Advances in Computational Intelligence (2023) 3:3
https://doi.org/10.1007/s43674-022-00050-y

ORIGINAL ARTICLE ")

Check for
updates

User structural information in priority-based ranking for top-N
recommendation

Mohammad Majid Fayezi'® - Alireza Hashemi Golpayegani’

Received: 11 May 2022 / Revised: 6 December 2022 / Accepted: 11 December 2022 / Published online: 6 January 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

The recommender system is a set of data recovery tools and techniques used to recommend items to users based on their
selection. To improve the accuracy of the recommendation, the use of additional information (e.g., social information, trust,
item tags, etc.) in addition to user-item ranking data has been an active area of research for the past decade.

In this paper, we present a new method for recommending top-N items, which uses structural information and trust among
users within the social network and extracts the implicit connections between users and uses them in the item recommendation
process. The proposed method has seven main steps: (1) extract items liked by neighbors, (ii) constructing item features for
neighbors, (iii) extract embedding trust features for neighbors, (iv) create user-feature matrix, (v) calculate user’s priority, (vi)
calculate item’s priority and finally, (vii) recommend top-N items. We implement the proposed method with three datasets
for recommendations. We compare our results with some advanced ranking methods and observe that the accuracy of our
method for all users and cold-start users improves. Our method can also create more items for cold-start users in the list of
recommended items.

Keywords Recommendation system - Social network - Random walk - Community aware - Item ranking - Node embedding -

Trust features - Tag set - Rating data

1 Introduction

Recommender systems suggest the most appropriate items
(data, information, products, etc.) to users by analyzing their
behavior. These systems are the approaches that have been
proposed to overcome the problems occurred by the large
and growing volume of information and help users get closer
to their goal faster among huge amounts of information.
Recommending systems are used in various fields, includ-
ing offering products in business (such as Flipkart, Amazon,
etc.) (Sarwar et al. 2002; Linden et al. 2003), recommending
music and movies (such as Youtube, Lastfm, etc.) (Coving-
ton et al. 2016), recommending scientific articles (such as
researchgate, google scholar, etc.) (Agarwal et al. 2005).

B<XI Mohammad Majid Fayezi
majidfayezi @yahoo.com

Alireza Hashemi Golpayegani
sa.hashemi@aut.ac.ir

Computer Engineering and Information Technology
Department, Amirkabir University of Technology, Tehran,
Iran

One of the most important issues is predicting the rate for
unknown items, which is known as rating prediction. Also in
the Top-N recommendation, best N item of a ranked list are
offered to users. There are several types of recommendation
systems, including:

(1) Collaborative filtering (CF), which uses item ranking
information (Agarwal et al. 2005). In collaborative filtering
method, suggestions are presented based on the selections of
users who have similar behavior to the current user. More
simply, the CF method is based on this assumption that users
who have similar opinion about some items (movies, pho-
tos, music, etc.) have similar opinions about other items.
(2) Content-based method: In this method, it uses the fea-
tures of items for recommendation (Agarwal et al. 2005). It
uses metadata such as genre, actor producer, and musician to
describe movie or music items, etc.

(3) Hybrid method: In this method, both item rank-
ing information and item features are used simultaneously
(Burke 2002, 2007). The collaborative filtering suffers from
the following disadvantages: (1) Sparsity of ranking data.
This means that ranking data for a few items are created by

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s43674-022-00050-y&domain=pdf
http://orcid.org/0000-0002-1809-7504

3 Page2of16

Advances in Computational Intelligence (2023) 3:3

users and results in decreasing the accuracy of the recom-
mendations. Various methods have been proposed to solve
this problem. (2) The second problem concerns the issue of
scalability. If the size of the ranking data becomes large,
the time required to perform item recommendations will be
high. There are several ways to solve this problem (Xue,
et al. 2005), Wu et al. (2016), Bell and Koren (2007), (Koren
2010). (3) The third problem is related to the cold-start users.
There is not enough background information for cold-start
users. Therefore, providing suggestions for these users is
challenging (Son 2016). Various methods have been pro-
posed to address this challenge so far such as the use of trust
and social information (Zhao et al. 2015), Guo (2013), (Lin
et al. 2013).

In (Banerjee et al. 2021) for the problem of sparsity of
ranking data and the problem of cold-start, a Top-N item
recommendation technique is presented using user social net-
work and item tags information as external information. In
(Banerjee et al. 2021), to extract the features of neighbors,
it uses items ranked by neighbors and obtains a Neighbors
feature matrix. According to this matrix, it ranks neighbors,
items and finally Top-N recommendations provides to the
target user. One of the main challenges in this approach is
defining the neighborhood for the target user. In (Banerjee
et al. 2021), only direct neighbors are considered. Consider-
ing farther neighbors for the target user can improve ranking
for users and items and recommending items become more
accurately.

In addition, adding structural information with consid-
ering more distant neighbors will provide better external
information for cold-start users, thus this problem will be
better addressed. Various methods have been proposed to
consider structural information. Due to the sparsity of rank-
ing data, random walk-based methods have been widely used.
One of these methods is the CARE method (Keikha et al.
2018). In this method, in addition to local neighborhood
information, it uses the information of network communi-
ties to extract global structural information. It uses random
walks to create paths between nodes, and extract neighbor-
hood information. When the target node has not enough
neighbors, a random node from its community is selected
and placed in the path.

The CARE method does not make a difference in the
importance of direct neighbors with co-community neigh-
bors which leads to neglect the effective information. In other
words, the impact of neighbor’s node information should be
greater than the impact of co-community’s node informa-
tion. Thus, in our paper, a new distance-based method as the
importance measure for nodes is used in the recommendation
process. The proposed method consists of 7 steps.

(1) Extract items that have been liked by neighbors.

@ Springer

(2) Extract features of each item and consider them to neigh-
bors who ranked that item.

(3) Extract structural features for neighbors: According to
the improved CARE method for each neighbor in the social
network, we extract its structural features. These features
are obtained according to how users communicate with each
other (such as neighbor or co-community).

(4) Create neighbor’s feature matrix: This matrix is obtained
by combining item features and structural features for neigh-
bors.

(5) Create neighbor priority: a distance-based score method
on the neighbor’s feature matrix is performed to rank neigh-
bors.

(6) Create item priority: Based on the ranking of neighbors,
unknown items are priorized for the target user.

(7) Provide Top-N ranked items for the target user, according
to item priority.

The key contributions of this paper can be summarized as
follows:

- Adding structural information by considering farther and
co-community neighbors for the target user instead of just
direct neighbors can lead to the extraction of valuable infor-
mation and better address the cold-start user problem.

- Determine the importance coefficients for structural infor-
mation driven from farther and co-community neighbors in
the recommendation process. The coefficients prevent the
loss of effective information

- Considering the use of external information, we show that
the cold-start scenario improves.

- We present an improved CARE algorithm that distinguishes
between direct and farther neighbor structural information

- Provide a new distance-based method as the importance
measure for nodes is used in the recommendation process.

The rest of the paper is organized as follows. In Sect. 2,
we will review the related works. In Sect. 3, we describe our
method and explain its architecture and the corresponding
analyses. Section 4 includes experimental evaluations of our
proposed method, the experimental setup, evaluation met-
ric, and results and discussion are explained in this section.
Finally, in Sect. 5, the conclusion of our work is given.

2 Related works
In the following, the related works are explained.
2.1 Network embedding

There is a significant increase in growing online social net-
works and the number of their users. Useful information

Advances in Computational Intelligence (2023) 3:3

Page3of16 3

can be exploited from social networks with analyzing their
structure and content. Machine learning methods are used to
extract useful features from social networks for some tasks
like classification (Tsoumakas and Katakis 2006), Sen et al.
(2008), (Getoor and Taskar 2007), recommendation (Fouss
et al. 2007; Backstrom and Leskovec 2011) and link predic-
tion (Yang et al. 2011), Vazquez et al. (2003), Radivojac et al.
(2013), (Liben-Nowell and Kleinberg 2007). These learning
methods can be either supervised or unsupervised. Super-
vised learning algorithms can better extract features for a
particular task on social networks, but they are not suitable
for large networks. On the other hand, unsupervised meth-
ods can manage the scalability of feature learning methods.
However, the extracted features show low accuracy in net-
work analysis tasks. They are very general to give useful
information for a particular task (Yan et al. 2006), Tenen-
baum et al. 2000, Roweis and Saul 2000, Pennington et al.
2014, Mikolov et al. 2013, Bengio et al. 2013 (Belkin and
Niyogi 2001).

Network embedding, as an unsupervised learning, seeks
to extract useful information by representing nodes with
low dimension and learning the social relationships of net-
work nodes in a low dimension space to maintain network
structure. These vector representations can be used in the
analysis of various social network tasks such as classifica-
tion, recommendation (Bhagatetal. 201 1) and link prediction
(Liben-Nowell and Kleinberg 2007). Some classical network
embedding methods use special dependency graph vectors as
feature vectors (Belkin and Niyogi 2001; Tenenbaum et al.
2000) (Cox and Cox 2008; Roweis and Saul 2000). Graph
factorization is another technique used for network embed-
ding (Ahmed et al. 2013). The mentioned approaches suffer
from scalability for large social networks. In recent years,
deep learning as an unsupervised method has been widely
used in natural language processing, a detailed description
of this research can be found in Bengio et al. (2013).

There is also a lot of research that has used in-depth learn-
ing for social network embedding (Perozzi et al. 2014; Tang
et al. 2015; Grover and Leskovec 2016) (Wang et al. 2017).
Network embedding methods try to represent graph nodes
with some useful feature vectors. Deepwalk (Perozzi et al.
2014), LINE (Tang et al. 2015) and Node2vec (Grover and
Leskovec 2016) are the most important methods proposed
in recent years. Although these methods perform well com-
pared to other graph representation methods such as spectral
clustering, they attempt to extract only local structural infor-
mation from each node and then use them to learn the final
representation of the node. Communities, however, have
important structural information that are neglected by these
methods (Wang et al. 2016). The structure of society pro-
vides additional information to display nodes. For two nodes
in a community, the similarity of representation of these two
node must increase, even if their relationship is weak due to

data sparsity. Thus, combining community structure in net-
work embedding can provide effective and rich information
to solve data sparsity problems and, in addition, make node
representations become more distinctive (Wang et al. 2017).
As mentioned, network embedding refers to the approach of
learning embedded features with low dimension for nodes
or links in a network. The basic principle is to learn encryp-
tion for network nodes in such a way that the similarity in
the embedded space shows the similarity in the network. The
applications of embedding nodes can be different and they
are used for different types of graphs. The advantage of node
embedding as a technique is that it does not require feature
engineering by specialists in the field. One of the algorithms
for embedding the network is deepwalk algorithm.

One of the new ways for recommending items to the user
is the method described in Banerjee et al. (2021). This article
uses three datasets, user-item ranking data, social network
information between users, and item-feature set to provide
recommendations to users. One of the challenges in this arti-
cle is the lack of use of embedded and structural information
within the user network. In (Banerjee et al. 2021), the neigh-
bors are used to provide recommendations. These neighbors
are directly (with one edge) connected to the target node,
while the more distant neighbors are ignored in Banerjee
et al. (2021). Using farther neighbors for a node can provide
valuable information about the similarities between nodes
and can improve the item recommendation system.

2.2 Deepwalk

In DEEPWALK, deep learning (unsupervised feature learn-
ing) was first used to learn the social representation of
graph nodes by modeling the flow of random short walks.
This algorithm learns to represent embedded features that
encode social relations in a continuous vector space with a
relatively small number of dimensions. Deepwalk has sur-
passed other latent representation methods in creating social
dimensions, especially when labeled nodes are scarce. The
representations learned by Deepwalk make strong predic-
tive performance possible with very simple linear models.
In addition, the resulting representations are general and can
be combined with any classification method (Backstrom and
Leskovec 2011). Deepwalk is an online algorithm that can
be paralleled.

Deepwalk considers the problem of classifying members
of a social network into one or more categories. Let G = (V,
E)and G = (V, E, X, Y) be a partially labeled social
network with input characteristics X € RV*S_ such that
S is the size of the feature space for each feature vector,
and ¥ = RIVIXIYI_ Given that Y is a set of possible tags.
Deepwalk’s goal is to learn Xg € RIVIX? where d is a
small number of dimensions. These dimensional representa-
tions are distributed, meaning that each social phenomenon

@ Springer

3 Page4of16

Advances in Computational Intelligence (2023) 3:3

Table 1 Symbols used in this

article Symbols

Description

U,IF
A,R,M,UF
Ly
Ny
fi
UF
P

Set of users, items and features

Adjacency, rating, Iltem-feature and User-
feature matrix

Set of items rated by the neighbor users
of u,

Neighbors of the target user t
i*" proximity feature
Normalized User-feature matrix

Priority array for neighbors users

is expressed by a subset of dimensions, and each dimen-
sion refers to a subset of the social concepts expressed in
the network (Backstrom and Leskovec 2011). This method
satisfies these requirements by learning the representation of
nodes from the flow of random short walks, using optimiza-
tion techniques designed for language modeling (Backstrom
and Leskovec 2011).

The Deepwalk algorithm consists of two main compo-
nents. First a random walk generator, and second, an update
method. The random walk generator takes a graph G and
uniformly samples a random node v; as the root of the ran-
dom walk W,,. A walk is sampled from the neighbors of the
last visited node to reach the maximum length (). While the
length of random walks is fixed in experiments, there is no
limit to the length of random walks.

2.3 Skipgram

Skipgram is a language model that maximizes the probabil-
ity of concurrency between words that appear within a w
window in a sentence. This method approximates the condi-
tional probability using the assumption of independence as
follows:

itw
O Vigw i [P () = l_[

jeiw, j#i

P({vi—w’ . P(viqu(vi)s

ey

where ® (v;) is a representation feature vector for the v; node.
The purpose of the Skipgram model in Deepwalk is to extract
the local structure around the v; node, which is defined as the
surrounding w node.

3 Proposed algorithm

The symbols user in this article is described in Table 1.

@ Springer

iy iy iz iy is ig iy
S~ -

uy 1 0 1 0 0 1 0
Uy 0 1 0 0 0 1 0
Uz 1 0 0 1 0 1 0
Uy 0 1 1 0 0 1 0
us 1 0 1 1 0 0 0
Ug 1 0 0 0 0 0 1
Uz 0 0 1 1 0 0 0
ug 0 1 0 1 1 0 1

Fig. 1 User-item rating data

Fig.2 Social network among users
3.1 lllustration with example

Here, we provide a simple example to demonstrate the pro-
posed method. As in Banerjee et al. (2021), we consider a
recommender system with 8 users and 7 items formed as
U = {ui, up, ..., ugtand I = {iy, ip, ..., i7}. The user-
item rating data matrix is formed as matrix R and presented
in Fig. 1.

The social network among users is shown in Fig. 2. The
items are described by the feature set F = {f1, f2, ..., f3},
and the item-feature matrix is displayed as M in Fig. 3. If we
assume that the target user is us, then N = {u», u7, ug} and
IMASI = {ia, i3, i4, is, i, i7}. User-feature matrix named as
UF for user us is as follows.

Advances in Computational Intelligence (2023) 3:3

Page50f16 3

L o i o s fo i fe
-~ N
i/ 0 1 1 1 0o 1 0 0
Ll 1 1 0o 1 0o 0 0 1
| 0o 1 o 1 1 0 0 1
M= i, | 1! 0 1 0 1 1 1 0
is| o o o o 1 0o 1 1
ic| 1 0 1 0 0 1 1 0
i/ 0 o 1 1 0 1 0 0
- .

Fig. 3 Item-feature matrix

L o s o fs fo f7 fe

)

Uz 2 1 1 1 0 1 1 1
UF= W 1 1 1 1 2 1 1 1
Ug 2 1 2 2 2 2 2 2
Us 1 2 2 2 2 2 1 0

As can be seen, for each user among N = {uj, u7, ug},
features of ranked items are placed. In the U F table, the
similarity between the target user us and users N = {u,
u7, ug} is through the degree of similarity of users’ features
which are obtained through the ranks given to the items.

Therefore, the proximity (embedded) features between u5
and nodes in N are not considered. Nodes that are close to
each other should achieve more similar proximity features to
each other. So, the proximity features should be considered
for each node in the UF matrix.

To obtain the proximity features, the improved CARE
algorithm is used to create optimal features for each
node based on the paths between nodes. So three features
{f], f3. f3} are obtained for each node and the UFproximity
matrix becomes as follows.

hifefs fi s fo o fo h fo fs
(h}
uz 2 1 1 I 0 1 1 1 04091 1.1037 -0.0255
|
w11 1 1 2 1 1 1 04701 10332 -0.3098|
UFproximity = |
wg | 2 1 2 2 2 2 2 2 01918 L1504 -03163|
us | 12 2 2 2 2 1 0 02311 LISS5S -0.0173

The normalized UFoximity matrix is as follows:

Wpro.\mut_\‘ =
fi f2 f3 fa fs fe fi fe fi fa
u, |0.2097 0.1048 0.1048 0.1048 0 0.1048 0.1048 0.1048 0.0428 0.1157
u; |0.0925 0.0925 0.0925 0.0925 0.1850 0.0925 0.0925 0.0925 0.0434 0.0955
ug |0.1201 0.0600 0.1201 0.1201 0.1201 0.1201 0.1201 0.1201 0.0115 0.0690
us |0.0744 0.1489 0.1489 0.1489 0.1489 0.1489 0.0744 0 0.0172 0.0882

Now the distance between profile vectors of user us5 and
his neighbor user profile vectors is calculated and the distance
array D is obtained.

The remaining steps are done as in Banerjee et al. (2021).
As can be seen from the distance vector D, the distance
between the nodes is calculated by considering their prox-
imity features, and makes the similarity between the nodes
calculated more accurate than (Banerjee et al. 2021).

3.2 Proposed idea

To address these challenges, in this paper, we want to
add structural features among nodes to the recommending
process. Adding these features will give us the following
benefits:

e Addressing the cold-start problem due to the use of struc-
tural information among users. In the proposed idea, using
indirect neighboring nodes information, it can provide
better suggestions when we have incomplete information
about the target node compared with the method (Banerjee
et al. 2021).

e Increasing the accuracy of predictions and recommenda-
tions. By increasing the amount of information used to
recommend the item to the target user, better and more
accurate suggestions can be made.

e Adding trust information to the model. Information such as
the number of communication between neighboring nodes
is added to the model as trust information to increase the
accuracy of recommendations.

In a recommender system, there are basically three enti-
ties: users, items, and user-item interactions in terms of
ranking. We represent the user set with U, i.e., U = {uy,
us, ..., uy1} and the set of items with 7, i.e I = {iy, i,
..., Ip2}. The number of users and items in the system are
denoted by nl and n2, respectively.

A user is interested in different items in terms of ranking
on a specific ranking scale, for example {1, 2, 3,4, 5}. Points
can be displayed as a tuple (up, iy, rpq), indicating that the
user u , has rated i, item with the value of r, . Ratings given
to all system users for all items is considered by matrix R.
Same as (Banerjee et al. 2021), we assume three different
types of information as follows:

fa
-0.002
-0.0286
-0.0189
-0.0012

@ Springer

3 Page6of16

Advances in Computational Intelligence (2023) 3:3

(i) User-item ranking data;

e User-item ranking data are given as a rating matrix R.
The contents of the matrix R are as follows.

R — x ifuserupratestheitemiqwithratingvaluex
pa 0 otherwise.

(2
(ii) Social network between users.

e Social network information among users is given by
the adjacency matrix (A) for the social network G (U,
E) without direction and weight. Here, the set of ver-
tices (users) denoted as V(G) = U = {uy, uy,

.., uy1} and the set of edges as E(G) = {(up,
ug)lupandughassocialrelation}.

(iii) A set of item properties.

e The description of an item is generally provided with a
set of features. F = {f1, f2, ..., fa3} shows the set of
properties of one item. Thus, the property set of items
is represented by an item-feature matrixM € R"2*"3,

In this work, we consider only binary feature vectors.
Therefore, if the item i, has the feature f, , the (¢, r) — th
of the matrix M will be one, otherwise it will be 0. Our pro-
posed method is mainly divided into seven general steps.
An overview of our proposed method is given in Fig. 4. In
the following, we provide a step-by-step explanation of our
proposed method.

1. Items likes by neighbors:
We indicate the target user as u,. Initially, from the social
network G, the neighboring users u, in G are listed in N;.
Then, for all users in N;, their ranked items are identified
and kept in a list. We show this list as IIN’. Thus, visually
I,N’ = {ig|Jup € NiandRy,i, # 0}. In step 1, a set of
neighboring user items, namely ItN’ , was created from
the user-item ranking data and the social network G.

2. Item features for neighbors:
In this step, from the set of neighboring user items and
description of the existing items, the user-feature matrix
is created for the neighboring users. This matrix records
the number of times different features are rated by each
user in the list V. In the last row of this matrix, we attach
the same information to the target user. We represent this
matrix with UF.

3. Extract embedding trust features for neighbors
In our proposed method, the improved CARE algorithm
is used to capture the embedding features among users. In
the improved CARE algorithm, a number of embedded
features as trust information among users are extracted

@ Springer

for each user. In this algorithm, users that are closer to
each other get more similar features and those that are
placed farther away get more different features. There-
fore, more connections between the nodes, causes more
similar embedding features for users and vice versa.
As can be seen in Fig. 5, the features extracted by the
improved CARE algorithm are the trust information for
each user. In section 3.2, the improved CARE algorithm
is explained.

User-feature matrix

After extracting trust features for users and item features
for neighbors (similar to Banerjee et al. (2021)), these
features are combined as shown in Fig. 6. In the last row
of user-feature matrix, we add features for target user.
User’s priority

From the user-feature matrix calculated in the previous
step, here we calculate the priority between the neigh-
boring users and the target user. First, we normalize the
user-feature matrix by dividing each entry by the sum
of the corresponding rows. We represent the normalized
user-feature matrix with UF.

UFp, = <t 3
i ZZ:IUFPI(I ©

We consider each row of the normalized user-feature
matrix as the corresponding user profile vector. Now, if
we calculate the distance between the target user profile
vector (V,,) and each of its neighbors, this value can be
considered as a measure for the correlation between the
target user and its neighbors.

Here, we consider L2 norm as the distance metric
between two vectors. For each specific attribute, in the
normalized user-feature matrix, if the value for the target
user is zero, then we do not consider that attribute in the
distance calculation.

Hence, the distance between the neighboring user profile
vector (Vup) and the target user profile vector V,, is as
follows:

D= [> (Vi lr] = Vi, [rD% @)

rekFy o

Using Eq. (4), the distance vectors of the neighboring
user profiles with the target user profile are calculated
and stored in the distance array D. Now, intuitively, if
the distance becomes greater, then the priority should be
less. In this paper, we calculate P, , as user’s priority for

user u, in Eq. (5). P, » is calculated from user distance
k

Mp'

Advances in Computational Intelligence (2023) 3:3 Page70of16 3

User-item

ration

v v

Item§ likes by Extract Embbeding
Neighbors features
A 4
Item features for
Neighbors

v

User feature matrix

A 4

User’s Priority

A 4

Item’s Priority

A 4

Top-N
Recommendation

Fig.4 Overview of our proposed method

] 7. Top-N recommendation
Py, =——0p. 3) In the last step, we recommend the items to the target
1+ Dy » user based on the calculated item’s priorities. We sort the

items in descending order and recommend top-N items.
Here, P,, and Dy, are the priority and distance of the

neighboring user u ,, respectively, and k is a positive inte-
ger.
6. Item’s priority

In this step, we calculate the item’s priority for the rec-
ommendation based on the previously calculated user’s
priority. Here, we calculate the item’s priority as the sum
of the priorities of users ranked the corresponding item.
Hence, the priority of the item i, (denoted as P; q) can be

3.3 Improved CARE algorithm

In this algorithm, we use structural information (such as clus-
tering) effectively in the network embedding process. The
steps of improved CARE algorithm are as follows:

determined by the following equation: 3.3.1 Community detection
P, = Z Py,. (6) We have used the Louvain method to maximize network
UpeN, Rpg=0 modularity to identify communities (Morgan and Govender

@ Springer

3 Page8of16

Advances in Computational Intelligence (2023) 3:3

Fig. 5 Embedding trust features
for neighbors

° Social Network

Perform Improved CARE algorithm to extract embedded features

for each user

Fig.6 User-feature matrix

Explicit features extracted from items

Embedded features extracted from user social network

2017). Modularity is a metric for comparing the density of
edges within a community and the edges between commu-
nities. This is an optimization algorithm that first examines
each node in a separate community. Then, a node is selected
and the modularity of its connection to neighboring commu-
nities is calculated. Finally assigns the node to a community,
where its modularity is maximized (Fig. 7).

@ Springer

3.3.2 Extract neighborhood structure

To extract the neighborhood structure of a node, we create
customized random walks p. Custom random walk starting
from node v is indicated by v. Because a random walk is a
pathin a network. For example, we consider a custom random

walk fornode v,asw], w2, ..., w¥ such that w¥ is anode that

Advances in Computational Intelligence (2023) 3:3 Page9of16 3

0.2 0.12
0.18 =
0.16 = IBCF = 0.1 = IBCF
0.14 ® IKNN-Tag T o008 = IKNN-Tag
©
g 012 SVD S SVD
g o1 5006
= B BPR g mBPR
I 0.08 = 004
0.06 H GBPR % H GBPR
0.04 SBPR § 0.02 SBPR
<
00z | m (1] o Wl I || m (1]
0
n < O N
5 S o Proposed Q\@ @r\, @r\, @q, M Proposed
& & & ¢ SIS
& & A S
(a) Last.Fm - HR@K (b) Last.Fm — ARHR@K
0.35 = IBCF o 018 m IBCF
03 IKNN-T = 8'12
| Ta =) B IKNN-T
0.25 : S o e
(] o .
5 02 SVD S g 01 SVD
= 0.15 m BPR 2 8008 m BPR
T . 006
0.1 H GBPR % 0.04 m GBPR
0.05 | | SBPR § 0.02 taatlll o II n || i SBPR
0 bi.ix I 1]] “ < 0 “ .
o o
5 O O O m[1] & & & & m[1]
& @ ¢ XL
T’ B Proposed LRGN B Proposed
(c) Delicious - HR@K (d) Delicious — ARHR@K
0.03 0.01
m IBCF 2 0.009 W IBCF
©
0.025 o 0.008
m IKNN-Tag £ 0.007 W IKNN-Tag
0.02 I
g SVD T 8~882 SVD
o o\
= 0.015 mBPR S 0.004 mBPR
T ()
0.01 @ 0.003
= GBPR = 0,002 m GBPR
0.005 SBPR g0 0.001 SBPR
0 § O | | | | | | | |
. : : ’ m[1] Z S O H»O O m[1]
NN D
5 O & O & & & @
e & & e SRR
X) e e B Proposed N Y NN M Proposed
TE AR SR S
(e) LibraryThing - HR@K (f) LibraryThing — ARHR@K

Fig.7 Results for All-user. a Last Fm—HR@K; b Last Fm — ARHR@K; ¢ Delicious — HR@K; d Delicious — ARHR@K; e LibraryThing —
HR@K; f LibraryThing - ARHR@K

@ Springer

3 Page100f16

Advances in Computational Intelligence (2023) 3:3

02 W IBCF
0.15 B IKNN-Tag
g
§ 0.1 SVD
=
T 0.05 m BPR
|| = GBPR
0 II
o o 6 S SBPR
& & & &
T m[1]
(a) Last.Fm - HR@K
0.5
m IBCF
0.4
° m IKNN-Tag
0.3
P SVD
=
T 02 mBPR
0.1 I || ® GBPR
0 an uil Il ™ | I II II
SBPR
€ & & an
T
(c) Delicious - HR@K
0.04
0.035 m IBCF
0.03 m IKNN-Tag
Y 0.025
€ 0.02 SVD
hy=d
T 0.015 mBPR
0.01
0.005 “ I | ® GBPR
L =L N SBPR
© S)
e N S v m[1]

& & &8

(e) LibraryThing - HR@K

= 01 m IBCF
T 0.08
© B IKNN-Tag
S 006
o SVD
S ¢ 004
O ® m BPR
£ & 002
& o AT LAAF h [u GBPR
o & & & & SBPR
< S E =[]
AR
(b) Last.Fm - ARHR@K
0.35
. ® IBCF
T 0.3
8 0.25 B IKNN-Tag
g 0.2 VD
5 gois S
xx 01 mBPR
(O]
e 00 M = GBPR
g 0 —— —— - - . -
Z Q\@% @\9 @\io @@ SBPR
& F &K m (1
SO N
(d) Delicious — ARHR@K
. 0.02
= ® IBCF
= 01
g 0.015 IKNN-Tag
§ g oot SVD
@ o
© 0.005 " BPR
©
= | |
S N B e
< SBPR
& @\9 N @'9
S EE m [1]
LSRN

(f) LibraryThing - ARHR@K

Fig. 8 Results for Cold-start users. a Last. Fm—HR @K; b Last.Fm — ARHR@K; ¢ Delicious - HR@K; d Delicious — ARHR@K; e LibraryThing

—HR@K; f LibraryThing - ARHR@K

is randomly selected from direct neighbors v or nodes placed
in the same community. To create a custom random walk
starting from node v, we first extract all its direct neighbors.
Then, a random variable r between 0 and 1 is generated. If r
is less than random variable o, we select a random node from
direct neighbors; otherwise, we select a random node from
nodes placed in the same community. This process continues
until it reaches the predefined length | for the path (Fig. 8).

@ Springer

3.3.3 Skipgram

After generating random walks, we use the Skipgram model
to learn graph node representations (Lin and Cohen 2010;
Kondor and Lafferty 2002). Skipgram is a language model
that maximizes the conditional probability of common words
in a predefined window. As shown in the following equation:

i+w
Pr(wlf@) =maxy [T pr(vjlf@)w={vi—u, s vitw)-

j=i—w
)

Advances in Computational Intelligence (2023) 3:3

Page110f16 3

For each node in the graph, we repeat this maximization
over all our custom random walks. We define a window w to
move in one direction. Similar to the previous approaches,
the assumption that conditional probabilities are independent
is considered in Eq. (7). In addition, the softmax functions are
used to approximate the probability distribution of Eq. (7):

Pr(v;| f () = 1/(1 e fI0). ®)

Stochastic gradient descent (SGD) is used to optimize the
parameters, similar to the method proposed in Bottou (1991).

3.3.4 Shortest path algorithm

In graph theory, the problem of finding the shortest path is
defined as the problem of finding the path between two ver-
tices (or nodes) in such a way that the sum of the edge weights
are minimized. For example, consider finding the fastest way
from one place to another on the map; In this case, the ver-
tices represent the places and the edges represent the parts
of the path that are weighed according to the time required
to travel them. The corresponding graph can be weighted or
weightless (all edge weights are one).

The most important algorithms to find the shortest path
are:

e Dijkstra algorithm that solves the problem of finding the
shortest path between two vertices, from a single origin to
a single destination.

e Bellman—Ford algorithm that solves the problem of finding
the shortest path from a single origin where the weight of
the edges can also be negative.

e Floyd—Warshall algorithm that solves the problem of find-
ing the shortest path between two vertices.

e Johnson’s algorithm which solves the problem of finding
the shortest path between two vertices and may work faster
than Floyd—Warshall in scattered graphs.

In this paper, we use Dijkstra algorithm to solve this prob-
lem.

4 Proposed skipgram

Skipgram language model, which maximizes the conditional
probability of common words in a predefined window, is
defined according to Eq. (9).

i+w
Pr(w|f(u)) = max ¢ l_[pr(vilf)w = {vi_y. ..
j=i—w

©))

s Ui+w}~

Y A B
Pr(v;1 £ () = 1/ e TS Gy, (10)

where shortestPath(u, v;) represents the ortest distance
between two nodes u and v;. The equation m
is considered as a similarity measure for two nodes. Thus,
for neighbor nodes, this shortest path takes a value of one
and also m takes value one. On the other hand,
for nodes in the same community, if their shortest distance
is two, their similarity coefficient is ¥2 = 0.5, and so on.
By changing softmax to Eq. (10), neighbor nodes are con-
sidered more importance than same community nodes, and
thus we can produce a better representation model than the
original CARE method for network nodes. Also, similar to
the CARE method (Cox and Cox 2008), stochastic gradient
descent (SGD) is used to optimize the parameters.

5 Experimental evaluation

In this section, we present the experimental results by
comparing the proposed method with the existing recom-
mendation algorithms. We evaluate our model based on
three ranking datasets, which contain social tag information
and items. In the experiments, we use two publicly avail-
able datasets called Last.fm and delicious, which contain
user—item interaction data such as implicit ranking, social
networking, and item social tagging information. We also use
LibraryThing dataset that contains only social network rank-
ings and information. We have collected tag data for items
in the LibraryThing dataset from https://www.librarything.
com/. The collected data are preprocessed by removing tags
that are not meaningful and used more often. Also, we remove
tags that are associated with less than twenty items. The basic
statistics of the ranking dataset and additional information are
given in Tables 1 and 2, respectively.

5.1 Experimental setup

To analyze the impact of combining social data and tags, we
select users who have at least one social neighbor, and select
items that have tag information. For analysis, we consider
the leave-one mechanism. In this mechanism, for example,
for each user, a ranked item is removed from the training
set and placed in the test set, and the system performance is
evaluated based on the presence of the test item in the list of
recommended items. The following is a brief description of
the methods that are compared to our proposed method.

e Item-Based collaborative Filtering (IBCF) (Deshpande

and Karypis 2004): In this algorithm, item similarity is
calculated using Pearson correlation similarity from the

@ Springer

https://www.librarything.com/

3 Pagel120f16

Advances in Computational Intelligence (2023) 3:3

Table 2 Statistics of the rating

dataset Dataset #Users #Items #Ratings Density Cuser Ritem
Last.fm 1892 12519 70484 0.0029 37.25 5.63
Delicious 1792 31195 301495 0.0054 168.24 9.66
LibraryThing 23499 45587 606687 0.0006 25.82 13.31

R ranking matrix. For top-K similar items, the similar-
ity score are stored for each item, and for the unrated
user—items pairs the rating score is predicted. So, the top-
N items are recommended for each test user, based on the
predicted score.

o [tem-KNN-tag: Similar to IBCE, it uses the item-feature M
matrix to obtain item similarity scores. This method does
not follow the principle of collaborative filtering. It uses
content information of items and recommends the most
similar items.

e Matrix Factorization (SVD) (Funk 2006): Here, the R rank-
ing matrix is broken down into two embedded feature
matrices of users and items, and the ranking is predicted
as a multiplication of the embedded feature vectors of the
user and items. Finally, based on the predicted rankings,
top-N items are recommended for each user.

e Bayesian personalized ranking-based matrix factorization
(BPRMF)(Rendle et al. 2012): Using matrix factorization,
the embedded features are learned for a user using a pair-
wise ranking of purchased and non-purchased items.

e Group preference-based Bayesian personalized ranking
(GBPR) (Pan and Chen 2013): Similar to BPRMF, here
the ranking is based on the target user and a random group
of users.

e Social Bayesian personalized ranking (SBPR) (Zhao et al.
2014): Here, feature matrices are learned through the triple
ranking of items (self-purchased, purchased by social
neighbors, other items that not purchased) for each user.

5.2 Evaluation metric

The performance of our method is evaluated from the list of
top-N recommendations for each user. In order to evaluate,
we use hitrate (HR) and average reciprocal hitrating (ARHR)
as evaluation criteria.

e Hit-rate: For the experimental set, the hit criteria indicate
the number of test items in the recommended items for a
user and hit rate specifies the number of hits per user in
the entire system. So, for the top-N recommendation, it is:

numberofhits

HR@N = (11)

numberofusers

@ Springer

e Average reciprocal hit rate: Now, to improve the recom-
mendation quality, we always want to see the position of
the test items in the recommended list. It is preferable to
receive the test items at the beginning or near the begin-
ning of the recommended list. Now, for the total number
of hits, h, we show the position in the recommended list as

Pls P2y -+» Pis -+ Ph,defining 1 < p; < N and ARHR
as follows

i=h
ARHR@N = (12)

e
Numberofusers = i

We want to achieve the maximum ARHR, and at best it
is possible that all the test items occur in the first position,
leading to ARHR = HR. The minimum value of ARHR@N
isequal to HR@N /N, where all test items are placed in the
bottom of the list. In addition to these two criteria, we also
measure the number of cold-start items in the recommended
list. If there are ci; of cold-start items in the recommended
list for user u;, we measure the preference of cold-start items
(CSIP) as follows:

Z:LLICit

CSIP= —————
numberofusers

(13)

We want to maximize this CSIP value and its maximum
value can be N. However, having the maximum value of
CSIP is not preferred, as it seems to recommend only cold-
start items, which lose the co-operation and personalization
feature of the recommending system.

5.3 Results and discussion

We show the results in three parts, all-user results, cold-start
user result and results for cold-start item preference.

5.3.1 All-user results

As can be seen in Table 3, in all datasets, such as the Delicious
dataset, the proposed method performs better than all others
in terms of hit rate and Average Reciprocal Hit Rate. In the
experiments, it is observed that performance improvement
for low values of N is higher than other methods which is
our main goal. Compared to Banerjee et al. (2021), which

Advances in Computational Intelligence (2023) 3:3

Page130f16 3

Table 3 Statistics of the

additional information Dataset #Social-tie Density Avg-degree #Tags Tag-density Avg-tag
Last.fm 12717 0.0071 13.44 9749 0.0015 14.89
Delicious 43597 0.0271 48.65 11250 0.0008 26.79
LibraryThing 58385 0.0003 6.22 17228 0.0079 636.37
Table 4 All-user results comparison
Dataset Algorithm HR@5 HR@10 HR@I5 HR@20 ARHR@5 ARHR@10 ARHR@I5 ARHR@20
Last.FM IBCF 0.0231 0.0534 0.0898 0.1276 0.0114 0.0152 0.0181 0.0197
IKNN-Tag 0.0136 0.0393 0.0663 0.0919 0.0071 0.0101 0.0123 0.0138
SVD 0.0466 0.0777 0.0986 0.1107 0.0266 0.0307 0.0323 0.0329
BPR 0.0568 0.0817 0.1006 0.1195 0.0322 0.0357 0.0371 0.0382
GBPR 0.0527 0.0750 0.0898 0.1073 0.0275 0.0306 0.0317 0.0327
SBPR 0.0621 0.0911 0.1093 0.1269 0.0363 0.0401 0.0414 0.0424
Banerjeeetal. 0.1288 0.1567 0.1760 0.1896 0.0902 0.0940 0.0955 0.0963
2021)
Proposed 0.1305 0.1584 0.1770 0.1901 0.0917 0.0955 0.0965 0.0968
Delicious IBCF 0.0311 0.0906 0.1870 0.3022 0.0115 0.0191 0.0266 0.0331
IKNN-Tag 0.0144 0.0401 0.0828 0.1209 0.0057 0.0089 0.0121 0.0143
SVD 0.0073 0.0150 0.0192 0.0238 0.0035 0.0044 0.0048 0.0051
BPR 0.0174 0.0234 0.0329 0.0394 0.0089 0.0096 0.0104 0.0107
GBPR 0.0162 0.0204 0.0323 0.0400 0.0107 0.0113 0.0122 0.0126
SBPR 0.217 0.2631 0.2976 0.3244 0.1453 0.1517 0.1544 0.1559
Banerjeeetal. 0.1988 0.2221 0.2393 0.2589 0.1602 0.1631 0.1645 0.1656
2021)
Proposed 0.2003 0.2236 0.2403 0.2594 0.1617 0.1646 0.1655 0.1661
LibraryThing IBCF 0.0003 0.0004 0.0004 0.0005 0.0003 0.0003 0.0003 0.0003
IKNN-Tag 0.0057 0.0105 0.0169 0.0228 0.0024 0.0030 0.0035 0.0038
SVD 0.0055 0.0084 0.0104 0.0123 0.0030 0.0034 0.0036 0.0037
BPR 0.0057 0.0091 0.0136 0.0163 0.0031 0.0035 0.0038 0.0040
GBPR 0.0083 0.0134 0.0188 0.0225 0.0040 0.0047 0.0051 0.0053
SBPR 0.0090 0.0150 0.0193 0.0246 0.0046 0.0054 0.0057 0.0060
Banerjeeetal. 0.0113 0.0154 0.0196 0.0248 0.0070 0.0075 0.0079 0.0081
2021)
Proposed 0.0128 0.0169 0.0206 0.0253 0.0085 0.0090 0.0089 0.0086

uses tag and social information, the improved performance
for our method is evident.

In our proposed method, social information is applied
more effectively in recommendation process. Thus this
improves HR and ARHR values compared to Banerjee et al.
(2021). For low values of N, the impact of social information
on performance improvement increases; therefore, methods
that make better use of social information overcome other
methods. The proposed method has high ARHR values for
all datasets and for all N values. It is obvious that HR and
ARHR values increase when the value of N increases, and
as the length of the list (N) increases, the probability of

hits also increases. The IBCF method achieves better results
than IKNN except for the libraryThing dataset, because this
dataset has less cuser value and higher tag-density.

For Last.fm dataset, the proposed method has the highest
performance in terms of HR and ARHR criteria, because this
dataset has a good combination of cuser, average-degree in
social network and tag-density. For Delicious dataset, this
dataset is heavily imbalanced since it has too many items
compared to the number of users, which causes high cuser
and low ritem value. Although SBPR performs best due to
the high social network density, (Banerjee et al. 2021) can-
not overcome SERP because the tag-distribution is not good.

@ Springer

3 Pagel140f16

Advances in Computational Intelligence (2023) 3:3

Table 5 Performance comparison for cold-start users

Dataset Algorithm HR@5 HR@10 HR@I5 HR@20 ARHR@5 ARHR@I0 ARHR@I5 ARHR@20
Last.FM IBCF 0.0263 00624 0.1026 0.1469 0.0086 0.0130 0.0160 0.0197
IKNN-Tag 0.0102 00424 0.0825 0.1086 0.0039 0.0078 0.0111 0.0126
SVD 0.0705 0.1046 0.1367 0.1428 0.0419 0.0464 0.0488 0.0491
BPR 0.0765 0.1106 0.1347 0.1548 0.0372 0.0421 0.0440 0.0452
GBPR 0.0785 0.1126 0.1347 0.1649 0.0431 0.0476 0.0493 0.0510
SBPR 0.0845 0.1287 0.1528 0.1689 0.0479 0.0537 0.0556 0.0565
Banerjecetal. 0.0986 0.1367 0.1588 0.1749 0.0734 0.0784 0.0802 0.0811
2021)
Proposed 0.1001 0.1382 0.1598 0.1754 0.0749 0.0799 0.0812 0.0816
Delicious IBCF 00112 00387 0.0936 0.1376 0.0031 0.0062 0.0105 0.0129
IKNN-Tag 0.0112 00167 00661 00991 0.0031 0.0038 0.0076 0.0096
SVD 0.0002 0.0057 0.057 0.0057 0.0002 0.0010 0.0010 0.0010
BPR 00112 00112 00167 00222 0.0071 0.0071 0.0075 0.0077
GBPR 00167 00277 0.0387 0.0551 0.0051 0.0068 0.0077 0.0087
SBPR 0.2475 02914 03134 03409 0.1886 0.1943 0.1959 0.1975
Banerjecetal. 03628 03903 04233 04562 0.3053 0.3091 0.3115 0.3133
2021)
Proposed 03643 03918 04243 04567 0.3068 0.3106 0.3125 0.3138
LibraryThing IBCF 0.0002 0.0006 0.006 0.0006 0.0002 0.0003 0.0003 0.0003
IKNN-Tag 0.0026 0.0047 0.0079 0.0103 0.0013 0.0015 0.0017 0.0018
SVD 0.0020 0.0030 0.0035 0.0040 0.0012 0.0013 0.0013 0.0013
BPR 0.0091 00125 00171 0.0210 0.0044 0.0048 0.0051 0.0053
GBPR 0.0095 00154 00231 00273 0.0037 0.0045 0.0051 0.0053
SBPR 0.0159 00231 00265 00358 0.0095 0.0105 0.0107 0.013
Banerjecetal. 0.0205 0.0277 0.0332 00366 0.0147 0.0157 0.0161 0.0163
2021)
Proposed 0.022 00292 00342 00371 00162 0.0172 0.0171 0.0168

The proposed method uses social network information more
effectively, so it achieves better performance than (Banerjee
et al. 2021) and SBPR methods in terms of HR and ARHR
criteria. For LibraryThing dataset, all methods have low hit
rate due to very low rating density and social network den-
sity. However, the tag-density and tag-distribution are very
good, which makes the tags give better results. As can be
seen, in this dataset the IKNN-tag method works better than
IBCF, SVD and BPR. The method (Banerjee et al. 2021),
which combines item and social tags, works better in terms
of HR and ARHR compared with other methods except the
proposed method. The proposed method, as can be seen, uses
social information more efficient than (Banerjee et al. 2021)
and is superior in terms of HR and ARHR.

5.3.2 Cold-start user results

For this evaluation, we consider users who have less than or
equal to 5 items in the training set as cold-start users. In all

@ Springer

datasets, the proposed method is superior to other methods in
terms of both HR and ARHR, which shows that the use of tags
and social information solves the problem of cold-start user.
The SBPR method has the best performance compared to the
IBCF, IKNN-tag, SVD, BPR and GBPR methods because it
considers the communication information of external users.
In this dataset, similar to the all-user results section, the HR
and ARHR values increase with increasing N. For Delicious
dataset, The SBPR method and (Banerjee et al. 2021) have
significant growth in performance over the others. Although
the SBPR method in the all-user results section has better
performance in terms of HR than (Banerjee et al. 2021), the
latter method works better than SBPR for cold-start users.
The proposed method achieve higher HR and ARHR val-
ues due to effective use of social information than other
methods such as (Banerjee et al. 2021) and SBPR for cold-
start users. In LibraryThing dataset, for low values of N,
the better performance of Banerjee et al. (2021) is evident
compared to other methods. In the proposed method, social

Advances in Computational Intelligence (2023) 3:3

Page150f16 3

information for more users is considered compared to Baner-
jee et al. (2021), and therefore for low values of N, it is
superior to Banerjee et al. (2021) in terms of HR and ARHR,
which is desirable. For all datasets, the efficiency of the pro-
posed method is evident in terms of HR and ARHR criteria
for all N values (Table 4).

5.3.3 Results for cold-start item preference

In all datasets, the IKNN-Tag has the highest value for CSIP.
The IKNN-Tag considers tags to find similarities between
items, which makes the cold-start item looks like the most
similar existing item. The Delicious dataset has very high val-
ues of CSIP, which is due to the features of this dataset that
more than 90% of the items are cold-start items. In all meth-
ods, GBPR has the lowest CSIP value. Among all datasets,
considering the trade-off between performance and CSIP, our
proposed method offers a good CSIP value with the highest
HR and ARHR values (Table 5).

6 Conclusion

In this paper, we present a new method for recommending
N-top items, which uses three different types of information:
user-item ranking data, social network between users, and
item-related tags. This article also uses structural information
and trust among users within the social network and extracts
the implicit connections between users and uses them in the
item recommendation process. We implement the proposed
method with three datasets for recommendations. We com-
pare our results with the ones obtained from some advanced
ranking methods and observe that the accuracy of our method
for all users and cold-start users improves. Our method can
also create more items for cold-start users in the list of recom-
mended items. In all datasets, such as the Delicious dataset,
the proposed method performs better than all others in terms
of hit rate and Average Reciprocal Hit-Rank. Also in Cold-
start user results, for all datasets, the proposed method is
superior to other methods in terms of both HR and ARHR,
which shows that the use of tags and social information solves
the problem of cold-start user. As future work, we can use
an ensemble of several node-embedding methods to extract
embedding trust features for neighbors to make these features
more accurate.

Data availability Datasets related to this article can be found at https://
grouplens.org/datasets/hetrec-2011/ for two publicly available datasets
named Last.fm and Delicious and LibraryThing dataset can be found at
https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data.

Declarations

Conflict of interest The authors declare that there are no conflicts of
interest regarding the publication of this article.

References

Agarwal N, Haque E, Liu H, Parsons L (2005) Research paper recom-
mender systems: A subspace clustering approach. In: International
Conference on Web-Age Information Management. 475-491.

Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola
AJ (2013) Distributed large-scale natural graph factorization. In:
Proceedings of the 22nd international conference on World Wide
Web, 37-48.

Backstrom L, Leskovec J (2011) Supervised random walks: predicting
and recommending links in social networks. In: Proceedings of
the fourth ACM international conference on Web search and data
mining. pp. 635-644.

Banerjee S, Banjare P, Pal B, Jenamani M (2021) A multistep priority-
based ranking for top-N recommendation using social and tag
information. J Ambient Intell Humaniz Comput 12(2):2509-2525

Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. Adv Neural Inf. Process.
Syst, 14

Bell RM, Koren Y (2007) Scalable collaborative filtering with jointly
derived neighborhood interpolation weights. In: Seventh IEEE
international conference on data mining (ICDM 2007). 43-52.

Bengio Y, Courville A, Vincent P (2013) Representation learning: a
review and new perspectives. IEEE Trans Pattern Anal Mach Intell
35(8):1798-1828

Bhagat S, Cormode G, Muthukrishnan S (2011) Node classification in
social networks. Social network data analytics. Springer, Boston,
pp 115-148

Bottou L (1991) Stochastic gradient learning in neural networks. Proc
Neuro-Nimes 91(8):12

Burke R (2002) Hybrid recommender systems: survey and experiments.
User Model User-Adapt Interact 12(4):331-370

Burke R (2007) Hybrid web recommender system. Adapt Web.
377408

Covington P, Adams J, Sargin E (2016) Deep neural networks for
youtube recommendations. In: Proceedings of the 10th ACM con-
ference on recommender systems. 191-198.

Cox MAA, Cox TF (2008) Multidimensional scaling. Handbook of
data visualization. Springer, Berlin, Heidelberg, pp 315-347
Deshpande M, Karypis G (2004) Item-based top-n recommendation

algorithms. ACM Trans Inf Syst 22(1):143-177

Fouss F, Pirotte A, Renders J-M, Saerens M (2007) Random-walk com-
putation of similarities between nodes of a graph with application
to collaborative recommendation. IEEE Trans Knowl Data Eng
19(3):355-369

Funk S (2006) Netflix update: try this at home

Getoor L, Taskar B (2007) Statistical relational learning. MIT press,
Cambridge

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for
networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on Knowledge discovery and data mining.
855-864

Guo G (2013) Integrating trust and similarity to ameliorate the data
sparsity and cold start for recommender systems. In: Proceedings
of the 7th ACM conference on Recommender systems. 451-454.

Keikha MM, Rahgozar M, Asadpour M (2018) Community aware
random walk for network embedding. Knowledge-Based Syst
148:47-54

@ Springer

https://grouplens.org/datasets/hetrec-2011/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data

3 Pagel160f16

Advances in Computational Intelligence (2023) 3:3

Kondor RI, Lafferty J (2002) Diffusion kernels on graphs and other
discrete structures. In: Proceedings of the 19th international con-
ference on machine learning, vol. 2002, 315-322.

Koren Y (2010) Factor in the neighbors: Scalable and accurate collab-
orative filtering. ACM Trans Knowl Discov Data 4(1):1-24
Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for
social networks. J Am Soc Inf Sci Technol 58(7):1019-1031
Lin F, Cohen WW (2010) Semi-supervised classification of network
data using very few labels. In: 2010 international conference on

advances in social networks analysis and mining, 192-199.

LinJ, Sugiyama K, Kan M-Y,, Chua T-S (2013) Addressing cold-start in
app recommendation: latent user models constructed from twitter
followers. In: Proceedings of the 36th international ACM SIGIR
conference on Research and development in information retrieval.
283-292.

Linden G, Smith B, York J (2003) Amazon. com recommenda-
tions: item-to-item collaborative filtering. IEEE Internet Comput
7(1):76-80

Mikolov T, Chen K, Corrado G,, Dean J (2013) Efficient esti-
mation of word representations in vector space. arXiv Prepr.
arXiv1301.3781

Morgan SN, Govender KK (2017) Conceptualizing loyalty in the South
African mobile telecommunications industry. Glob J Manag Bus
Res 4:1273816

Pan W, Chen L (2013) Gbpr: Group preference based bayesian person-
alized ranking for one-class collaborative filtering

Pennington J, Socher R,, Manning CD (2014) Glove: Global vectors
for word representation. In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP).
pp. 1532-1543.

Perozzi B, Al-Rfou R,, Skiena S (2014) Deepwalk: Online learning of
social representations. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, 701-710.

Radivojac P et al (2013) A large-scale evaluation of computational
protein function prediction. Nat Methods 10(3):221-227

Rendle S, Freudenthaler C, Gantner Z,, Schmidt-Thieme L (2012) BPR:
Bayesian personalized ranking from implicit feedback. arXiv
Prepr. arXiv1205.2618

Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by
locally linear embedding. Science 290(5500):2323-2326

Sarwar BM, Karypis G, Konstan J,, Riedl J (2002) Recommender
systems for large-scale e-commerce: Scalable neighborhood for-
mation using clustering. In: Proceedings of the fifth international
conference on computer and information technology, vol. 1,
pp. 291-324

@ Springer

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008)
Collective classification in network data. Al Mag 29(3):93

Son LH (2016) Dealing with the new user cold-start problem in rec-
ommender systems: a comparative review. Inf Syst 58:87-104

Tang J, Qu M, Wang M, Zhang M, Yan J,, Mei Q (2015) Line: Large-
scale information network embedding. In: Proceedings of the 24th
international conference on world wide web. 1067-1077.

Tenenbaum JB, de Silva V, Langford JC (2000) A global geomet-
ric framework for nonlinear dimensionality reduction. Science
290(5500):2319-2323

Tsoumakas G, Katakis I (2006) Multi-label classification: an overview
dept of informatics. Aristotle Univ, Thessaloniki, Greece

Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global pro-
tein function prediction from protein-protein interaction networks.
Nat Biotechnol 21(6):697-700

Wang X, Jin D, Cao X, Yang L,, Zhang W (2016) Semantic community
identification in large attribute networks. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 30, no. 1.

Wang X, Cui P, Wang J, Pei J, Zhu W,, Yang S (2017) Community
preserving network embedding

Wu Y, Liu X, Xie M, Ester M,, Yang Q (2016) CCCF: Improving
collaborative filtering via scalable user-item co-clustering. In: Pro-
ceedings of the ninth ACM international conference on web search
and data mining. 73-82.

Xue G-R et al. (2005) Scalable collaborative filtering using cluster-
based smoothing. In: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval. 114-121.

Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2006) Graph
embedding and extensions: a general framework for dimensional-
ity reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40-51

Yang S-H, Long B, Smola A, Sadagopan N, Zheng Z,, Zha H (2011)
Like like alike: joint friendship and interest propagation in social
networks. In: Proceedings of the 20th international conference on
World wide web. 537-546.

Zhao T, McAuley J,, King I (2014) Leveraging social connections to
improve personalized ranking for collaborative filtering. In: Pro-
ceedings of the 23rd ACM international conference on conference
on information and knowledge management, 261-270.

Zhao WX, Li S, He Y, Chang EY, Wen J-R, Li X (2015) Connecting
social media to e-commerce: cold-start product recommendation
using microblogging information. IEEE Trans Knowl Data Eng
28(5):1147-1159

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

	User structural information in priority-based ranking for top-N recommendation
	Abstract
	1 Introduction
	2 Related works
	2.1 Network embedding
	2.2 Deepwalk
	2.3 Skipgram

	3 Proposed algorithm
	3.1 Illustration with example
	3.2 Proposed idea
	3.3 Improved CARE algorithm
	3.3.1 Community detection
	3.3.2 Extract neighborhood structure
	3.3.3 Skipgram
	3.3.4 Shortest path algorithm

	4 Proposed skipgram
	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Evaluation metric
	5.3 Results and discussion
	5.3.1 All-user results
	5.3.2 Cold-start user results
	5.3.3 Results for cold-start item preference

	6 Conclusion
	References

