test inputs to analyze programme behavior, all of the firmware execution pathways are covered. In this part, we 
look at some of the most advanced dynamic analysis techniques for IoT and embedded device firmware. A comparative 
study is also supplied at the conclusion for a more in-depth comparison of the approaches mentioned.

2.3.2.1  Avatar  Jonas et  al. have given a dynamic analysis framework for embedded devices called Avatar [13]. This 
framework shown in Fig. 10 works by a tight integration of an emulator with an embedded device for helping in vari-
ous security tasks which include vulnerability discovery, vulnerability analysis, malware analysis, backdoor detection, 

Fig. 9   Vulseeker Workflow 
[82]
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and reverse engineering. An emulated firmware forwards I/O accesses to the real embedded devices thus completely 
emulating a full system behavior. Debug interfaces such as JTAG together with OpenOCD were used for communication 
with the real hardware device. The authors performed the analysis of three devices: a gsm-based phone, a hard disk 
bootloader, and a sensor node. Avatar supports all the major hardware architectures which include × 86–64, ARM, MIPS.

Fig. 10   Avatar Architecture 
[13]
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2.3.2.2  Firmadyne  Chen et al. [84] have developed an automated dynamic vulnerability analysis system that supports 
full system emulation through QEMU. It specifically supports Linux-based devices. Firmadyne as shown in Fig. 11 con-
sists of three major components which are Firmware Crawler for downloading firmware images from vendor websites, 
Firmware Extractor for extracting the downloaded file system, System Emulator for performing the initial emulation, 
and Dynamic Analyzer for running the exploits. Three types of architectures are supported by this framework which are 
MIPS-BE, MIPS-LE, and ARM-LE. The authors performed an extensive analysis in terms of the firmware count on about 
9486 firmware. However, the dynamic analysis performed is rather simple in nature. The dynamic analyzer module con-
sisted only of predefined exploits from the Metasploit framework and some custom-made exploits. These exploits are 
great in identifying the known vulnerabilities but are not effective in identifying zero-days.

2.3.2.3  Automatic analysis framework  Costin et  al. presented a dynamic analysis framework in [85]. In this frame-
work, authors have used COTS tools for performing static and dynamic vulnerability analysis in the web interfaces of 
the embedded devices. Full-Scale emulation of 246 firmware images has been performed to test the web interfaces. 
The authors have found 225 high-impact vulnerabilities in around 24% of the emulated firmware. Tools such as RIPS, 
shodan, and ZMap were used for performing analysis. However, these tools have a limitation of producing high false 
negatives and false positives.

2.3.2.4  IoTFUZZER  IoT fuzzer is an automatic blackbox texting framework given by Chen et al. [86]. This framework aims 
at finding memory corruption vulnerabilities in firmware images by analyzing supporting apps. Dynamic analysis is 
performed on the app to reveal the logic that is used to construct the messages for communication with an IoT device. 
This framework has four main phases. In the first phase UI of the app is analyzed for the identification of components 
that trigger network connections. The second phase analyses the app for various strings and values which are required 
to construct a network-based protocol message. Then in the third stage, all the recorded protocol fields are used to con-
struct a new message to be sent to the IoT device. The final stage monitors the status of the IoT devices and records any 
crashes or memory corruptions. The authors have evaluated this framework on 17 IoT devices and identified 15 memory 
corruption vulnerabilities. However, this framework provides only the input data that triggers the vulnerability and not 
the location of the vulnerability in the firmware.

2.3.2.5  Pretender  A dynamic analysis model called PRETENDER based on firmware re-hosting is given by Gustafson et al. 
[87]. In this model as shown in Fig. 12 interactions between firmware and hardware are recorded and then modelled 
using machine learning and pattern recognition techniques. After the completion of modeling, hardware is completely 
replaced with a virtualized environment. Virtualized environment is realized using QEMU [88] and for carrying out effi-

Fig. 12   PRETENDER workflow 
diagram [87]
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cient program analysis angr is used. PRETENDER was evaluated on six firmware images of three different hardware types. 
PRETENDER was developed to provide an advanced approach for performing dynamic analysis on firmware images.

2.3.2.6  FirmFuzz  Srivastava et al. [89] developed a dynamic vulnerability analysis framework of Linux-based IoT devices 
called FirmFuzz. It uses QEMU tool for carrying out emulation of the MIPS and ARM-based IoT firmware. There are three 
phases used in the analysis which are, Information gathering, Preparation, and Fuzzing. Firmware Fuzzing is the main 
technique used in identifying the vulnerabilities. It utilized the web interface of devices as entry points for fuzzing the 
firmware images. FirmFuzz managed to discover seven unknown vulnerabilities in six different devices by analyzing 32 
images of 27 devices.

2.3.3 � Hybrid analysis frameworks

The hybrid analysis is the combination of static analysis and dynamic analysis approaches. While designing hybrid analysis 
frameworks researchers frequently use various deep learning and machine learning methods to automate the process 
to a certain level. Very little work has been done in this area as a combination of both of the approaches presents some 
serious challenges. In this section, we have reviewed some of the existing work that has been done on hybrid approaches.

2.3.3.1  DTaint  It is a framework [90] to analyse taint style vulnerability in the embedded devices firmware. These types of 
vulnerabilities are weaknesses due to improper or no sanitization of input data. It has an input source, a specific data flow 
path, and a data sink that is sensitive in nature. A vulnerability such as the heartbleed [91] bug in the OpenSSL library is 
an example of a taint-style vulnerability. This framework as shown in Fig. 13 uses both static analysis and dynamic analy-
sis techniques for the identification of vulnerability. In this framework firmware images are taken as input and outputs 
data flows from these images by using four components which are data structure, functional analysis, pointer aliasing 
and intraprocedural data flow components. The author applied this framework over 6 firmware images of four manufac-
turers and identified about 21 vulnerabilities including 13 zero days. However, this approach only identifies taint style 
vulnerabilities.

2.3.3.2  PATCHECKO  PATCHECKO is a state-of-the-art hybrid vulnerability analysis framework given by Sun et al. [92]. The 
architecture of PATCHECKO is shown in Fig. 14. It works in three phases: (1) It uses a deep learning technique to train the 
vulnerability detector. (2) Target firmware is of IoT/embedded devices is statically analyzed using the vulnerability detec-
tor. (3) The vulnerable functions identified during the second phase are dynamically analyzed to remove any false posi-
tives. Patchecko compares the functions with known CVE vulnerable functions and associated patches. Then vulnerable 

Fig. 13   Dtaint Architecture 
[90]
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functions are produced as output with associated CVE numbers. Static analysis is used to convert each binary function 
into a feature vector. A deep learning-based model is used to compare two binary functions based on these feature vec-
tors. After that, a more in-depth dynamic analysis is performed to remove any false positives. It has an accuracy of 93% 
for properly discovering known vulnerabilities, however, this framework does not identify any unknown vulnerabilities.

2.3.4 � Comparative study

In this section, we compare the existing approaches for embedded systems as well as the traditional approaches that 
can potentially be applied to embedded systems. We further discuss our key observations from this comparative study. 
As per the comparative study of the frameworks, semantic and structural features based detection produces better 
results. The number of vulnerabilities produced by semantic and structural features is very high as compared to other 
techniques. Machine learning which includes deep learning-based approaches shows the best results for the detection of 
vulnerabilities in cross-architecture platforms. The frameworks are mainly evaluated on the major processor architectures 
which include x-86, MIPS, and ARM, which constitute the majority of the embedded and IoT devices. QEMU platform is 
mainly used in the dynamic analysis for runtime evaluation of the embedded firmware. Most of the static analysis tools 
employ function or pattern matching techniques to mainly detect known vulnerabilities and show poor performance 
in detecting unknown vulnerabilities. Among the static analysis frameworks, the FirmUp framework has detected a 
significant number of vulnerabilities across different architectures, whereas in dynamic analysis the framework given by 
Costin et all [85] has shown better results but across only two major architectures which include ARM, and MIPS. Hybrid 
analysis frameworks still need to improve in terms of vulnerability detection rate. Different machine learning methods 
may be explored for improving the hybrid analysis frameworks (Fig. 15).

Fig. 14   PATCHEKO workflow 
diagram [92]
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The Table 8 provides an overview of various firmware analysis tools and their characteristics from 2014 to 2020. Several 
trends can be observed from the data. Over the years, there has been a shift from static analysis to dynamic analysis, 
including full system emulation and machine learning-based approaches. The number of supported architectures has also 
increased, accommodating a wide range of devices. Additionally, the number of firmware/devices analyzed has grown sig-
nificantly, indicating the expanding scope of firmware analysis. Tools like “IoT FUZZER” and “FirmUp” have been designed 
for dynamic analysis, while “BinArm” and “VulSeeker” focus on static analysis. The development of machine learning and 
deep learning techniques is evident in tools like “Automatic Analysis,” “Genius,” and “PATCHECKO.” This comprehensive 
analysis landscape showcases the growing importance of firmware analysis in addressing cybersecurity challenges in 
the IoT and embedded device domain.

2.3.5 � Vulnerability proritization

Vulnerability prioritization plays a pivotal role in crafting an effective cybersecurity strategy, as it empowers organizations 
to allocate their resources judiciously while addressing the most imminent threats. This process entails a comprehensive 
evaluation of vulnerabilities, taking into account both their potential impact and exploitability. This systematic approach 

Fig. 15   Hierarchy diagram 
of vulnerability analysis frame-
works
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allows for the pinpointing of high-risk areas that demand immediate attention and remediation efforts. Well-established 
methodologies such as the Common Vulnerability Scoring System (CVSS) serve as a standardized framework for the 
assessment of vulnerabilities, factoring in elements like base score, temporal score, and environmental score [94]. Fur-
thermore, emerging strategies harness the power of machine learning algorithms and threat intelligence to refine the 
accuracy of prioritization [95, 96]. Recent scholarly investigations highlight the necessity for dynamic and context-aware 
vulnerability management tactics [97, 98]. These advancements underscore the evolving landscape of vulnerability 
prioritization and underscore the paramount importance of integrating state-of-the-art methodologies into an organi-
zation’s cybersecurity endeavors.

3 � Research challenges and open issues

In this section, we discuss the various challenges and issues that are faced in performing vulnerability detection on 
embedded device binaries.

3.1 � Reverse engineering

Reverse engineering of firmware is a very complex task that involves a series of steps with appropriate tools and expertise. 
Reverse engineering consists of firmware extraction, firmware unpacking, and firmware disassembly. One of the main 
problems in the extraction of firmware is the use of appropriate hardware and software. Moreover, these extraction tools 
are very costly and are often very complex and buggy. Embedded devices are designed without any common standards. 
Lack of standardization in hardware architectures across the wide range of IoT & embedded devices presents a big chal-
lenge in the extraction of their firmware.

3.2 � Firmware disassembling

Software programs are cross-compiled and deployed on various architecture platforms which puts a huge challenge on 
the analyst to disassemble and make sense of the different binary instruction formats of specific architectures which have 
been compiled from the same source code. It is a very challenging task for the researchers to look at all the binary formats 
for common vulnerabilities.

3.3 � Detection accuracy

Obtaining higher accuracy for the detection of vulnerabilities and reducing the false positives is very critical in vulnerability 
analysis. Out of all the framework types Automatic analysis by Costin et all [85] provides better results in identifying both 
known and unknown types of vulnerabilities. Accuracy can be improved by tailoring ML & DL algorithms for such problems.

3.4 � Scalability

Vulnerability detection at a large scale is a major challenge. IoT & Embedded devices are growing exponentially due to this 
the vulnerability detection frameworks have to accommodate these ever-growing devices. Testing the embedded firmware 
in runtime weather on real devices or through emulation tools is very slow and error-prone. The deployment of different 
architectures and software programs presents a major challenge in vulnerability analysis.

3.5 � Vulnerability verification

Verification of the identified vulnerabilities is another problem that researchers are facing. Verifying requires determining the 
execution path in a firmware that triggers the vulnerability. Due to the limited information of the vulnerability many times 
it becomes complicated to verify the vulnerability by reproducing the behavior of the system.
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4 � Proposed model

We have designed a hybrid vulnerability analysis framework including the testbed. This proposed framework addresses some 
of the issues present in the already existing frameworks. It addresses the scalability issue by utilizing both the firmware col-
lection methods which include the web crawler approach and extraction using onboard debug ports. Our approach utilizes 
both dynamic and static analysis techniques for the identification of known and unknown vulnerabilities. QEMU emulator 
will be used in run-time dynamic analysis of already extracted firmware stored in the firmware repository. If any problem 
is faced during extraction of firmware using onboard JTAG/UART ports then the firmware will be downloaded using a web 
crawler as utilized in firmadyne framework. Network Analysis module will be used to check protocol vulnerabilities in IoT 
devices in runtime using tools that include Wireshark and Metasploit scripts. All the identified vulnerabilities will be stored 
in the vulnerability repository. The verification process of the vulnerabilities will be carried out by using Machine Learning 
techniques for the generation of test cases and executing the sequence on emulated firmware or on real devices whichever 
is feasible. The proposed model will be implemented on a developed testbed.

The proposed testbed as shown in Fig. 16 is a four-layered architecture model. The four layers are the Internet Layer, 
Control and Monitoring layer, Access Layer, and the Device layer. Internet Layer provides internet connectivity through LAN 
network using appropriate switches. The monitoring and control layer consists of workstations and a high-performance 

Fig. 16   Proposed vulnerability 
analysis model
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analysis machine that would be used to perform computationally intensive analysis. It also consists of a control machine that 
would be used to launch scripts and programs necessary for analysis. All the test results will be stored on this machine itself. 
The Access layer consists of various hubs and routers that connect wirelessly to the IoT devices. The device layer consists of 
various IoT and embedded devices that are connected to their appropriate hubs and wifi routers (Fig. 17).

5 � Conclusion & further work

In this article, we surveyed various types of architectural elements, firmware extraction methods, and various types 
of vulnerability analysis frameworks for IoT & Embedded devices. We surveyed the major processor architectures 
of embedded devices. Techniques used to implement static, dynamic, and hybrid analysis was surveyed. A detailed 
comparison of the vulnerability analysis framework was presented based on various qualitative and quantitative 
parameters. Finally, we discussed the various challenges in performing vulnerability analysis of IoT devices. A vulner-
ability analysis model for overcoming some of the challenges is also proposed at the end. As further work, we intend 
to develop the proposed framework in the lab using various COTS modules. The proposed model will be evaluated 
based on various parameters on various IoT & Embedded devices available in our institute IoT lab.

In order to solve the lack of standardisation in hardware architectures, future research should focus on the crea-
tion of user-friendly and affordable methods for firmware extraction. Innovative methods for deconstructing cross-
compiled software programmes and the improvement of machine learning algorithms for vulnerability research are 
other crucial areas for development. As the IoT ecosystem expands, researchers should concentrate on developing 
scalable frameworks and procedures for efficient vulnerability verification.
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