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Abstract
The purpose of this article is to study the issues of industrial maintenance, one of the critical drivers of Industry 4.0 (I4.0), 
which has contributed to the advent of new industrial challenges. In this context, predictive maintenance 4.0 (PdM4.0) has 
seen a significant progress, providing several potential advantages among which: increase of productivity, especially by 
improving both availability and quality and ensuring cost-saving through automated processes for production systems moni-
toring, early detection of failures, reduction of machine downtime, and prediction of equipment life. In the research work 
carried out, we focused on bibliometric analysis to provide beneficial guidelines that may help researchers and practitioners to 
understand the key challenges and the most insightful scientific issues that characterize a successful application of Artificial 
Intelligence (AI) to PdM4.0. Even though, most of the exploited articles focus on AI techniques applied to PdM, they do not 
include predictive maintenance practices and their organization. Using Biblioshiny, VOSviewer, and Power BI tools, our main 
contribution consisted of performing a Bibliometric study to analyze and quantify the most important concepts, application 
areas, methods, and main trends of AI applied to real-time predictive maintenance. Therefore, we studied the current state of 
research on these new technologies, their applications, associated methods, related roles or impacts in developing I4.0. The 
result shows the most common productive sources, institutes, papers, countries, authors, and their collaborative networks. 
In this light, American and Chinese institutes dominate the scientific debate, while the number of publications in I4.0 and 
PdM4.0 is exponentially growing, particularly in the field of data-driven, hybrid models, and digital twin frameworks applied 
for prognostic diagnostic or anomaly detection. Emerging topics such as Machine Learning and Deep Learning also signifi-
cantly impacted PdM4.0 development. Subsequently, we analyzed factors that may hinder the successful use of AI-based 
systems in I4.0, including the data collection process, potential influence of ethics, socio-economic issues, and transparency 
for all stakeholders. Finally, we suggested our definition of trustful AI for I4.0.

Keywords  Bibliometrics · Industry 4.0 · Predictive maintenance · Anomaly detection · Prognostics · Condition monitoring · 
Artificial intelligence · Machine learning · Deep learning · Ethic · Trustful AI

1  Introduction

Nowadays, manufacturers are facing increasing global 
competition on various strategies, and requirements such as 
reduction of production costs, ensuring quality and innova-
tion of products [1]. Consequently, these manufacturers need 
resort to Industry 4.0 to remain competitive, and meeting its 
new challenges. According to [2], the 4th Industrial Revolu-
tion can be defined as a set of interconnected digital assets, 
and technologies that contribute to develop, automate, inte-
grate, and exchange real-time data in the manufacturing pro-
cess. The author of [3] defines it as the integration of several 
technologies such as sensors, cloud computing, cyberse-
curity, simulation, artificial intelligence (AI), Internet of 
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Things (IoT), Big data, or robotics. This new industry, there-
fore, meets the new requirements such as the digitalization 
of factories using cyber-physical systems, or communicating 
sensors [4]; the flexibility of the factory, and the production 
customization [5]; the use of logistics tools that favor, and 
optimize the exchange of information [6]; the use of simula-
tion techniques for configuring the production system, and 
making the scheduling of activities more flexible [7]. The 
factory must be energy, and raw material-efficient [8], must 
respect some constraints be it socio-economic, ecological, 
and political [9]. Also, I4.0 promotes the training of the dif-
ferent actors [10], and the implementation of an economic 
strategy to be more competitive [11].

According to [12–14], the factory must be digitized to 
meet its new challenges. Thus, the increasing exploitation 
of industrial production systems, thanks to the presence of 
IoT, sensors, cloud computing, the widespread use of distrib-
uted control systems, and AI techniques have greatly con-
tributed to the spread, and development of I4.0 [15]. Paper 
[14] shows that big data, and data mining have an essential 
role in this development. At the same time, according to [2, 
14], there are nine main pillars of technological progress 
that form the foundation of I4.0. Within the broad research 
fields related to the works mentioned above, we focus mainly 
on Predictive Maintenance in the context of I4.0. Predictive 
Maintenance 4.0 (PdM4.0) is the study of trends, behavior 
pat terns, and correlations using some models, and real-
time analysis. PdM4.0 is based on three fundamental steps 
(i) exploiting data collected; (ii) modeling, using different 
approaches among which data-driven, model-based, or a 
hybrid approach which combines the two previous ones; (iii) 
exploitation of knowledge for decision-making, and control 
of the physical phenomenon studied. Therefore, the result-
ing models allow extracting insights to anticipate breaking 
points and possible mechanical failures. They thus favor 
the decision-making process for maintenance activities to 
avoid downtime [16]. In this context, the industry can be 
transformed into a predictive industry [17]. Furthermore, its 
innovative technologies combined with machine condition 
monitoring systems offer new management opportunities 
[18], control, improvement of the efficiency, and reliability 
of industrial systems [19]. It should be noted that in most 
cases, productivity decreases are often due to anomalies or 
machine degradation, especially when they have not been 
detected. To that end, PdM4.0, machine condition moni-
toring, and AI has therefore become an important research 
area in I4.0 [20], which constitutes the focus of the present 
research study.

The rest of this paper is organized as follows: Sect. 2 
deals with the contributions, objectives, and main issues 
of the study. Section 3 shows a brief description of the 
Industrial Revolution, different approaches to solve predic-
tive maintenance challenges and potential ethical impacts 

related to the use of AI technologies, for PdM in industry 
4.0. Most common predictive models used, especially AI-
based modeling applied in Industry 4.0, is detailed in the 
Sect. 4. Section 5 describes the research methodology used, 
and the process of collecting scientific publications for the 
analyses conducted. A detailed and in-depth bibliometric 
analysis is carried out and presented in Sect. 6, followed by 
the discussion and main contributions of the research work 
in the Sect. 7. Finally, the conclusion of the study, the limi-
tations, and the future research envisaged being described 
in Sect. 8.

2 � Contributions and research objectives 
of the papers

Industry 4.0 and Predictive Maintenance have impacts on most 
aspects of the business value. In that respect, several bibliomet-
ric studies have been carried out to analyze these impacts. For 
example, several reviews concentrate on the impact of digitali-
zation in specific sectors such as management, economics, or 
ecology in the literature. While [21] focuses on the different 
approaches and main topics related to I4.0, the author of [22] 
address decision-making based on system reliability in the con-
text of I4.0. Furthermore, [23] shows the current trends of I4.0 
via a comparative study with WoS, and Scopus databases. The 
authors [24, 25] explore the elements surrounding I4.0, and 
their developments in the socio-economic, service industry, 
and management context. Also [26] presents the challenges, 
and raises the relationships between sustainability, and I4.0. 
The authors [27, 28] focus on emerging techniques, and trends 
in equipment maintenance systems, while [29] presents the 
evolution of AI. Article [30] describes a literature review on 
Machine Learning for industrial applications. Authors of [31], 
carry out a bibliometric study mainly focused on the detection 
of bearing defects when using AI. The field of industrial main-
tenance is vast and includes several subfamilies maintenance 
methods or approaches. In our opinion, few bibliometrics stud-
ies deal with real-time predictive maintenance in the context of 
I4.0, which is the main focus of the present work. This targeted 
field of research allows us to identify potential anomalies in 
production to reduce machine downtime (among several other 
objectives). However, the development and performance of 
PdM4.0 systems can be hindered by several factors that we 
consider in our study.

Our paper provides a bibliometric analysis of the different 
AI techniques applied to PdM for that purpose. Furthermore, 
the article asks questions such as: What are the current trends 
of the AI models, methods, or architectures used in PdM4.0? 
What are the impacts, the characteristics, the performances, 
and the possible limitations of its approaches? What are the 
major challenges related to the application of their method 
at large scales? The main contribution is to investigate which 
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current models, methods or techniques of AI are mostly used 
in the context of PdM for I4.0. We consider the following 
action scheme: A detailed bibliometric analysis applied to 
scientific papers collected on the WoS database that deals 
with fault detection and predictive maintenance for I4.0 was 
first performed. Associated analyses and visualizations were 
carried out using the Bibliometrix R tool [32], VOSviewer 
[33], and Power BI software. We are then highlighted the 
main trends, challenges in industrial maintenance and the 
relevant methods that support conditional monitoring, fault 
detection, prognostic, and diagnosis in real-time predic-
tion. We also showed the trends of publication of indexed 
documents over time. Next, we studied the current state of 
research on these research works considered and their roles in 
developing I4.0. In that regard, we identified some insightful 
indicators such as the most productive authors, the leading 
universities (with the most cited articles) and extracted and 
analyzed the most frequent keywords, including the different 
emerging themes or technologies related to PdM4.0. We also 
identified the socio-economic impacts caused by the inten-
sive use of AI-based systems applied to PdM in the indus-
try, the issues identified, key challenges, and future research 
direction related to I4.0 for PdM4.0. Finally, answering the 
detailed above questions, we can provide a helpful guideline 
for researchers to better understand the research topic, the 
current state-of-the-art, challenges, and future directions of 
AI models applied to the PdM4.0.

RQ1: What are the main means of scientific publications 
and their frequency in the context of the study?
RQ2: What are the most productive, impact and source 
growth dynamics?
RQ3: What are the most important or popular authors, 
journals, universities, and countries?
RQ4: What are the most common technologies or 
tools used in industrial maintenance, their perfor-
mances, and limits?
RQ5: What are the research trends in industry 4.0 and 
industrial maintenance 4.0?
RQ6: What are the potential ethical impact rules using 
AI techniques for predictive maintenance in I4.0?
RQ7: What are the key challenges, issues identified 
and future research directions in AI techniques applied 
to PdM4.0?

3 � Overview of the industrial revolution 
and maintenance strategies

3.1 � Revolution of industry

The industry has experienced four main revolutions [34–36]. 
The 1st Industrial Revolution (Industry 1.0) took place 

between 1780, and 1860 with the creation of mechanics, 
the exploitation of coal, and the development of the steam 
engine. The 2nd revolution (Industry 2.0) for the first time 
brought the mass production at lower cost with the intro-
duction of electricity, and the development of transport. 
Industry 3.0 occurred between 1970, and 2010. It highlights 
new information technologies, electronics, and telecommu-
nications. Finally, the fourth revolution (Industry 4.0) was 
presented for the first time at the Hanover Fair in 2013 [1]. 
According to [37] the definition of Industry 4.0 depends on 
the field of application, and research. Figure 1 shows the 
main industrial revolutions and their related inspection or 
control techniques.

3.2 � Industrial maintenance strategies

According to the European standards [38], maintenance is a 
combination of actions and management techniques that can 
be applied to ensure the correct performance of the machine 
over time. Figure 2 represents the classification strategies of 
maintenance; each method is described in [39]. Corrective 
maintenance (CM) is the action performed when a machine 
has faults or breaks down. Thus, there is no work until the 
failure is repaired. However, preventive maintenance (PM) 
aims to reduce the probability of failure of components. It is 
performed at well-defined frequencies or periods. Recently, 
the predictive maintenance (PdM) and condition-based 
maintenance (CBM) strategies have attracted more atten-
tion from manufacturers [39]. Predictive maintenance is a 
technique to predict the future point of failure, or the life-
time of a machine component before it fails [40]. We can 
exploit the masses of data to train AI algorithms to optimize 
the production system. According to [19, 40, 41], its algo-
rithms can detect patterns correlated with faults, failures, or 
detect degradation at an early stage to implement adequate 
countermeasures.

3.3 � Types of control in industrial maintenance

In industrial maintenance, there are four main types of 
inspection of mechanical production systems [42]. The 
first type which is visual inspection consists of carrying 
out a physical, or periodic checkup of the system (Industry 
1.0). The second type is instrument inspections, which is 
a combination of visual inspections, and the frequent use 
of instruments to monitor the system’s condition (Industry 
2.0). Real-time condition monitoring consisting of continu-
ous monitoring by allowing experts to give their opinions on 
the system status or health (Industry 3.0) is the third type of 
inspection. Finally, the last type is predictive maintenance 
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Fig. 1   Historical perspective of Industrial Revolutions, and relatives’ inspection or monitoring techniques
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which allows experts, and data scientists to exploit the data 
collected to predict the state of life of the machines.

3.4 � Potential ethical impact of the use of AI for PdM 
in I4.0

It is widely acknowledged that AI is invading our lives. AI 
is creeping everywhere, from intelligent personal assistants 
to robotics (among the most common usages). Within the 
frame of PdM4.0, it can assist in cognitive tasks by pro-
viding a wide range of solutions to prevent downtime and 
equipment failure and even enable a system to reconfigure 
itself. In fact, a vital difference of the 4th Industrial Revolu-
tion from its predecessor is that we are now dealing with 
autonomous systems, not only automation [43]. Although 
fascinating, autonomous systems are worrying: to what 
extent is the AI algorithm’s development, outcome, and 
impact correct and fair? To what extent can it identify the 
contexts in which it is right and fair and those in which it 
is not? What are the consequences of a loss of AI control? 
What are the influences on human welfare and integrity? 
These questions have led to the ethical issues of AI that have 
increased in the literature in recent decades.

As a study of what is morally wrong or right, by its very 
essence, following its etymology (“study of behaviors”), 
ethical questions define the practical principles of action. 
Different approaches have been developed to address the 
related issues, depending on the direction we give to our 
actions: either we act according to some moral values (vir-
tue ethics), or according to the beneficial consequences they 
generate (consequentialist ethics), or according to their con-
formity to a principle regarding some obligations, duties or 
rights (deontological ethics). In some cases, our actions may 
be subject to conflicting ethical choices, leading to ethical 
dilemmas [44]. The Moral Machine from the Massachusetts 
Institute of Technology (MIT) illustrates such a context in 
which an autonomous vehicle may have to choose among 
ethical dilemmas: saving more lives, protecting passengers, 
upholding the law, avoiding intervention, gender or age or 

species preference, social value preference as mentioned 
in [45]. The authors claim that exploring ethical dilemmas 
should be the first step to building ethical systems. Besides, 
while making an automated decision, [46] noted that a vir-
tual agent could make a judgment on its ethics (individual 
ethical decision) or take into consideration those of other 
agents (within the same decision process) which may have 
their ethics (collective ethical decision). More recently, [47], 
who studied trust in AI within the field of production man-
agement, identified possible antecedent variables related to 
trust and which were evaluated in human-AI inter-action sce-
narios. Their study proposed design guidelines for socially 
sustainable human–machine cooperation in future produc-
tion management. The proposed framework is based on the 
SOR (Stimulus-Organism-Response) model, using decision 
situation characteristics as stimulus variables (predictability, 
error costs), AI characteristics (perceived ability, perceived 
comprehensibility) and human characteristics (digital affin-
ity, expert status) as organism variables. They constructed a 
structural equation model in which implementation showed 
that AI characteristics and decision situation ones have a 
significant positive effect on the response, i.e., trust; for the 
human characteristics, they found that only one variable was 
statistically significant (i.e., digital affinity). Above all, fol-
lowing these studies and others on ethics in AI, we believe 
that addressing ethical AI is a moral obligation and a duty 
of AI developers for PdM4.0. Therefore, we consider that 
ethics applied to PdM4.0 would make it possible to be proac-
tive, support innovation positively, and not stifle its poten-
tial. Otherwise, the design of AI algorithms used in PdM4.0 
may remain opaque. It can generate biases, discrimination 
and worldviews without us always opening the ‘black box’ 
that makes them ethical and trustworthy.

4 � Most common AI techniques used 
in PdM4.0

4.1 � Main modeling techniques

The main approach for anomaly detection, prognostic and 
diagnostic in PdM is represented on Table 1. Knowledge-
based modeling is an approach that is focused on knowl-
edge and reasoning to solve problems [48]. Furthermore, this 
technique is based both on the conditional ‘If–Then’ rule, 
and in the knowledge known as ‘Past’ or ‘previous’ carried 
out in the process, also it is particularly useful to reduce 
the complexity of a physical model. In practice, it is often 
combined with other approaches as a hybrid method [49, 
50]. Knowledge-based modeling can be classified into three 
sub-groups: rule- based [51], case-based [52], and fuzzy 
knowledge-based approach [53]. However, this approach is 
ineffective in the sense that it is impossible to apply the 

Fig. 2   Classification of monitoring or maintenance strategies in the 
context of Industry 4.0 (Adapted to [39])
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rules without having experience, or precise knowledge of 
the process being studied.

Physics-based modeling requires the construction of a 
dynamic model by integrating various constraints, defects, 
or degradation linked to the non-stationary process [54, 55]. 
This approach has some advantages especially, the model 
parameters are directly related to the physical quantities, as 
a degradation, or deformation of the phenomenon can be 
explained by the variations of its parameters. The results 
can be easily interpreted. Although physics-based approach 
helps to better understand the physical universe compared 
to data-driven models; it is limited in its ability to extract 
knowledge directly from data that are mostly based on avail-
able physics. Sometime, the models generated are often too 
complex leading to incorrect results [56, 57].

Data-driven, or Data science modeling approach exploits 
both sensor data, to extract knowledge, or patterns useful for 
characterizing the condition of the system studied. It is based 
on statistical techniques, stochastic models [58], neural net-
works models [59, 60], data mining, and machine learning 
[61]. In addition, this approach is the most widely used in 
PdM and is a compromise between the application, and the 
accuracy of the model [62]. However, this method becomes 
unusable, and loses all interest, or use when the model is no 
longer capable of capture new changes associated with the 
process. Moreover, it does not characterize the law, or phys-
ics of the industrial process.

Hybrid, and digital twin modeling are a combination 
of a physical model, or a data-driven model [63, 64], or a 
knowledge-based model. Also, this approach continuously 
adapts to operational changes based on collected data, and 
online information [65–67]. Furthermore, Hybrid models 
provide better results, especially in terms of interpretability, 

and understanding of physics knowledge. However, they can 
be costly in terms of computing time, and in some contexts, 
the modeling of physics can be challenging or impossible.

4.2 � AI models applied for PdM in I4.0

In the industrial context, AI is aimed at supporting decision-
making. There are three main levels of support: descriptive, 
predictive and prescriptive AI. At the first level, AI consists 
of providing a reliable synthesis of the massive information 
that is available in the form of dashboards or Key Perfor-
mance Indicators (KPIs). The second level is based on a set 
of rules and probabilistic or statistical approaches to provide 
forward-looking projections to better predict possible risks 
regarding the state of the system’s degradation. In addition, 
to providing predictive insights, prescriptive AI proposes 
recommendations or feedback for facilitating and optimizing 
maintenance operations. The models used to perform these 
operations can be divided into two families: Machine Learn-
ing (ML) and Deep Learning (DL). Note that depending on 
the nature of the explanatory data and the target variables, 
approaches can be classified as supervised, semi-supervised, 
unsupervised, and reinforcement-based learning.

4.2.1 � Machine learning techniques

Decision Tree (DT) is an approach to represent information 
in the form of trees structure with recursive partitions on 
the data space. DT is based on the principle of “divide and 
conquer”, which means, the tree is built from a data set, 
and then it has decomposed on different subsets or branches 
until it reaches the last node or decision leaf (which can 
represent the limit of the division). Its subsets are obtained 
through divisions according to the Gini index. Moreover, 
DT is mainly composed of a main node named “root” (best 
predictor) among all subsets (less important). The algo-
rithm can be exploited to solve classification or regression 
tasks and can be used in several industry applications [81, 
82]. Decision rules or results produced by the algorithm 
are simple and easy to understand. However, the algorithm 
can generate very complex trees resulting in the overfitting 
problem. Furthermore, DTs suffers from instability and poor 
performance, compared to other ML algorithms that will be 
presented later.

Random Forest (RF) model has been developed by the 
author [83]. RF are based on combinations and aggregation 
(voting) of a set of random trees so that each node is evalu-
ated independently. Furthermore, RF model is an improve-
ment of decision trees, particularly in the correction of the 
instability and the variance reduction. In addition, RF offer 
the possibility of extracting the significant variables involved 
in model construction. The parameters of the model are easy 
to be calibrated, robust to noise and can be parallelized. RF 

Table 1   Modeling approaches for fault detection, and diagnosis in 
predictive maintenance

Modeling Approaches Some sub-model

Physics-based Kalman Filters [68]
Markov models [69]
Monitor-based [70]
Fault trees [71]

Knowledge-based modeling Bayesian Decision [68]
Expert Systems [72]
Binary Trees [73]

Data-driven modeling Genetic algorithms [74]
RF [75]
Data mining [76]
CNN [77]

Hybrid modeling SAE and SVM [78]
SVM and Naive Bayes [79]
RF and LSTM [80]
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are used in several applications especially for classification 
or regression problems [75, 84, 85]. They are often used as 
a benchmark in ML competition. However, learning can be 
difficult (latency of the algorithm) as far as a large amount 
of data and a significant occurrence of missing data are 
concerned.

Support Vector Machine (SVM) model is developed by 
the author [86]. SVM deals with a generalized linear model 
using the hypothesis space of a linear function in a high-
dimensional feature space by creating an optimal partition 
hyper plane (maximum distance between the bridge margins 
and the nearest data). Optimization problems in this con-
strained setting provides convex solutions. Moreover, SVM 
has become more popular for their applications in image 
classification, face and handwriting analysis. Particularly, 
the authors [75, 87] apply SVM for conditional monitoring 
of mechanical or electronic machine. In addition, SVM uses 
kernel function to guarantee better discrimination, and the 
regularization of the hyper-parameters of the model helps to 
avoid overfitting problems. Some versions of hybrid SVM 
algorithms have been presented in [88], generally, they give 
higher performance than classical SVM model. However, 
kernel models can be sensitive to noise data or noisy classes, 
to overfitting problems when selecting the optimal model. 
Also, the estimation of the optimal parameters can be greatly 
challenging since an explicit model of nonlinear kernels does 
not exist. Finally, the computing time or the GPU memory is 
important when the data to process are increasing.

K-Nearest Neighbor (K-NN) model is a non-parametric 
classification algorithm. Its objective is based on the clas-
sification of new samples classes with higher similarity, in 
this case, the K-instances nearest to the reference set are 
computed on a Euclidean distance metric [89]. K-NNs are 
very often used in industrial applications, for pattern recog-
nition problems or recommendation systems. This approach 
does not require any hypothesis on the data; Furthermore, 
they are simple, efficient, and easy to perform. The authors 
[81] exploit an improved version named WKNN for fault 
detection and isolation tasks of complex systems. Besides, 
the distance-weighted k-nearest neighbors (WKNNs) are 
more efficient than K-NN when the classes are separated. 
Nevertheless, K-NN can be inefficient because of the choice 
of the method of computing the distance and the number of 
K-nearest neighbors. Moreover, K-NNs can be inefficient 
due to their choice of the distance computation method and 
the number of K-nearest neighbors. When we use a large 
amount of data, the algorithm becomes much slower, this 
is a real obstacle to apply K-NN in real-time predictive sys-
tems. In addition to the models discussed previously, there 
are several classes of ML models, in particular Naïve Bayes, 
Discriminant Regression (LDA, QDA), penalized models 
(Ridge, Lasso, Elastic net) or ensemble models (Bagging, 
eXtreme Gradient Boosting “XGBoost”). Despite their 

various benefits and applications, these approaches can 
become unstable and inefficient (high-dimensional learn-
ing and overfitting problems) in the following cases: high 
data volume, complex equipment data, unbalanced classes, 
missing and noisy data. Today, scientific, and technologi-
cal advances have allowed deep neural networks learning 
to emerge as a real improvement over traditional machine 
learning algorithms mentioned above.

4.2.2 � Deep learning techniques

Convolutional neural networks (CNN) [90] are acyclic deep 
learning networks, composed principally by two types of 
artificial neural cells: processing (convolutional) and pool-
ing. Concerning information or feature extraction on all 
input samples, CNNs are based on more convolution ker-
nels named feature extractors. To reduce the number of 
parameters, these kernels and weights are distributed over 
the entire bidirectional input matrix. CNN has shown its 
efficiency in various applications such as pattern recogni-
tion or signal processing. Moreover, they required very few 
pre-processing, since they perform their own filters dur-
ing training, which explains their robustness to noisy data. 
However, the design of this architecture remains a major 
challenge for researchers. Several variants of optimized 
algorithms, and architectures have been proposed in the lit-
erature. The AlexNet and its variant [91] are composed of 
five convolutional layers and three fully connected layers 
combined with regularization methods (data augmentation, 
dropout and Norm L1, or L2). The Network AlexNet has won 
many competitions, however, it has limitations related to the 
image’s fixed resolution, thus, the SPP network has been 
developed to overcome this problem. The Visual Geometry 
Group (VGG) network increasing the depth of the network 
by convolutional layers with very small convolutional filters. 
There are other architectures such as GoogLeNet, RCNN 
(Regions with CNN features) and FCN (Fully Convolutional 
Networks). Despite their many advantages, their network 
(black box models) is complex, and the decision-making 
rules are not explainable. Besides, the increasing number 
of hidden layers can have an impact on the performances of 
the networks.

Auto-encoders (AE) are non-recurrent neural networks 
with hidden layers smaller than the input layers. AE are 
formed by an encoder and a decoder. Its objective consists 
of representing in an optimal way the input data. Thus, the 
algorithm tries to learn a new representation (encoding) 
from the given input data set and to reduce its dimension. 
To predict an output target value, the algorithm performs 
an optimization operation by minimizing the reconstruction 
error of its own inputs. Also, there are different architectures 
of AE. The sparse AE that seeks to extract sparse feature 
on the raw data by penalizing both hidden unit bias and 
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hidden layer activation output. A variant named “low density 
autoencoder” helps to detect objects without a priori knowl-
edge of the class labels, the resulting model is robust to 
translation and rotation operations. The denoising and con-
tractive AE have a similar network and the ability to capture 
details about the data. Their network structures are based on 
the same principle as the one shown in the previous model. 
Besides, denoising AE tends to introduce noise in the train-
ing set and then selects the correct information on the input 
of a biased model. While the “contractive” autoencoder adds 
explicit regularization (matrix norms such as the Frobenius 
norm) to its reconstruction error function, the denoising net-
work forces the model to learn a function that is robust to 
slight variations in input values. AE are efficient and have 
many applications, such as anomaly detection, data denois-
ing, transfer learning, or random fake data generations. In 
particular [92] use AE for the real-time remote sensing of 
the degradation states of the machines. Moreover, a hybrid 
deep SAE-SVM model is used by [78] for intelligent fault 
diagnosis in industry. However, the computing time of AE 
can be important because the problem does not prevent their 
exploitation for on-line learning.

Generative Adversarial Networks (GAN) are unsuper-
vised learning algorithms that can generate “fake data” very 
similar to the original ones. GAN algorithm is based on the 
game theory, where two networks generator (G) and dis-
criminator (D) are in competition. The first network is the 
generator of a fictitious image sample, and the second one 
takes the role of an adversary, checking if the data are real 
or from the generator. If the last one is not satisfied with the 
results, it returns it to the generator so that it can generate a 
new sample image. In addition, GANs have been the purpose 
of several extensions as Wasserstein GAN (WGAN) which 
uses the optimal transport plan to generate the data from 
noise, the discriminator calculates the Wasserstein distance 
between the distribution of the generated and real data [93]. 
WGAN is allowed to improve the stability of the optimiza-
tion process like the search of the model hyper-parameters. 
Other metrics have been applied to generate or discriminate 
the data while improving the corresponding optimization 
problems, we can mention Lipschitz-GAN (LGAN), WGAN 
with gradient penalty (WGAN-GP), Spectral Normalization 
for GAN (SNGAN), First Order GAN (FOGAN), Vanilla 
and Least-Squares GAN. These approaches contribute to the 
reduce of the computing time, and they are used in many 
applications such as pattern recognition, generating or sim-
ulating data (texts, pictures, sounds, or videos). However, 
GANs are limited by the instability of unsupervised learn-
ing algorithms, and the generation of speech data is very 
complicated. Thus, it is not easy to turn the model training 
process without losing accuracy.

Finally, there are also other architectures that we have 
not introduced in this paper, the Recurrent Neural Networks 

(RNN), Long Short-Term Memory (LSTM) or the Restricted 
Boltzmann Machine (RBM), which are applied to sequence 
processing problems such as time series. However, all the 
approaches mentioned above are also known as black box 
models, and their decision-making rules are not systemati-
cally explained.

4.3 � Characteristics and techniques classifications

The application of AI techniques in industries can be influ-
enced by various characteristics, including. We have the 
hardware and software infrastructure which provides secu-
rity, interconnectivity of systems, and information process-
ing abilities (Edge computing and Cloud). Digital twins and 
decision-making help in testing the different scenarios virtu-
ally and to make decisions. In this case, decision-making is 
based on the level of trustworthiness, and effectiveness of 
the model developed. Here, the evaluation and interpreta-
tion of uncertainties or errors rates do not have the same 
significance and thus depend on the targeted objectives. In 
addition, AI-based model is highly conditioned by the char-
acteristics of the data (reliability, volume, variety, velocity, 
veracity, and availability). Furthermore, we could classify 
these models according to some aspects: (a) Nature of the 
task such as supervised (regression, classification), unsu-
pervised (clustering, association), reinforcement or semi-
supervised learning. (b) Type of variables to be analyzed 
(nominal, ordinal, discrete or continuous); (c) data structure 
(texts, pictures, signals, videos, images, sounds); (d) data 
quantity and quality (presence of missing, incomplete, mis-
labeled, noisy or biased data).

5 � Methodology for the study

5.1 � Bibliometric analysis

The Bibliometric is considered as the oldest bibliographic 
research method in information science. According to [94], 
it can be defined as a method for evaluating, and visualizing 
scientific research papers. According to [95] bibliometric 
analysis is a field of research that involves analyzing trends 
in scientific research papers on a specific topic, subject, 
or area. Also, bibliometric is seen as a statistical analysis 
applied to a set of documents, or books. Note that some 
organizations use this type of analysis as a distribution cri-
terion to allocate financial aid to researchers [94]. The objec-
tive being to provide motivation, guidance for research, or 
to highlight the trend, the impact of the units. Finally, it pro-
vides motivation, and guidance for research. In bibliomet-
rics, the units of analysis frequently used are journals, docu-
ments, references, keywords, authors, and their affiliations, 
universities, or countries and their collaborations. Keywords 
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can be selected in relation to titles, abstracts, document, or 
bodies. These keywords can be provided either by the origi-
nal authors (author keywords) or indexed against referenced 
bibliographic data sources also known as Keywords Plus. 
Words represent the terms, or phrases most frequently used 
in the titles of the references of a scientific document [96]. 
Besides, they are generated by algorithms that can deeply 
capture the content of a document. Moreover, the authors 
[97] have made a comparative study between the keywords 
author, and the keyword Plus. Unlike the keyword author’s, 
the keyword Plus is more complex, and does not necessarily 
appear in the title of the article.

Therefore, for a bibliometric study, we can analyze sev-
eral types of relations between the units, we have similarity 
relations, co-occurrence relations, and direct links between 
the units. These relationships can be represented as graphs, 
or networks. Authors [98] present a taxonomy of the most 
used bibliometric techniques. Bibliometrics analysis can be 
applied in many fields such as logistics [99], economics, 
biology [100], and in industry 4.0 [23, 101]. In this article, 
we look for the articles using the WoS search engine accord-
ing to certain criteria to avoid possible sources of error 
[102]. Furthermore, we evaluate the collected publications 
with some statistical metrics such as productivity, number 
of citations, frequency of citations, publications, impacts 
measure, and hybrid measures.

5.2 � Recommended workflow for science mapping

In this subsection, we propose the four-step workflow guide-
line for scientific mapping research using bibliometric anal-
ysis [103]. The first step consists of defining the research 
questions and selecting the appropriate bibliometric methods 
to answer them. The second step is focused on data collec-
tion, the researchers must identify the databases in relation 
to the thematic study. In addition, they must perform filter-
ing, exclusion, and selection operations to extract relevant 
publications. They must also consider the period to capture 
the evolution of the case study over time. The third step is a 
bibliometric analysis, they can be carried out using several 
statistical software [98]. The last step is data visualization, 
and interpretation according to the results; there are several 
tools available to achieve this goal [32, 98].

5.3 � Web of science and data collection

To carry out a bibliographic study we can use several bib-
liographic databases [104, 105] such as the web of science 
(WoS), Scopus, Springer, Google Scholar or Science Direct. 
For our case study, we focus on the WoS search engine, 
our motivations are the following: (a) WoS is a bibliomet-
ric analysis tool that allows evaluating statistical indica-
tors of publications; (b) unlike Scopus, WoS contains more 

multidisciplinary publications with a high impact in each 
field [106]; (c) in contrast to Scopus, WoS contains more 
multidisciplinary publications with high impact in each field, 
also, we exclude Scopus to avoid duplicate documents, and 
Google Scholar for the reduced performance compared to 
the quality of the search obtained. In fine, we also exclude 
IEEE, Science Direct, and Springer because they only index 
their own publications [104].

5.4 � Scanning and keywords search

To identify important publication keywords in bibliomet-
rics, there are several approaches [107, 108]. We applied 
a variant of the TF-inverse document frequency (TF-IDF) 
method described by [109], that helps in the identification 
of an important term by combining their popularity and their 
discrimination. This approach has several advantages, for 
example, TF-IDF weights are more relevant for keyword fre-
quency than TF-KAI weights [110]. According to this index. 
We found that keywords such as AI, real-time and PdM are 
the most important and correlated (significant increase) 
to productivity on I4.0. To define the relevant publication 
sample, we used these keywords to perform several queries 
on the WoS engine. The search also considers the years of 
publication, the title, the abstract, and the author/indexed 
keywords of the articles. We performed the search on 10th 
March 2021 in the WoS database.

The research produces the bibliographical data for 
indexed documents (4065) including some information 
about papers such as titles, type of article, author publica-
tions, affiliations, countries, keywords, abstracts, number 
of citations, source conference, publisher name, address, 
years of publication, volume, issue number, and a list of 
cited references.

6 � Analysis, and results

In this section, we focus on the main bibliometric analysis 
metrics [32]. Its metrics can be obtained on several levels 
such as sources, articles, authors, references, keywords, 
universities, or countries. We can, therefore, classify these 
elements by their impacts, productivity, their frequency of 
citations and network collaboration. We can also visualize 
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co-occurrence networks, the thematic, and the trend of key-
words. These analyses provide new information, and thus 
help to improve knowledge about scientific research.

6.1 � Main information about the collection

Table 2 shows the main information about 4065 collected 
publications obtained on the WoS search engine according 
to the criteria. We have a total of 11268 keywords, and more 
than 450.00 authors (Author 14108, Author Appearance 
18681, Author of single-authored documents 140, Author 
of multi-authored documents 13968, and single-authored 
documents 145). Also, we have 2308 source conferences, 
and more than 124771 references (Fig. 3). The pie chart 
(Fig. 4) shows the distribution of retrieved documents over 
the last 20 years. Firstly, we can see that articles are more 
representative with 2464 (60.62%) documents, secondly, 
and thirdly we have respectively the proceeding papers 137 
(33.83%), and the reviews 204 (5%).

6.2 � Annual scientific publication trend

In this subsection, we answer the question RQ1. We defined 
scientific productivity as a metric that measures the fre-
quency of publication, or author impact on a specific disci-
pline. Figure 5 shows that over the last 20 years, there is an 
exponential increase in the number of publications. Further-
more, Table 3 shows the evolution reaches its peak in 2020 
with more than 1095 papers published (25 or 96%) com-
pared with the previous year. At the end of the first quarter 
of the year 2021, we record about 175 indexed documents.

6.3 � Most productive, impact and source growth 
dynamics

To answer the question RQ2, we analyze the review, their 
impacts, growth, productivity, number of citations, and 
network collaboration. We have 2295 conferences, Table 4 
shows the most productive journals according to the number 
of publications (NP), number of citations (TC) and impact 
(h-index, or Hirsch index). We can note that, H-index gives 
the number of publications by the author has received at 
least h citations. When we focus on the NP metric, we can 
see that the most relevant, and productive source is the 
IEEE Access conference with a score of 143 (6%) papers. 
This journal publishes scientific papers related to electrical 
engineering, electronics, and computer technology. In the 
2nd, and 3rd rank, we have respectively the Sensors applied 
Sciences-Basel (119), and Remote Sensing journals (47). 
However, we can note that the most productive conference is 
not necessarily the most cited, and vice-versa. For example, 
Sensors-Basel is most cited than IEEE Access, even though, 
it is less productive than Measurement journal. Regarding 
the source network collaboration, we consider only confer-
ences with more than 5 publications. Finally, the Fig. 6 rep-
resents the network visualization for the most productive 
journal, this network showed 113 conferences distributed 
in 16 clusters.

6.4 � Most productive authors, universities 
and countries

To answer the question RQ3, we exploit several axes of 
research, and we perform analyses to describe some ele-
ments, such as authors, references, universities, countries 
and continents.

6.4.1 � Most productive and highly cited authors

Table 5 shows the most cited authors based on the TC index, 
Bellini, Filippetti, and Tassoni (694 total citations) are the 
most cited authors with the same score although they have 
published only one article. They have received remarkable 

Table 2   Main information and statistics regarding the collection pub-
lished between 2000, and 2021 on WoS

Description Results and statistics

Article (2463) Articles (2291)
Book chapter (10)
Proceedings paper (70)
Article data paper (4)

Review (400) Classic review (198)
Early access (6)

Proceeding paper 1375
Editorial material 16
Meeting abstract 5
Editorial material 16
Period Years (2000–2021)

Keyword Plus (5170)
Author’s keyword (11,268)
Author (14,108)
Author appearances (18,681)

Author publication Single-authored doc. (140)
Multi-authored doc. (13,968)

Author collaboration Single-authored doc. (145)
Source conference 2308
References 124,771
Average year of publication 3.76
Average citations per document 8.363
Average citations per year per docu-

ment
1.752

Collaboration index 3.56
Co-Authors per documents 4.6
Documents per author 0.288
Author per documents 3.47
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attention from the community for their publication. How-
ever, if we focus on the TC index (Table 5), we can note the 
most cited authors are not necessarily the most productive. 
Furthermore, Fig. 7 represents the network collaboration 
between the authors. In this network, the distance between 
two authors indicates the relationship between them in terms 
of co- citation links. Also additionally, the link is stronger 
when the distance is high, or the relationship is strong. The 
spheres dimension is proportional to the frequency of col-
laboration, and the connections indicate the presence of col-
laboration. We have 24 clusters, 1st cluster (Gupta, Naizi 

and Varma), 2nd cluster (Massaro, and Galiano), and 3rd 
cluster (He, Tiwari, and Wang). Ultimately, the most co-
cited authors are respectively Lecun (343), Breiman (250), 
He (218), Hinton (171), Lee (168), and Hochreiber (165).

6.4.2 � Most productive and cited affiliations

Table 6 shows the list of the most productive institutions. 
In the 1st rank, we have the University of Illinois with 81 
publications, in the 2nd, and 3rd, we have respectively the 
University of Shanghai Jiao Tong (74 publications), and 

Fig. 3   Methodology framework 
for bibliometric analysis. Each 
color corresponds to a step of 
methodology. The different 
steps represent the methods or 
strategies used to perform this 
study
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California Los Angeles (71 publications). Table 7 shows 
the most cited organizations. Moreover, when we look at 
the collaborative network organization (Fig. 8), we notice 
that the University of Chinese academy sciences (green 

Fig. 5   Annual scientific production published in WoS journals over 
the last 20 years

Table 3   Productivity: Annual number of published articles between 
2000–2021 on WoS 

D is documents, and ND (%) is a number of documents in percent

Year ND ND (%) Year ND ND (%)

2000 14 0,33 2011 38 0,90
2001 16 0,38 2012 64 1,52
2002 22 0,52 2013 88 2,08
2003 22 0,52 2014 147 3,48
2004 24 0,57 2015 197 4,67
2005 27 0,64 2016 334 7,91
2006 28 0,66 2017 334 7,2
2007 48 1,14 2018 537 12,7
2008 38 0,90 2019 868 20,58
2009 53 1,26 2020 1095 25,95
2010 49 1,16 2021 175 4,14

Table 4   Most productive journal sorted by the publication number 
(NP), most journal impact (h-index), most cited journals (TC)

Source journal NP h-index TC

IEEE Access 143 14 814
Sensors 119 14 119
Applied Sciences-Basel 47 7 148
Remote Sensing 34 8 297
IEEE Sensors journal 32 8 172
Computer & Electr. in Agriculture 26 8 291
Advanced manufacturing Techno 26 6 124
Energies 21 5 142
Scientific Reports 21 6 114
Electronics 18 4 20
Measurement 18 17 303
Neural Computing and applications 17 7 70
Plos One 17 5 166
Computer in Industry 15 7 370
Expert Systems with application 15 9 227
Intelligent manufacturing 14 7 242
Computer in Industry 15 7 370
Expert Systems with Application 15 9 227
IEEE Trans.on Instr. & Measurement 113 15 41
Multimedia tools and Application 15 4 41
IEEE Internet 0F Things Journal 14 4 132
Journal of Intelligent Manufacturing 14 7 242

Fig. 6   Network visualization for most productive journal

Fig. 4   Pie Chart: Types of retrieved documents over the last 20 years
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cluster) is the most collaborative with 49 publications, and 
684 citations, followed by Shanghai Jiao Tong University 
(24 publications, and 420 citations) and Georgian Institute 
Technology (23 publications, 410 articles). We can con-
clude that organizations from the USA, and China globally 
dominate the research in the field of study.

6.4.3 � Scientific productivity by country and continent

Regarding the country’s scientific production, Table 8 and 
Fig. 9 show that the USA, and China are the most produc-
tive countries. We have already observed this trend when 
we study the most important institutes (subsection 6.4.2). 
We can, therefore, deduce that the underdeveloped countries 
are not representative, for example, Oceania and Africa have 

Table 5   Most cited authors: authors are ordered by a total citation 
(TC) index

Authors TC NP h-index ND (%)

Bellini A 694 1 1 0.23
Filippetti F 694 1 1 0.23
Tassoni CA 694 1 1 0.23
Lin J 502 3 4 0.92
Jia F 487 4 4 0.92
Liu C 477 8 21 0.46
Xu X 467 8 15 3.44
Zheng Y 461 4 8 2.29
Lei Y 452 2 2 5.33
Dinx SX 419 1 1 0.23
Ozcana A 340 4 5 1.15
Zhang Y 390 10 18 4.20
Liu F 383 3 4 0.92
Wang C 381 4 13 3,74
Liu H 378 6 19 5.01
Li Z 363 7 18 4.20
Hsieh HP 355 1 1 0.23
Bao Z 349 1 1 0.23

Fig. 7   Network visualization for Publication highly Co-authorship. 
Each cluster is represented by the color. To interpret the results, and 
the color of the legends in this figure, the reader can refer to the Web 
version of this article

Table 6   Most relevant affiliations ordered by a number of articles

Affiliations N Articles

University Illinois 81
Shanghai Jiao Tong University 74
University California Los Angeles 71
Nayang Technology University 66
Tsinghua University 65
Zhe Jiang University 65
Stanford University 61
Huazhong University Science and Technology 59
Xi and Jiao Tong University 51
Northwest University 47
University Michigan 46
Seoul National University 45
Yonsei University 43
King Saud University 43
University California Irvine 43
Emory University 41

Table 7   The most cited organizations ordered by TC

Organizations Citations

University California Los Angeles 822
Xi Jiao Tong University 791
University Bologna 770
University Modena and Reggio Emilia 713
University of the Chinese Academy of Sciences 684
Stanford University 631
Georgia Institute Technology 489
London’s Global University 475
University California San Diego 442
University Michigan 439
Massachusetts Institute of Technology 420
Tsinghua University 419
Northeastern University 394
University Pittsburgh 392
University Cincinnati 347
Qatar University 339
Hong Kong University 330
University of Southern Queensland 316
Los Alamos National Laboratory 309
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respectively (399) 3%, and the African continent (212) 2% 
publications. This trend implies that these continents are 
lagging even though research activities are dispersed on a 
global scale. In addition, Fig. 10 illustrates the network col-
laboration between countries confirms that these countries 
are behind in research in the study. These low productiv-
ity trends of the universities, or institutions belonging to 
developing, Third-World countries can be partly explained 
by the low collaboration between authors from developing 
countries. Also, the lack of infrastructure, access to digital 

services such as the internet, electric energy, and the reputa-
tion of the institution in the scientific community are factors 
hindering this development.

6.4.4 � Most global cited papers and references

Table 9 globally shows the most cited documents published 
in the WoS database over the last 20 years. In particular, 
paper [111] published in the IEEE Trans Ind Electron con-
ference is the most cited (694 citations). Here, the authors 
are working on AI, and decision-making models are applied 
to the fault detection, diagnosis, and condition monitoring 
of electrical machines. Paper [112] has 419 citations, the 

Fig. 8   Network visualization for international collaboration affilia-
tion. Each group is represented by the color

Table 8   Most productive and cited countries ordered by the fre-
quency publication, or productivity (years 2000–2021)

Region Frequency Average 
article cita-
tions

USA 3072 11.6
China 2977 8.1
India 1019 9.7
UK 639 8.7
South Korea 627 10.5
Italy 552 11.4
Germany 498 7.6
Spain 432 13.1
Canada 428 8.41
Australia 355 8.4
France 326 6.8
Japan 248 8.9
Brazil 243 6.6
Singapore 152 9.6
Malaysia 139 8.4
Switzerland 136 10.9

Fig. 9   World map of the country level scientific productivity, for 
paper collected on WoS over the last 20 years. Color scale is given 
by the number of articles, dark blue: high productivity, light blue: low 
productivity

Fig. 10   Network visualization for international collaboration
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authors present the application of regularized sparse filter-
ing model for intelligent fault diagnosis under large speed 
fluctuations. Furthermore, the scientific article [113] is cited 
355 times, it published in the conference on knowledge data 
mining. In addition, authors Lecun [90], Breimman [83], and 
He [128] are the 3 most cited references (199, 169, and 156 
frequency co-citations). Furthermore, Fig. 11, shows 6 clus-
ters of co-citations network reference. Breimman, Lecun, 

and He are most representative for each cluster. In detail, the 
first cluster is formed by (Lecun, Hinton, Schmidhuber), the 
second, third and fourth cluster are respectively (Breiman, 
Bishop, Pedregosa), (Hochreiter, Kingma and Goodfellow), 
and (He, Ren, Redmon). In this regard, we see that LeCun 
(644), He (596) and Krizhevsky (591) have the highest link 
collaboration. Finally, we can conclude that most of these 
articles presented in Table 9, deal with topics related to the 
digitalization of industry, use of sensor data, IoT, big data, 
condition monitoring, anomalies detection, ML, and DL 
modeling applied in PdM4.0.

6.5 � Most common technologies or models used 
in predictive maintenance

6.5.1 � Most frequent keywords and co‑occurrence analysis

In this section, we focus on the question RQ4. We first ana-
lyze the most frequent keywords, and their co-occurrence 
networks. The co-occurrence network keyword is a relational 
bibliometric metric frequency of scientific knowledge. So, 
the node represents a keyword, and their size is proportional 
to the frequency of co-occurrence of the word. While the 
color determines the cluster to which the element belongs. 
Thus, its clusters provide a global view of divergent research 
areas and group words according to the scientific field of 
research. Moreover, two keywords tend to be relatively close 
when they appear more frequently in the same articles. Fur-
thermore, the distance between two nodes in the figure is 
determined by the density. To improve the analysis, we con-
sidered the most frequent keywords in each group, and the 
keywords that appear at least three times in the abstract. 
Table 10 presents the list of the most frequent author key-
words in the publications. We can see that the most frequent 
author’s words are machine learning with 792 occurrences 
followed by deep leaning, artificial intelligence, and moni-
toring with respectively 479, 286, 220, and 177 occurrences. 
Finally, the Fig. 12 shows the density of the author keywords 
co-occurrence, and Table 11 represents their word cluster-
ing. This illustrates the most important keywords, machine 
learning, fault, diagnostic, intelligent systems, data science, 
CNN, ANN, computer vision, network monitoring or on-line 
monitoring, have a great impact or importance for I4.0 and 
Pd4.0. In particular, DL and ML approaches have a major 
role in solving PdM problems in I4.0.

6.5.2 � Keywords conceptual structure map

Second, we use Multiple Correspondence Analysis MCA 
to analyze the keyword conceptual structure Map. MCA 
approach is an exploratory multivariate technique for the 
analysis of multivariate categorical data [32, 129]. We 

Table 9   Most global cited scientific publications

Paper Frequency TC/year Year

Bellini [111] 694 49.57 2008
Lei [112] 419 69.83 2016
Zheng [113] 355 39.44 2018
Benight [114] 349 38.77 2013
Mueller [115] 253 18.20 2008
Abdeljaber [116] 249 49.80 2017
Bigio [117] 237 10.77 2000
Verrelst [118] 231 15.20 2012
Khan [119] 225 56.25 2018
Yaseen [120] 203 67.66 2010
Berg [121] 190 28.42 2015
Oresko [122] 197 16.41 2015
Jing [123] 196 39.20 2010
Gonzaga [124] 191 14.69 2009
He [125] 191 38.00 2017
Michie [126] 190 38.20 2017
Botu [127] 170 24.28 2015

Fig. 11   Network visualization for Co-citations. Cluster 1: yellow 
color, cluster 2: red color, Cluster 3: green color, cluster 4: blue color 
(color figure online)
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can explain the importance of the keywords in relation to 
their positions on the map, and on the main axes. Also, 
the proximity between two keywords implies that they 
have a similar distribution. Figure 13 shows the distribu-
tion of the most common keywords with the minimum 
number of documents (10) grouped into two groups. 
We can notice that keyword such as big data, sensors, 
diagnosis, systems, or simulation is located on the same 
plane and are very close. Furthermore, keywords such 
as IoT, and the internet belong to the second axis. These 
keywords are therefore, associated with the most com-
mon technologies applied to the PdM in I4.0. Lastly, the 
performance and limitations of these models have been 
described in section 4.2.

6.6 � Research trends in industrial predictive 
maintenance

6.6.1 � Keywords dynamics analysis and trend topics

Regarding the question RQ5 we analyze several elements. 
Initially, we investigate the keyword evolution associated 
with the topic study (Fig. 14). From 2014, we note a real 
emergence of the use of approach such as AI model-based 
(DL, ML) applied to monitoring, diagnostic technique, and 
PdM4.0. When we focus on keyword plus, we have terms 
like classification, systems, data, real-time analysis, predic-
tion, identification, and diagnostics that are important to 
develop the anomaly detection, condition monitoring and 
PdM4.0 systems. Furthermore, Fig. 15 shows the topic trend 
over the last 20 years. From 2018, we observe an increasing 
use of several technologies and models approaches, such 
as sensors, fault detection, condition, health monitoring, 
data, IoT, and data-based modeling, that support the rise of 
PdM4.0 and I4.0. Also, we have observed this evolution, and 
development in Fig. 14.

6.6.2 � Thematic map and thematic evolution

An additional element that guides us to answer the ques-
tion RQ5 is to use a co-word for analyzing the evolution or 

Fig. 12   Density visualization map of the most frequently related 
terms in retrieved articles on WoS. The frequent terms were visual-
ized using VOSviewer

Table 11   Cluster of co-occurrence network author’s keyword

N cluster Node

Cluster 1 Deep learning, CNN, structural health, neutral networks, computer vision
ANN, object detectors, LSTM, real-times monitoring, transfer learning

Cluster 2 Monitoring, fault diagnosis, sensors condition monitoring, real-time systems, signal processing, forecasting training
Cluster 3 Machine learning, IA, IoT, Big Data, data mining, pattern recognition classification, I4.0, anomalies detection, RF, 

predictive maintenance, Health monitoring edge computing,
Cluster 4 Support vector machine, remote sensing, neutral networks, image processing

Table 10   Top 20 of the most author keywords

Author’s keyword N occurrences

Machine learning 792
Deep learning 479
Artificial intelligence 286
Monitoring 220
Artificial neutral networks 177
Machine 108
Internet of things 792
Classification 479
Fault diagnosis 88
Feature extraction 85
Sensors 83
Big data 82
CNN 78
Industry 4.0 75
IoT 71
Condition monitoring 66
Predictive maintenance 64
Anomaly detection 62
Real-time 55
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trend of the most significant research thematic. Regarding 
the co-word analysis, each cluster represents the concep-
tual thematic or topic developed in the domain, and the 
research period. Thus, authors [130] defined a strategic 
diagram by Callon’s centrality metric, which measures the 
degree of relationship, or links between each cluster. In 
addition, the strength, and the number of links imply a 
major relationship between the research problems in the 
scientific community. Indeed, Callon’s density measures 
the strength of the links between the keywords of each 
cluster or evaluates their impact over time in the network. 
Lastly, the volume of the spheres is proportional to the 
frequency of publications associated with each research 
thematic. Figure 16 shows a strategy graph that represents 
the search sub-clusters in a bidirectional space.

Regarding the results, we consider the 200 most fre-
quent keywords described in relation to author keywords. 
Figure 17 represents the strategic maps of the main the-
matic and trends topic. According to this figure, we have 
six main thematic (Industry 4.0, artificial neural networks, 
monitoring, deep learning, and machine learning) for the 
author keywords. However, when we focus on keywords 
Plus, we mainly have four thematic (the internet, neutral 
networks, system, classification, networks). Moreover, 
the keyword abstract or keyword titles extracted from the 
article’s contents give three major thematic (monitoring, 
real-time, and data), and (times, learning, and monitor-
ing). Furthermore, Table 12 shows the main emerging and 
motor topics related to the study case as well as their cor-
responding subgroups topics. We can deduct that I4.0 is an 
emerging or crossroad topic while monitoring technique, 
ML and DL approaches are the principals or motor top-
ics. Finally, we can deduce that in recent years scientific 

Fig. 13   Conceptual Map, and keywords clusters (minimum number 
of documents is 5, method: MCA, cluster 1: the red color, and cluster 
2: the blue color (color figure online)

Fig. 14   Word dynamics for the keyword plus

Fig. 15   Topic trend analysis over the last 20 years

Fig. 16   The strategic diagram (adapted from [130])
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research has focused mainly on these cited subjects or 
topic.

6.7 � Analyzes of ethical impact of the use of AI 
Techniques for PdM system

Ethical issues were initially not mentioned in the constitu-
tion of the initial query presented to the subsection 6.7. By 
performing a sub-query with the following keywords: “Ethi-
cal”, “Artificial Intelligence”, and “Industry 4.0” on the set 
of 4065 papers initially collected, we found a subset of 37 
papers that address the ethics and trust based on AI models. 
Regarding the answering of the question RQ6, we exploited 
the results of this sub-query and the probable impact pre-
sented in the subsection 3.4. We can therefore show that AI 
systems and the industry’s robotization will probably have 
several impacts on ethics, confidentiality, privacy rules, 
transparency, and human-robot collaboration. Furthermore, 
the industrialization may involve social-economic issues, 
particularly the increase in the unemployment rate, reduction 
of the workforce, and the evolution of the disparity between 
developed and Third-World countries.

6.8 � Issues identified, key challenges and future 
research directions in PdM and I4.0

To answer the question RQ7, we showed the challenges 
associated with the deployment of AI Systems in I4.0 can 
be associated with several factors such as operational, 
organizational, technical, data collection or processing, 
cybersecurity, interpretability, trust, privacy, and ethical 
rules. (a) Operational and organizational: The growth and 
industrialization of the factory generally lead to reforms 
and changes in the human, operational, management and 
organizational levels [131]. These operators must be able 
to interact with professionals from other fields (multidis-
ciplinary). Besides, companies must surround themselves 
with specialists (data scientist or experts) in the fields in 
which the solutions will be applied. (b) Machine-to-machine 
and human-to-machine interactions: It is essential to ensure 
that AI systems do not affect the functioning of other equip-
ment or interconnected machines in the production process. 
Thus, industry should ensure that AI systems can interact 
or communicate with other devices while maintaining their 
behavior. Furthermore, workers must be trained or adapted 
to interact with these new technologies. (c) Cybersecurity 
and privacy: The exponential exploitation of interconnected 
technologies or storage systems such as IoT, sensors, data-
bases, or big data infrastructure (local or cloud) can expose 
AI systems to cyberattacks notably through spamming or 
malicious software classification [132]. However, consider-
able efforts are being made to enforce ecosystem standards 
and guidelines such as the ISO/IEC 29180:2012 standards 
for sensor networks. Nowadays, there is really no standard or 
reliable process to ensure the security of AI models against 
attacks. Further questions are raised about the General Data 
Protection Regulation (GDPR). (d) Real-time data collec-
tion: Data are a key element in PdM, these data must be 
massive, secure, available, accessible, and qualitative to per-
form a generalizable PdM system. Data collection is there-
fore a major challenge for companies, since the sensors or 
machines do not often generate representative data on their 
conditions, deterioration, or configurations. In so doing, a 
possible solution is to label all the raw data although this 

Fig. 17   Strategic map of the author’s keyword. To interpret the 
results, and the color of the legends keyword in this figure, the reader 
is referred to the color

Table 12   Strategic map author’s keywords. Each cluster is represented by a main thematic and its positioning in relation to the current literature

Author’s keywords Position

Cluster 1 Industry 4.0
RF, IA, Monitoring, PdM, System, Cyber-physical object detectors, real-times Condition monitoring Crossroads (Emerging theme)
Cluster 2 Artificial intelligent neural networks, recognition, prediction, diagnostics, image and signal processing 

Genetic algorithm
Crossroads (Motor theme)

Cluster 3 Monitoring Sensors, Real-time, System, Forecasting, Neutral networks Principal (Motor theme)
Cluster 4 Deep learning LSTM, Feature extraction, Fault, Health monitoring, CNN, ANN, computer vision Principal (Motor theme)
Cluster 5 Machine Learning IoT, Big Data, Data mining Anomalies detection, Remote, SVM, RF Principal (Motor theme)
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operation can be time-consuming, fastidious, and requires 
the knowledge of an expert. Furthermore, labeling opera-
tion involves risks of errors and a considerable economic 
and operational cost. Indeed, to address data quality issues, 
several approaches have been proposed, such as artificial re-
sampling, interpolations techniques, semi-supervised learn-
ing, or data augmentation. Thus, when data are scarce, it is 
also possible to use GAN model to simulate reliable data 
[93], or transfer learning (different working conditions and 
machines) for the transfer of knowledge from one system 
to another [133]. Approaches cited are not systematically 
efficient, data simulation process is sometimes not adapted 
to the real conditions of a machine’s operation since the 
imposed scenarios do not represent the complexity of the 
system (machine degradation or failure). (e) Adaptability of 
prescriptive and hybrid modeling in real time: it is important 
to develop prescriptive and hybrid models as a recommenda-
tion system for diagnosis, prognosis, and anomalies detec-
tion of machines in real time. Furthermore, hybrid models 
[134] have the benefit of integrating either both physical and 
numerical knowledge or constraints of the system combined 
with data-driven modeling. Furthermore, AI system must 
be able to adapt to the whole system while maintaining its 
performances. Adding new machine should not be an obsta-
cle or a constraint which may impact the model’s quality. 
(f) Using computer vision, multimodal prediction, images, 
videos processing, texts, and sound data in the PdM, data 
are collected from heterogeneous systems and are of diverse 
nature. The challenges of PdM are to combine all these data 
to perform a multimodal prediction. (g) Explainability XAI 
model: We have shown that some AI black box models such 
as CNN, or RF have a real interest in PdM problems. How-
ever, they are not easy to interpret and neither intuitive for all 
stakeholders. In this context explainability is an important 
factor for the acceptance of the AI solutions. Furthermore, 
a new trend of AI is focused on XAI explainability model-
agnostic methods [135] such as SHapley Additive exPlana-
tions (SHAP) [136] or Local Interpretable Model-Agnostic 
Explanations (LIME) [137] that are designed to explain and 
understand the black box model decision-making, and make 
it easily interpretable, comprehensible, and user-friendly for 
all stakeholders. Indeed, AI systems should not substitute 
humans, but support them in taking over low-level thinking 
tasks. In this regard, experts must collaborate with these new 
technologies to ensure productivity.

7 � Discussion

This article focuses attention on a detailed bibliometric 
analysis based on using AI techniques for PdM in I4.0. The 
main objective is to highlight the evolution, impact and 
the current state-of-the-art of scientific research related to 

the exploitation of these technologies for anomalies detec-
tion, diagnosis, and PdM4.0. The results obtained give us 
a detailed analysis to address all the questions initially for-
mulated. Furthermore, these results show a relative descrip-
tion of several metrics, including the publication trend, 
most productive journals, papers, authors, co-authors, ref-
erences, affiliations, countries as well as network collabora-
tion between authors or institutions. We have represented 
the most important keywords, conceptual, intellectual, and 
social structure of the research, including all past, principal, 
and emerging themes. Furthermore, we present the potential 
ethical impact rules using this AI system. Besides, we dis-
cuss the main challenges, and future research directions in 
AI applied to PdM4.0.

We analyzed the main information about the 4065 col-
lected papers according to their dynamics, productivity, 
total citation, impact on the community and network col-
laborations. We have observed an exponential increase in 
the numbers of papers published in the last 20 years. We 
have 2308 source journals, however, the most productive 
are respectively IEEE Access (143), Sensors (119), and 
Applied Sciences-Basel (47). Indeed, we have shown that 
these journals are not necessarily the most cited. To have 
a high profile, and reputation in the scientific community, 
its journals are also open access, making it easy to view 
articles online. Concerning most cited, co-cited authors, as 
well as their collaboration network, and their impacts (sub-
section 6.4.1), we noted that Bellini, Filippetti, and Tassoni 
(694) are the most cited authors with the same TC metric. 
Furthermore, we analyzed affiliations, based on their produc-
tivity, impact, and collaboration. The most productive uni-
versities are respectively Illinois (81), Shanghai Jiao Tong 
(74) and California Los Angeles (71) university. As far as 
international collaboration between authors, or institutions, 
is concerned, institutions belonging to developing countries 
is not representative, notably Oceania with 399 articles (3%), 
and the African continent with 212 (2%) of the published 
articles. This trend of low productivity of universities, or 
institutions in Third-World countries can be partly explained 
by the fact that they are lagging in scientific research due to 
the lack of infrastructure, access to digital services such as 
the internet, energy, and the reputation of institutions in the 
scientific community. We can conclude that the institution 
in the USA, and China globally dominate the research on 
the topic.

Regarding the most cited, and productive articles, we 
have the following papers: [80, 111, 112, 138]. In particular, 
article [111] has been cited 694 times, the authors exploit AI 
models for monitoring, detection of electrical and mechani-
cal defects. Article [112] which has been cited 419 times, 
exploits sensor data, and DL technique for the intelligent 
diagnosis of failures via regularized neural networks. Author 
[138] uses wavelet analysis and ANN models to predict the 
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weld quality in friction stir welding. Paper [80], presents a 
hybrid model (RF combined to LSTM) for real-time moni-
toring, and corrective adjustment. In fact, the topic described 
in these papers deal with subject related to the digitization 
of industry using IA system. Moreover, the most cited ref-
erences include [90, 128, 139–141]. To identify the most 
discussed topics and common technologies used in PdM, 
we extracted more than 11268 authors’ keywords. Thus, we 
have analyzed these words including their co-occurrence 
networks. We can deduce that words such as ML, DL, moni-
toring, artificial neutral networks, data science, I4.0, IoT, 
sensors, big data, fault diagnosis, feature extraction, CNN, 
condition monitoring, predictive maintenance, anomaly 
detection, and real-time are the most frequent keywords. 
Moreover, the evolution of its keywords is associated with 
the main thematic of the study. We mainly have 6 topics; 
however, the principal and emerging themes are respectively 
monitoring, I4.0, DL and ML techniques. We have a real 
emergence of these approaches applied to monitoring, diag-
nostic technique, and PdM4.0. Indeed, the analyses suggest 
that the heterogeneity, and the link between these keywords 
reflect the importance of AI techniques in PdM4.0.

Additionally, we have observed that the industrializa-
tion and automated systems probably have an impact on 
the whole ecosystem of the industry. AI models applied to 
PdM systems some benefit, maintenance cost, and energy 
consumption reduction. Furthermore, they help to improve 
quality, to optimize, increase the efficiency or flexibility of 
production processes. On the human side, these models’ 
impacts can be organizational, operational, security, trust, 
socio-economic, or legal. Indeed, authors [142] show that 
AI system will increase the workload of employees and cre-
ate a need for adaptation and dependence on new technolo-
gies, particularly the challenge concerning transparency, 
human–robot collaboration raises ethical issues. In fact, 
[143] demonstrated that the transition to robotization of 
manufacturing systems is going to involve social-economic 
problems (generalized social exclusion) and reduction of 
the human workforce (massive unemployment). Also, the 
operators will have to re-adapt, be formed, and specialize 
with these new challenges or operational changes. Therefore, 
if the public authority does not adopt actions, the industry 
automation and AI system use will contribute to increasing 
the gap disparity between technologically advanced coun-
tries and under-developed countries.

8 � Conclusion, limitation and future works 
orientations

The contribution of this paper is to provide a useful state-
of-the-art basis for the literature search on the use of AI 
techniques applied to PdM in Industry 4.0. To address the 

research problem (RQ1–RQ7), we have performed a biblio-
metrics analysis using Biblioshiny, VOSviewer, and Power 
BI tools. This detailed analysis is based on 4096 scientific 
documents collected between 2000 and 2021 from the WoS 
Database. We focus on some metrics, including the publi-
cation trend, most productive sources, papers, authors, co-
authors, references, affiliations, countries as well as network 
collaboration between authors or institutions. Furthermore, 
we analyze the most important keywords, and the princi-
pal or motor thematic associated with this study. We also 
analyze the benefits of AI models in the industry, their par-
ticularities, applications, impacts, and major results or per-
formances. Particularly, we were also interested in ethical, 
trust, transparency and socio-economic impacts that could 
be caused when using these models. We give our definition 
of trustful AI for I4.0 and its effects. Finally, the potential 
limitations, key challenges and future research directions of 
AI systems are presented.

The results obtained showed a progressive increase in the 
frequency of publications over the last 20 years. Regarding 
the sources, we have shown that the IEEE access is the most 
productive and cited journal. Moreover, the most produc-
tive universities are respectively Illinois, and Shanghai Jiao 
Tong University. The USA and China are the countries with 
a major impact on scientific research related to the study 
topics. Indeed, the collaboration between developed and 
Third-World countries is very weak, while the international 
collaboration among developed countries is strengthened. 
For the author’s analysis, we have observed that the most 
cited author, and reference are respectively Bellini and Lei. 
Furthermore, the analysis of collaboration network shows 
that some authors tend to work in small groups (three col-
laborators by group), which implies the large number of 
groups or cluster of authors. According to the author’s key-
word analysis, we show that the most important theoretical 
knowledge and research thematic on PdM4.0 are mainly in 
the areas of machine learning, and deep learning, including 
their sub-models. Moreover, we have 6 main topics among 
which the emerging themes are DL, ML, and monitoring. 
These different results clearly show that there is a wide field 
of applications (monitoring, diagnosis, prognostic, anoma-
lies detection) or different situations, especially for super-
vised, unsupervised, or semi-supervised learning problems.

We have described the most common predictive models 
used in PdM 4.0. Despite their performance and application 
in many industrial cases, in practice, we have shown that 
some predictive models have several limitations, especially 
on their instability and overfitting in a situation for miss-
ing or noisy data, high volume, complex and unbalanced 
classes. In addition, they can have complex architectures, 
resulting in a significant requirement for GPU, and com-
puting time, in the estimation of these parameters. Real-
time or on-line analyses can become very complicated due 
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to the high computing time and complexity of these mod-
els. Moreover, these models can interfere with the correct 
functioning of the system. Besides, most of these black box 
models are not explainable, i.e., the algorithm decision-mak-
ing process is unknown. This can be a real issue for their 
generalization in industry. Finally, using AI technologies in 
the industry can also be confronted with some challenges, 
such as operational, organizational, adaptability, machine-to-
machine, human-to-machine interactions, cybersecurity (risk 
attacks), analysis online, real-time data collection and data 
quality. Also, we have challenges concerning prescriptive, 
hybrid and multimodal modeling, visual reasoning, socio-
economic, explainability XAI, interpretability, trust, privacy, 
GDPR data protection statements and ethical impacts.

8.1 � Limitations

Concerning the main limitations, we performed a search 
with selected keywords according to the study context. 
However, we cannot guarantee that these keywords, and 
the scientific documents collected cover the whole research 
area. Moreover, we use an open-access journal WoS data-
base which does not contain all the publications. Also, the 
scope of this research is limited to English papers collected 
from WoS and we used a traditional bibliometric approach 
to perform analyses, therefore, by combining the different 
methods we can considerably improve the results.

8.2 � Future work orientation

In order to improve the results, we can refine the query by 
including more or accurate keywords. The exploitation of 
several bibliographic databases such as Scopus, Springer, 
Google scholar, Science Direct, and IEEE, as well as the 
selection of documents supplementary by including books, 
notes, and thesis will also be applied to retrieve all docu-
ments covering the field of study and improve the quality 
of analysis. We will also consider contributions written in 
languages, such as French, Chinese, Italian, Spanish, or Ger-
man. Another area of improvement is to use a combination 
of several bibliometric analysis methods to strengthen the 
result.
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