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Abstract
We present an application of conformal prediction, a form of uncertainty quantification with guarantees, to the detection of 
railway signals. State-of-the-art architectures are tested and the most promising one undergoes the process of conformaliza-
tion, where a correction is applied to the predicted bounding boxes (i.e., to their height and width) such that they comply with 
a predefined probability of success. We work with a novel exploratory dataset of images taken from the perspective of a train 
operator, as a first step to build and validate future trustworthy machine learning models for the detection of railway signals.
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1 Introduction

In this paper, we focus on building a trustworthy detector of 
railway light signals via machine learning (ML).1 We apply 
uncertainty quantification (UQ) to the problem of object 
detection (OD) [21] via the distribution-free, non-asymp-
totic, and model-agnostic framework of conformal predic-
tion (CP). CP is computationally lightweight, can be applied 
to any (black-box) predictor with minimal hypotheses and 
efforts, and has rigorous statistical guarantees.

We give a brief overview of UQ for OD and the CP 
method we apply to our use case. After selecting a pre-
trained model among the state-of-the-art architectures, we 
give some insights on how UQ techniques can quantify the 
trustworthiness of OD models, which could be part of a 

critical artificial intelligence (AI) system, and their poten-
tial role in certifying such technologies for future industrial 
deployment.

2  The industrial problem

AI can work as a complementary tool to enhance existing 
technologies, like in the automotive industry [1]. We can 
draw a parallel with the railway sector. While main lines 
(e.g., high-speed lines) already have in-cabin signaling and 
can be automatized [19], this is too costly to apply to the 
whole network. Consequently, on secondary lines, drivers 
can be subject to a larger cognitive load, and therefore strain, 
from signals and the environment. Assisting drivers with AI-
based signaling recognition could facilitate the operations.

With respect to Fig. 1, our application corresponds to 
point (1) of their process based on multiple ML tasks: trust-
worthiness concerns can grow with the number of ML com-
ponents. For a recent overview on the technical and regula-
tory challenges raised by the safety of ML systems in the 
railway and automotive industries, see Alecu et al. [1].

2.1  Building an exploratory dataset

Currently, there is no standard benchmark for railway signal-
ing detection. Stemming from the dataset FRSign of Harb 
et al. [12] and their insights, our own iterations made us 
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aware of some additional needs. Notably, our new dataset 
aims for images to be independent and identically distributed 
(i.i.d), and therefore, raw sequences cannot be considered. 
Moreover, our new dataset features increased variability 
(more railway lines, environmental and weather conditions, 
etc.) which could enable more accurate predictions in real-
world scenarios. Finally, we generalize the task from single 
to multi-object detection, laying the foundations for future 
work in instance segmentation.

We would expect a deployable system to work whenever 
a human operator is successful: at night, with rain, or even 
when the signals are partially occluded by foliage. Within 
our exploratory dataset, we included different light condi-
tions but this is far from exhaustive; these issues will be 
taken into account in future iterations of the dataset.

As source data, we used some video footage taken on 
French railway lines, with the approval of the creators.2 
To extract the samples, we acted as follows. On 25 videos 
of average duration about 1.5 h, we extract on average 55 
images per video by running a pre-trained object detector 
with a low objectness threshold, and we keep a minimum 
interval of 5 s between detections, to prevent excessive 
dependence between images. We kept the images without 
the associated detections. We then manually annotated all 
visible railway signals. In Table 1 we report the statistics of 
our dataset.

3  Related works

Among the OD architecture, we point out YOLO [18] and 
its variants: they propose a one-stage detection combining 
convolution layers with regression and classification tasks. 
Howard et al. [13], with MobileNets, introduced the concept 
of depth-wise separable convolutions to reduce the number 
of parameters and accelerate the inference. As for the recent 
introduction of transformer layers, we find DETR [5] and 
ViT [9], among others. These networks reach state-of-the-
art performances, and seem well-suited to transfer learning. 
Finally, DiffusionDet Chen et al. [6] recently formulated OD 
as a denoising diffusion problem, from random noisy boxes 
to real objects, with state-of-the-art performance.

3.1  Uncertainty quantification in object detection

UQ is an important trigger to deploy OD in transport sys-
tems. We find probabilistic OD [10], where the probability 
distributions of the bounding boxes and classes are pre-
dicted; Bayesian models like in Harakeh, Smart, and Was-
lander [11] and Bayesian approximations Li et al.deepshi-
kha2021monte are also found in the literature. We point out 
the distribution-free approach of Li et al. [15]: they build 
probably approximately correct prediction sets via concen-
tration inequalities, estimated via a held-out calibration set. 
They control the coordinates of the boxes but also the pro-
posal and objectness scores, resulting in more and larger 
boxes. Finally, de Grancey et al. [7] proposed an extension 
of CP to OD, which will be the framework of choice in our 
exploratory study.

4  Conformalizing object detection

Conformal prediction (CP) [2, 20] is a family of methods to 
perform UQ with guarantees under the sole hypothesis of 
data being independent and identically distributed (or more 
generally exchangeable). For a specified (small) error rate 
� ∈ (0, 1) , at inference, the CP procedure will yield predic-
tion sets C�(X) that contain the true target values Y with 
probability:

This guarantee holds true, on average, over all images at 
inference and over many repetitions of the CP procedure. 
However, it is valid for any distribution of the data ℙXY , any 
sample size and any predictive model f̂  , even if it is mis-
specified or a black box. The probability 1 − � is the nomi-
nal coverage and the empirical coverage on ntest points is ∑ntest

i=1
�{Yi ∈ C�(Xi)}∕ntest.

(1)ℙ
(
Ynew ∈ C�(Xnew)

)
≥ 1 − �.

Fig. 1  Example of pipeline where an AI system acts following ML-
based predictions. Source: Alecu et al. [1]

Table 1  Characteristics of our dataset

Characteristics Quantity

Railway lines 25
Images per line (average) 55.8 ± 29.7
Images in dataset 1395
Dimensions (pixels) 1280 × 720
Bounding boxes (total) 2382

2 We would like to thank the author of the Youtube channel: https:// 
www. youtu be. com/@ mika6 7407

https://www.youtube.com/%40mika67407
https://www.youtube.com/%40mika67407
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We focus on split CP [14, 17], where one needs a set of 
calibration data Dcal drawn from the same ℙXY as the test 
data, with no need to access the training data. At conformali-
zation, we compute the nonconformity scores, to quantify 
the uncertainty on held-out data. At inference, CP adds a 
margin around the bounding box predicted by a pre-trained 
detector f̂ .

4.1  Split conformal object detection

We follow de Grancey et al [7]. Let k = 1,… , nbox index 
every ground-truth box in Dcal that was detected by f̂  , disre-
garding their source image. Let Yk = (xk

min
, yk

min
, xk

max
, yk

max
) be 

the coordinates of the k-th box and �Yk = (x̂k
min

, ŷk
min

, x̂k
max

, ŷk
max

) 
its prediction.

In de Grancey et al. [7], their nonconformity score, which 
we refer to as additive, is defined as:

We further define the multiplicative one as:

where the prediction errors are scaled by the predicted width 
ŵk and height ĥk . This is similar to Papadopoulos et al. [17], 
and a natural extension to de Grancey et al. [7].

Split conformal object detection goes as follows: 

1. choose a nonconformity score: e.g., Equation (2) or (3);
2. Run a pairing mechanism, to associate predicted boxes 

with true boxes (see following paragraphs);
3. For every coordinate c ∈ {xmin, ymin, xmax, ymax} , let 

R̄c =
(
Rc
k

)nbox
k=1

;
4. compute qc

1−
�

4

= ⌈(nbox + 1)(1 −
�

4
)⌉-th element of the 

sorted sequence R̄c , ∀c ∈ {xmin, ymin, xmax, ymax}.

Since we work with four coordinates, for statistical reasons, 
we adjust the quantile order from (1 − �) to (1 − �

4
) using the 

Bonferroni correction. We conformalize box-wise: we want 
to be confident that when we detect correctly an object (“true 
positive”), we capture the entire ground-truth box with a 
frequency of at least (1 − �) , on average. During calibration 
(point 2. above), for all the true positive predicted boxes 
( ̂YTP

cal
 ), we compute the nonconformity score between the 

true box and the prediction. The pairing mechanism is the 
same as the NMS used in OD, that is, for each ground-truth 
bounding box, the predicted bounding boxes (not already 

(2)Rk = (x̂k
min

− xk
min

, ŷk
min

− yk
min

, xk
max

− x̂k
max

, yk
max

− ŷk
max

).

(3)

Rk =
( x̂k

min
− xk

min

�wk
, ŷk

min
− yk

min
�hk,

xk
max

− x̂k
max

�wk
,
yk
max

− ŷk
max

�hk

)
,

assigned to a ground truth) are tested in decreasing order of 
their confidence scores. The first predicted box with an IoU 
above a set threshold is assigned to the ground-truth box. 
Note that while building ( ̂YTP

cal
 ), we do not consider false 

negatives (due to f̂  ) which cannot be taken care of by box-
wise CP.

At inference, the additive split conformal object detection 
prediction box is built as:

The multiplicative conformal prediction box is:

5  Experiments

We split our dataset into three subsets: validation, calibra-
tion, and test (respectively, of size 300, 700, 395). We com-
pare, using the validation set, the performance of YOLOv5, 
DETR and DiffusionDet, pre-trained on COCO [16], as can-
didate base predictors f̂  , restricting the detection to the class 
“traffic light”. Commonly, OD models are evaluated using 
the average precision (AP), which is the Area Under the 
recall–precision Curve. AP incorporates the precision–recall 
trade-off, and the best value is reached when precision and 
recall are maximized for all objectness thresholds. In our 
application (Table 2), the AP for YOLOv5 is low, while 
DETR gives better results, and DiffusionDet is significantly 
superior to the others. We, therefore, use the DiffusionDet 
model for our conformalization. However, AP metrics alone 
do not give a complete picture to select OD architecture.

(4)
Ĉ�(X) = {x̂min − q

xmin

1−
�

4

, ŷmin − q
ymin

1−
�

4

,

x̂max + q
xmax

1−
�

4

, ŷmax + q
ymax

1−
�

4

}.

(5)
Ĉ�(X) =

{

x̂min − ŵ ⋅ qxmin
1− �

4
, ŷmin − ĥ ⋅ qymin

1− �
4
,

x̂max + ŵ ⋅ qxmax
1− �

4
, ŷmax + ĥ ⋅ qymax

1− �
4

}

.

Table 2  Comparing models via AP for two IoU threshold levels

† : v5s and v5x respectively correspond to a small and a large configu-
rations of YOLOv5

Average Precision

IoU ≥ 0.3 IoU ≥ 0.8

YOLOv5s† 0.239 0.033
YOLOv5x† 0.287 0.093
DETR resnet50 0.531 0.008
DiffusionDet 0.839 0.325
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5.1  Detector evaluation with box‑wise 
conformalization

We evaluate OD performances (Table 3) by box-wise con-
formal prediction, reporting the estimated quantiles qc

1−
�

4

 

at the desired risk level. A higher quantile reveals a higher 
uncertainty of OD predictions.In order to compare additive 
and multiplicative quantiles which are qualitatively differ-
ent, we report the stretch: the ratio of the areas of the 
conformalized and predicted boxes. We display examples 
of additive and multiplicative conformalized boxes respec-
tively on Fig. 2 and Fig. 3.

6  Results

Empirically, CP works as expected: in Table 4, we see that 
conformalized coverage is close to the nominal level of 
(1 − �) = 0.9 . Remark that the guarantee holds on average 
over multiple repetitions, hence we cannot expect to attain 
the requested nominal coverage with just one dataset.

6.1  Interpretation of conformal bounding boxes

A conformalized predictor is only as good as its base predic-
tor f̂  . If the latter misses many ground-truth boxes, guaran-
teeing (1 − �) 100% correct predictions of a few boxes will 
still be a small number. That is, conformalization is not a 
substitute for careful training and fine-tuning of a detection 
architecture, but a complementary tool for certification.

The interest of capturing the whole box can be opera-
tional: our ML pipeline could rely on a conservative esti-
mation of the ground-truth to carry out a control operations 
(e.g., running a ML subcomponent on the detection area).

7  Conclusion and perspectives

Given the insights from this exploratory study, we plan on 
building and publishing an augmented version of the dataset. 
The objective is to have a dedicated, high-quality benchmark 
for the scientific community and the transport industry. As 
mentioned above, CP works with exchangeable data. In the 
long term, if trustworthy AI components are to be deployed, 
the UQ guarantees will need to be adapted to streams of 
data: this will pose a theoretical challenge and one in the 
construction and validation of the dataset.

Fig. 2  Bounding boxes as predicted by the ML predictor (blue), their 
conformalized version with additive scores (green) and the ground 
truth (red). Example of images used in conformalization and testing, 
cropped for readability

Table 3  Conformalization margins on DiffusionDet

 ∗ : average increase in the area of the boxes after conformalization. † : 
pixels; ‡ : fraction of ŵ or ĥ

q
xmin

1−�
q
ymin

1−�
q
xmax

1−�
q
ymax

1−�
Stretch∗

Additive † 4.74 7.16 6.91 5.67 × 2.857
Multiplicative ‡ 0.22 0.37 0.21 0.21 × 2.259

Table 4  Empirical coverage before and after conformalization, nomi-
nal coverage: 1 − � = 0.90

This replies to: “how many true boxes, when detected, were entirely 
covered by the predicted box?”

CP method None Additive Multiplicative

Empirical coverage 0.106 0.921 0.894

Fig. 3  Bounding boxes as predicted by the ML predictor (blue), their 
conformalized version with multiplicative scores (green) and the 
ground truth (red). Example of images used in conformalization and 
testing, cropped for readability
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So far, the underlying criterion for successful prediction 
has been whether the ground-truth box is entirely covered by 
the predicted box. This is strict, as having a system that guar-
antees to cover a big part of the truth, seems to be equally 
useful in practice. Bates et al. [4], with their risk controlling 
prediction sets, and Angelopoulos et al. [3], with conformal 
risk control, go in this direction. They extend the guarantee 
of CP to arbitrary losses, that can incorporate other opera-
tional needs.

References

 1. Alecu, L., Bonnin, H., Fel, T., Gardes, L., Gerchinovitz, S., Pon-
solle, L., Mamalet, F., Jenn, É., Mussot, V., Cappi, C., Delmas, K., 
and Lefevre, B: Can we reconcile safety objectives with machine 
learning performances? In ERTS (2022)

 2. Angelopoulos, A. N., Bates, S: A Gentle Introduction to Confor-
mal Prediction and Distribution-Free Uncertainty Quantification. 
arXiv: 2107. 07511 (2021)

 3. Angelopoulos, A. N., Bates, S., Fisch, A., Lei, L., Schuster, T: 
Conformal Risk Control. arXiv: 2208. 02814 (2022)

 4. Bates, S., Angelopoulos, A., Lei, L., Malik, J., Jordan, M.: Distri-
bution-free, risk-controlling prediction sets. J. ACM 68(6), 1–34 
(2021)

 5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., 
Zagoruyko, S: . End-to-end object detection with transformers. 
In ECCV 2020, 213–229. Springer (2020)

 6. Chen, S., Sun, P., Song, Y., and Luo, P: Diffusiondet: Diffusion 
model for object detection. arXiv: 2211. 09788 (2022)

 7. de Grancey, F., Adam, J.-L., Alecu, L., Gerchinovitz, S., Mamalet, 
F., Vigouroux, D: Object Detection with Probabilistic Guarantees: 
A Conformal Prediction Approach. In SAFECOMP 2022 Work-
shops. Springer (2022)

 8. Deepshikha, K., Yelleni, S. H., Srijith, P., Mohan, C. K: Monte 
carlo dropblock for modelling uncertainty in object detection. 
arXiv: 2108. 03614 (2021)

 9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, 
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., 
Gelly, S., et al: An image is worth 16x16 words: Transformers for 
image recognition at scale. arXiv: 2010. 11929 (2020)

 10. Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., 
Carneiro, G., Angelova, A., Sünderhauf, N:Probabilistic object 
detection: Definition and evaluation. In Proceedings of WACV, 
1031–1040 (2020)

 11. Harakeh, A., Smart, M., Waslander, S. L: Bayesod: A bayesian 
approach for uncertainty estimation in deep object detectors. In 
Proceedings of ICRA (2020)

 12. Harb, J., N., Chosidow, R., Roblin, G., Potarusov, R., Hajri, H: 
FRSign: A Large-Scale Traffic Light Dataset for Autonomous 
Trains. arXiv: 2002. 05665 (2020)

 13. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., 
Weyand, T., Andreetto, M., Adam, H. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. arXiv: 
1704. 04861 (2017)

 14. Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R.J., Wasserman, L.: 
Distribution-free predictive inference for regression. J. Am. Stat. 
Assoc. 113(523), 1094–111 (2018)

 15. Li, S., Park, S., Ji, X., Lee, I., Bastani, O:Towards PAC Multi-
Object Detection and Tracking. arXiv: 2204. 07482 (2022)

 16. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, 
D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in 
context. Springer, In ECCV (2014)

 17. Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A: 
Inductive confidence machines for regression. In Proceedings of 
ECML, 345–356. Springer (2002)

 18. Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016. You 
only look once: Unified, real-time object detection. In Proceedings 
of CVPR, 779–788

 19. Singh, P., Dulebenets, M.A., Pasha, J., Gonzalez, E.D.R.S., Lau, 
Y.-Y., Kampmann, R.: Deployment of autonomous trains in rail 
transportation: current trends and existing challenges. IEEE 
Access 9, 91427–91461 (2021)

 20. Vovk, V., Gammerman, A., Shafer, G: Algorithmic Learning in a 
Random World. Springer, 2nd edition (2022)

 21. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: Object detection with 
Deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 
30(11), 3212–32 (2019)

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

http://arxiv.org/abs/2107.07511
http://arxiv.org/abs/2208.02814
http://arxiv.org/abs/2211.09788
http://arxiv.org/abs/2108.03614
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2002.05665
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2204.07482

	Conformal prediction for trustworthy detection of railway signals
	Abstract
	1 Introduction
	2 The industrial problem
	2.1 Building an exploratory dataset

	3 Related works
	3.1 Uncertainty quantification in object detection

	4 Conformalizing object detection
	4.1 Split conformal object detection

	5 Experiments
	5.1 Detector evaluation with box-wise conformalization

	6 Results
	6.1 Interpretation of conformal bounding boxes

	7 Conclusion and perspectives
	References




