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Abstract
Forecasts of commodity prices are vital issues to market participants and policy-makers. Those of cooking section oil are of no
exception, considering its importance as one of main food resources. In the present study, we assess the forecast problem using
weekly wholesale price indices of canola and soybean oil in China during January 1, 2010–January 3, 2020, by employing the
non-linear auto-regressive neural network as the forecast tool. We evaluate forecast performance of different model settings
over algorithms, delays, hidden neurons, and data splitting ratios in arriving at the final models for the two commodities,
which are relatively simple and lead to accurate and stable results. Particularly, the model for the price index of canola oil
generates relative root mean square errors of 2.66, 1.46, and 2.17% for training, validation, and testing, respectively, and the
model for the price index of soybean oil generates relative root mean square errors of 2.33, 1.96, and 1.98% for training,
validation, and testing, respectively. Through the analysis, we show usefulness of the neural network technique for commodity
price forecasts. Our results might serve as technical forecasts on a standalone basis or be combined with other fundamental
forecasts for perspectives of price trends and corresponding policy analysis.
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1 Introduction

Forecasts of commodity prices are vital issues to market par-
ticipants, which include speculators, processors, hedgers, the
media, economists, and policy-makers (Xu 2017a, 2018e).
Those of cooking oil prices are of no exception, consider-
ing its importance as one of main food resources (Yaakob
et al. 2013; Xu and Zhang 2022h; Lam et al. 2010). Due to
price volatilities that are generally irregular (Xu2017c, 2020;
Minot 2014; Piot-Lepetit and M’Barek 2011), influences on
decisioning processes with great magnitude (Xu and Thur-
man 2015b; Zhang et al. 2012; Xu 2014c; Mathios 1998;
Wells and Slade 2021; Xu and Zhang 2022k), and hence on
allocations of resources and economic welfare (Zhang et al.
2014; Xu 2019a, b; Yitzhaki and Slemrod 1991; Ajanovic
2011), significance of forecasting cooking oil prices to the
society might not need too much motivation (Caldeira et al.
2019; Xu and Thurman 2015a; Yu et al. 2006; Li et al. 2020b;
Brookes et al. 2010).
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Researchers in econometrics have devoted significant
amounts of efforts to accurate and stable commodity price
forecasts. To achieve this goal, a large number of previ-
ous studies (Kling and Bessler 1985; Bessler 1982; Brandt
and Bessler 1981, 1982, 1983, 1984; Bessler and Cham-
berlain 1988; Xu and Zhang 2022i; McIntosh and Bessler
1988; Bessler and Brandt 1981; Bessler 1990; Bessler and
Babula 1987; Xu 2014b, 2015a; Yang et al. 2001; Bessler
et al. 2003; Bessler and Brandt 1992; Bessler and Hopkins
1986; Chen andBessler 1987, 1990;Wang andBessler 2004;
Bessler and Kling 1986; Babula et al. 2004; Yang et al. 2003;
Awokuse and Yang 2003; Yang and Awokuse 2003; Yang
and Leatham 1998; Yang et al. 2021) have explored various
types of (time series) econometric models and predictions
from experts and commercial services. Common time series
models in the literature for this forecast purpose include the
auto-regressive integrated moving average model (ARIMA),
vector auto-regressive model (VAR), vector error correction
model (VECM), and different types of their variations. For
example, the ARIMA has shown its immense popularity
in earlier work and is still being actively sought for many
different kinds of time series forecast tasks. It was found
that the ARIMA substantially outperforms forecasts based
upon expert opinions and structural models for U.S. hog and
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cattle prices (Brandt and Bessler 1981, 1983; Bessler and
Brandt 1981). Further research (Brandt and Bessler 1982,
1984; Kling and Bessler 1985; Bessler 1990) determined
that there exists limited space for accuracy improvements
for hog price forecasts when changing from the ARIMA to
models incorporating more information from the sows far-
rowing price. This empirical evidence is somewhat different
forwheat, forwhose prices it was determined thatmore infor-
mation from the exchange rate series can benefit improving
forecast accuracy obtained via theARIMA (Bessler andBab-
ula 1987). For canola prices, the ARIMA was also found to
achieve decent forecasts (Sulewski et al. 1994). Rather than
using one single information source, previous work also sug-
gested the potential value to forecast accuracy by combining
the ARIMA with other model types (Bessler and Chamber-
lain 1988; McIntosh and Bessler 1988). The VAR represents
another important econometric method for forecasts of price
series that builds upon various economic variables’ relations
(Bessler and Hopkins 1986; Chen and Bessler 1987; Bessler
and Brandt 1992; Awokuse and Yang 2003). The VAR was
compared with structural models for the forecast problem of
U.S. cotton prices and it was found that the former tends to
beat the latter during periods with normal price volatilities
(Chen and Bessler 1990). It was demonstrated that the VAR
can be useful in sorting out the predictive content among a
set of wheat futures prices from different countries (Yang
et al. 2003) and U.S. soy and soybean prices of different
regions (Babula et al. 2004). Closely related to the VAR, the
VECM further includes the long-run relationship(s) among
economic variables via cointegration and it could be particu-
larly helpful for long-termprice forecasts (Yang andLeatham
1998; Yang and Awokuse 2003; Xu 2019a, b; Yang et al.
2021). For example, it was found that the VECM generally
beats theVAR for internationalwheat price forecasts (Bessler
et al. 2003). The general benefit of using the VECM instead
of some other models was also determined for several differ-
ent agricultural price series (Wang and Bessler 2004).

Recently, machine learning techniques have revealed their
great potential for price and yield forecasts of a wide spec-
trum of agricultural commodities (Yuan et al. 2020; Rl and
Mishra 2021; Bayona-Oré et al. 2021; Storm et al. 2020;
Kouadio et al. 2018; Abreham 2019; Huy et al. 2019; Degife
and Sinamo 2019; Naveena et al. 2017; Lopes 2018; Mayabi
2019;Moreno and Salazar 2018; Zelingher et al. 2021; Shah-
hosseini et al. 2021, 2020; dos Reis Filho 2020; Zelingher
et al. 2020; Ribeiro et al. 2019; Surjandari et al. 2015;
Ayankoya et al. 2016; Ali et al. 2018; Fang et al. 2020; Harris
2017; Li et al. 2020a; Yoosefzadeh-Najafabadi et al. 2021;
Ribeiro and dos Santos 2020; Zhao 2021; Jiang et al. 2019;
Handoyo and Chen 2020; Silalahi 2013; Li et al. 2020b;
Ribeiro and Oliveira 2011; Zhang et al. 2021; Melo et al.
2007; de Melo et al 2004; Kohzadi et al. 1996; Zou et al.
2007; Rasheed et al. 2021; Khamis and Abdullah 2014; Dias

and Rocha 2019; Gómez et al. 2021; Silva et al. 2019; Deina
et al. 2011; Filippi et al. 2019; Wen et al. 2021), such as
soybeans (dos Reis Filho 2020; Li et al. 2020a; Yoosefzadeh-
Najafabadi et al. 2021; Ribeiro and dos Santos 2020; Zhao
2021; Jiang et al. 2019; Handoyo and Chen 2020), soybean
oil (Silalahi 2013; Li et al. 2020b), sugar (Surjandari et al.
2015; Ribeiro and Oliveira 2011; Zhang et al. 2021; Melo
et al. 2007; deMelo et al 2004; Silva et al. 2019), corn (Xu and
Zhang 2021f; Mayabi 2019; Moreno and Salazar 2018; Zel-
ingher et al. 2021; Shahhosseini et al. 2021, 2020; dos Reis
Filho 2020; Zelingher et al. 2020; Ribeiro et al. 2019; Sur-
jandari et al. 2015; Ayankoya et al. 2016), wheat (Fang et al.
2020; Ribeiro and dos Santos 2020; Kohzadi et al. 1996; Zou
et al. 2007; Rasheed et al. 2021; Khamis and Abdullah 2014;
Dias and Rocha 2019; Gómez et al. 2021), coffee (Koua-
dio et al. 2018; Abreham 2019; Huy et al. 2019; Degife and
Sinamo 2019; Naveena et al. 2017; Lopes 2018; Deina et al.
2011), oats (Harris 2017), cotton (Ali et al. 2018; Fang et al.
2020), and canola (Shahwan and Odening 2007; Filippi et al.
2019;Wen et al. 2021). The techniques include the neural net-
work (Xu andZhang 2021f; Yuan et al. 2020; Abreham2019;
Huy et al. 2019; Naveena et al. 2017; Mayabi 2019; Moreno
and Salazar 2018; Ayankoya et al. 2016; Fang et al. 2020;
Harris 2017; Li et al. 2020a; Yoosefzadeh-Najafabadi et al.
2021; Ribeiro and dos Santos 2020; Silalahi 2013; Li et al.
2020b; Ribeiro and Oliveira 2011; Zhang et al. 2021; Melo
et al. 2007; deMelo et al 2004; Kohzadi et al. 1996; Zou et al.
2007; Rasheed et al. 2021; Khamis and Abdullah 2014; Silva
et al. 2019; Deina et al. 2011; Shahwan and Odening 2007),
genetic programming Ali et al. (2018), extreme learning
(Kouadio et al. 2018; Jiang et al. 2019; Silva et al. 2019;Deina
et al. 2011), deep learning (Rl and Mishra 2021), K-nearest
neighbor (Abreham 2019; Lopes 2018; Gómez et al. 2021),
support vector regression (Abreham 2019; Lopes 2018; dos
Reis Filho 2020; Surjandari et al. 2015; Fang et al. 2020; Har-
ris 2017; Li et al. 2020a; Yoosefzadeh-Najafabadi et al. 2021;
Ribeiro and dos Santos 2020; Zhao 2021; Li et al. 2020b;
Zhang et al. 2021; Dias and Rocha 2019; Gómez et al. 2021),
random forest (Kouadio et al. 2018; Lopes 2018; Zelingher
et al. 2021; Shahhosseini et al. 2021, 2020; Zelingher et al.
2020; Li et al. 2020a; Yoosefzadeh-Najafabadi et al. 2021;
Ribeiro and dos Santos 2020; Dias and Rocha 2019; Gómez
et al. 2021; Filippi et al. 2019; Wen et al. 2021), multivariate
adaptive regression splines (Dias and Rocha 2019), decision
tree (Abreham 2019; Degife and Sinamo 2019; Lopes 2018;
Zelingher et al. 2021, 2020; Surjandari et al. 2015; Harris
2017; Dias and Rocha 2019), ensemble (Shahhosseini et al.
2021, 2020; Ribeiro et al. 2019; Fang et al. 2020; Ribeiro
and dos Santos 2020), and boosting (Lopes 2018; Zelingher
et al. 2021; Shahhosseini et al. 2021, 2020; Zelingher et al.
2020; Ribeiro and dos Santos 2020; Gómez et al. 2021).
Efforts have been seen in the literature aiming at improving
efficiency and performance of machine learning techniques
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(Vajda and Santosh 2016; Elliott et al. 2020). For example,
a fast method has been proposed to classify patterns when a
k-nearest neighbor classifier is used and the method has been
found to not only improve efficiency but also maintain clas-
sification performance (Vajda and Santosh 2016). In another
work (Elliott et al. 2020), an ensemble method has been suc-
cessfully constructed to improve efficiency and performance
of deep Q-learning. For soybean oil, the genetic algorithm
was used to optimize the topology in the neural network for
forecasting its prices (Silalahi 2013). It was also found that
wavelet transformations and exponential smoothing could
benefit forecast accuracy of the neural network and support
vector regression for soybean oil futures prices (Li et al.
2020b). For canola, the neural network was combined with
the ARIMA to improve price forecast accuracy from each
individual model (Shahwan and Odening 2007). In terms of
canola’s yields, the random forest was successfully adopted
for their forecasts (Filippi et al. 2019;Wen et al. 2021). Based
on our review here and that from Bayona-Oré et al. (2021),
the neural network appears to be the most commonly con-
sidered machine learning model for agricultural commodity
price forecasting. In particular, previous work (Xu 2015b,
2018a, b, c; Yang et al. 2008, 2010; Wang and Yang 2010;
Karasu et al. 2020; Wegener et al. 2016) has revealed that
neural network techniques have great potential for forecasts
of economic and financial time series, which can be rather
noised and chaotic. Previous research (Xu and Zhang 2022j;
Yang et al. 2008, 2010; Wang and Yang 2010;Wegener et al.
2016; Karasu et al. 2017a, b) has also demonstrated that neu-
ral networks could generate high accuracy across various
forecasting circumstances. This might benefit from neural
networks’ capabilities of self-learning for forecasts (Karasu
et al. 2020; Xu and Zhang 2022a) and capturing non-linear
characteristics (Altan et al. 2021) in economic and financial
data (Xu 2018d; Xu and Zhang 2021a, b). The present study
will concentrate on the neural network for forecasting price
indices of canola and soybean oil.

To facilitate our analysis, we assess the forecast problem
using weekly wholesale price indices of canola and soybean
oil in China during January 1, 2010–January 3, 2020 by
employing the non-linear auto-regressive neural network as
the forecast tool. We evaluate forecast performance of differ-
ent model settings over algorithms, delays, hidden neurons,
and data splitting ratios in arriving at the final models for
the two commodities, which are relatively simple and lead to
accurate and stable results. To our knowledge and based upon
the previous work mentioned above, this is the first study on
forecasts of these two vital cooking oil price indices in the
Chinesemarket. There should be little double that it is of great
importance to investors and policy makers to have a good
understanding of timely and accurate forecasts of commod-
ity prices, which could benefit prompt portfolio adjustments,
risk monitoring, and market assessments. By examining the

forecast problem using the weekly data, the current study
helps timely decisioning. Our results might serve as tech-
nical forecasts on a standalone basis or be combined with
other fundamental forecasts for perspectives of price trends
and associatedpolicy analysis. The forecast frameworkmight
also have the potential to be generalized to related forecast
problems of other agricultural commodities and in other eco-
nomic sectors, such as the energy, metal, and mineral.

2 Data

Weekly wholesale price indices of canola and soybean oil in
China during January 1, 2010–January 3, 2020 for analysis
are plotted in the top panel of Fig. 1, together with their first
differences. The average weekly price in June 1994 is used as
the base period price index, which is set at 100 that measures
the price of canola oil or soybean oil of 50 kilograms. The
bottom panel of Fig. 1 also visualizes price indices and their
first differences with histograms of fifty bins and kernel esti-
mates to present their distributions. Table 1 reports summary
statistics of the data that include theminimum,mean,median,
maximum, standard deviation (Std), skewness, kurtosis, and
p-value of the Jarque–Bera test of the price indices and their
first differences, where one could see that they are not nor-
mally distributed, as generally expected for financial series
(Xu 2017b, 2019c; Xu and Zhang 2022b). It is worth not-
ing that price indices of soybean oil are missing on February
19, 2010, and February 3, 2017, and we utilize cubic spline
interpolation for approximations of 99.39 and102.52, respec-
tively.The approximatedprice indexof 99.39onFebruary19,
2010, is close to 101.84 on February 12, 2010, and 101.40 on
February 26, 2010. Similarly, the approximated price index
of 102.52 on February 3, 2017, is close to 103.49 on January
27, 2017, and 99.76 on February 10, 2017.

3 Methods

We use the non-linear auto-regressive neural network model
as the forecasting tool for weekly price indices of canola
and soybean oil. This model could be expressed as yt =
f (yt−1, ..., yt−d). Here, y is theweekly price index of canola
or soybean oil to be forecasted, t denotes time, d denotes the
number of delays, and f denotes the function.Weconcentrate
on one-week ahead forecasts.

We adopt the two-layer feedforward network, which has a
sigmoid transfer function among hidden layers and a lin-
ear transfer function associated with the output layer. In
terms of algorithms for model training, we consider both
the Levenberg–Marquardt (LM) algorithm (Levenberg 1944;
Marquardt 1963) and scaled conjugate gradient (SCG) algo-
rithm (Møller 1993), which have been employed in a diverse
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Fig. 1 Top panel: weekly price indices of canola and soybean oil (left) and first differences of prices (right); Bottom panel: histograms of fifty bins
and kernel estimates for weekly price indices and their first differences of canola oil (left two) and those of soybean oil (right two)

Table 1 Summary statistics of weekly price indices and their first differences of canola and soybean oil

Commodity Series Minimum Mean Median Std Maximum Skewness Kurtosis Jarque–Bera

Canola oil Price 83.6200 105.5743 99.2000 16.9969 152.2600 0.5020 1.7533 < 0.001

First difference −35.6800 −0.0118 0.0500 3.1627 47.3600 3.2782 131.2897 < 0.001

Soybean oil Price 73.6600 108.1831 106.3700 18.7667 140.1700 0.2779 1.6938 < 0.001

First difference −11.8600 −0.0427 0.0150 2.8143 15.2100 0.0307 7.2074 < 0.001

variety of research fields (Xu and Zhang 2021c, d, 2022c,
2021e; Doan and Liong 2004; Kayri 2016; Khan et al. 2019;
Selvamuthu et al. 2019). These two algorithms have been
found to be useful for forecasting time series with nonlinear
patterns (Abraham 2004; Asadi et al. 2012; Ahadi and Liang
2018; Selvamuthu et al. 2019; Qazani et al. 2021). Compara-
tive studies of these two algorithms could be found fromsome
of previous work (Baghirli 2015; Xu and Zhang 2022d, e;
Al Bataineh and Kaur 2018). The LM algorithm makes
approximations of the second-order training speed so that
it could avoid expensive computing of the Hessian matrix,
H (Paluszek and Thomas 2020), and it could efficiently han-
dle the slow convergence issue (Hagan and Menhaj 1994).
The SCG algorithm avoids time-consuming line searches in
conjugate gradient algorithms and is generally faster as com-
pared to the LM backpropagation.

Specifically, the approximation performed through the
LM algorithm could be expressed as H = J T J , where

J =
[

∂ f
∂z1

∂ f
∂z2

]
for a nonlinear function f (z1, z2) with

H =
⎡
⎣

∂2 f
∂z21

∂2 f
∂z1∂z2

∂2 f
∂z2∂z1

∂2 f
∂z22

⎤
⎦. g = J T e is used to represent

the gradient, where e contains the error vector. The rule of

zk+1 = zk −
[
J T J + μI

]−1
J T e is utilized to make updates

of weights and biases, where I represents the identity matrix.
The LM algorithm is similar to Newton’s method for the case
ofμ = 0 and it is gradient descent with small step sizes when
μ is large. The value of μ will be decreased if faster gradi-
ent descent is less needed after successful steps. The LM
algorithm not only has desired properties of steepest-descent
algorithms andGauss–Newtonmethods but also avoids some
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of their limitations that include the potential issue of slow
convergence (Hagan and Menhaj 1994).

Backpropagation algorithms carry out adjustments of
weights in the steepest descent as the performance function
would rapidly decrease in the direction, which however, does
not always reflect the fastest convergence.Conjugate gradient
algorithms carry out searches along the conjugate direction,
which in general, result in faster convergence as compared to
the steepest descent. Most algorithms would apply learning
rates for determining lengths of updated weight step sizes.
For conjugate gradient algorithms, step sizes are modified
during iterations. Hence, the search is carried out along the
conjugate gradient direction for determining the step size
for the reduction of the performance function. Besides, for
the purpose of avoiding time-consuming line searches in
conjugate gradient algorithms, the SCG algorithm, which is
fully-automated and supervised, could be used. It is generally
quicker than the LM backpropagation.

In addition to different algorithms considered, different
model settings over delays, hidden neurons, and data spitting
ratios are examined as well. We consider delays of 2, 3, 4,
5, and 6, hidden neurons of 2, 3, 5 and 10, and data spitting
ratios of 60% vs. 20% vs. 20%, 70% vs. 15% vs. 15%, and
80% vs. 10% vs. 10% for training, validation, and testing.
These model settings are summarized in Table 2, where the
setting #27 is utilized to build the final chosen model for the
price index of canola oil and the setting #23 for the price
index of soybean oil, both of which are trained through the
LM algorithm following the ratio of 70% vs. 15% vs. 15%
for training, validation, and testing. The setting #27 is based
on 5 delays and 5 hidden neurons, and the setting #23 is based
on 3 delays and 5 hidden neurons.

4 Results

All of the model settings shown in Table 2 are run for weekly
price indices of canola and soybean oil. For each model set-
ting, the relative root mean square error (RRMSE), as the
forecast performance metric, is computed for training, val-
idation, and testing phases and the corresponding results
are shown in Fig. 2. The RRMSE expresses forecast per-
formance in a percentage form and helps comparisons of
forecast performance across different series andmodels. Bal-
ancing forecast performance and stabilities, the setting #27 (5
delays and 5 hidden neurons) is chosen for the price index of
canola oil and the setting #23 (3 delays and 5 hidden neurons)
for the price index of soybean oil, both of which are based
upon the LM algorithm and the data splitting ratio of 70%
vs. 15% vs. 15% for training, validation, and testing. These
two chosen settings are marked with dark arrows in Fig. 2
and one should be able to observe that they not only generate
rather low RRMSEs but also produce rather close RRMSEs.

More specifically, one could see from Fig. 2 that for the cho-
sen settings, the diamond corresponding to training, square
corresponding to validation, and triangular corresponding to
testing are pretty close to each other. Taking canola oil as
an example, there exist other settings with a lower RRMSE
as compared to the setting #27 for a specific sub-sample but
with higher RRMSEs for the remaining sub-samples, mean-
ing a lower stability. For example, the setting #15 shows a
slightly lower RRMSE than the setting #27 for training but
higher RRMSEs for validation and testing, as well as a higher
overall RRMSE. Choosing the model setting with relatively
stable performance across training, validation, and testing
could help ensure no overfitting or underfitting.

Having the chosen setting determined for each com-
modity, performance sensitivities to different settings are
evaluated through altering one setting a time and the cor-
responding results are presented in Fig. 3, where RRMSEs
for training, validation, and testing based upon each setting
are reported. For the price index of canola oil, the comparison
between the settings #27 and #28 evaluates the sensitivity to
algorithms, between the setting #27 and settings #21, #23,
#25, and #29 the sensitivity to delays, between the setting
#27 and settings #7, #17, and #37 the sensitivity to hidden
neurons, and between the setting #27 and settings #67 and
#107 the sensitivity to data splitting ratios. For the price index
of soybean oil, the comparison between the settings #23 and
#24 evaluates the sensitivity to algorithms, between the set-
ting #23 and settings #21, #25, #27, and #29 the sensitivity
to delays, between the setting #23 and settings #3, #13, and
#33 the sensitivity to hidden neurons, and between the setting
#23 and settings #63 and #103 the sensitivity to data split-
ting ratios. These results support the settings #27 as the final
choice for the price index of canola oil, leading to RRMSEs
of 2.66, 1.46, and 2.17% for training, validation, and testing,
respectively, and the overall RRMSE of 2.45%, and these
results support the settings #23 as the final choice for the
price index of soybean oil, leading to RRMSEs of 2.33, 1.96,
and 1.98% for training, validation, and testing, respectively,
and the overall RRMSEof 2.23%.From the perspective of the
mean absolute error (MAE), the setting #27 leads to MAEs
of 1.2512, 1.1289, and 1.3776 for training, validation, and
testing, respectively, and the overall MAE of 1.2518 for the
price index of canola oil, and the setting #23 leads toMAEs of
1.7565, 1.6153, and 1.5667 for training, validation, and test-
ing, respectively, and the overall MAE of 1.7069 for the price
index of soybean oil. We could observe from Fig. 3 that the
settings #27 and #23 lead to rather stable performance across
the training, validation, and testing phases among the alter-
natives for the price indices of canola oil and soybean oil,
respectively. From Fig. 3, it could be seen that better overall
performance is achieved through the LM algorithm as com-
pared to the SCG algorithm, which is reflected through the
comparison between the settings #27 that is based on the LM
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Table 2 Explored model settings for weekly price indices of canola and soybean oil

Model setting

Algorithm LM 1+ 2i(i = 0, 1, ..., 59)

SCG 2+ 2i(i = 0, 1, ..., 59)

Delay 2 1+ 10 j − 2+ 10 j( j = 0, 1, ..., 11)

3 3+ 10 j − 4+ 10 j( j = 0, 1, ..., 11)

4 5+ 10 j − 6+ 10 j( j = 0, 1, ..., 11)

5 7+ 10 j − 8+ 10 j( j = 0, 1, ..., 11)

6 9+ 10 j − 10+ 10 j( j = 0, 1, ..., 11)

Hidden neuron 2 1+ 40k − 10+ 40k(k = 0, 1, 2)

3 11+ 40k − 20+ 40k(k = 0, 1, 2)

5 21+ 40k − 30+ 40k(k = 0, 1, 2)

10 31+ 40k − 40+ 40k(k = 0, 1, 2)

Training vs. validation vs. testing ratio 70% vs. 15% vs. 15% 1–40

60% vs. 20% vs. 20% 41–80

80% vs. 10% vs. 10% 81–120

(a) (b)

Fig. 2 RRMSEs across all model settings for weekly price indices of canola and soybean oil

algorithm and #28 that is based on the SCG algorithm for the
price index of canola oil and through the comparison between
the settings #23 that is based on the LM algorithm and #24
that is based on the SCG algorithm for the price index of
soybean oil. This is consistent with the literature (Xu and
Zhang 2022l, f; Batra 2014), which finds that while the SCG
algorithm is generally better in terms of speed than the LM
algorithm on a multilayer perceptron structure with two hid-
den layers, theLMalgorithmgenerally leads to slightly better
performance in terms of accuracy than the SCG algorithm.

Detailed visualization of forecasted results and forecast
errors based upon the chosen setting for the training, val-
idation, and testing phases are shown in Fig. 4 for each
commodity. Overall, the chosen setting results in accurate
and stable performance, suggesting usefulness of the neural
network technique for forecasting weekly price indices of
canola and soybean oil. Particularly, from Fig. 4 (top panel),
we could observe that the forecasted price indices closely
track the observed ones across the training, validation, and
testing phases. From Fig. 4 (bottom panel), we could see
that there is no consistent overprediction or underprediction
across the training, validation, and testing phases. One could
also observe that a couple of forecast errors shown in Fig. 4
(bottom panel) are larger during periods with significantly
elevated price volatilities, particularly for canola oil near the

end of the sample. This might not be surprising and the mod-
els generally still capture the trends during these periods.

5 Discussion

We have conducted error autocorrelation analysis as well
(details available upon request) and autocorrelations asso-
ciated with different lags up to the lag of 20 are all within
the 95% confidence limits except for the lags of 6 and 13
for canola and soybean oil, respectively, for which slight
breaches of the confidence limit are found. These slight
breaches will be avoided if the 99% confidence limit is used.
The error autocorrelation analysis thus suggests that the cho-
sen settings are generally adequate.

It has been well established in the literature (Yang et al.
2008, 2010; Wang and Yang 2010; Karasu et al. 2020) that
there could be nonlinearities in higher moments inhabiting
financial and economic time series data. We apply the BDS
test (Brock et al. 1996), for which one might refer to Der-
giades et al. (2013) and Fujihara and Mougoué (1997) for a
formal description and to Brock et al. (1996) for all technical
details, to the weekly price indices of canola and soybean
oil examined in the current study and find that p values of
the tests are all well below 0.01 and almost 0 based upon

123



Advances in Computational Intelligence (2022) 2 :32 Page 7 of 12 32

#27
(Chosen) #28 #21 #23 #25 #29 #7 #17 #37 #67 #107

Training 2.66% 3.03% 2.64% 1.35% 2.82% 4.69% 3.81% 2.77% 2.63% 2.81% 2.54%
Validation 1.46% 1.38% 2.50% 5.37% 5.09% 8.78% 4.34% 1.75% 1.70% 1.51% 1.52%
Testing 2.17% 1.68% 1.53% 1.74% 2.08% 4.13% 3.27% 1.63% 3.45% 1.59% 1.45%
Overall 2.45% 2.68% 2.48% 2.45% 3.17% 5.43% 3.82% 2.50% 2.66% 2.40% 2.36%
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Fig. 3 Sensitivities of model performance (the RRMSE) to different model settings for weekly price indices of canola and soybean oil
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Fig. 4 Top panel: forecasts of weekly price indices of canola and soybean oil; Bottom panel: forecast errors calculated as observations minus
forecasts

embedding dimensions of 2 to 10 and ε values (i.e. distance
used for testing proximity of data points) of 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0 times the standard deviation of the price
index series. Neural network techniques have capabilities of
self-learning for forecasts (Karasu et al. 2020) and capturing
non-linear features (Altan et al. 2021) often inhabiting finan-
cial and economic series, such as the cooking oil price indices

considered here. The neural network’s one advantage over
other non-linear techniques for time series modeling is that
it would well approximate a large class of functions with a
class of multi-layer neural networks (Yang et al. 2008, 2010;
Wang and Yang 2010). Unlike common non-linear models
that employ a specific non-linear function between inputs
and the output, the neural network’s multi-layer structure
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would combinemany ‘basic’ non-linear functions.With good
forecast performance achieved here, usefulness of the neural
network technique is empirically demonstrated to the fore-
cast issue of the weekly price indices of canola and soybean
oil.

6 Conclusion

Forecasts of commodity prices represent vital issues to mar-
ket participants and policy makers. Those of cooking oil are
of no exception. In the present study, the forecast problem
is investigated for weekly wholesale price indices of canola
and soybean oil in China during January 1, 2010–January 3,
2020. The forecast technique adopted here is the non-linear
auto-regressive neural network and the final models for the
two commodities are built by exploring different model set-
tings. For price indices of both commodities, the final models
are constructed based upon the Levenberg–Marquardt algo-
rithm (Levenberg 1944;Marquardt 1963) and a data splitting
ratio of 70% vs. 15% vs. 15% for training, validation, and
testing. The model for the price index of canola oil uses 5
delays and 5 hidden neurons, and that for the price index of
soybean oil uses 3 delays and 5 hidden neurons. The models
lead to accurate and stable forecast performance. Particu-
larly, the model for the price index of canola oil generates
relative root mean square errors (RRMSEs) of 2.66, 1.46,
and 2.17% for training, validation, and testing, respectively,
and the overall RRMSE of 2.45%, and the model for the
price index of soybean oil generates RRMSEs of 2.33, 1.96,
and 1.98% for training, validation, and testing, respectively,
and the overall RRMSE of 2.23%. Our results might serve
as technical forecasts on a standalone basis or be combined
with other fundamental forecasts for perspectives of price
trends and associated policy analysis. The framework pre-
sented here should not appear to be difficult to implement,
which can be an important consideration to decision makers
(Brandt and Bessler 1983), and it might also have the poten-
tial to be generalized to related forecast problems of other
agricultural commodities and in other economic sectors, such
as the energy, metal, and mineral. Future research of interest
might be examining the potential of combining (non)linear
time series techniques and graph theory frommachine learn-
ing for price forecasts (Kano and Shimizu 2003; Shimizu
et al. 2006; Xu and Zhang 2022g; Shimizu and Kano 2008;
Shimizu et al. 2011; Xu 2014a; Bessler and Wang 2012).
Exploring economic significance of adopting neural network
modeling or othermachine learning techniques for price fore-
casts might also be a worthwhile avenue for future research
(Yang et al. 2008, 2010; Wang and Yang 2010).
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