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Abstract
This article introduces an open-source software stack designed for autonomous 1:10 scale model vehicles. Initially
developed for the Bosch Future Mobility Challenge (BFMC) student competition, this versatile software stack is
applicable to a variety of autonomous driving competitions. The stack comprises perception, planning, and control
modules, each essential for precise and reliable scene understanding in complex environments such as a miniature
smart city in the context of BFMC. Given the limited computing power of model vehicles and the necessity for
low-latency real-time applications, the stack is implemented in C++, employs YOLO Version 5 s for environmental
perception, and leverages the state-of-the-art Robot Operating System (ROS) for inter-process communication. We
believe that this article and the accompanying open-source software will be a valuable resource for future teams
participating in autonomous driving student competitions. Our work can serve as a foundational tool for novice
teams and a reference for more experienced participants. The code and data are publicly available on GitHub.

Keywords: Autonomous model vehicle, Software architecture, Embedded real-time systems, Bosch Future Mobility
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1 Introduction
Autonomous driving is one of the most significant chal-
lenges of our time, with the potential to revolutionize
transportation, enhancing safety and efficiency on our
roads. The development of autonomous vehicles is a com-
plex task that requires the integration of various advanced
technologies, including computer vision, machine learn-
ing, and robotics. One effective way to inspire young peo-
ple to pursue careers in this field is by providing opportu-
nities to learn and experiment with autonomous model ve-
hicles, as depicted in Fig. 1. These models enable students
to grasp the fundamental requirements of an autonomous
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system, such as perception, planning, and control. Further-
more, they provide the opportunity to dive deeper into
topics such computer vision, machine learning, and con-
trol theory, fostering independent research projects and
the development of new algorithms and techniques.

This paper presents a comprehensive software stack for
autonomous model vehicles, utilized during the Bosch
Future Mobility Challenge (BFMC) 2023 [1]. The BFMC
serves as a competitive platform for students to share
knowledge, build connections, and showcase their work,
thereby motivating them to enhance their skills and knowl-
edge. However, for students new to the field, developing
a deep understanding of the software stack used in high-
level competitions can be challenging due to the scarcity of
accessible prior work. This paper and the provided code-
base aim to bridge this gap.

The software stack is designed to perform a wide range
of tasks while maintaining affordability by using a min-
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Figure 1 1:10 scale model car including sensors, compute platforms,
and actuators

imal number of sensors. It is implemented in C++, uti-
lizes YOLO Version 5 s [2] for environmental perception,
and employs the state-of-the-art Robot Operating System
(ROS) for inter-process communication. We provide a de-
tailed overview of the hardware and software architecture,
with a focus on the interaction between perception, behav-
ior, and trajectory planning. The paper demonstrates how
object and lane recognition approaches can be adapted
to model vehicles. Additionally, we discuss the decision-
making process in an autonomous vehicle and the meth-
ods for calculating actions and trajectories.

2 Architecture
In the pursuit of autonomous mobility for the BFMC 2023,
each participating team developed a model vehicle with
custom hardware and software architectures. The first
section presents the hardware architecture, encompass-
ing physical components such as embedded computing
boards, various sensors, and critical actuators. The design
prioritizes simplicity and cost-effectiveness to ensure the
system functionality and accessibility. The second section
details the software architecture, focusing on the efficient
allocation of tasks to individual computing units to opti-
mize resource utilization. We provide insight into the ra-
tionale behind our design decisions and highlight special
features of our software architecture, offering a valuable
reference point for future teams in autonomous driving
student competitions.

2.1 Hardware architecture
All teams admitted to the BFMC 2023 received a 1:10
scale model car, which included a Raspberry Pi 4 Model
B [3] and an STM32 Nucleo F401RE microcontroller [4],
as shown in Fig. 2. To optimize performance while main-
taining budget and simplicity, several components were

customized. Special wheel speed sensors were installed
to measure the traveled distance more accurately. Addi-
tionally, an Nvidia Jetson TX2 [5], a high-performance
and power-efficient embedded computing device, was in-
tegrated to accelerate the vehicle’s perception and data
processing capabilities. The primary sensor is an Intel Re-
alSense D435 camera [6], which features an RGB color sen-
sor and two infrared cameras for stereo vision, providing
depth information about the vehicle’s surroundings.

Figure 2 illustrates the overall hardware architecture.
The camera is directly connected to the TX2, enabling
rapid processing of the video stream. Detected objects and
lane markings are then transmitted to the Raspberry Pi
via User Datagram Protocol (UDP). The Raspberry Pi pro-
cesses data from the TX2, wheel speed sensors, and the
Inertial Measurement Unit (IMU). After processing, actu-
ator commands are sent to the Nucleo board, which con-
trols the longitudinal movement using the motor and mo-
tor driver, and the lateral movement using the steering
servo.

2.2 Software architecture
The software architecture for the vehicle is designed to
distribute tasks across the available computing units, opti-
mizing resource utilization and improving system respon-
siveness. The software stack is divided into three main
blocks: perception, planning, and acting. Each block is as-
signed to a specific computing unit to facilitate efficient
data management and minimize communication over-
head. Figure 3 gives an overview of the architecture, which
is explained in this section.

Perception The object detection and lane detection tasks
are implemented on the graphics processing unit (GPU)
to enhance processing efficiency. Lane detection employs
a deterministic approach, while object detection utilizes a
neural network on the GPU. Data exchange between the
GPU and the main processing unit employs the User Data-
gram Protocol (UDP) due to its lightweight nature. The
real-time messages include the class, bounding box, and
distance of the detected objects. The lane detection mes-
sage contains information about the curvature and the dis-
tance to the center of the lane. As false detections are fil-
tered before transmission, data transfer is minimized, al-
lowing the behavior planning to react almost immediately
to all received messages. Detailed explanations are pro-
vided in Sect. 3.

Planning The main computing unit, equipped with a
Raspberry Pi, employs the Robot Operating System (ROS)
Noetic [7] for robust data communication. Input data from
the perception module, IMU, and wheel speed sensors are
analyzed to formulate driving strategies. Target steering
angles and speed signals are determined and transmit-
ted to the Nucleo board via the Universal Asynchronous
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Figure 2 Overview of the hardware architecture and interfaces

Figure 3 Overview of the software architecture
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Receiver/Transmitter (UART) protocol. Detailed explana-
tions are provided in Sect. 4.

Acting The Nucleo board receives control signals from
the main computing unit and utilizes a PID controller to
adjust the actual speed based on the target speed. The
steering angle is set to a target value, constrained within
defined boundary conditions. Details are given in Sect. 4.

3 Perception
This section examines the design of our perception system,
covering camera setup, object detection, performance op-
timization on the Raspberry Pi, and lane detection al-
gorithms, all tailored towards the BFMC environment.
Key points include sensor choice and camera alignment,
dataset creation, neural network selection, architecture
and training, task parallelization, and efficiency enhance-
ment methods. Lane detection is addressed through pre-
processing steps and histogram-based techniques. This
overview aims to provide a clear understanding of the sys-
tems behind the functioning of autonomous model vehi-
cles, especially in competitive settings like the BFMC.

3.1 Camera setup
The Intel RealSense camera utilized in this system features
an RGB sensor with resolutions up to 1920 × 1080 px [6].
To balance performance and processing speed, we operate
the camera at a resolution of 960 × 540 pixels at a sampling
rate of 30 Hz. The depth images are spatially aligned with
the RGB color images. The RGB module is positioned on
the left side of the camera, providing comprehensive cap-
ture on the left side. To ensure traffic signs on the right
side are detected at shorter distances, the camera has been
rotated accordingly.

3.2 Object detection
Dataset A test track was constructed to evaluate the soft-
ware stack and capture images for training the object de-
tection network (see Fig. 4). The test track was designed
to closely follow the rules of the BFMC [1] and includes a
roundabout, two intersections, and a parking lot. It is com-
plemented by signs with 3D-printed poles and two pedes-
trian dummies. Although the test track is sufficient to ana-
lyze most scenarios, it is approximately four times smaller
than the original competition track.

The dataset used to train the object recognition model
consists of 4665 images captured while driving on the test
track and during the competition. Additionally, 774 images
from videos provided by Bosch were included. These im-
ages were taken from vehicles in previous competitions,
using different cameras, resolutions, and aspect ratios.
Despite these variations, incorporating these images im-
proved perception in scenes that were difficult to recreate
on our own test track, such as motorway exits.

Overall, the model detects 15 classes, including cross-
walks, stop signs, and priority signs. Additionally, dynamic
traffic participants (e.g., cars and pedestrians) and static
obstacles are recognized. The model also identifies stop
lines and parking spaces for junctions and parking situa-
tions.

Model selection Implementing an efficient and robust
object detection system is paramount in the development
of autonomous model vehicles for competitions such as
the BFMC. One of the critical tasks in this domain is the
identification of obstacles, paths, and other relevant envi-
ronmental features. After considering various algorithms,
YOLOv5s [2, 8], a variant of the YOLO family of object
detection models, was selected for this purpose due to its
strengths and suitability for the specific requirements of
the 1:10 scale autonomous model vehicle.

YOLOv5s, as the second smallest and fastest model in
the YOLOv5 series, offers a balance of speed and accu-
racy, making it suitable for real-time object detection in
resource-constrained environments like model vehicles
[9]. The model’s architecture, building upon the advance-
ments of its predecessors, incorporates several features
that meet the high-performance demands of autonomous
navigation while remaining computationally efficient [10].
It includes optimizations like anchor box adjustments and
advanced training techniques [11], making it suitable for
real-time object detection in autonomous vehicles. Its abil-
ity to detect objects of various sizes and under different
conditions is crucial for the safety and reliability of au-
tonomous driving systems [12].

In addition to these technical advantages, the widespread
adoption and active development community surround-
ing the YOLO family of models provide resources for sup-
port and further enhancements. The availability of pre-
trained models, extensive documentation, and a large user
community contribute to the development process and fa-
cilitate the implementation of advanced features and im-
provements.

Methodology The training of YOLOv5s involved opti-
mizing parameters such as the number of epochs, batch
size, and the use of autobatching. The performance was
evaluated based on four key metrics: box loss, object loss,
class loss, and Mean Average Precision (MAP). These met-
rics collectively offer insights into the model’s accuracy, re-
liability, and efficiency in detecting and classifying objects.
Box loss emphasizes the spatial accuracy of object de-
tection, measuring the precision of the predicted bound-
ing boxes against the ground-truth boxes. Object loss ad-
dresses the discernment between objects and non-objects,
evaluating the model’s ability to detect and distinguish ob-
jects from the background. Class loss measures the accu-
racy of categorizing detected objects into the correct cate-
gories. A well-trained model should ideally have low scores
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Figure 4 Test track at the Institute for Intelligent Systems at Esslingen University of Applied Sciences

Table 1 Parameters, validation losses, and MAP of different training / validation runs

Epochs Batch-size Box loss Object loss Class loss MAP

75 64 0.0121 0.0040 0.0004 0.8653
75 32 0.0244 0.0064 0.0009 0.6657
100 32 0.0129 0.0039 0.0005 0.8638
100 autobatch 0.0156 0.0049 0.0008 0.8194
300 64 0.0123 0.0040 0.0005 0.8713
300 32 0.0123 0.0043 0.0005 0.8696
500 32 0.0113 0.0044 0.0009 0.8688

on all three types of losses, indicating high precision and
accuracy in both detecting and classifying objects in im-
ages.

Training This section focuses on the different training
parameters and the definition of various losses regarding
the YOLOv5 object detection model. Table 1 provides a
brief overview of the performance differences resulting
from the parameter adjustments.

The analysis of various training configurations of
YOLOv5s for the BFMC underscores the importance of
carefully selecting training parameters. The configuration
with 300 epochs and a batch size of 64 emerged as the most
effective, striking an optimal balance between training du-
ration and model performance.

This setup not only achieved the highest MAP but also
maintained low loss values, making it the preferred choice
for tasks requiring high precision in object detection, such

as detecting small model cars. This insight can guide future
training procedures in similar applications, emphasizing
the need for a balanced approach to training deep learning
models.

Filtering of misdetections In addition to missing known
objects (false negatives), recognizing false objects (false
positives) is also a significant problem in the perception of
neural networks. These misdetections can lead to incor-
rect reactions of the model vehicle, so detections are fil-
tered using prior scene knowledge before being forwarded
to behavior planning. To analyze the effectiveness of the
filters in more detail, the number of detections removed
during a drive on the test track was recorded. The applied
filters and the proportion of valid detections that passed
our filters are shown in Fig. 5. The filter functions are ap-
plied sequentially from top to bottom.



Bächle et al. Autonomous Intelligent Systems            (2024) 4:17 Page 6 of 13

Figure 5 Filtered and passed detections

Before the detections are counted, a confidence thresh-
old and a non-maximum suppression (NMS) threshold are
applied, as is typical for object detection networks.

In the next step, all detections with a measured distance
of zero are filtered out. The distance for a bounding box
detection is determined as the average distance in the area
covered by the bounding box, estimated via the available
depth image. False positives typically occur inconsistently
over time, so only objects recognized in several consecu-
tive frames are considered valid.

Given the context of the BFMC, where traffic lights and
most traffic signs appear on the right-hand side, those rec-
ognized on the left-hand side are ignored. Additionally, de-
tections are filtered using distance thresholds between one
and three meters, allowing the system to ignore distant ob-
jects that are not yet relevant to the vehicle. This check
for maximum distance, combined with the minimum con-
fidence threshold, accounts for approximately 24% of the
filtered detections and has been empirically estimated.

The final filter ensures that detected objects match the
expected spatial relationship in the scene. For example, ob-
jects are assumed to be ground-based and traffic signs are
assumed to be at a certain height above the ground. For
each bounding box, we estimate the distance measured via
the depth image and a second distance measure obtained
from the known camera geometry, punishing deviations
between both estimates.

3.3 Lane detection
The lane detection algorithm follows an engineered ap-
proach rather than relying on machine learning. It is di-
vided into two main phases: preprocessing, which includes
tasks like cropping and transforming the image, and de-
tection, in which lane markings are identified using search
boxes. The result of the lane detection algorithm is the cur-
vature of the lane markings and the offset of the vehicle
from the middle of the lane.

Preprocessing The first step of the lane detection algo-
rithm’s preprocessing routine is to crop the RGB input im-
age, focusing on a pre-selected region of interest (ROI)
containing the road area. This static cropping operation
eliminates the need to dynamically ascertain a ROI for
each frame, thus preventing any potential performance
overhead. By reducing computational complexity in sub-
sequent processing stages, this approach enhances the ef-
ficiency and accuracy of the algorithm by focusing on the
relevant portion of the image.

The cropped section of the image is then converted into
a bird’s eye view (BEV) format. This conversion aids in the
identification of lane markings by presenting a more intu-
itive representation of the road layout, allowing the algo-
rithm to interpret the spatial connections more effectively
between lane markings and the location of the vehicle. The
transformation to BEV is accomplished by utilizing homo-
graphies to map points from one image plane to another.
The homography parameters are established through cor-
responding points between the initial image and a BEV ref-
erence image, ensuring precise alignment and reconstruc-
tion of the road scene (see Fig. 6a and Fig. 6b).

To enhance computational efficiency and emphasize
intensity-based lane detection, the BEV image is converted
to grayscale. Color information is often redundant for lane
detection, as intensity-based contrast between lane mark-
ings and the surrounding road surface suffices for effective
differentiation. The linear transformation method is em-
ployed for grayscale conversion, preserving intensity data
and removing extraneous color information by computing
a weighted average of the red, green, and blue channels.

Further refining the representation of the road layout,
the grayscale BEV image is binarized in a two-step process.
First, Canny edge detection [13], a technique for effectively
identifying image edges, is applied. Canny edge detection
is particularly well-suited for intensity-based lane detec-
tion because it robustly extracts edges while minimizing
noise and preserving essential features such as lane mark-
ings. The resulting edge map, which highlights the bound-
aries between lane markings and the surrounding road sur-
face, serves as a critical input for subsequent lane detection
stages.

Second, a mask is generated from the pre-Canny image
to eliminate unnecessary detections and additional noise.
This is done by applying a threshold that binarizes each
pixel into either white or black. The mask is then super-
imposed on the post-Canny edge image to produce a clear
representation of the road layout. The result is shown in
Fig. 6c.

In the final preprocessing step, a histogram is con-
structed by counting the number of white pixels per col-
umn of the bottom 25 pixel rows of the grayscale image.
This ROI corresponds to the road surface where the ori-
gins of lane markings are typically located from the vehi-



Bächle et al. Autonomous Intelligent Systems            (2024) 4:17 Page 7 of 13

Figure 6 Preprocessing steps of the lane detection. a) cropped Image, b) BEV representation, c) masked image

Figure 7 Successive steps for the determination of the vehicle’s offset from the center of the roadway and the roadway’s curvature

cle’s perspective. The histogram provides a statistical rep-
resentation of the intensity distribution across the image
columns, allowing the identification of prominent peaks
that correspond to lane markings. This information serves
as crucial input to the subsequent lane detection stages
(see Fig. 7).

Together, these preprocessing steps prepare the input
image for the lane detection algorithm, effectively trans-
forming the raw camera data into a format suitable for ro-
bust and accurate lane detection, similar to the approach
used in [14].

Detection During the second stage, the algorithm iden-
tifies the lane markings on the road. Utilizing the origins
of the lane markings at the bottom of the image, identified
through the preprocessing routine, the algorithm scans the
binary BEV image from bottom to top in search of lane
markings. This scanning process employs search boxes
(see Fig. 7a) that start at the identified origins and serve
two primary purposes. First, implementing a search box
reduces computational requirements by limiting the scope
of pixel analysis. Second, using a search box decreases the
likelihood of misinterpreting a single pixel and minimizes
the effect of pixel-wise errors in the search process.

A histogram is created for the area of each search box.
This histogram offers a statistical representation of the in-
tensity distribution of white pixels in the search box across
each column, facilitating the identification of significant
peaks that correspond to possible lane markings. After fil-
tering out columns lacking sufficient white pixels, the aver-
age of the remaining column numbers is used to pinpoint

the center coordinates of the next search box, as visualized
in Fig. 7b.

After iterating through the complete image, the row and
column values identified from the histogram peaks in each
search box are preserved. To approximate the smooth tra-
jectory of lane markings and eliminate outliers, we fit a
quadratic parabola to the accumulated x-y pixel pairs us-
ing a least-squares fitting approach, similar to the method
described in [15] and shown in Fig. 7c. Curve fitting pro-
vides a more reliable representation of lane boundaries by
smoothing out fluctuations in the x-y-centers of the search
boxes and capturing the underlying curvature of the lane
markings.

The fitted parabola is then used to calculate the lane tra-
jectory, providing necessary information about the vehi-
cle’s lane position and potential departures from the lane.
This information is essential for enabling the vehicle to
maintain its position within the lane and prevent lane de-
partures, a critical safety feature for autonomous vehicles.
The lane detection algorithm outputs the lane boundaries
and their curvature, as well as the vehicle’s offset from the
center of the roadway.

3.4 Performance optimization
As discussed in Sect. 2, the TX2 runs the entire percep-
tion stack, fetching camera images, detecting lanes and ob-
jects, and communicating the results to the Raspberry Pi.
While image retrieval and alignment must be carried out
sequentially before processing, lane and object detection
can be parallelized. With sequential execution, the entire
perception module requires 64 ms from image retrieval to
message transmission, as shown in Table 2. When lane and
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Table 2 Perception runtime for sequential and parallel execution
(average)

Module Sequential [ms] Parallel [ms]

Image Retrieval 13 15
Object Detection 36 36
Lane Detection 14 14
All 64 51

Table 3 Perception runtime using different inference engines
(average)

Inference engine Object detection [ms] Perception module [ms]

ONNX 87 100
TensorRT (FP32) 55 72
TensorRT (FP16) 36 52

object detection are executed in parallel, only 51 ms are re-
quired. As lane detection is executed on the CPU and the
object detection on the GPU of the TX2, the difference of
13 ms corresponds almost exactly to the execution time of
the lane detection (14 ms).

In addition to parallelization, the inference engine can
also be optimized to speed up perception. The effect of
using an Open Neural Network Exchange (ONNX) neu-
ral network model and a TensorRT implementation [8] is
investigated. When the ONNX neural network model ob-
tained after training is integrated directly into C++ code
using the OpenCV library, object detection requires 87 ms,
and the perception module requires 100 ms (see Table 3).
However, when the ONNX file is converted into an engine
file using the TensorRT library, 55 ms are necessary for ob-
ject recognition. Further reducing the internal accuracy of
the model from 32-bit to 16-bit floating point numbers de-
creases the processing time to 36 ms, with no noticeable
loss of accuracy. Overall, by improving the inference en-
gine, the time required for perception was halved to 52 ms.
Since the fastest inference engine was also used for the pre-
vious measurements, this number largely corresponds to
the parallel execution time from Table 2, with a deviation
of one millisecond due to measurement inaccuracies.

4 Behavior and trajectory planning
This section focuses on behavior and trajectory planning.
The crucial modules used in this architecture are the “En-
vironment”, “Actions”, and “Command” modules. Starting
with the “Environment” module, it integrates sensor in-
puts, refines data through post-processing, and sets pre-
cise vehicle states for informed decision-making. The tran-
sition to the “Actions” module includes mapping vehicle
states to actions and orchestrating behavior and trajectory
planning. Concluding this comprehensive exploration, the
focus shifts to the “Command” module, which executes
critical commands, controls the vehicle within predeter-
mined limits, and facilitates seamless communication with

the Nucleo board. Together, these three modules consti-
tute the essential framework of behavior planning, en-
abling the vehicle to navigate, comprehend, and react to
its surroundings.

Behavior and trajectory planning is performed at a fre-
quency of 20 Hz, although this frequency could be in-
creased as this part of the software stack involves relatively
simple calculations with an overall runtime of approxi-
mately 2 ms. It is important to note that synchronization
with the slowest component in the system is maintained to
avoid bottlenecks; in this case the perception module.

4.1 Environment
The central pillar of the autonomous vehicle architecture
is the “Environment” module, which combines the input
from various sensors into a holistic real-time perception
of the vehicle’s surroundings to determine precise vehi-
cle states based on processed sensor data. The following
paragraphs discuss the integration and post-processing of
multi-sensor inputs and the use of global map features to
enhance the sensor data.

Integration and post-processing of multi-sensor inputs
The “Environment” module fuses all sensor inputs to en-
able the autonomous vehicle to make informed decisions
based on the current situation. This fusion includes data
from the wheel speed sensor, the IMU for spatial orien-
tation, and vehicle-to-everything communication which is
available in the BFMC context [1] to obtain the status of
traffic lights. Additionally, processed information from the
perception module is integrated, including details on lane
positions and detected objects.

A crucial aspect of navigating an environment is de-
termining the ego pose of the vehicle. To determine the
current ego pose, a dead-reckoning approach is used to
dynamically update the x and y positions of the vehicle
based on sensor data (distance traveled) from the wheel
speed sensor and the current yaw angle of the IMU. The
wheel speed sensor, with an accuracy of approximately
0.03 m/1 m, combined with the IMU, has shown sufficient
precision for the tasks set within the requirements of the
BFMC. The IMU, configured and used with the RTIM-
ULib [16], which provides Kalman-filtered pose data, plays
a central role in this process by significantly reducing the
rotational drift and noise of the sensor values. The yaw an-
gle exhibits minimal rotation, with a maximum difference
of 0.11 degrees over a 10-minute measurement period, as
indicated in Table 4, subtly impacting the vehicle’s head-
ing information. Additionally, the rotational drift for roll
and pitch angles is eliminated, and noise in the acceleration
values is minimized. However, it is worth noting that dead
reckoning relies on the integration of incremental changes,
so errors can accumulate over time. To counteract these
errors, the global map can be used to relocate the vehicle
based on known map features such as stop lines.
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Table 4 Static IMU measurements over a 10-minute-period

Sensor value Start End Error

Roll [deg] 0.318 0.318 0.000
Pitch [deg] 1.210 1.210 0.000
Yaw [deg] 359.945 0.000 0.055
Acceleration (x) [m/s2] –0.216 –0.216 0.000
Acceleration (y) [m/s2] 0.029 0.049 0.020
Acceleration (z) [m/s2] 9.679 9.718 0.039

Figure 8 Section of the global map represented as a node graph based on [17]

Use of global map features The BFMC provides a detailed
map of the track, as shown in Fig. 8, represented as a node
graph in a GraphML file. Each node contains information
about its global position, the lane type (dashed or solid),
and its connections. For global route planning, an A∗ al-
gorithm with a Euclidean distance heuristic is used, effi-
ciently calculating the shortest route between two given
map nodes. The output of the A∗ algorithm is a route

containing node information such as ID, position, and a
Boolean value indicating the lane type. The algorithm also
computes the summed distances between nodes in the
planned route to estimate the total length of the route.

In addition, detected objects are subjected to further val-
idation using the global map to ensure accuracy and reli-
ability as follows. The position of detected objects is esti-
mated based on the given distance to the object and the
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current pose of the vehicle. Subsequently, this calculated
position is validated against defined ROIs, as shown in
Fig. 8, which are tailored to the expected location of in-
frastructure elements obtained from the map. It should be
noted that the ROI approach only applies to static objects,
such as traffic signs, as dynamic objects, such as pedestri-
ans, can appear anywhere on the map.

4.2 Actions
The “Actions” module serves as a fundamental component,
mapping vehicle states to specific actions and perform-
ing behavior and trajectory planning. Each vehicle state
triggers certain actions, such as navigating in a lane, stop-
ping at an intersection, or parking in a free parking space.
Within each action, behavior planning and trajectory plan-
ning are integrated. Behavior planning involves decision-
making processes to determine the optimal course of ac-
tion in the current situation. Trajectory planning focuses
on calculating a path or trajectory that the vehicle should
follow to perform the desired action.

For instance, in the crosswalk state/action, behavior
planning involves assessing the environment, such as de-
tecting the presence of pedestrians on the crosswalk, and
determining appropriate responses. Concurrently, trajec-
tory planning guides the vehicle through the area around
the crosswalk, considering factors such as staying in the
lane and adjusting speed to ensure a safe and controlled
crossing.

A basic action is to navigate in a lane, which requires the
calculation of the correct steering angle. Due to the rela-
tively low vehicle speeds of 0.3 - 0.8 m/s, a simple controller
approach is sufficient. The steering angle is calculated with
an adaptive P-controller using the input from the lane de-
tection module (see Sect. 3.3). Specifically, the steering an-
gle is determined by multiplying the offset to the center
of the lane, taken at a preview distance of approximately
0.3 m, by a P-value. Based on the estimated curve coeffi-
cient, the P-value is adjusted to enable tighter curves and
stabilize the general steering behavior.

Finally, the “Actions” module ensures the seamless ex-
ecution of the planned behavior by converting high-level
actions into low-level control signals.

4.3 Command
The “Command” module is a central element in manag-
ing commands for the autonomous vehicle, overseeing the
validation and control of key parameters such as steering
and speed commands. This validation prevents extreme
inputs, ensuring stability and control over the vehicle’s be-
havior. Additionally, this module converts ROS messages
into UART messages, facilitating efficient communication
with the Nucleo board (see Fig. 2) and ensuring smooth
integration into the software ecosystem.

5 Experimental evaluation
To evaluate the accuracy of our planning and controller, we
compare the output of our trajectory control with the re-
spective ground-truth trajectories in various driving sce-
narios. Here, the ground-truth trajectory is defined as
the center of the lane in which the vehicle is driving.
This evaluation is conducted within the simulator, since
the exact position of our vehicle relative to the ground-
truth is not obtainable in real-world driving conditions.
The main metric used is the average displacement error
(ADE). The ADE is sampled across the trajectories at regu-
lar intervals, providing a measure of the deviation between
the planned and ground-truth paths. Specifically, at each
sampling point along the trajectory, the Euclidean dis-
tance between the planned position and the correspond-
ing ground-truth position is calculated. These positional
errors are then averaged over the entire trajectory to yield
the ADE.

We calculate the ADE for two different vehicle speeds
in four different driving scenarios: (i) straight_line, (ii)
90_deg_turn, (iii) roundabout, (iv) rural_road, as illus-
trated in Fig. 9. For each scenario, three separate drives are
performed and the individual ADEs are averaged. Results
are given in Table 5.

Note that the ADE is consistently low in the straight line
scenario for both speeds, with an average ADE of 0.004
meters, indicating high accuracy of our trajectory control
in maintaining a straight path. In the 90_deg_turn sce-
nario, the ADE increases slightly to 0.018 meters at 0.3 m/s
and 0.023 meters at 0.8 m/s, suggesting that sharp turns
introduce a slightly higher error margin, particularly at
higher speeds. In the roundabout scenario, the ADE is
higher, with values of 0.049 meters at 0.3 m/s and 0.064
meters at 0.8 m/s, highlighting the challenge of accurately
navigating complex curved paths, especially at increased
speeds. The rural road scenario, which involves varied and
unpredictable path deviations, shows an average ADE of
0.029 meters for both speeds, indicating that our trajectory
control performs reasonably well in more dynamic and less
predictable situations.

A second evaluation focuses on computational runtime
and overall system delays. Table 6 lists the algorithmic exe-
cution times for the main system modules. Given that our
driving scenario is relatively simple from a behavior point
of view, the computation times are dominated by the per-
ception stack, particularly the neural network.

Finally, the overall system latency, which is the time de-
lay between an event in the scene and the initial response
of our vehicle, has been estimated. This overall system
latency does not only include the algorithmic execution
times but also factors such as data acquisition time, inter-
module communication time, network latency, and actua-
tor response times. In our current configuration, the over-
all system delay is estimated to be approximately 190 ms
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Figure 9 Driving scenarios (i) straight_line, (ii) 90_deg_turn, (iii) roundabout, (iv) rural_road (left to right) used to evaluate planning and control
accuracy. Ground-truth trajectories are shown in blue. Actual vehicle trajectories at a speed of 0.8 m/s are shown in magenta

Table 5 ADE in [m] for the driving scenarios under consideration

Driving scenario Vehicle speed [m/s] Distance driven [m] Mean ADE [m]

straight_line 0.3 7.1 0.004
straight_line 0.8 7.1 0.004
90_deg_turn 0.3 3.0 0.018
90_deg_turn 0.8 3.1 0.023
roundabout 0.3 3.0 0.049
roundabout 0.8 3.1 0.064
rural_road 0.3 14.9 0.029
rural_road 0.8 15.0 0.029
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Table 6 Average compute times of system modules (without
latency considerations)

Module Time per frame [ms]

Perception 52
Behavior and Trajectory Planning 2
Other 5
Overall 59

on average which does not impose a limit on our vehicle
speeds since they are much lower than those of real-world
vehicles.

6 Discussion and conclusion
This paper presented a comprehensive software stack de-
signed for autonomous model vehicles, successfully used
in the Bosch Future Mobility Challenge. It featured the im-
plementation of a controller, advanced filters to minimize
false detections, and the use of the YOLOv5s model along-
side lane detection for accurate environmental perception.
The coordinated approach to integrating perception, plan-
ning, and control demonstrated the system’s efficiency and
adaptability within the constraints of a model vehicle plat-
form.

However, several limitations should be addressed in fu-
ture work. Replacing hand-crafted filters to prevent false
positives with more principled methods, such as tempo-
ral tracking or neural network uncertainty estimates, could
improve detection reliability. Moving beyond the simple
P-controller to advanced techniques like model predic-
tive control would enhance trajectory tracking. Leveraging
ROS capabilities for mapping, localization, and sensor fu-
sion can boost reliability and enable more advanced auton-
omy features. Exploring more recent neural network mod-
els tailored for embedded devices, could provide more ac-
curate and efficient perception.

An important aspect for future exploration is the gen-
eralizability of the results. While the software stack is de-
signed to be transferable to other competitions, empirical
evidence or case studies demonstrating its successful ap-
plication beyond the BFMC are currently limited. We ex-
pect to use this stack in further competitions and will gain
more experience, which we plan to report in future work.
In that regard, scalability is another area that needs ex-
ploration. The scalability of the software stack for larger,
more complex environments or more sophisticated mod-
els is not addressed in this paper. There could be limita-
tions when scaling up from miniature smart cities to larger
or more dynamic settings.

The modular architecture offers a versatile platform for
future enhancements. While it provides a solid foundation,
continued research will be crucial to push model vehicle
autonomy closer to that of their full-scale counterparts.
Collaborative efforts between industry and academia,

through challenges like the BFMC, provide an ideal testbed
to rapidly advance this exciting field.
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