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Abstract 

Urban green and blue spaces refer to the natural and semi-natural areas within a city or urban area. These spaces 
can include parks, gardens, rivers, lakes, and other bodies of water. They play a vital role in the sustainability of cities 
by providing a range of ecosystem services such as air purification, carbon sequestration, water management, and 
biodiversity conservation. They also provide recreational and social benefits, such as promoting physical activity, 
mental well-being, and community cohesion. Urban green and blue spaces can also act as buffers against the nega-
tive impacts of urbanization, such as reducing the heat island effect and mitigating the effects of stormwater runoff. 
Therefore, it is important to maintain and enhance these spaces to ensure a healthy and sustainable urban environ-
ment. Assessing urban green and blue spaces with space-based multi-sensor datasets can be a valuable tool for 
sustainable development. These datasets can provide information on the location, size, and condition of green and 
blue spaces in urban areas, which can be used to inform decisions about land use, conservation, and urban plan-
ning. Space-based sensors, such as satellites, can provide high-resolution data that can be used to map and monitor 
changes in these spaces over time. Additionally, multi-sensor datasets can be used to gather information on a variety 
of environmental factors, such as air and water quality, that can impact the health and well-being of urban residents. 
This information can be used to develop sustainable solutions for preserving and enhancing urban green and blue 
spaces. This study examines how urban green and blue infrastructures might improve sustainable development. 
Space-based multi-sensor datasets are used to estimate urban green and blue zones for sustainable development. 
This work can inform sustainable development research at additional spatial and temporal scales.

Keywords  Urban green spaces, Blue spaces, Sustainable development, Space-based multi-sensor datasets, Data 
fusion, Spatial resolution, SAR, Sustainable development

1  Introduction
The huge geographical distribution of landscape patches 
and the overall urban layout evolves constantly with 
urban expansion under the impact of various elements, 
the most important of which are blue-green infrastruc-
tures, which is known as the urban landscape pattern. 
Blue-green areas, at the macro level, are the sum of blue 
and green space, comprising all water and green space, 
that makes up the city’s overall landscape pattern (Eggi-
mann, 2022; Loukanov et al., 2020; Shahmohamadi et al., 
2011). Mountains, forest land, farmland, grassland, and 
ecological corridor, as well as huge green space, belt 
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green space, protective green belt, public open space, 
and green roofs in the city, are all examples of “green 
space” (Song et  al., 2021; Wang et  al., 2022). The term 
“blue space” refers to both linear and planar water bod-
ies, such as rivers and marshes. An indivisible “organic 
aggregation” of the urban ecological framework, urban 
blue-green space is a governing factor closely associ-
ated with urban sustainable development and residents’ 
lives (Ile & Ziemelniece, 2019; Rana & Ilina, 2021). To 
accomplish urban ecological security and system integ-
rity, improve urban functions and charm qualities, and 
ensure high-quality urban growth, increasing the share of 
blue and green space is a critical phase (Kai et al., 2022; 
Plieninger et al., 2022). There is a lot of evidence suggest-
ing if communities could interact with natural processes 
and systems, they would be better able to adapt. People 
and wildlife benefit from blue-green infrastructure in a 
variety of ways (Cooper et al., 2022; Shahid et al., 2021). 
All of these advantages contribute to better human 
health and urban ecosystems. As a result of these quali-
ties, humans are more resilient to the effects of climate 
change, particularly greater temperatures and flood-
ing, which are two of the most serious climate threats 
(Halder et  al., 2021; He & Shi, 2022). Instead, it might 
be more advantageous to establish a collection of ‘win–
win’ Blue-Green Infrastructure (BGI) solutions that, in 
most cases, offer net advantages and minimal unfavour-
able trade-offs. Water, transportation, and housing are 
just a few of the sectors that make up urban infrastruc-
ture systems (Hirpa et al., 2022; Singh et al., 2020). These 
systems interact with one another, as well as other infra-
structures and the environment (Yan et al., 2021). From 
resource extraction to pollution and waste, each of these 
industries places various strains on the environment and 
human well-being (Halbac-Cotoara-zamfir et  al., 2021). 
A planned technique to connect the constituents of a 
structure is provided by systems thinking. This can assist 
decision-makers in developing a shared understanding of 
the system and making decisions that support the overall 
goals (Nowak et al., 2022; Si et al., 2022). This method can 
also aid stakeholders in comprehending their operations 
from the standpoint of sustainable development, taking 
into consideration environmental, social, and economic 
factors. As a result, they’ll be able to evaluate BGI’s con-
tribution to mitigating their impacts and lowering opera-
tional expenses (Liu et al., 2022; Shubin, 2019).

For metropolitan regions dealing with the effects of cli-
mate change, blue-green infrastructure offers a practical 
and worthwhile answer. It sustains grey infrastructure 
and, in some situations, replaces it. In urban landscape 
design, BGI links vegetation systems and urban hydrolog-
ical functions (blue infrastructure and green infrastruc-
ture). It offers larger overall socioeconomic benefits than 

the combination of its constituent parts. A city that suc-
cessfully integrates natural systems to manage blue-green 
infrastructure to  provide offer ecological and aesthetic 
benefits. However, a similar resource often offers a vari-
ety of benefits that advance both “green” and “blue” goals. 
Cities and communities can gain via effective infrastruc-
ture, increased collaboration, and heightened advantages 
by consciously planning for green–blue infrastructure 
that accomplishes several goals. Changes like green–blue 
infrastructure solutions, or in the size or target areas for 
their implementation, may be necessitated by examining 
the fundamental forces that motivate the development of 
such systems. Amenity-driven and local economic value-
creating activities may prioritize the maintenance and 
development of gateway areas, pedestrian pathways, and 
rejuvenation areas by, for instance, planting more trees, 
gardening, and installing water features (Yang Song et al., 
2020, 2022). Focus may switch to large-scale programs 
in parks and canal corridors, where rainwater may be 
locally collected and harvested for irrigation purposes. 
Green policies and environmental initiatives may support 
BGI technologies. Whether BGI is expressly addressed in 
a sustainability program or not, the BGI strategy aligns 
with often-claimed program goals including reducing the 
urban heat island effect, improving air quality, and flood 
mitigation. Transport and other grey infrastructure pro-
jects have increased competition for urban public areas. 
As ecosystems lose vegetation, industrialized regions 
provide fewer ecological services. Fragmented city natu-
ral systems don’t operate well. Their advantages are less 
than their potential. Changes in land use and develop-
ment of urbanized regions affect biodiversity, air qual-
ity, groundwater supplies, urban water infiltration, flood 
hazards, and city centre overheating. Blue and Green 
Infrastructure is a major Nature-Based Solution (NBS) 
for sustainable stormwater management in cities, and it 
extends Ecosystem Services (ES). BGI is vital for improv-
ing living conditions and counteracting climate change 
when planning and constructing heavily urbanized 
places. The grading approach was used to evaluate BGI’s 
ideas for developing sustainable urban public spaces. 
Using BGI technologies to enhance urban functioning 
and appeal demands a holistic strategy. Conscious plan-
ning and design should employ the offered information 
to make BGI solutions as successful as feasible in creating 
urban public areas (Fernandez et al., 2022).

Green cover in form of forest cover occupies 30 per 
cent of the Earth’s surface and it serves as a vital habi-
tat for millions of species (Jones et  al., 2019; Shubin, 
2019). These are responsible for clean air and water, as 
well these are also crucial for combating climate change 
(Halder et al., 2021). The path forward for mitigating cli-
mate change issues is guided by sustainable development. 
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Climate change mitigation is guided by sustainable 
development. Some comprehensive places aim to bring 
people, activities, buildings, and public spaces together 
(Antoszewski et al., 2022; Aryan et al., 2019; Ghorbanian 
et al., 2020). Some decisive actions are required to reduce 
the loss of natural habitats and biodiversity to support 
global food and water security, climate change mitigation 
and The various types of features available on Earth can 
be easily visualised and assessed using high-resolution 
satellite images (Du et al., 2022; Kuenzer et al., 2019). It 
can also be analysed at various spatiotemporal scales. 
These are capable of delivering precise data at desired 
spatial scales. These approaches are also very useful 
and reliable in any of those scenarios (Gou et  al., 2022; 
Shafique & Luo, 2019). It can analyse the effects of green 
and blue spaces on human health and well-being (Gallet, 
2012; Hamel & Tan, 2022; Tagne Nossi et al., 2021). Pre-
viously, some researchers proposed that blue spaces are 
more effective for mental human health and well-being. 
These are also capable of improving physical and mental 
health (Cao et al., 2022; Loukanov et al., 2020). The green 
and blue spaces in high spatial resolution satellite images 
demonstrate the relationship between various vegetation 
indicators and their impacts in built-up areas. Various 
methods of quantifying the effect of temperature on veg-
etation have aided policy and planning (Angelidou et al., 
2016; Verga & Khan, 2022).

These studies look into a variety of environmental char-
acteristics to find solutions to environmental problems 
(Almeida et  al., 2022; Barmelgy et  al., 2022; Berdejo-
Espinola et  al., 2022). Researchers analysed indicators 
from the perspectives of environmental, social, and eco-
nomic development to produce a comprehensive plan 
for making our lives safer and more secure (Ahmad et al., 
2020; Fan et al., 2022; Stange et al., 2022). The research is 
needed to identify ecological zones and their connections 
to suburban areas, with a particular focus on green infra-
structure design. These are beneficial to the future devel-
opment of smart cities and initiatives to maintain green 
infrastructure (Chen et  al., 2022; Wilbers et  al., 2022). 
Several bits of research suggest that heat-induced death 
studies are being conducted to determine the true impact 
of heat waves on humanity (Clauzel & Bonnevalle, 2019). 
Understanding the amount of green cover required to 
avoid these situations is beneficial. According to several 
studies, increasing the amount of green space can lower 
the death rate (Drosou et al., 2019; Liang et al., 2019).

The blue space has various health and well-being ben-
efits for people. Researchers have also conducted stud-
ies to better grasp the insights into climate adaptation 
plans that can be implemented. To determine the influ-
ence of these policies as inputs on sustainability, it is 
necessary to understand management policies for green 

areas (Bokaie et al., 2016). For urban cooling in hot desert 
climate change, good planning with sustainable urban 
green and blue spaces around residential complexes is 
required (Ayad et al., 2020). These approaches are criti-
cal for examining the role of blue-green development 
in the long run. With a reduction in urban heat island 
effects, sustainable development minimises greenhouse 
gas emissions (Shabahang et al., 2019). The current study 
focuses on assessing urban green and blue spaces using 
multi-sensor datasets and suitable feature validation to 
determine the magnitude of green and blue cover over 
the study region. With space-based inputs, it will aid in 
understanding the reasons behind the loss of urban areas 
in the region (Bassuk et al., 2015; Wei et al., 2021). Green 
and blue spaces have also been linked to psychological 
grieving, and the research community is paying more 
attention to the benefits of increased blue spaces for 
mental health and grief reduction.

The current research demonstrates the use of synthetic 
aperture radar (SAR) remote sensing to visualise the dis-
tribution of green and blue spaces. The scheme investi-
gates the spatial distribution of green and blue areas to 
comprehend their orientation and pattern to conduct a 
complete spatial study of the features. Multi-sensor data-
sets will be easier to understand for green and blue space 
improvement and management thanks to the approach of 
analysing green and blue spaces with space-based multi-
sensor datasets for sustainable landscape development. 
The study’s recommendations assist decision-makers and 
planners in delivering diverse green infrastructure ben-
efits to communities. The basic element of urban natural 
ecological space is “blue-green” space (Bolte et al., 2019; 
Sikorska et al., 2019). Rapid urbanisation has a substan-
tial impact on urban blue-green space patterns and poses 
a serious threat to the urban ecological environment 
(Alves et  al., 2019). The change in the characteristics of 
blue and green space during urban expansion is critical 
for urban ecological conservation and sustainable devel-
opment (Ariza et  al., 2019). The spatio-temporal evolu-
tion characteristics and coordinated development level 
of the blue-green space and built-up area are analysed in 
this work using a complete approach of remote sensing 
picture, landscape pattern analysis, sector analysis, and 
coupling analysis. The findings revealed that land use and 
landscape patterns in the centre city witnessed significant 
changes, with the most notable shift being the occupation 
of blue-green space by urban built-up regions, resulting 
in increased landscape fragmentation and decreased var-
iability. Green space in cities is gradually becoming mar-
ginalised and confined in small regions.

The blue space has a clear blocking effect on the built-
up area’s expansion, and its spatial structure tends to sta-
bilise over time. Furthermore, the degree of connection 
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between urban blue-green space and the urban con-
structed area is inverted U-shaped, and the level of 
coordinated development among the three has reached 
a moderate imbalance. Strengthening the protection of 
blue-green space, limiting city sprawl, and improving the 
quality of urban development are all urgently needed.

2 � Literature review of major research 
in the domain

2.1 � Summary of significant research contributions (as 
per Scopus database)

Table 1 summarises the comprehensive list of selected 
well-acknowledged literature having top citations 
with that particular keyword. This list of literature 

presented in the table summarises the top 10 citations 
with keywords like ‘feature extraction’, ‘object detection’, 
‘green feature extraction’, ‘optical and SAR data fusion 
and ‘multi-sensor data fusion. An extensive review of 
the Scopus database has been performed for the year 
from 1992 to 2022 with the selected search keywords 
(i.e. feature extraction, object detection, green feature 
extraction, optical and SAR data fusion and multi-sen-
sor data fusion). The first column of the table contains 
the details of the authors along with the year of publi-
cation of the article and the second column in the table 
reports the corresponding research title (as shown 
in the Scopus database). It can be observed that the 
majority of researchers have pursued research related 

Table 1  Significant research with the highest number of citations

Authors Title

(Labib & Harris, 2018) “The potentials of Sentinel-2 and Landsat-8 data in green infrastructure extraction, using 
object-based image analysis (OBIA) method”

(Chen et al., 2018) “Social functional mapping of urban green space using remote sensing and social sensing 
data”

(Cheng & Han, 2016) “A survey on object detection in optical remote sensing images”

(Shen, Huang, Zhang, Wu, & Zeng, 2016) “Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion 
of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of 
Wuhan in China”

(Petropoulos, Kalivas, Georgopoulou, & Srivastava, 2015) “Urban vegetation cover extraction from hyperspectral imagery and geographic information 
system spatial analysis techniques: Case of Athens, Greece”

(Cho, Seo, Kumar, & Rajkumar, 2014) “A multi-sensor fusion system for moving object detection and tracking in urban driving 
environments”

(Zhang, Zhang, & Lin, 2014) “Improving the impervious surface estimation with a combined use of optical and SAR 
remote sensing images”

(Berger et al., 2013) “Multi-modal and multi-temporal data fusion: Outcome of the 2012 GRSS data fusion con-
test”

(Prakash, Singh, & Pathak, 2012) “A fusion approach to retrieve soil moisture with SAR and optical data”

(Kabir, He, Sanusi, & Wan Hussina, 2010) “Texture analysis of IKONOS satellite imagery for urban land use and land cover classification”

(Ban, Hu, & Rangel, 2010) “Fusion of Quick bird MS and RADARSAT SAR data for urban land-cover mapping: Object-
based and knowledge-based approach”

(Amarsaikhana et al., 2010) “Fusing high-resolution SAR and optical imagery for improved urban land cover study and 
classification”

(Camps-Valls & Bruzzone, 2009) “Kernel Methods for Remote Sensing Data Analysis”

(Sirmacek & Unsalan, 2009) “Urban-area and building detection using SIFT key points and graph theory”

(Koetz, Morsdorf, van der Linden, Curt, & Allgöwer, 2008) “Multi-source land cover classification for forest fire management based on imaging spec-
trometry and LiDAR data”

(Stramondo, Bignami, Chini, Pierdicca, & Tertulliani, 2006) “Satellite radar and optical remote sensing for earthquake damage detection: Results from 
different case studies”

(Stramondo et al., 2006) “Satellite radar and optical remote sensing for earthquake damage detection: Results from 
different case studies”

(Pu, Gong, Michishita, & Sasagawa, 2006) “Assessment of multi-resolution and multi-sensor data for urban surface temperature 
retrieval”

(Flanders, Hall-Beyer, & Pereverzoff, 2003) “Preliminary evaluation of eCognition object-based software for cut block delineation and 
feature extraction”

(Dousset & Gourmelon, 2003) “Satellite multi-sensor data analysis of urban surface temperatures and land cover”

(Gong, Marceau, & Howarth, 1992) “A comparison of spatial feature extraction algorithms for land-use classification with SPOT 
HRV data”
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to land use land cover and feature extraction meth-
ods with the help of multiple different satellite images 
and software tools. Several researchers have pursued 
research on data fusion with the help of multi-sensor 
images. Some of these papers are based on data fusion 
along with feature extraction from different datasets. 
The data about research findings from these datasets 
are properly analysed and evaluated.

Figure  1 indicates the highest number of citations 
among the selected top 10 citations over the year 
1992–2022 as per the indicated keyword list. Total 
gross citations over the year 1992–2022 are 1599. 
Among all these years, the highest number of citations 
occurred in the year 2009 with 1154 and the lowest 
number of citations was 236 in the year 2018.

The highest citation is showing that this year most 
research studies have been done compared to other 
years, as indicated by the number of citations by the 
significant research. The lowest number of citations 
refers to the decreasing inclination of the research 
interest in the research domain over that particu-
lar year. Figure  1 illustrates the influence of the key-
word over the year 1992 to 2018. It can be observed 
that most cited keywords include “Extraction”, “Sens-
ing”, “Urban”, “Detection”, “Building”, “Classification”, 
“Image”, “Analysis”, and “Object”.

These mentioned keywords visualise the attention of 
the research interest. Figure  1 shows that these men-
tioned keywords are more impactful keywords with 
record numbers of citations. Usually, problems of 
qualitative (and more subjective) data analysis help us 
to identify the focus area of the research. These will 
provide scientifically credible and robust approaches 
for processing data with an appropriate tool.

3 � Material and method
3.1 � Study area
Green and blue space management are required for the 
sustainable development of any region. Some of the ear-
lier researchers have attempted a suggestive plan for the 
management and development of green and blue spaces. 
The current work is executed in the Udaipur district for 
understanding the orientation of green and blue spaces 
(as shown in Fig.  2). The district of Udaipur lies in the 
southern part of Rajasthan state and it is also known as 
‘Mewar’. The location of the district lies amongst lati-
tudes 23.49’ and 25.28’ N and longitudes 73.01’ and 75.49’ 
E with an average altitude of 579.4  m above sea level. 
The district covers approximately an area of 12,596 sq. 
km, and it accounts to be about 3.67% of the State of 
Rajasthan. The district is surrounded by Rajsamand dis-
trict in the north part, Banswara District in the southeast 
region, Chittorgarh & Pratapgarh district in the east part, 
and Dungarpur in the south and Gujarat in the south-
east direction, Sirohi in the West & Pali in North-west. 
The district of Udaipur has nine administrative sub-
divisions (i.e., Community Development Block (taluk)s) 
comprising Gogunda, Kherwara, Kotra, Lasadia, Phal-
siya, Salumbar, Sarada, Udaipur, and Vallabhnagar. The 
district experiences a hot semi-arid climate with three 
prominent seasons comprising summer, monsoon, and 
winter seasons. The region typically has hot weather due 
to the desert lands in the region.

The annual mean rainfall is reported around 637.0 mm 
and has saline groundwater due to the presence of highly 
rich calcium salts in the region. The district has an abun-
dant agricultural pattern with the sowing of maize and 
jawar crops in the Kharif season and wheat, and mustard 
in the Rabi seasons but these are fully dependent on the 
accessibility of water sources. As per the 2011 census, the 
Udaipur district has a total urban population of around 
608,426 persons with a population density of 262 persons 

Fig. 1  Citations of top 10 research documents according to search keywords
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Fig. 2  Location Map for Udaipur District (Rajasthan, India)
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per sq. km. The rapid development due to urbanization 
has resulted in the evolution of urban areas and these 
changes are necessary to be deliberated for complex 
problem-solving. Several authors have explored green 
and blue spaces with the help of geospatial approaches. 
The rapid development of geospatial technology across 
the various disciplines to achieve sustainable develop-
ment. The whole system of geospatial technology works 
remotely sensed datasets, and these can be further used 
for analysis and visualisation on any spatio-temporal 
scale. Thus, this research focuses on the assessment of 
green and blue spaces around the Udaipur district of 
Rajasthan.

3.2 � Datasets used
3.2.1 � Sentinel 1A/B dataset
The required synthetic aperture radar (SAR) data of 
microwave imaging satellite is accessed from Sentinel- 
1A/B data archive. Sentinel-1 provides datasets with a 
spatial resolution of 20 m in all weather conditions with 
a day and night imaging capability and these are very 
much useful for marine monitoring, land monitoring, 
and emergency services. The cited data is accessible from 
ESA Copernicus open-access hub, which is available at 
https://​scihub.​coper​nicus.​eu/. The metadata specifica-
tions of these datasets are defined in Table 2.

3.2.2 � Landsat 8 dataset
The Landsat 8 datasets are assimilated from an Ameri-
can earth observation satellite data archive and it was 
launched to orbit on 11 February 2013. It was launched 
as part of the Landsat Data Continuity Mission, and it is 

the eighth satellite in a series of the Landsat program to 
reach orbit successfully.

Table 3 summarises the synoptic details of the Landsat 
8 mission and datasets used for the current work. The 
spatial resolution of the images obtained with the TIRS 
sensor in Landsat 8 is 100 m and the reason behind this 
resolution is to obtain surface temperature characteris-
tics which will help to understand the process of heat and 
moisture transfer in the agricultural sector, water man-
agement, etc.

3.3 � Software used
The current work uses proprietary software like ERDAS 
version 15, and ArcGIS version 10. x and open-source 
software like SNAP. These are used for pre-processing as 
well as analysis of satellite datasets with effective usage of 
algorithms to provide the required output. The software 
also offers post-processing data handling functions to 
perform the pre-requisite functionalities.

3.4 � Methodology
Figure  3 visualises the exhaustive framework to execute 
the planned approach for the current work from the 
downloaded datasets.

3.4.1 � Data download from the data archive
The required satellite datasets are assimilated from the 
data archive at https://​scihub.​coper​nicus.​eu/). Likewise, 
the other pair of Landsat 8 datasets are accessed from 
Landsat 8 satellite archive available at https://​lpdaac.​
usgs.​gov/​tools/​usgs-​earth​explo​rer/ or https://​earth​explo​
rer.​usgs.​gov/. The data is available from an American 
Earth observation satellite as one of the eighth satel-
lites in the Landsat program to reach orbit successfully. 
It was launched to serve as the Landsat Data Continuity 
Mission, it is the outcome of the collaboration between 
NASA and the United States Geological Survey. Both 
of these mentioned datasets are free for academic and 
research purposes. The detailed approach for pre-pro-
cessing and using these datasets is shown in Fig. 3.

3.4.2 � Pre‑processing of downloaded datasets
The downloaded satellite datasets are pre-processed on 
Arc Desktop and Erdas software. General pre-process-
ing steps include atmospheric corrections, radiomet-
ric corrections, geometric corrections, layer stacking 
of images, mosaicking of individual image tiles, image 
enhancement, contrast enhancement, extraction of the 
study area, and classifications of features with standard 
operating procedures. Later on, these pre-processed 
datasets are used for further classification to extract the 
desired classes of our interest. Similarly, SNAP software 
provides functionality for SAR data pre-processing 

Table 2  Metadata of Sentinel 1A/B dataset

Parameters Description

Processing System Identifier ESA Sentinel-1 IPF 003.10

Data Name S1A_IW_GRDH_1SDV_20191229T010
121_20191229T010146_030556_037
FEA_07BE

Data Type GRD

ACQUISITION_MODE IW

PROC_TIME 29-DEC-2019 03:29:51.150163

Satellite SENTINEL-1A

Map projection WGS84(DD)

DEM SRTM 3Sec

Range bandwidth 56.5

Azimuth bandwidth 327.0

Range looks 40.0

Azimuth spacing 80.0

mds1 polar VH

mds2 polar VV

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://lpdaac.usgs.gov/tools/usgs-earthexplorer/
https://lpdaac.usgs.gov/tools/usgs-earthexplorer/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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enclosing calibration, multi-look operation, speckle fil-
ter operation, and terrain correction operation. SNAP 
software is also used to overlay the boundary of the 
study area on the pre-processed datasets to understand 
the orientation and spatial distribution of green and 
blue cover. These processed datasets serve as input to 
understand and identify the various green and blue fea-
tures, based on backscatter intensity values.

3.4.3 � Database design
The processed set of datasets from optical and SAR satel-
lite systems are further amalgamated for database gener-
ation, which can be further used to perform the preferred 
analysis.

The required raster datasets are obtained from the 
Landsat archive, which is furthermore used to make 
the classified maps. It can be observed that the district 

Table 3  Metafile details of Landsat 8 dataset

Data Details
DIGITAL_OBJECT_IDENTIFIER https://​doi.​org/​10.​5066/​P975C​C9B

LANDSAT_PRODUCT_ID LC08_L1TP_148043_20211109_20211117_02_T1

SPACECRAFT_ID LANDSAT_8

SENSOR_ID OLI_TIRS

PROCESSING_LEVEL L1TP

TARGET_WRS_PATH/ROW 148/43

DATE_ACQUIRED 2021–11-09

OUTPUT_FORMAT GEOTIFF

SCENE_CENTER_TIME 05:32:47.8429240Z

Sensor Band Number Band Name Wavelength (μm) Resolution (m) Band Applications
OLI 1 Coastal 0.43–0.45 30 Coastal and aerosol studies

2 Blue 0.45–0.51 30 Bathymetric mapping, distin-
guishing soil from vegetation, 
and deciduous from conifer-
ous vegetation

3 Green 0.53–0.59 30 Emphasizes peak vegetation, 
which is useful for assessing 
plant vigour

4 Red 0.63–0.67 30 Discriminates vegetation 
slopes

5 NIR 0.85–0.88 30 Emphasizes biomass content 
and shorelines

6 SWIR 1 1.57–1.65 30 Discriminates moisture 
content of soil and vegetation; 
penetrates thin clouds

7 SWIR 2 2.11–2.29 30 Improved ability to track 
moisture content of soil and 
vegetation and thin cloud 
penetration

8 Pan 0.50–0.68 15 15-m resolution, sharper 
image definition

9 Cirrus 1.36–1.38 30 Improved detection of cirrus 
cloud contamination

TIRS 10 TIRS 1 10.60–11.19 30 (100) 100-m resolution, thermal 
mapping, and estimated soil 
moisture

11 TIRS 2 11.50–12.51 30 (100) 100-m resolution, thermal 
mapping, and estimated soil 
moisture

SUN_AZIMUTH 154.06651176

SUN_ELEVATION 44.57271416

Scene size 170 km × 185 km (106 mi × 115 mi)

Design life 5 years (Minimum)

https://doi.org/10.5066/P975CC9B
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is divided into nine Community Development Blocks 
(taluk)s namely Gogunda, Kherwara, Kotra, Lasadia, 
Phalsiya, Salumbar, Sarada, Udaipur, and Vallabhna-
gar. The corresponding area of the respective Commu-
nity Development Block (taluk)s is estimated and it is 
reported in Table 4. It can be observed that Kotra is the 
largest Community Development Block (taluk) followed 
by Vallabhnagar and Udaipur with the largest area. The 
gross area of the Udaipur districts is estimated to be 
11,995.98 sq. km. Out of all Community Development 
Blocks (taluk), Lasadia Community Development Block 
(taluk) is the smallest in terms of area coverage with 
605.48 sq. km.

Cluster analysis (or clustering) is the division of a data 
collection into subsets (clusters or classes), with the data 
in each subset (ideally) sharing some common attrib-
ute, such as proximity according to some defined dis-
tance metric. Data clustering is a statistical data analysis 
approach that is utilised in a variety of domains, includ-
ing machine learning, data mining, pattern recognition, 
image analysis, and bioinformatics. K-clustering is the 
term for the computational task of categorising data 
collection into k clusters. A prior probability, a cluster 
centre, and a cluster covariance matrix define clusters. 

The Mahalanobis distance between a cluster centre and 
a pixel is determined by cluster centres and covariance 
matrices.

A normalised Gaussian function of the Mahalanobis 
distance between the cluster centre and pixels is defined 
as a pixel likelihood function for each cluster. Iteratively, 
posterior cluster probabilities, cluster centres, and covar-
iance matrices are recalculated. The cluster prior and 
posterior probability are adjusted in the E-step for each 
cluster. The M-step recalculates all cluster centres and 
covariance matrices from the updated posteriors, max-
imising the resulting data likelihood function.

In green infrastructure (GI) planning, local commu-
nities, landowners, and organizations identify, develop, 
and protect their local land network to sustain good eco-
logical functioning. It’s framework helps us see natural 
resources as vital to our survival because they offer fun-
damental services for healthy living and infrastructure 
provide essential services for a healthy lifestyle as a part 
of the natural environment. Green infrastructure design 
focuses on the most significant natural and cultural 
resources for our present and future requirements. A 
green infrastructure plan identifies, evaluates, and prior-
itizes areas vital to a healthy community in the future. We 
must prioritize them and take steps to assure their long-
term conservation.

4 � Results and discussions
Green infrastructure (GI) planning is a long-term land-
scape approach to  space conservation. Local communi-
ties, landowners, and organizations work together to 
identify, develop, and protect their local land network 
to sustain good ecological functioning. Urban green 
and blue spaces and related ecosystem services (ES) may 
help solve urban sustainability difficulties (e.g., climate 
change, and public health issues). Green areas offer eco-
system services for human health amidst urban land-use 
expansion and environmental consequences. The eco-
system services concept links human-environmental 

Fig. 3  A comprehensive approach to the assessment of green and blue spaces

Table 4  Area of the individual taluk

Sl. No Taluks of 
Udaipur District

Area in Sq. km Percentage 
Coverage

1 Gogunda 1219.83 10.17

2 Kherwara 1083.78 9.03

3 Kotra 2053.81 17.12

4 Lasadia 605.48 5.05

5 Phalsiya 1124.79 9.38

6 Salumbar 1201.96 10.02

7 Sarada 1182.70 9.86

8 Udaipur 1470.68 12.26

9 Vallabhnagar 2052.95 17.11

Total Area 11,995.98 100.00
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interactions via biodiversity and abiotic aspects. Green 
infrastructure (GI) in urban settings emphasizes green 
spaces and natural areas’ quality and quantity.

4.1 � Land use and land cover
The Landsat 8 datasets are processed to generate the 
land use and land cover maps for the region. Thereaf-
ter, a buffer of 5 km is used to clip the land use and land 
cover over the selected study region. The desired classi-
fication is performed with an unsupervised classification 
scheme to separate the satellite image into the five major 
classes comprising waterbodies (i.e. for understanding 
the orientation of blue spaces/ blue cover/water bodies 
including lakes, ponds, reservoirs, and open water in the 
region), forest as green cover (i.e. to understand the con-
dition of green cover without agriculture but it includes 
different other vegetation cover, shrubs, and plantations), 
urban, agriculture, and barren land. This step provides 
the feature extraction from the optical datasets for fur-
ther detailed analysis. The resultant land use and the land 
cover map are shown in Fig. 4.

The obtained results of various land use and land cover 
classes are further quantified to understand the amount 
of area occupied by each land use. The estimations and 
classifications of every class are executed with ArcGIS 
software. The spatial distribution of various land use 
and land cover classes can be observed in Fig.  4, which 
shows that agricultural land is more dominant in the 
region followed by forest and barren land. The indicative 
quantified values for each land cover type are reported 

Fig. 4  Land use-land cover classes over the region

Table 5  Area under various classes

Sl. No Class Name Area (sq. km) Percentage

1 Water Bodies 130.08 1.08

2 Urban Area 398.36 3.32

3 Barren Land 2431.67 20.27

4 Forest 3465.83 28.89

5 Agriculture Land 5570.04 46.43

Total Area 11,995.98 100.00
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in corresponding Tables 5 and 6 to understand the con-
dition of each land-use type, which can be used further 
to design approaches for sustainable development of the 
region.

It can be observed in Table 6 that reports agricultural 
land occupies most of the areas at 46.43% of the total 
area, followed by forest land at 28.89%, and barren land at 
20.27%. Whereas water bodies occupy only 1.08% along 
with 3.32% of the urban area.

4.2 � Distribution across different community development 
blocks (taluk)

The distribution analysis of different land use and land 
cover categories is executed to realise the distribution 
of various land cover. It also estimates the areas of each 
class for every Community Development Block (taluk). 
The complete district is analysed Community Develop-
ment Block (taluk) wise for estimation of green and blue 
spaces to understand the distribution across the region. 
The distribution of these features guides toward sustain-
able development.

Figure 5 displays the spread of land use and land cover 
within the mentioned region. The map shows the detailed 
classifications with five selected classes namely water 
bodies, forest area, urban land, agricultural land, and 
barren land respectively.

Table 6 delivers the area enclosed by the specified land-
use and land cover classes in each Community Develop-
ment Block (taluk). Barren land has a noticeable amount 
in most of the region. If we see the condition of the 
Gogunda Community Development Block (taluk), it has 
a very less amount of water bodies with an area of 4.2148 
sq. km in comparison to barren land, urban area, agricul-
tural land, and forest cover. Lasadia Community Devel-
opment Block (taluk) has the least water body coverage 
among all the Community Development Blocks (taluk)
s of the district with 2.6633 sq. km having 220.1992 sq. 
km as agricultural land, 3.6447 as an urban area, and 
257.4072 as forest cover and it has an area of 32.5152 
sq. km as barren land. Likewise, it can be seen for other 
Community Development Blocks (taluk)s also that there 
are imbalances of resources across the district and it is 
required to be balanced before going sustainable planning 
of the available resources in the region. Human-induced 
activities are responsible for gradient shifts in land use 
and land cover of the resources across the region, which 
is indirectly causing the decline of green and blue spaces 
over the region. Table  6 reports the Community Devel-
opment Block (taluk) wise summary of the land use and 
land cover classes in square kilometres and the total area 
of each class. It is quite evident from the mentioned table 
that agricultural land is dominant in the Udaipur district 
has an area of 5570.0422 sq. km trailed by a forest area of 

3465.8266 sq. km., and barren land of 2431.666 sq. km. 
There is ~ 1% per cent as water body (blue spaces, which 
is almost marginal in comparison to the green cover and 
agricultural land), green cover (excluding agricultural 
area) of ~ 29%, and urban area of ~ 3% of the total area.

4.3 � SAR image processing and analysis
A systematic analysis is executed with SAR images for the 
complete study area. These SAR data perform well with 
water bodies and vegetation cover; therefore these are 
used to visualise the extent of features comprising water, 
vegetation, and urban features for the study region. The 
SAR images are pre-processed for visual interpretation of 
derived classes and overlay of the Community Develop-
ment Block (taluk) boundary over it. Figure 6 exhibits the 
Sentinel-1A-GRD amplitude data (VH Polarisation) of 
the Udaipur district.

Figure 7 visualises the raw SAR (GRD) amplitude data 
of Udaipur city in VH polarisation. This figure shows the 
details of land use and land cover. Likewise, Fig. 5 shows 
the Sentinel-1A-GRD calibrated data (VH Polarisation) 
of the Udaipur district to visualise the arrangement of 
the land use and land cover. Typical values of vegetation 
features can be observed as the grey colour has a value 
of around 0.026, water bodies in dark black colour with 
a value of 0 and urban areas in whitdiscue colour with 
a higher backscatter value. This white pixel specifies the 
high backscatter values and black pixels deduce the low 
backscatter values and grey pixels also show nearly low 
backscatter values. This process of calibration converts 
the raw SAR image to a backscatter intensity image as a 
sigma0 image.

Figure  8 shows the Sentinel-1A-GRD Multi-Looked 
data of the Udaipur district in VH polarisation. This pro-
cess creates a useful product with less noise and also gen-
erates an approximate square pixel spacing size. During 
the multi-looking operation of the earlier data with range 
looks of 4, 20 azimuth looks of 20 with 31.2 m range spac-
ing, and 80.0 m azimuth spacing is provided to the sys-
tem. The multi-look operation generates the results with 
1 look in range direction and 3 looks in azimuth direction 
with a ground range square pixel size of 13.95 m.

Figure  9 exhibits the terrain corrected Sentinel-
1A-GRD image of the Udaipur district in VH polarisation 
to envision the topographic coverage of the region. This 
figure shows the overlay of various Community Develop-
ment Blocks (taluk) (shown in different colours) with pre-
cise details. This image is obtained after range-Doppler 
terrain correction to speckle filtered Sentinel-1A-GRD 
image. The terrain correction tool uses the SRTM 3Sec 
DEM (90 m pixel spacing) and the mentioned DEM data 
sets are automatically downloaded by the software from 
the cloud server. The terrain correction process also 
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projects the image in the proper orientation and aligns 
the true north position to the corrected image (facing 
north on the top). Figure 9 shows the Sentinel-1A-GRD 
terrain corrected image of the Udaipur district.

Figure  9 demonstrates terrain corrected image of the 
Udaipur district in VH polarisation to visualise the differ-
ent features of the region. A thorough visual interpreta-
tion and analysis of green and blue spaces are performed 
with the SAR datasets. The designated spaces are spa-
tially analysed for a detailed interpretation of the results.

4.4 � Green and blue space analysis of selected area 
for detailed map generation

4.4.1 � Distribution of green and blue covers
The classified images of the study region are further ana-
lysed to separate the green and blue cover in the region. 
The obtained results are aggregated as per the require-
ment and the two major classes are made namely green 
cover and blue cover for the entire region.

Figure  10 displays the distribution of green and 
blue spaces in the study area across various Commu-
nity Development Block (taluk)s. It shows only two 

prominent classes’ namely green and blue spaces. There-
after the corresponding area is deliberated for both the 
class. A separate estimation for each Community Devel-
opment Block (taluk) is performed and a selected map 
of one of the Community Development Blocks (taluk) is 
made to understand the distribution of green and blue 
spaces. Each Community Development Block (taluk) is 
analysed for the accessibility of green and blue space to 
understand the distribution across the district. The whole 
area is classified into either green spaces or blue spaces. 
Figure  10 shows the binary classification in two classes 
namely green space and blue spaces. It can be observed 
that the urban blue spaces are negligible in comparison to 
the urban green space.

Also, Table  6 specifics the summary of green space 
and blue space in each Community Development Block 
(taluk). It can be observed that Kotra has more area 
coverage of all having area of 819.0632 sq. km (includ-
ing green space and blue space areas), followed by 
Udaipur Community Development Block (taluk) having 
422.3774 sq. km of area and mostly consisting of green 
spaces comprising ponds, lakes, canals. Figure 11 shows 

Fig. 5  Spatial distribution of different land use-land cover classes over the region
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the green cover including agricultural land in green col-
our and the blue colour corresponds to the water body 
the black colour shows the outer boundary and zonal 
configuration of the region.

It was observed that there is greener space in the 
entire area compared to the blue spaces. Kotra Com-
munity Development Block (taluk) has a more green 
space area of 812.442 sq. km and Udaipur Community 
Development Block (taluk) with 407.6672 sq. km. Simi-
larly, Salumbar Community Development Block (taluk) 
has an area of 59.7544 sq. km as blue space, followed 
by Sarada with 17.9979 sq. km. It can be inferred that 
there is a need to develop more blue space areas in 
Gogunda, and Lasadia Community Development Block 
(taluk) to balance the blue space and green cover areas 
that need to be developed in Kherwara, Sarada, and 
Lasadia Community Development Block (taluk).

4.4.2 � Spatial distribution of green spaces
Figure 10 exhibits the green cover over the four arbitrary 
zones to showcase the availability of green spaces across 
different zones. This green cover contains areas covered 
with agricultural land, vegetation, shrubs, plantations, 
and forest land. The study provides valuable informa-
tion to reveal the cross-sector interactions and feedback 
to demonstrate the importance of BGI in improving the 
general quality of life in cities. Funders and stakeholders 
may use tools like these to identify the benefits of shared 
projects and funding streams, assess whom they need 
to collaborate with, and figure out how to focus green 
finance to maximise the natural capital benefits of any 
development.

Table  7 displays Region 1 having the highest cover-
age of green spaces at 12.3685 sq. km, trailed by Region 
2 & Region 4 having an area of 8.8907 sq. km & 8.8184 
sq. km. respectively. Whereas Region 3 exhibits the least 

Fig. 6  Sentinel-1A-GRD amplitude data (VH Polarisation) of the Udaipur district
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area of only 2.7366 sq. km. as green cover. In Fig. 11, it 
is visible that the area has the highest green area patches 
compared to other zones. There are many parks and 
gardens also. The entire green cover has a gross area of 
32.8142 sq. km. Table 8 provides a summary of green and 
blue spaces across the district.

4.4.3 � Spatial distribution of blue spaces
Figure 12 exhibits the distribution of blue spaces across 
the four zones of Udaipur city. The figure shows the avail-
ability of blue spaces comprising lakes, ponds, reservoirs, 
and open water.

Table  9 exhibits Region 3 as the highest coverage of 
blue spaces with 4.51 sq. km of area coverage, trailed by 
Region 1 and Region 2 having an area of 3.2836 sq. km 
& 1.1214 sq. km. respectively. Whereas Region 4 exhib-
its the least area with only 1.0765 sq. km. as urban blue 

cover. In Fig. 13, it is evident that the area has the lowest 
urban blue spaces with the majority of patches in Region 
1 and Region 3 compared to other zones. The total cov-
erage of the urban blue spaces is 9.9915 sq. km over the 
region. Region 1 and Region 3 is having the most promi-
nent class in water bodies, which leads to good green 
cover over the region, similarly, Zone 2 and Zone 4 have 
low blue cover, which results in relatively low green cover.

4.5 � Validation of results
Figure 13 specifics the condition of the selected feature in 
three forms comprising SAR image, Optical image, and 
classified image. It visualises the contrast of actual orien-
tation to quantified values. The estimations and analysis 
of the results are further validated for the selected sample 
locations for the green and blue spaces. Figure 13 shows 
selected sites with green space with their corresponding 

Fig. 7  Sentinel-1A-GRD calibrated data (VH Polarisation) of the Udaipur district
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satellite image in SAR & optical systems along with the 
classified image. These images exhibit a relatively good 
match with the corresponding. While the paybacks 
described in this article are far from exhaustive, a basic 
mapping approach may be used to evaluate the benefits 
across a variety of industries and stakeholders. During 
the pre-planning phase of new developments, the pro-
posed technique can be useful for engagement and open 
dialogues. This method, in particular, could aid in a bet-
ter understanding of the impact of new housing projects 
on water service provision. This strategy might be used 
by individual sectors, such as transportation, to maxim-
ise the benefits of their system. The approach can also be 
used to evaluate the influence of new housing develop-
ments on overall urban sustainability, serving as a foun-
dation for environmental net gain analyses that have the 
potential to profoundly alter how we build in the future.

4.6 � Limitations of the study
While space-based multi-sensor datasets offer a valuable 
tool for evaluating urban green and blue spaces, there are 
several limitations to their use for sustainable develop-
ment. Some of these limitations include:

a)	 Spatial resolution: The spatial resolution of space-
based multi-sensor datasets may not be high enough 
to accurately capture the details of urban green and 
blue spaces. This can result in inaccurate assessments 
of the quality and quantity of these spaces.

b)	 Spectral resolution: Different types of vegetation and 
water bodies may have similar spectral characteris-
tics, making it difficult to distinguish between them 
using space-based multi-sensor datasets.

c)	 Atmospheric interference: The presence of clouds, 
haze, or other atmospheric conditions can interfere 

Fig. 8  Sentinel-1A-GRD Multi-Looked data (VH Polarisation) of the Udaipur district
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with the accuracy of remote sensing data, making it 
difficult to accurately assess urban green and blue 
spaces.

d)	 Temporal resolution: Space-based multi-sensor data-
sets may not provide frequent enough data to capture 
changes in urban green and blue spaces over time.

e)	 Data availability and cost: Access to space-based 
multi-sensor datasets may be limited, especially for 
researchers in developing countries or with limited 
resources. Additionally, the cost of acquiring and 
processing these datasets can be prohibitive.

f )	 Lack of ground truth data: Space-based multi-sensor 
datasets may lack ground truth data to validate and 
calibrate the remote sensing data, which can lead to 

inaccuracies in assessments of urban green and blue 
spaces.

g)	 Limited ability to capture social dimensions: Space-
based multi-sensor datasets may not capture impor-
tant social dimensions of urban green and blue 
spaces, such as access, use, and perception by differ-
ent groups of people.

Generally, while space-based multi-sensor datasets 
are a valuable tool for evaluating urban green and blue 
spaces, they should be used in conjunction with other 
methods and data sources to ensure a comprehensive 
and accurate assessment of sustainable development.

Fig. 9  Sentinel-1A-GRD terrain corrected image of the Udaipur district
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5 � Conclusion
The public’s understanding of sustainable growth has 
lagged substantially behind the progress made in reduc-
ing greenhouse gas emissions. Integrated management 
plans bring together people, activities, and public spaces 
for sustainable development over the long term. Examin-
ing the work’s strengths, weaknesses, and best practices 
is the main focus. The right modelling approach can be 
selected with the help of these suggestions. Green space 
and the presence of water share a physical connection. 
Using a comprehensive strategy, we must maximize syn-
ergies between the green cover and water while mini-
mizing the costs of doing so. The nexus is capable of 
managing the interdependency of sustainability’s key 
individual resources. The strong drive for growth, how-
ever, gives rise to a plethora of ideal ideals, such as the 
concept of the “smart city”, which supports regional 
sustainable development plans. Methods like this aim 
to strike a balance between available resources and 
those that are required. It seeks to make use of sustain-
able development resources and solutions, such as urban 

green and blue spaces, that are crucial to the success of 
the Sustainable Development Goals. With today’s state-
of-the-art computers, we can now take advantage of spa-
tial inputs, which, when applied to urban issues, often 
yield the most effective strategies. On this front, recent 
studies have estimated the amount of usable urban green 
and blue space using multi-sensor datasets based on 
space to provide multi-dimensionally optimal solutions. 
It can be put to use in resource tracking, analysis, and 
analysis, as well as in interpretation and mapping. A simi-
lar effort can be put into researching sustainable develop-
ment on a spatial and temporal scale.

5.1 � Recommendations and future research for policy 
or practice

Evaluation of urban green and blue spaces using space-
based multi-sensor datasets can provide valuable 
information for sustainable development policies and 
practices. Here are some recommendations and future 
research areas for evaluating urban green and blue 
spaces:

Fig. 10  Distribution of Blue-Green Spaces over different zones
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Fig. 11  Distribution of urban green spaces over different zones
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a)	 Develop standardized methodologies for evaluat-
ing urban green and blue spaces: There is a need to 
develop standardized methodologies for evaluat-
ing urban green and blue spaces using space-based 
multi-sensor datasets. These methodologies should 
be able to capture the spatial and temporal variability 
of green and blue spaces, as well as their functional 
and aesthetic values.

b)	 Incorporate socio-economic indicators: It is impor-
tant to incorporate socio-economic indicators, such 
as income, education, and race, in the evaluation of 
urban green and blue spaces. This will help identify 
disparities in access to green and blue spaces and 
provide insights into how to address these disparities.

c)	 Assess the impact of urban green and blue spaces 
on health and well-being: There is a growing body 
of evidence linking urban green and blue spaces to 
improved health and well-being outcomes. Future 
research should focus on assessing the impact of 

urban green and blue spaces on specific health out-
comes, such as mental health, physical activity, and 
obesity.

d)	 Develop tools for decision-making: Decision-makers 
need tools that can help them make informed deci-
sions about the development and management of 
urban green and blue spaces. These tools should be 
user-friendly, incorporate multi-sensor datasets, and 
be able to generate actionable insights.

e)	 Address data gaps: There are still data gaps that need 
to be addressed, particularly in developing countries 
where data collection may be limited. Future research 
should focus on developing innovative data collec-
tion methods, such as crowdsourcing and citizen sci-
ence, to fill these gaps.

f )	 Incorporate climate change considerations: Climate 
change is expected to have significant impacts on 
urban green and blue spaces. Future research should 
incorporate climate change considerations, such 

Table 7  Distribution of blue spaces across a selected area

S. No Region Feature Name Area (sq. km) Percentage

1 Region 1 Blue Cover/Waterbody (Lakes + Ponds + Reservoirs + Open Water) 3.2836 32.8639343

2 Region 2 1.1214 11.22354

3 Region 3 4.51 45.1383676

4 Region 4 1.0765 10.774158

Total Area 9.9915 100.00

Table 8  Summary of green and blue spaces across the district
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Fig. 12  Distribution of urban blue spaces over different zones
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Table 9  Distribution of green spaces across a selected area

S. No Region Feature Name Area (sq. km) Percentage

1 Region 1 Green Cover (Agriculture + Vegetation + Shrubs + Plantations) 12.3685 37.69252336

2 Region 2 8.8907 27.09406294

3 Region 3 2.7366 8.339682211

4 Region 4 8.8184 26.87373149

Total Area 32.8142 100.00

Fig. 13  Selected Green and Blue Spaces
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as sea-level rise and extreme weather events, in the 
evaluation of urban green and blue spaces.

g)	 Foster collaboration between researchers and prac-
titioners: Collaboration between researchers and 
practitioners is essential for translating research find-
ings into actionable policies and practices. Future 
research should focus on fostering collaboration and 
knowledge exchange between these two groups
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