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Abstract
The paper analyzes observations using a logic-based numerical methodology in Python. The Logical Analysis of Data
(LAD) specializes in selecting a minimal number of features and finding unique patterns within it to distinguish ‘positive’
from ‘negative’ observations. The Python implementation of the classification model is further improved by introducing
adaptations to pattern generation techniques. Finally, a case study of the Power Attack Systems Dataset used to improvise
Smart Grid technology is performed to explore real-life applications of the classification model and analyze its performance
against commonly used techniques.
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1 Introduction

Smart grids are electrical grids that use information and com-
munication technology (ICT) to provide efficient, reliable
distribution and transmission. The importance of security
and trust cannot be overstated. Among the several developing
security vulnerabilities, the fake data injection (FDI) attack is
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one of the most serious, with the potential to increase energy
distribution costs drastically (Ahmed and Pathan 2020). The
reliable operation of any power system depends mainly on
appropriate protection schemes developed for line faults and
emergencies. The reliable protection scheme enables faster
fault detection to restore the power supply as soon as possible
after a failure. In recent years, with the dazzling assim-
ilation of the physical energy transmission system in the
smart grid with the cybernetic information and communi-
cation tools, the possibility of cyber-attacks poses a severe
challenge to the development and implementation of the reli-
able protection mechanism. Fail protection components play
an essential role in the overall operation and control of the
power system. Increased pressure on rapid fault detection
and a reduction in fault levels are emerging because the
penetration of renewable energy has caused a shift from a
classic protection scheme using local measures to a “wide-
area measurement-based protection scheme” (Phadke et al.
2008). The protection scheme’s effective performance based
on the wide-area measurement is highly dependent on the
information from the sensor transmitted to the control cen-
ter over the network. The power system is overly dependent
on the public communication network for reliable monitor-
ing and operation, making it vulnerable to network attacks
(Sridhar et al. 2011). False Data Injection Attack (FDIA) is
considered the most effective network attack, in which the
hacker can block the entire power grid with minimal effort.
During the FDIA, the attacker destroys the integrity of a set
of measurements used in the protection algorithm by altering
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themeter/sensormeasurements (Liang et al. 2016; Liu and Li
2017). The protection algorithm is part of the backup protec-
tion strategy, and the control center operates it. Transmission
of erroneous data to the control center can cause unnecessary
control actions, leading to unexpected events or even power
outages. Therefore, the current scenario requires a protection
scheme that is immune to data falsification or/and includes
components for the preventive detention of the injection
of false data. Conventional flawed data detection methods
that are part of the state estimator should detect any mali-
ciousmanipulation of sensor information.However, Liu et al.
(2011) have proven that hackers with sufficient knowledge of
system dynamics can bypass the lousy data detection tech-
nology and inject random errors into state variables using
FDIA to inject information from malicious sensors. Thus,
manipulation of the sensor information during an attack can
provide a misleading picture of the dynamics and operation
of the system, causing the relay to malfunction during the
fault or causing the relay to trip and then isolate itself. The
malfunction of the protection relay and the delay in detect-
ing this type of attack can cause enormous economic losses,
damage to assets, and the collapse of the subsystems and
control mechanisms related to power systems.

Several reasons have contributed to a significant increase
in installation error-based data injection seizures. Some of
the factors are continuous real-time online monitoring using
sensors (CT, PT, PMU) and communication networks, using
signal information of different locations or bus current or
voltage. The recent work of FDIA in the power grid mainly
focuses on FDIA modeling, attack detection, and defense
measures (Liu et al. 2016). The possible impact of FDIA on
the power system has been addressed in (Liang et al. 2016;
Liu et al. 2011; Deng et al. 2016). Noteworthy solutions for
FDIA detection reports in power grids are based on transmis-
sion line susceptance measurement (Deng and Liang 2018),
reactance disturbance (Liu et al. 2018), joint transformation
(Singh et al. 2017), extreme machine learning (Yang et al.
2017), optimized dispersion (Liu et al. 2014) and cumulative
sum method (Li et al. 2014). Yang et al. (2013) proposed a
countermeasure against FDIA, provided that the sensor mea-
sures the injected energy flow in the bus and connects to
several other buses, which requires safety. The inaccessibil-
ity of these sensorswillmake it difficult for attackers to install
FDIA. In Bi and Zhang (2014), Deng et al. (2015), a defense
mechanism is proposed to protect a set of state variables.

Das et al. (2019) have proposed a logical analysis of
numerical data (LAD) scheme of a simple, economically
viable, and FDIA resilient for the attack on power systems,
under the assumption that the adversary has complete knowl-
edge of the system dynamics. The rule-based fault detection
scheme identifies the limited set of sensors that would be
secured using the cryptographic protocol, tamper-resistant
hardware, and encryption-baseddata analysis bymapping the

Fig. 1 F1 Scores of different Learners

secure sensor information. This paper implements the LAD
process with adaptations to simulate and optimize the results.
The LAD process uses top-down and bottom-up approaches
to produce pure patterns. The adaptations introduced in this
produce combinatorial and impure patterns to maximize the
performance of the LAD model. The adapted pattern gen-
eration generated 38 percent more true positive outcomes
than the original model. The model uses a greedy algorithm
to optimize the number of attributes based on conclusions
drawn by paper (Almuallim andDietterich 1994)which com-
pares several feature minimization techniques and evaluates
each one on the worst-case scenarios, time complexity, and
average accuracy. The implementation analyzes power sys-
tem FDIA scenarios - Mississippi State University and Oak
Ridge to identify attack scenarios. Performances of various
classifiers F1 Score of classification on the same dataset
are discussed in the paper (Liu and Li 2017) and visualized
below. In this paper, the proposed architecture yields an F1
Score of 0.86, outperforming the traditional classifiers.

Lastly, we explain the motivation behind employing Log-
ical Analysis of Data (LAD) in smart grids. In data analytics,
machine learning is widely used. According to academics
and industry, practically all machine learning systems func-
tion statistically or optimize blindly. The results’ causal logic
remains a black box, restricting machine learning’s useful-
ness. Our LAD research model employs machine learning to
increase application accuracy and rules to ensure the inter-
pretability of results, starting with a structured approach to
causal reasoning. Simultaneously,we propose a new rule sys-
tem based on a mathematically adapted model. It can handle
potentially enormous datasets with limited computations.

2 LADmodel structure and terminologies

The logical analysis of numerical data (LAD) is a combina-
tory and optimization-based data analysis method. In Boros
et al. (1997) the authors develop the theoretical foundation
of the binarization process. They also study the combinato-
rial optimization problems related to minimizing the number
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of binary variables. The paper establishes nineteen theo-
rems and several lemmas along with proofs. It shows that
any numerical dataset can be checked in polynomial time
whether there is a binarization admitting an extension in
the given class. A linear integer programming problem is
formulated to provide an algorithmic framework for this
minimization problem. Set covering problems and some
heuristic algorithms are implemented and elaborated further
for improvements. LAD detects structural information about
datasets which can provide powerful means to solve various
problems. Mainly it contributes to classification, automatic
knowledge acquisition of expert systems, model-based deci-
sion support system development, database inconsistency
detection, and feature selection.

The LAD methodology was first proposed for the case of
binary data. LAD has applications in numerous disciplines,
such as economics and business, seismology, oil exploration,
and a few typical examples of binary classification problems.
The papers (Boros et al. 2000) and (Hammer and Bonates
2006) are exemplary LAD use cases. It describes the imple-
mentation andwide applicability ofLAD toAustralianCredit
Card, Boston Housing, Breast Cancer (Wisconsin), Congres-
sional Voting datasets, and even pilot experiments such as
Oil Exploration, Psychometric Testing and Labor Produc-
tivity in China, and an in-depth application of LAD as in
the prognosis and diagnosis field of Medical Data Analysis
with case studies of Ovarian Cancer Diagnosis using a Large
Proteomic Dataset, GenomeData-based Breast Cancer Prog-
nosis, respectively. These applications depict the robustness
of LAD in any scenario. The dissertation paper (Bonates
2007) shows efficient ways of constructing LAD classifi-
cation models having high accuracy and requiring minimal
control parameters. It also extended the LAD methodology
to deal with the critical class of regression problems that
frequently appear in data analysis tasks. In this paper, the
implementation in Python behaves as an ML classification
framework and can adapt to changes with ease. The further
sections describe the architecture of code, its adaptations,
results, and the conclusions drawn.

2.1 Mathematical background

The essential mathematical foundation components of LAD
(Alexe et al. 2007) are the following:

– To remove superfluousvariables from theoriginal dataset,
we select a (usually minimal) subset S that can discrim-
inate positive from negative observations. We work with
the projections +S and −S on this group of variables in
the following steps. While most data analysis methods
include a “feature extraction” step, the LAD methodol-
ogy uses it differently. Here, it emphasizes the interaction
of variables and the importance of retaining those that can

influence the positive or negative nature of observations
individually and those whose “collective” or “combina-
torial” effect is significant.

– We cover +S with a family of (potentially overlapping)
homogeneous subsets of the reduced real space, where
each subset intersects +S but is disjoint to −S. LAD
only considers R

|S| intervals with faces parallel to the
axes; these intervals are referred to as “positive patterns”.
For finding “negative patterns”, a similar construction is
used with −S.

– A subset of positive (respectively, negative) patterns is
discovered whose union encompasses all the observa-
tions in +S (respectively, −S). A “model” is a collection
of these two subsets of intervals.

– A classification approach defines each observation’s pos-
itive or negative character covered by the union of the two
subsets of intervals of the model, leaving those observa-
tions uncovered by this union as “unclassified”.

– The resulting classification system’s correctness is veri-
fied using one of the standard validation methods.

The basic structure of LAD starts with a set of observations
S. S consists of observations of two classes, positive and neg-
ative, respectively. Hence S is now categorized into +S and
−S for the above two classes. Each observation carries an n
number of attributes labeled a1, a2, . . . , an . Each attribute is
then analyzed to generate cut points labeled as t1, t2, . . . , tn .
These cut-points generate binarized attributes ba1, ba2, . . ..
The set of all binarized attributes is labeled as V . Then the
support set generation takes place as a set of the minimal
number of binarized attributes labeled Q. Thereafter, Q is
used to produce patterns p1, p2, . . .. Finally, a classification
model is built using all the generated patterns.

2.2 Binarization

The binarization procedure is as follows. The simplest non-
binary attribute is the nominal (or descriptive) attribute.
The typical nominal property is color, and its value can be
red, green, yellow, etc. The binarization of the attribute is
done directly by associating each value vs of the attribute x
against a Boolean variable. In the particular case of nominal
attributes, which are binary, i.e., they take only two values,
no additional binary variables are introduced. The values are
renamed as 0 and 1 Boros et al. (2000).

b (x, vs) =
{
1 if x = vs
0 otherwise

The binarization of ordered attributes is common in many
areas of human activity. For example, blood pressure, body
temperature, pulse rate, and other medical parameters are
called “normal” or “abnormal,” depending on whether they
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Fig. 2 Phases of LAD

are within or outside a specific range. In many other exam-
ples, the parameter (for example, blood sugar level) is called
“normal” or “abnormal” depending on whether it is above
or below a certain threshold. In all of these examples, the
binarization is done implicitly by comparing the value of a
numeric attribute with some standard cut-off point (critical
value). Following that, the same principle is applied for bina-
rizing real numerical values. The variables are split into two
types: level and interval. Level variables, as the name sug-
gests, create levels, that is the binarization occurs based on
the value being above or belowevery cut-off point(t), labeling
it as 1 and 0, respectively.

b(x, t) =
{
1 if x ≥ t
0 if x < t

Similarly, binarization for interval variables takes place if the
value lies between two cut points.

b
(
x, t ′, t ′′

) =
{
1 if t ′ ≤ x < t ′′
0 otherwise

While binarizing numerical attributes, the unique values are
sorted in an array to calculate the cut points. In order to make
this binarization proceduremore robust concerningmeasure-
ment errors (in the case of numerical attributes), we will use
the cut-points as the range between midpoints of consecutive
unique points ts = 1

2 (vs−1 + vs) .
While dealing with huge datasets, we set up a threshold of

critical values generated from a particular attribute to mini-
mize the generation of ambiguous cut points. For example,
for an attribute containing 3000 cut points, critical points

generated could be limited to 200. If it fails to generate less
than 200 points, we try to improvise the attribute by rounding
off each point’s last digit and calculating until the number of
cut points is less than the threshold.

2.3 Support set generation

After obtaining a binary dataset, the elimination of redun-
dant attributes is prioritized. All LADarchives of observation
points are partitioned into a set of true (+S) and false
(−S) classes, i.e., we assume that no observation point is
present in both simultaneously. This property is known as
contradiction-free, a basic requirement to be maintained by
any correct binarization technique, as clearly preserved by
our process. A set of binary attributes is called a support set Q
if the archive obtained by eliminating all the other attributes
will remain contradiction-free. A support set is called irre-
dundant if no proper subset of it is a support set Boros
et al. (2000). The Support Set Generation method used here
is Mutual Information Greedy (MIG) Algorithm Almual-
lim and Dietterich (1994). The paper concludes that the
MIG algorithm maintained good average-case performance
improving all the learning processes it was implemented
on while exhibiting rather bad worst-case performance. The
MIG algorithm has entropy, or score calculation function as
follows:

MIG score = −
2|Q|−1∑
i=0

pi + ni
| Sample |

[
pi

pi + ni
log2

pi
pi + ni

+ ni
pi + ni

log2
ni

pi + ni

]
.
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In the Mutual-Information-Greedy Algorithm, the feature
that leads to the minimum entropy when added to the current
partial solution is selected as the best feature. The best fea-
ture is used to partition each group of training samples until
each group is either solely positive or negative. An example
of the execution without splitting the training sample into all
2Q groups is elaborated below.

Algorithm 1 MIG Algorithm Almuallim and Dietterich
(1994)
1: Q = φ, V = {x1, x2, . . . , xn}, S ={ Sample }
2: while S is not empty do
3: Best-score = ∞
4: for xi ∈ V do
5: Score =0
6: for s ∈ S do
7: p0 = # of positive examples in s with x1 = 0
8: n0 = # of negative examples in s with xi = 0
9: p1 = # of positive examples in s with xi = 1
10: n1 = # of negative examples in s with xi = 1
11: e0 = p0

p0+n0
log2

p0
p0+n0

+ n0
p0+n0

log2
n0

p0+n0
12: e1 = p1

p1+n1
log2

p1
p1+n1

+ n1
p1+n1

log2
n1

p1+n1

13: Score(xi ) = Score(xi ) -
p0+n0
Sample [e0 + e1]

14: end for
15: if Score(xi ) < Best-score then
16: Best-feature = xi
17: Best-score = Score
18: end if
19: end for
20: for s ∈ S do
21: Partition s into s0 and s1, which are the sets of examples with

Best-Feature =0 and 1, respectively.
22: Replace s in S by s0 and s1. However, if any of s0 and s1 is

empty or contains only examples of the same class, then it should
not be added to S.

23: end for
24: Remove Best-Feature from V .
25: Add Best-Feature to Q.
26: Return Q.
27: end while

2.4 Pattern recognition

Patterns are combinations of Boolean attributes of specific
orientation that help us classify betweenpositive andnegative
classes. For example, a combination of binary attributes b1
= 1 and b2 = 0 are only found in positive classes and not
in negative classes, which becomes a well-defined positive
pattern. The symmetrical definition for negative patterns also
holds. The simplest pattern generation method is based on
the use of the combinatorial enumeration technique. Given
that there are various possible quality metrics for any given
pattern, it is important that the pattern generation process
must not lose any best patterns. Here best patterns symbolize
any pattern that classifies many data points of a specific class
at once. Any pattern generation technique should follow two

basic principles. The simplicity principle is that short patterns
are preferred over longer ones. The second principle is about
comprehensive patterns, i.e., all observations of a particular
class are to be classified by one of the patterns. We followed
a bottom-up approach up to third-degree positive patterns
for our model as higher degree pattern generation was not
computationally feasible. The pattern generation process is
explained through the Algorithm 2 (Das et al. 2020).

Algorithm 2 Pattern Recognition Algorithm
1: Input: �+

s , �−
s ⊂ {0, 1}π ,− Sets of positive and negative obser-

vations.
2: d̄ - Maximum degree of generated patterns.
3: k+- Minimum number of positive observations covered by a pattern.
4: h+- Required homogeneity of a pattern.
5: Output: P - Set of prime patterns.
6: P = q.
7: C0 = {n}.
8: for d = 1, . . . , d do
9: if d < d then
10: Cd = ∅. {Cd is not required.}
11: end if
12: for T ∈ Cd−1 do
13: p = maximum index of the literal in T .
14: for s = p + 1, . . . , n do
15: for lnew ∈ {

ls , l̄s
}
do

16: T ′ = T ‖laew .

17: for i = 1 to d − 1 do
18: T ′′ = remove t th literal from T ′.
19: if T n&Cd−1 then
20: break
21: end if
22: end for
23: if k+ ≤ ∑

y∈�ξ
T ′(y) then

24: {T ′ covers at least k many positive observations.}

25: if
∑

p−n j
T (p)∑

p∈�
+
S
T (p)+∑

p∈�
−
s
T (p) ≥ h+ then

26: {T ′ may cover a few negative observations.}
27: P = P ∪ {

T ′}.
28: Remove the points (or observations) covered by

T′ from �t
3.

29: end if
30: else if d < d̄ then
31: Cd = Cd ∪ {T ′}
32: end if
33: end for
34: end for
35: end for
36: end for

While generating patterns with limited computational
resources, we were able to build classifiers that were highly
accurate but not comprehensive enough. We introduce two
adaptations in our model inspired from Das et al. (2020).
First, we introduce imperfect patterns in our model. Imper-
fect patterns are those patterns that have incorrect classified
observations but are below a certain threshold. We set that
threshold as 10 percent for our model, which helped us
overcome the set covering problem extensively. The second
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Table 1 Sample data a1 a2 a3

+S Square 12 True

Circle 29 False

Triangle 6 True

Triangle 22 True

−S circle 12 False

Square 33 True

Square 1 False

adaptation introduced in the patterns was combined patterns.
We generated a hybrid fifth-degree pattern as a combination
of a third-degree pattern and not a second-degree pattern.
For example, (b1 = 1 and b2 = 1 and b3 = 1) and not (b4
= 1 and b5 = 1). This helps cover more observations while
maintaining the accuracy and simultaneously avoiding the
time complexity of generating 5-degree patterns.

3 LAD case study with a sample dataset

The steps followed to carry out the Logical Analysis of
Data on the given sample dataset are as follows:

(a) Consider the dataset given in Table 1. We observe that
the attributes a1, a2 and a3 are nominal, numerical and
binary in nature, respectively.

(b) The first attribute denoting shapes, which is nominal in
nature, can be converted into 3 binarized attributes. Each
unique shape becomes a binary variable.

b1 b2 b3
a1 = square a1 = circle a1 = tr iangle

(c) The second attribute, is numerical in nature and hence
cut points are to be calculated. The cut points formed
are [3.5,9,17,25.5,31]. The binary variables formed are
shown in Table 2.

b4 b5 b6
3.5 ≤ a2 3.5 ≤ a2 ≤ 9 9 ≤ a2 ≤ 17

b7 b8 b9
17 ≤ a2 ≤ 25.5 25.5 ≤ a2 ≤ 31 31 ≤ a2

(d) The last attribute hasBooleanvalueswhich is itself binary
in nature.

b10
a3 = True

(e) Putting it all together

Table 2 Binarized form of sample data

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 0 0 1 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 1

0 0 1 1 0 0 1 0 0 1

0 1 0 1 0 1 0 0 0 0

1 0 0 1 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0

The support set generation technique later minimizes the
binarized dataset as it may contain redundant attributes. Pat-
terns are recognized from the dataset obtained after getting
the support set, and the classifier is modeled. For example, in
the above example, we can directly observe one such pattern
is b3= 1 and b4 =1 that is unique only to the +S set.

4 Cyber physical system survey

Cyber-physical systems (CPS) refer to a new generation of
systems with integrated computational and physical capa-
bilities that can interact with humans through many new
modalities. The ability to interact with and expand the
capabilities of the physical world through computation, com-
munication, and control is a key enabler for future technology
developments. A complete summary of anomaly detection
strategies is provided by Chandola et al. (2009). They did not
include deep learning-based approaches for CPS in an early
effort to review anomaly detection methods. People’s lives
have been revolutionized by commodity IoT solutions. Smart
home applications, for example, allow users to interact with
house appliances automatically. Methods for analyzing pro-
grams to safeguard privacy and find vulnerabilities in these
applications have been proposed in Celik et al. (2019).Mean-
while, Giraldo et al. (2018) looked into anomaly detection
approaches based on CPS physical features (for example, the
evolution of the physical system under control). The findings
of studies on SCADA system network security are described,
with a focus on risk assessment approaches in Cherdantseva
et al. (2016). A review of anomaly detection methodolo-
gies in CPS was published by Mitchell and Chen (2014),
Nazir et al. (2017), and Zacchia Lun et al. (2018). However,
the approaches used do not incorporate deep learning meth-
ods and are more traditional, such as state estimation and
intrusion detection. A study of deep learning-based anomaly
detection systems was conducted in Chalapathy and Chawla
(2019) apart from traditional CPS systems.
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5 Power system attack case study using LAD
model

The dataset used for the model is Power System Attack
Datasets provided by Mississippi State University and Oak
Ridge National Laboratory. The Natural and Attack States
of the power systems are considered positive and negative
observations. This dataset is used because the power sys-
tem disturbances are complex in nature and can be attributed
to a wide range of sources, including man-made and nat-
ural events. Currently, power system operators are heavily
dependent on making decisions about the appropriate course
of action for the cause and response of the interference expe-
rienced. In the case of cyber attacks on the power system,
human judgment is less certain since there is an overt attempt
to disguise the attack and deceive the operators as to the true
state of the system. To enable the human decision-maker, we
explore the viability of the LAD Model as a means for dis-
criminating types of power system disturbances and focus
specifically on detecting cyber-attacks where deception is
a core tenet of the event. The five types of scenarios cov-
ered in the datasets are Short-circuit fault, Line maintenance,
Remote tripping command injection (Attack), Relay setting
change (Attack), and Data Injection (Attack). The scenarios
are explained below (Borges et al. 2014).

Short circuit fault: It is a short that can occur at any point
in the power line and the percentage range indicates the loca-
tion.

Line maintenance: Remote relay trip instruction is given
to open one or more breakers.

Remote tripping command injection (attack): It is an
attack when the attacker sends a false command to relay to
open the breaker.

Relay setting change (Attack): The attacker changes the
relay configuration to prevent it from tripping when an actual
fault occurs.

Data Injection (Attack): A genuine fault is imitated to
induce a blackout by changing parameters like current, volt-
age, etc.

The data was drawn from 15 datasets containing 128 fea-
tures and thousands of samples. Across the classification
systems, an average of 3,711 attack instances and 1,221 nor-
mal instances were included in each file for the analysis.

5.1 Data pre-processing

All the columns with more than sixty percent missing val-
ues were eliminated, and then the rows with missing values
were filtered out. The final clean dataset consisted of 31514
samples. 80-20 (Train-Test) random split was performed on
each dataset using the sklearn library.

5.2 Classificationmetrics

For each classified datasets, a confusion matrix is calculated
consisting true and false, negatives and positives respectively.
Four classification metrics, Accuracy, Precision, Recall, and
F1 Score are calculated as follows.

Accuracy = (TP + TN ) / (TP + TN + FP + FN)

Precision = TP/ (TP + FP)

Recall = TP/ (TP + FN)

F1 = (2 ∗ Precision ∗ Recall)/(Precision + Recall)

Here TP, TN, FP, and FN represent true positive, true neg-
ative, false positive, and false negative, respectively (Hossin
and Sulaiman 2015).

6 Results

Test and train results of detection of cyberattacks on smart
grids using Power Attack Systems dataset and LAD model
have been tabulated in Figure 3. The dataset is distributed in
15 files. Each dataset is split into train and test datasets by 80–
20. Then LAD model is applied to record the performance
of the train and test dataset in terms of accuracy, precision,
recall, and F1 score. The average accuracy, precision, recall,
and F1 score for the test datasets are 79%, 83.9%, 88.4%, and
86%, respectively. In the graphically represented Test dataset
results of LAD (Figure 4), the blue, orange, grey, and yellow
trend lines represent the accuracy, precision, recall, and F1
score, respectively. It portrays the consistent performance of
the LAD model with all subparts of the dataset.

The performance of the LAD and the most widely used
machine learning and deep learning models on the dataset
has been compared in Table 3 based on the F1 score. It also
compares LAD results with previous studies against the same
dataset as given in Hink et al. (2014). It is observed that LAD
outperforms the state-of-the-art classification techniques as
it has obtained an 86% score which is higher than the rest of
the techniques. Apart from overall performance, the in-depth
analysis and impact of introducing adaptions are visualized
in Table 4 by comparing the performance between LAD and
the adapted LAD model on a random subpart of the dataset.
The adapted LADmodel contains impure and hybrid patterns
discussed in the Pattern Recognition section of the paper.

It can be deduced from the confusion matrix given in
Table 4 that the standard LAD model provides very high
precision, whereas the adaptations allow more accuracy and
recall and overall create a positive impact for classification.
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Fig. 3 LAD train and test
results data

Fig. 4 LAD test results

7 Gap analysis and contribution

The LAD model is compared with other machine learning
models based on the F1 score. We can observe from Table
3 that our model has achieved a score of 86%, which is the
highest among all the classifiersmentioned. Thus, we can say
that the LAD model outperforms most state-of-the-art clas-
sification techniques.We have also introduced adaptations in
our LAD model, and these adaptations improvise the results
even further. It can be observed from Table 4 that the false
negatives have reduced for both train and test data. Using the
adapted LADmodel, we achieve a recall of 97.53% which is
very high compared to the standard LAD model. However,
more importantly, the LAD model introduces explainabil-
ity within the classifier while generating results. It gives the
knowledge of features involved in the attack, and thus we
can focus more on those features which are vulnerable to
attack. These all can potentially take place in real-time and
with minimal computation. The dataset required to produce
the desired results contains only 31514 observations. Thus,
LAD does not require a huge dataset for classification. These

Table 3 Performance comparison of LAD model with other machine
learning classifiers based on F1 Score

Model F1

Support vector machine 0.2

Multi layer perceptron neural network 0.66

Random forest 0.74

Logistic regression 0.75

Decision trees 0.78

LAD model discussed in paper 0.86

Other models referenced in Hink et al. (2014)

OneR 0.44

Nearest neighbor 0.169

Naive bayes 0.44

Jrip 0.649

Adaboost + JRiP 0.82

Table 4 Changes in confusion matrix due to adaptations

Without Adaptation With Adaptation
Train Test Train Test

True positive 877 205 1212 317

False positive 0 47 118 92

True negative 404 54 286 9

False negative 421 120 86 8

observations distinguish LAD from themost commonly used
machine learning algorithms.
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8 Conclusions

As a classification technique, LAD appears to be compet-
itive with the well-established methods in this area. It is
easily interpretable and has wide applications, given that it
is not bound to any specific specialties related to datasets. Its
high classification accuracy, comparable to and frequently
exceeding other methods, and ability to handle some miss-
ing data provide robustness to the model’s applicability. It is
also worth noting that imperfect patterns can also improvise
the model given a threshold. Also, combining a few different
kinds of patterns has helped reduce computation and time
complexities. The results of the Power Attack Systems Case
Study show many opportunities for LAD in developing new
Smart Grids. The paper concludes by opening the following
discussions:

• Exploring more applications of LAD in different sectors
and expanding its concepts to ternary or even multi-class
systems.

• While even degree three computations are compatible
with most datasets, with the right resources, LAD could
even be used for Big Data problems with the help of
higher degrees alongwith combinations of higher degrees
additionally.
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