
Advances in Computational Intelligence (2022) 2:31
https://doi.org/10.1007/s43674-022-00041-z

REVIEW ARTICLE

Attributed community search based on seed replacement and joint
randomwalk

Ju Li1 · Huifang Ma1

Received: 12 February 2022 / Revised: 6 August 2022 / Accepted: 14 August 2022 / Published online: 1 September 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Community search enables personalized community discovery and has wide applications in real-life scenarios. Existing
attributed community search algorithms use personalized information provided by attributes to locate desired community.
Though achieved promising results, existing works suffer from two major limitations: (i) the precision of the algorithm
decreases significantly when the seed comes from the boundary regions of the community. (ii) Most attributed community
search methods mainly take the attribute information as edge weights to reveal semantic strength (e.g., attribute similarity,
attribute distance, etc.), but largely ignore that attribute may serve as heterogeneous vertex. To make up for these deficiencies,
in this paper, we propose a novel two-stage attributed community search method with seed replacement and joint random
walk (SRRW). Specifically, in the seed replacement stage, we replace the initial query node with a core node; in the random
walk stage, attributes are taken as heterogeneous nodes and the augmented graph is modeled based on the affiliation of the
attributes via an overlapping clustering algorithm. And finally, a joint random walk is performed on the augmented graph
to explore the desired local community. We conduct extensive experiments on both synthetic and real-world benchmarks,
demonstrating its effectiveness for attributed community search.

Keywords Seed replacement · Random walk · Community search · Conductance value · Attributed graph

1 Introduction

Network analysis has many applications in the field of
biotechnology, physical, computer science, and social sci-
ence (Li et al. 2021; Huang et al. 2017; Luo et al. 2020a).
In these areas, researchers are willing to store information
utilizing graphs. A graph is often defined as a data structure
consisting of nodes and edges, where nodes represent enti-
ties and edges denote relationships between entities (Fang
et al. 2020). Subgraph structure is one of the most impor-
tant features of complex networks, and community detection
is an effective way to study this feature. However, with the
rapid growth of the network scale, it is difficult for com-
munity detection to explore the entire network structure in a
limited time. Therefore, online rapid local community detec-
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tion has recently attracted attention. This kind of research is
also known as community search, which usually explores the
local graph structure based on a set of query nodes given by
the user.

Community search has been extensively studied since it
was first introduced by Sozio and Gionis (2010). The works
of community search on simple graphs focus on devising dif-
ferent models, such as core-based model (Fang et al. 2016;
Cheng et al. 2011), truss-basedmodel (Akbas andZhao 2017;
Wang and Cheng 2012; Huang et al. 2014), clique-based
model (Yuan et al. 2017; Cheng et al. 2011a), et al. Due to the
increasing complexity of real-world networks, simple graphs
are not able to adequately accommodate this rich personal-
ized information. In recent years, researchers have proposed
many attributed community search methods. For attributed
graphs, the entities modeled by the network nodes often have
attributes that are important for understanding communities
(Zhao et al. 2021). For instance, on Facebook, users can spec-
ify hobbies, location, and other information in their profiles.
By combining the community models and attribute infor-
mation, community search can discover semantically similar
and closely linked communities. For example, Fang et al.
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(2017) and Fang et al. (2016) proposed the attributed com-
munity query (ACQ) problem, which is capable of detecting
densely connected subgraphs that maximize the set of shared
attributes. However, maximizing shared attributes set is so
rigid that makes some nodes which are critical to improv-
ing the tightness of community structure are not included.
Random-walk-basedmethods are particularlywell-suited for
alleviating such problems (Andersen et al. 2006; Liu and Xia
2020), but the random walk is usually utilized for commu-
nity search on simple graphs. To enable walkers to explore
the attributes directly, one common approach is to use the
attribute information as edge weights to indicate semantic
strength (e.g., attribute similarity, attribute distance, etc.).
Based on this promising insight, Hsu et al. (2017) propose
an unsupervised learning framework AttriRank to improve
the quality of node importance ranking.

Although randomwalks on attributed networks have been
investigated, most existing community search methods only
perform well when the query nodes are from the community
core region. The above problem is known as the seed-
dependent problem (Chang et al. 2022). Seed-dependent
demonstrates that when a query node is from the target com-
munity, the detected community will lose some nodes in the
target community or include some nodes outside the target
community. To motivate this work, we first sample a case
dataset from DBLP network that we will consider in this
paper as suggested in Fig. 1. DBLP consists citation relation,
in which the node represents the scholar with research top-
ics as attributes, and an edge between two scholars indicates
that they have a citation relationship. The statistical infor-
mation of the case network is shown in the table in Fig. 1.
We specified the yellow node 493542 as the query node in
the upper of the left community. The node-set circled via the
green curve is the detected community using the well-known
PageRank-Nibble (PRN) (Tong et al. 2006) algorithm. It is
obvious that the detected result is not the real target upper
left community. To solve this problem, Ding et al. (2018)
proposed a robust two-stage algorithm for local community
detection (RTLCD). Specifically, RTLCD is divided into two
stages: core detection and community expansion. (a) In the
first stage, the method starts with an initial query node and
explores the core nodes in the network with high clustering
tendency by breadth-first search; (b) In the second stage, the
core nodes are used as query nodes to find the community by
community expansion methods. However, the limitation of
the method is to only consider structural quality in the core
detection stage which makes it impossible to be extended to
attributed graphs. For the second stage, RTLCD believes that
other nodes that are connected to the core node and have high
structural quality should be added to the community. How-
ever, for the attributed graph, community members should
also satisfy the condition of having similar attributes to the
query node, therefore exploring communitymembers simply

by the quality of the structure is no longer suitable for local
community detection on the attributed graph.

Although it is promising to replace the query node with a
core node, it still faces the following two challenges.

(1) How to integrate attribute information into the seed
replacement stage? Different from RTLCD, in terms of
attributes, the core nodes need to be as similar as possi-
ble to the other members of the community , as well as
similar to the attributes of the query nodes.

(2) How to develop a seed replacement strategy for all
attribute types? Different types of attributes require dif-
ferent ways tomeasure importance. It is meant to develop
a seed replacement strategy suitable formultiple attribute
types.

Towards this end, we develop a two-stage community
searchmethod SRRW, a novel algorithm that provides a com-
prehensive approach to joint seed substitution and random
walk of multi-type attributed graphs. Specifically, SRRW is
divided into two stages: seed replacement and joint random
walk community search. In the first stage, we first reconstruct
the attributed graph into an augmented graph, and then we
propose dynamic local clustering coefficients and attribute
cluster central membership matrix based on the attributed
and augmented graph, respectively, and finally, the query
nodes are updated through a seed replacement strategy. In
the second stage, we combine structure and attribute infor-
mation via enabling walkers to jump on both the attributed
and augmented graph. After obtaining the node importance
ranking, the community is captured by minimizing the par-
allel conductance.

The main contributions are summarized as follows:

• We propose cluster-center membership coefficient and
dynamic local clustering coefficient inspired by the aug-
mented graph and local clustering coefficient.

• To explore community in graph with multiple types of
attributes and enhance the robustness of the method,
we have designed a new two-stage community search
method based on seed replacement and joint random
walk.

• We perform extensive experiments on a variety of real-
life datasets and synthetic datasets. The results demon-
strate the effectiveness and efficiency of our method.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related studies. Sections 3 to 5 introduce the
proposed SRRW method. We verify our method on several
real datasets and synthetic datasets, and the experimental
results demonstrate the effectiveness of our model in Sect. 6.
Section 7 shows our conclusions and describes some insights
for future research.
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Fig. 1 Community search results (with PRN) for the query node from boundary region. The yellow node is the initial query node (boundary node)
and the blue nodes are the community nodes found by the PRN. Obviously, not these blue nodes are from the same community

2 Related work

In this section, we review the existing approaches that are
most relevant to our method, in particular the community
search over simple graphs, community search over attributed
graphs, and random-walk-based community search. Thenwe
briefly explain the differences with our method.

2.1 Community search over simple graphs

At the early stage of the study of community search models,
the definition of community varies among different stud-
ies, cohesive subgraphs like maximal cliques (Cheng et al.
2011a), k-core (Cheng et al. 2011), k-truss (Akbas and Zhao
2017; Wang and Cheng 2012), etc. form the basis of model-
ing communities. In particular, the k-core-based community
search methods return the community in which the degree
of every vertex is no less than k (Cui et al. 2014). Sozio and
Gionis (2010) motivate a measure of density based on a min-
imum degree(k-core) and distance constraints, and develop
an optimum greedy algorithm for this measure. However,
it is well known that the k-core community is not guaran-
teed to be cohesive. In other words, k-core only requires that
the degree of nodes in the community is not less than k,
which cannot indicate that the community has the charac-
teristics of high cohesion. To ensure the cohesiveness of the
retrieved community, clique (Yuan et al. 2017) and k-truss
have also been considered for community search. However,
as the clique model is too restrictive, some relaxed variants
have been investigated (Cui et al. 2013).

However, many of the aforementioned methods suffer
from the query-bias issues that detection results contain error
nodes if the query nodes are from the community boundary

region. To solve the seed-dependent problem, Ding et al.
(2018) propose RTLCD based on core detecting and com-
munity extension. The core detecting stage replaces the seed
with the core member of the target community, the com-
munity extension stage takes the detected community core
member as an initial community and extends the commu-
nity based on relation strength. Bian et al. (2020) propose
an effective amplified topology potential (ATP) algorithm
to detect core nodes of the target communities w.r.t original
query nodes.

Although seed replacement can avoid seed dependency,
because of the loss of attribute information, ARLCD and
ATP cannot locate a community with similar attributes,
that is, members in the community have the same seman-
tic attributes.

2.2 Community search over attributed graphs

Except for simple graphs, community search has also been
studied for more complex graphs, such as community search
over attributed graphs (Zhao et al. 2022; Li et al. 2022), geo-
social graphs (Luo et al. 2020; Chen et al. 2018), and so on. In
particular, Fang et al. (2017) and Fang et al. (2016) propose
the ACQ algorithm to find subgraphs satisfying structural
and keyword cohesiveness. Huang and Lakshmanan (2017)
also explore attribute-driven CS in terms of k-truss. Most
of these works study keyword-based CS that take a set of
keywords or a query vertex as input and return a subgraph as
the community that has the best match with the given set of
query keywords.

These works only consider the attributes of networks and
ignore the type of attributes. For example,ACQandATConly
consider categorical attributes. The categorical attributes can
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only indicate whether the node has the attributes, and cannot
give the strength of the node’s preference for the attributes.
However, many real-world networks use attribute similarity
(or other numerical attributes) as node attributes, e.g., social
networks, protein networks, etc. For these networks, ACQ
and ATC treat numerical attributes as categorical attributes,
which makes the communities found by these methods devi-
ate from the benchmark. In addition, these works do not aim
to solve the seed-dependent problem. However, the experi-
mental results show that when the query node is located in the
boundary area of the community, the performance of ACQ
and ATC has declined. This shows that the study of effec-
tive seed replacement strategy is conducive to enhancing the
robustness of the method.

2.3 Random-walk based community search

Random walk-based methods have also been routinely
applied to search local communities in a network. A walker
explores the network following the topological transitions.
The node visiting probability is usually utilized to determine
the detection results. For instance, Yin et al. (2017) pro-
pose a motif-based random walk model and search node sets
with minimal motif conductance. MWC (Bian et al. 2017)
sends multiple walkers to explore the network to alleviate the
query-bias problem. Note that all aforementioned methods
are only designed for simple graphs, and neglect the effect
of attributes. There are some methods like PRN that suffer
from the seed dependent issue that detection results contain
false nodes if the query node is from community boundary
region.

Community search based on random walk is also widely
used in attributed graphs, which aims to mine communi-
ties with tightly connected structures and node attributes
with the most similar attributes possible. Based on this idea,
most methods first obtain the edge weights by similarity
calculation (attribute distance or attribute similarity) and
then perform random walk to locate a local community. For
example, Hsu et al. (2017) propose an unsupervised learn-
ing framework, AttriRank, to improve the reliability of node
importance ranking. However, attribute similarity is used as
the edgeweightwhich results in the loss of direct relationship
between attributes and nodes.

3 Preliminaries

Let G = (V , F,A,Q) be an undirected node-attributed
network,where V = {v1, v2, . . . , vn} is the set of nodes, con-
nected by an undirected network adjacency matrix denoted
as An×n . For each pair of nodes vi and v j , if there is no
link between them, Ai j would be 0, otherwise, Ai j would
be 1. F = { f1, f2, . . . , fm} is the set of attributes. We use

the matrix Qn×m to collect all the node attributes. For each
pair of nodes vi and attributes f j , if vi has the attribute f j ,
Qi j = 1; otherwise, Qi j = 0.

Given a seed node vseed and an undirected node-attribute
graph G, our goal is to find a community Dseed, such that
Dseed is a connected component containing vseed. The target
community Dseed is expected to have members with struc-
ture cohesion and attribute homogeneous. In addition, Dseed

should be as similar to ground-truth Cgt as possible. Table 1
lists some important notations used in this paper.

3.1 Local clustering coefficient (LCC)

It is possible and meaningful to find some measures to ana-
lyze the clustering tendency of a given node. As is known
to all, nodes in a more central region of the cluster usually
own a higher clustering tendency than others. Conversely, the
larger the clustering coefficient, the more possibly the nodes
are in the core community. Thus, We follow LCC (Nasci-
mento 2014) to evaluate the clustering tendency of nodes as
defined:

LCC(vi ) = 2 × ∑
j,k∈N (vi )

A jk

ki × (ki − 1)
(1)

where N (vi ) is the neighbors set of node vi , and ki is the
degree of vi . The value of LCC(vi ) ranges from 0 to 1. The
value 0 means there is no clustering feature between vi and
its neighbors. The value 1 means that they are completed
linked. A higher LCC(vi ) indicates a higher local clustering
tendency of node vi .

3.2 RandomWalk with Restart (RWR)

RWR is a general random walk model for topological net-
works and can be further customized into different variations.
In RWR, at each time point, the random walker explores the
network based on topological transitions with α(0 < α < 1)
probability and jumps back to the query nodewith probability
1−α. The restart strategy enables RWR to obtain proximities
of all nodes to the query node. It defines as:

rt+1 = α × Â × rt + (1 − α) × q (2)

where q is the restart vector that contains the element 1 on
the position that corresponds to the seed node and zeros else-
where. rt+1 is the node visiting probability vector at time t .
A higher value in the rt+1 indicates that the node is more
intimate to the target node.
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Table 1 Notations and
meanings

Notation Definition

Â Row normalization matrix of A

ki The degree of vertex vi

Dv , Da Diagonal matrix of nodes and attributes

S Node attribute matrix

R Transition probability matrix

α,β Restart factor

r t Node visit. pro. vec. of the walker in G at t

q One-hot vector with only one value-1 entry for vseed

tfind The number of iterations to find the replacement node

N (vi ) Neighbor node set of node vi

4 The proposed algorithm

Existing local community detection methods usually ignore
the following two key issues: on the one hand, users usually
randomly choose query nodes, and the nodes at the commu-
nity boundary may be adopted as the starting nodes for local
community detection. A low-quality query node can lead
to an incorrect local community result; on the other hand,
researchers usually employ metrics such as attribute similar-
ity to determine the semantic relationships between nodes on
an edge. However, attribute should be considered more as an
another type node rather than as edge weight.

To address these two problems, we propose a two-stage
community search method with seed replacement and joint
random walk as shown in Fig. 2.

The first stage consists of three steps as follows: first, we
develop an index to evaluate the quality of the node structure,
i.e. dynamic local clustering coefficient (DLCC); second, we
construct the augmented graph to calculate the cluster center
membership matrix (CCMM), and finally we propose a seed
replacement process based on the results of steps 1 and 2.

The second stagebasedon the joint randomwalk is divided
into two steps as follows: first, joint random walks are per-
formed on attributed graph and augmented graph; second,
we propose parallel conductance value and combine it with
joint random walk to find a community.

In the following, we present the proposed SRRW method
based on the above two stages.

4.1 The seed replacement stage

4.1.1 Dynamic local clustering coefficient

As previously mentioned, traditional measures of clustering
tendency only take into account the closeness of a given
node’s neighbors and omit the effect of the node’s own
degree, which leads to erroneous amplification of the clus-
tering tendency of a node with a small degree and closely

connected neighbors. To solve this problem, we propose
DLCC as follows:

DLCC(vi ) = σ(k(vi )) ×
(
2 × ∑

v j ,vk∈N (vi )
Aik

k(vi ) × (k(vi ) − 1)

)

(3)

σ(x) = 1

max0< j≤|V |(d(v j ))
x, (4)

where σ(x) is based on the maximum degree in the network,
its purpose is to assign the importance of nodes with different
degrees to (0, 1). For DLCC, the value 0 means there is no
clustering feature between the node and its neighbors. The
value 1 means that they are completed linked.

Table 2 shows the LCC and DLCC of node in Fig. 3. v7
and v9 are the nodes with the best clustering tendency based
on LCC value. In terms of DLCC, v3 is the best node, which
is in line with the real scenario.

4.1.2 The augmented graph construction method and
CCMM

Existing methods mainly take attribute similarity as the edge
weight between nodes. The ownership of attributes for a par-
ticular node can be naturally taken as an interaction between
these two heterogeneous sources. Thus it is more reasonable
to regard attribute as another type of node than edge weight
as nodes with different attributes share functionality simi-
larity. Meanwhile, nodes of similar attributes reflect similar
attribute subspace as well.

Inspired by the above insights, Zhe et al. (2019) have pro-
posed an augmented graph construction method based on
attribute centers, which first finds the attribute centers via
k-means clustering and then connects them to nodes to con-
struct an augmented graphwith two types of nodes. However,
one single attribute center may cover incomplete attribute
profile. For example, in a social network, a usermay like both
ball sports and athletics, one of whichwould be ignored if the
user is only associated with a single attribute center. Instead
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Fig. 2 An illustration of SRRW framework. Firstly, the augmented
graph are constructed by k-means attribute overlapping clustering
method, DLCC and CCMM are calculated based on the two graph

respectively; secondly, the core node are found by seed replacement
strategy, and finally the core node are used as query node to execute
joint random walk to locate community

Table 2 LCC and DLCC Node LCC (vi ) DLCC (vi )

v1 0.500 0.334

v2 0.833 0.566

v3 0.667 0.667

v4 0.333 0.222

v5 0.833 0.556

v6 0.600 0.500

v7 1 0.333

v8 0.667 0.445

v9 1 0.500

of directly connecting one node with one attribute center,
we propose an augmented graph construction method on the
basis of overlapping attribute centers. The method assigns
one node to multiple attribute centers with two advantages.
For one thing, our construction method can be applied not
only to a graph with categorical attributes but also tailored
for all types of attributes as long as the attributes are avail-
able for overlapping clustering. Our method is also flexible
since all kinds of center-based attribute clustering algorithms
can be easily adopted (here we use a k-means overlapping
clustering method (Liu et al. 2020a)). For another, we con-
vert the relationship between nodes and their attributes into
the relationship between a node and attribute centers, which
can effectively reduce the time complexity of constructing
an augmented graph.

To indicate the strength of the belongingness relationship
between each vertex and its nearest attribute center, we use
attribute distance to initialize the weight of a belongingness

Fig. 3 Sample graph

edge. For example, we can use Euclidean distance if the
k-means algorithm is performed to cluster attribute values.
Pi j is defined as the attribute distance between node vi and
attribute centre c j . LetPn×k be the node attribute center inter-
action matrix, Pi j represents the strength of the relationship
between node vi and attribute center c j , we compute Pi j as
follows:

Pi j = soft max

(

Ti j × 1

d(vi , c j )

)

(5)

where Ti j is based on the relationship between node vi and
attribute center c j . If there is no link between them, Ti j
would be 0, otherwise, Ti j would be 1. d(vi , c j ) represents
the Euclidean distance between node vi and attribute center
c j .

The i th row of P indicates the affiliation information
of node vi with k attribute centers. A higher value of Pi j

shows that node vi is more probable to belong to attribute
center c j . In other words, Pi represents the attribute center
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affiliation distribution of node vi . Intuitively, if the attribute
center affiliation distributions of two nodes are similar, the
more likely the two nodes contain similar side information.
According to this insight, we define the attribute center simi-
larity of the nodes as sim(vi , v j ) = sim(P(i, ), P( j, )) and
store their values in CCMM(vi , v j ) and CCMM(v j , vi ). The
CCMM(vi , v j ) is replaced by CM(vi , v j ) in the correspond-
ing position in the later text. Since in the node replacement
stage, we are more interested in whether the candidate node
is similar to the query node, at this time we can fix a row
or column in the matrix CM as the query node vseed. We
use CM(vi , vseed) as the attribute evaluation index of node
vi , and a larger CM(vi , vseed) indicates that node vi is more
similar to vseed in terms of attributes.

4.1.3 Seed replacement procedure

To find core nodes, we propose the seed replacement stage
which fulfills the following two conditions. First, to avoid
detecting core members of unrelated communities, the seed
replacement stage should ensure the detected core member is
tightly related to the seed node; second, the seed replacement
stage should be able to detect a core member of the target
community from any seed nodes.

To fulfill the first condition, we propose a seed replace-
ment stage based on dynamic local clustering coefficient and
attribute similarity. At each iteration, the approach replaces
the seednodewith itsmost similar andmore influential neigh-
bor. We keep the number of iterations between 3 to 5 times
to avoid replacing nodes that are too further away from the
given query node, which ensures that the given node must
be in the community found by the algorithm. To fulfill the
second condition, we develop the seed replacement stage as
a reversed influence spreading method. In each iteration, the
method replaces the seed with a node which is closer to the
core of the target community. Thus, the method can form a
replacement path from any seed to the core member of the
target community.

In the seed replacement process, we first put the neighbors
of the initial seed node into the candidate node set vcandidate,
after which the structure evaluation index and attribute eval-
uation index of the node are obtained by Eqs. (3), (4) and
(5). In the selection expectation of the replacement node, we
expect the replacement node to have a better structure qual-
ity than the query node while maintaining similar attributes
to the initial query node. Therefore, we require the structure
quality of the replacement node to be greater than that of the
query node in step 8 and the similarity between the replace-
ment node and the initial query node to exceed a threshold θ

in step 9. Seed replacement pseudo-code is further summa-
rized in Algorithm 1.

To effectively integrate attribute information in random
walk, we first propose the joint random walk method. The

Algorithm 1 Seed replacement
Require: Attributed Graph G; seed node vseed ; similarity threshold θ ;

iteration number T ; adjacency matrix A; node-attribute matrix Q;
Ensure: The replacement node vnewseed ; the number of iterations to

find replacement node t f ind ;
1: Construct augmented graph and node cluster center membership

matrixM
2: Find N (vseed ) according to the adjacency matrix,
3: vcandaidate = vseed , t f ind = 0, Nall = N (vseed )

4: According to formula(3)(4), get DLCC(vi ),
5: CM(vseed ,vi ) for each node in N(vseed ), and get DLCC(vseed )
6: while true do
7: Ntem = ∅ , t f ind+ = 1
8: for vi ∈ Nall do
9: Ntem = Ntem ∪ N (vi )

10: if DLCC(vi ) > DLCC(vseed ) then
11: if CM(vi , vseed ) > θ then
12: vcandidate = vi
13: end if
14: end if
15: end for
16: if t f ind > T then
17: break
18: else
19: if vcandidate == null then
20: Nall = Ntem
21: else
22: Nall = Ntem ∪ (N (vcandidate) − N (vseed ))

23: end if
24: end if
25: end while
26: return vnewseed , t f ind

core idea is to perform a joint randomwalk on the augmented
graph to capture nodes that are highly similar to the query
node. The following sections will introduce the joint random
walk and community search method respectively.

4.2 The joint randomwalk community search stage

4.2.1 Joint randomwalk

In this section, we perform a joint random walk on the aug-
mented graph. A walker in the joint random walk is jointly
influenced by the structure and attribute information. The
proposed walking mechanism can propel the random walks
more diverse.

Let P̂n×n = Pn×kPT
k×n represents the node-attribute

center-node transition probability matrix. P̂i j is the possi-
bility of transferring from node vi to v j through several
attribute centers. This method increases the importance of
nodes whose attributes are similar to the seed node. To bal-
ance the elements in Ân×n and P̂n×n , we use β to adjust the
importance between them, as in:

R = βÂ + (1 − β)̂P. (6)

123



31 Page 8 of 15 Advances in Computational Intelligence (2022) 2 :31

Fig. 4 Framework of community search based on joint random walk.
Assuming the orange node in the attributed graph as the query node, a
biased coin is tossed and the walker explores the structural information
on the original graph if heads are facing up, and the walker explores

the attribute information in the augmented graph if tails are facing up.
Finally, the community is located by minimizing the conductance value

Then, we apply the restart strategy for joint random walk
in updating visiting probability vectors. For a walker, we
have:

rt+1 = α × R × rt + (1 − α) × q. (7)

The proposed joint random walk would jump among all
these (n + k) nodes. As illustrated in Fig. 4, Assume that we
have jumped from an orange node vi . To determine the next
transition, we flip a biased coin, if it yields head, then we
walk one step on the original graph G. If it turns tail, then
we walk two steps on the augmented graph.

The key difference between the joint random walk and
the random walk with restart is the addition of the attribute
centers node. RWR spread the influence of the query node to
the entire graph through the topology structure, and returns
the tightly connected nodes. However, the target community
in attributed community search needs to satisfy the structure
cohesiveness and attribute similarity respectively.A joint ran-
dom walk can transfer the influence of seed nodes to other
nodes through the attribute center. Therefore, a joint random
walk can improve the intimacy between nodes with simi-
lar attribute centers. Experiments prove that this method can
improve the accuracy of the community results.

4.2.2 Parallel conductance value

Traditional conductance values are often used to capture
local communities, such as PRN. PRN scans the ranking list
to find the subset of top-ranked nodes that minimizes the
conductance of the local community. However, the classical
conductance value does not consider attribute information.
To solve this problem, we propose parallel conductance val-
ues.

Let Wn×n be the node attribute similarity matrix, where
Wi j represents the attribute similarity of nodes vi and v j . For
each pair of nodes, we have:

Wi j = ‖Qi � Q j‖0
‖Qi + Q j‖0 , (8)

where � represents the elementwise product, ||Qi || is the
0-norm of the vector Qi , that is, the number of non-zero
elements in the Qi .

The parallel cut of the fusion structure and attributes is
defined as follows:

parallel_cut(D) =
∑

i∈D

∑
j /∈D Ai j + Wi j

∑
j∈D Ai j + Wi j

. (9)

We define parallel conductance combining structure and
attributes as follows:

Con(D) = parallel_cut(D)

vol(D)
. (10)

Algorithm 2 summarizes the pseudo-code of attributed
community search based on a joint random walk. Firstly, we
add the t find order neighbors of the seed node into the initial
community, denoted as Dintial. tfind is the number of iterations
when finding a replacement node. The method ensures that
the original query node must be included in the resulting
community. Secondly, To find the local community contains
seed node in network G, let {si } represent the list of nodes
sorted in descending order by its influence score. Then for
each si , we compute the conductance of the subgraph induced
by node-set Dintial ∪ {si }. The node set with the smallest
conductance will be returned as the local community.
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Algorithm 2Community search based on joint randomwalk
Require: Attributed Graph G; Augmented Graph Ĝ;
1: Query node vnewseed ; t f ind ; Number of iterations i ter
Ensure: Output Community D;
2: Construct matrix P according to augmented graph
3: Ĝ and equation 5
4: Construct the transition matrix R according to equation 6
5: while t < i ter do
6: r(t+1) = α × R × rt + (1 + α) × q
7: t = t + 1, r t = r (t+1)

8: end while
9: Find N (vseed ) according to the adjacency matrix,
10: vcandaidate = vseed , t f ind = 0, Nall = N (vseed )

11: Store the t f ind order neighbors of the seed node as the initial com-
munity in Dintial

12: Dcandidate ← N (Dintial ),Conintial = Con(Dintial )

13: for vi ∈ Nall do
14: Con = Con(Dintial ∪ vcandidate);
15: if Con > Con(Dintial )andDcandidate == ∅ then
16: return Dintial
17: else
18: if Con > Con(Dintial )andDcandidate �= ∅ then
19: continute
20: else
21: Dintial = Dintial ∪ {vcandidate}
22: Dcandidate = Dcandidate ∪ N (vcandidate)

23: end if
24: end if
25: end for
26: return D

5 Example and reasonableness

In this section, we introduce the seed replacement strategy of
SRRW through two stages of calculating DLCC and the seed
replacement process.We sampled a partial dataset containing
two benchmark communities from the DBLP dataset. This
dataset contains 22 nodes with co-authorship relationships
between nodes as authors. The authors’ attributes are bags of
words represented by keywords.

Stage 1: Calculate the DLCC of nodes
First, we give the DLCC of all nodes in the network

as shown in Table 3. We present the computation process
of DLCC using node 260,591 as a case study. As shown
in Fig. 1, the maximum degree in the network is 8, then
DLCC(260,591) = 1/8 × 8 × (2 × 7)/(8 × 7) = 1/4.

Stage 2: Seed replacement process
Suppose the given query node is 493,542, with

DLCC(493,542) = 0.
When t = 1, the DLCC values of its neighbors are

DLCC(25665) = 0.063 and DLCC (362,881) = 0.167,
respectively. after calculation, sim(M(25,665), M(493,542))
= 0.283 and sim(M(362,881),M(493,542)) = 0.533. We will
replace 493,542 with 362,881 according to Algorithm 1.

When t = 2, the DLCC values of the neighbors of node
362,881 are DLCC(102,973) = 0.125, DLCC(260,591) =
0.25, andDLCC(47,445)=0.333.Meanwhile, sim(M(102,973),

Table 3 The calculated DLCC scores for the nodes of partial DBLP
network

Node DLCC Node DLCC Node DLCC

261,874 0.25 13,014 0.375 47,445 0.333

260,591 0.25 260,637 0.125 4663 0.167

362,881 0.167 493,542 0 259,309 0

102,973 0.125 39,486 0.125 92,417 0

25,665 0.063 28,866 0.167 28,865 0.063

26,014 0.125 28,878 0.125 12,498 0.25

28,869 0.188 11,961 0 4291 0.125

260,457 0

Fig. 5 Node replacement path graph

M(362,881)) = 0.603, sim(M(260591), M(362,881)) = 0.588
and sim(M(47,445), M(362,881)) = 0.681. Therefore, node
362,881 is replacedwith node 47,445 according toAlgorithm
1.

When t = 3, the DLCC value of the neighbors of
node 47,445 as follows: DLCC(13,014) = 0.375, however
sim(M(13,014), M(47,445)) = 0.533. Since 0.533 < 0.681,
node 47,445 is kept unchanged. The replacement path of the
node is shown in Figure 5.

Stage 3: Joint random walk
We take node 47,445 as the query node and the joint ran-

dom score (JRS) of the nodes are shown in Table 4. Figure
6 shows the results of SRRW on the DBLP network. Com-
pared to Fig. 1, the community in Fig. 6 is clearly closer to the
benchmark community. Intuitively, this is due to the replace-
ment of the boundary node 493,542with the core node 47,445
in the seed replacement phase. Since node 259,309 has fewer
neighbors, it can only be accessed by walkers through one
path. This structural deficiency leads to a low score for simi-
lar nodes. However, node 259,309 has a slightly higher score
than other community nodes, and setting a lower threshold
still allows it to be included in the community (e.g., 0.025).
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Table 4 The calculated JRS for the nodes of partial DBLP network

Node JRS Node JRS Node JRS

261,874 0.056 13,014 0.063 47,445 0.150

260,591 0.052 260,637 0.042 4663 0.040

362,881 0.058 493,542 0.0430 259,309 0.025

102,973 0.049 39,486 0.047 92,417 0.046

25,665 0.022 28866 0.021 28,865 0.021

26,014 0.018 28878 0.018 12,498 0.018

28,869 0.018 11961 0.018 4291 0.018

260,457 0.05

Bold values represent a higher visiting probability (exceeds a predefined
threshold)

Fig. 6 Results of SRRW for given query node 47,445. The nodes are
colored according to their JRS generated by SRRW. Darker color rep-
resents a higher visiting probability

6 Experimental results

In this section, we conduct experiments to answer the fol-
lowing research questions:

RQ1: How do hyper-parameters (k and α, β) in SRRW
impact community search performance?

RQ2: How does our proposed SRRW model perform com-
paredwith state-of-the-art community search approaches?

RQ3: How does SRRW benefit from its components (i.e.,
seed replacement and joint random walk)?

All algorithms are coded in python3.8, and all the experi-
ments are implemented on a computer with a 3.4 GHz CPU
and 32 GB memory. We first present datasets, evaluations,
and comparison methods, followed by answering the above
three research questions.

Table 5 Descriptive statistics of real-world dataset

Dataset |V | |E | |F | kavg N.o.c

CORA 2708 5428 1432 3.797 7

IMDB 35,389 79,642 30,789 4.500 8

SINNET 55,373 102,567 1232 3.320 11

DBLP 317,080 1,049,866 50,337 3.9 5000

Table 6 Descriptive statistics of synthesis dataset

Dataset |V | |E | |F | kavg N.o.c

LFR-2 200,000 2,025,600 20,000 20.256 1360

LFR-5 500,000 7,366,409 50,000 29.466 3480

6.1 Datasets

We conduct extensive experiments to evaluate the perfor-
mance of the proposed method using a variety of real-world
networks and synthetic networks.We apply ourmodel to four
public accessible datasets for community search. The statis-
tics of the datasets are summarized in Table 5. N.o.c is the
number of community.

CORA is a citation network. Nodes represent the pub-
lications. Edges represent the reference relation-
ship among publications. Attributes of nodes are
defined as the keywords of the publications.

IMDB is extracted from an internet movie database.
Edges indicate that the two movies are directed
by the same director and have common actors.
Attributes of nodes are the Bag-of-words of the
directors and actors.

SINANET is amicroblog user relationship network extracted
from the Sina-microblog website. Each vertex
represents a user and each edge represents a rela-
tionship.Attributes are extracted by theLDA topic
model that represents user’s topic distribution.

DBLP is a co-authorship dataset, nodes are authors and
edges indicate co-authorship between authors.
Authors are divided into 5000 communities. Com-
munity labels are assigned to authors based on
the conference they contributed to. The authors’
attributes are bags of words represented by key-
words.

For synthetic networks, we use the LFR to generate two
networks, the statistics of these two networks are shown in
Table 6. When assigning attributes, we divide nodes accord-
ing to the similar attributes within the community and the
different attributes outside the community.
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Table 7 LFR parameters and
meanings

Parameter Meaning

N Number of nodes

k Average degrees

maxk Maximum degree

μ Mixing parameters

τ1 Negative index of degree series

τ2 Negative index of community size distribution

minc Minimal community Size

maxc Maximum community Size

On Number of overlapping nodes

Om Number of communities to which overlapping nodes belong

The parameter settings for LFR-2 and LFR-5 are shown
below. The meanings of the parameters are summarized in
Table 7.

LFR-2: N = 200,000, k = 10, maxk = 50, μ = 0.1, τ1 = 2,
τ2 = 1, minc = 1000, maxc = 2000, On = 0, Om = 0.

LFR-5: N = 500,000, k = 10, maxk = 80, μ = 0.2, τ1 = 3,
τ2 = 2,minc = 2000, maxc = 4000, On = 0, Om = 0.

6.2 Evaluations

We use recall, precision, F1, local modularity (Ql ), and node
coverage rate (NCR) to evaluate the performance of detected
local communities. They are defined as follows.

recall = |CF ∩ CT |
|CT | (11)

precision = |CF ∩ CT |
|CF | (12)

F1 = 2 × precision × recall

precision + recall
(13)

where CF is the community detected by the algorithm, and
CT is the real community to which the given node belongs.
The recall represents the ratio of the number of detectednodes
that belong to the real community to the number of nodes
in CT . precision represents the proportion of the correctly
detected nodes in CF . Moreover, F1 is the harmonic mean
of recall and precision. The values of recall, precision, and
F1 are between 0 and 1, and a larger value implies a better
algorithm performance.

The definition of local Ql is denoted as:

Ql = kin
kin + kout

(14)

Where kin represents the number of edges between the bound-
ary nodes and other nodes in the local community, and kout
is the number of edges between the boundary nodes and the
nodes outside the local community.

To show the performance of the seed replacement compo-
nent in SRRW, we suggest NCR represent the proportion of
valid seeds in all the seeds used by an algorithm.

NCR = |Vvalid|
|Vused| . (15)

6.3 Comparisonmethods

Here we mainly validate whether our new SRRW frame-
work is competitive with or performs better than the existing
community search methods, particularly in the realm of
attributed community search models. We compare SRRW
to three categories of methods as follows. First, to study how
DLCC improves the effectiveness of seed replacement. We
replace DLCCwith the LCC and the LCC improved by using
sigmoid. These two methods are denoted as SRRW-L and
SRRW-S respectively. Second, to analyze how does SRRW
benefits from its components. We remove the seed replace-
ment and replace the augmented graph with a bipartite graph
respectively, and denote the twomethods as SRRW-NSC and
SRRW-BG. Third, to verify the effectiveness of SRRW, we
select three methods using only topology information, i.e.,
RTLCD, TSB, and PRN. We thoroughly evaluate SRRW on
attributed community quality by comparing SRRWwith two
state-of-the-art baseline methods, i.e., ACQ, VAC.

RTLCD Ding et al. (2018): a robust two-stage local com-
munity detection algorithmbasedoncore detecting
and community extension.

TSB Liu and Xia (2020): this method is a local commu-
nity detectionmethod based onbreadthfirst search,
transfer similarity, and local clustering coefficient.

PRN Tong et al. (2006): this method uses conductance
value and random walk for community search.

ACQ Fang et al. (2016): this method aims to find an
attributed community for a given query node and
a set of query keywords. Specifically, the commu-
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(a) (b)

Fig. 7 Performance w.r.t. different k on CORA and LFR-2

(a) (b)

Fig. 8 Performance w.r.t. different α and β on CORA

nity is a k-core and the number of common query
keywords is maximized for all vertices in the sub-
graph.

VAC Liu et al. (2020): this method proposes a vertex-
centric attributed community that takes into account
both spatial information and keywords associated
with vertices.

6.4 Parameter sensitivity analysis (RQ1)

SRRW has three parameters, k, the parameter in overlap-
ping clusters. α and β, the parameters in the joint random
walk. We respectively set the default value of k, α (or β)
to be the number of ground-truth communities in the cur-
rent experimental dataset and 0.5. When testing one of these
parameters, the other two parameters are set to default values.

For each dataset, we randomly select 100 nodes as the query
nodes. The average values of F1 and Ql in the 100 nodes
of the network are the final experimental results. Because
the experimental results on all datasets are similar, we only
show the average experimental results on CORA and LFR-2
as shown in Fig. 7a, b.

Figure 7a shows that the F1 is smaller when k is smaller
(or larger) than the number of real communities because
a smaller (or larger) k value leads to inaccurate clustering
results. As k approaches the number of real communities,
the clustering result gradually approaches the correct result,
since the F1 and Ql of SRRW are also gradually increasing.

The F1 w.r.t α and β are shown in Fig. 8a, b respectively.
As the value of α increases, F1 increases rapidly. This is
because as α becomes larger, α can encourage further explo-
ration. When α reaches an optimal value, the F1 begins to
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Table 8 Results of effectiveness
experiments on five different
datasets

Dataset Metric RTLCD TSB PRN ACQ VAC SRRW-S SRRW-L SRRW

Info. S S S A&S A&S A&S A&S A&S

F1 0.540 0.633 0.471 0.804 0.810 0.841 0.821 0.940

CORA Ql 0.618 0.734 0.522 0.957 0.682 0.829 0.741 0.951

NCR 0.640 0.600 0.320 0.740 0.700 0.910 0.910 0.970

F1 0.581 0.624 0.443 0.786 0.784 0.830 0.833 0.891

SINNET Ql 0.598 0.711 0.493 0.899 0.711 0.814 0.744 0.873

NCR 0.650 0.630 0.410 0.660 0.750 0.930 0.920 0.940

F1 0.721 0.716 0.397 0.777 0.700 0.871 0.873 0.895

IMDB Ql 0.601 0.704 0.477 0.901 0.668 0.831 0.709 0.841

NCR 0.620 0.600 0.380 0.550 0.540 0.880 0.870 0.980

F1 0.715 0.710 0.410 0.759 0.755 0.800 0.813 0.907

DBLP Ql 0.497 0.601 0.367 0.907 0.604 0.791 0.681 0.827

NCR 0.590 0.570 0.350 0.540 0.500 0.870 0.880 0.930

F1 0.697 0.700 0.387 0.770 0.790 0.812 0.781 0.921

LFR-2 Ql 0.634 0.748 0.520 0.961 0.721 0.881 0.876 0.882

NCR 0.630 0.590 0.400 0.670 0.690 0.900 0.890 0.930

F1 0.727 0.693 0.433 0.804 0.781 0.841 0.830 0.881

LFR-5 Ql 0.705 0.722 0.514 0.948 0.754 0.863 0.820 0.883

NCR 0.730 0.740 0.430 0.590 0.670 0.860 0.820 0.920

Table 9 Results of effectiveness experiments on three different datasets

Dataset Metric SRRW SRRW-BG SRRW-NSC

Info. A&S A&S A&S

F1 0.940 0.921 0.471

CORA Ql 0.951 0.947 0.631

NCR 0.970 0.930 0.230

F1 0.891 0.843 0.855

SINNET Ql 0.873 0.869 0.597

NCR 0.940 0.900 0.240

F1 0.895 0.789 0.834

IMDB Ql 0.841 0.807 0.613

NCR 0.980 0.850 0.160

drop slightly. Because the large α impairs the locality prop-
erty of the restart strategy. For parameter β, SRRW achieves
the best result when β = 0.5. This is because the large β does
not make full use of attribute information to assist random
walk and the small β ignores the importance of topological
information, which causes only nodes that are highly similar
to the query node attributes to be captured.

6.5 Effectiveness evaluation (RQ2)

In this section, we focus on SRRW and use real-world and
synthetic datasets to evaluate its effectiveness. The specific
experimental results are shown in Table 8.

It can be seen from the experimental results that SRRW
usually achieves better performance than SRRW-S and
SRRW-L. This is because the sigmoid function can not
effectively distinguish nodes whose degree exceeds 4. LCC
ignores the degree of the node itself.

Table 8 shows that the overall performance of the method
that does not use attributes as auxiliary information is lower
than other methods. Even if the seed replacement (RTLCD)
or core community extension method(TSB), its performance
improvement is extremely limited.

From Table 8, we see that, in general, ACQ, VAC, SRRW
significantly outperforms all other competitive models, in
terms of F1, NCR, Ql . It demonstrates the advance of
applying attribute information for local attributed commu-
nity detection. It is worth noting that in all the experimental
results, ACQ has achieved the best performance of Ql . This
is attributed to the effectiveness of k-core. SRRW achieved
the best results in both F1 andNCR,which shows that SRRW
can effectively avoid the seed dependency problem for any
given query node.

6.6 Component contribution analysis (RQ3)

In this section, we consider nodes whose degree is lower than
the average degree of the network as low-quality nodes. We
randomly select 100 low-quality nodes as query nodes on
each real dataset and report the average values of F1, Ql , and
NCR in Table 9.
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(a) (b)

Fig. 9 Performance w.r.t. different k on CORA and LFR-2

Similar performance trends are observed for the synthetic
datasets. Clearly, our SRRWmodel significantly outperforms
all other competitive models as SRRW-BG and SRRW-NSC.
Due to the seed-dependent problem, the performance of
SRRW-BG and SRRW-NSC decrease significantly. In sum-
mary, for real-world datasets, SRRW has better performance
in identifyingmore ground-truth community members and is
more robust to the seed-dependent problem than other algo-
rithms.

To explore how the seed replacement component avoids
the seed-dependent problem, Fig. 9 reports the boundary
part of the experimental results of SRRW and SRRW-NSC
on CORA. Three colored dashed circles respectively iden-
tify different real communities. The subgraph composed of
orange nodes represents the community located by the corre-
spondingmethod. From the results in Fig. 9, the experimental
results of SRRW-NSC contain many noise nodes. However,
in SRRW, the seed-replacement component replaced bound-
ary node 61with core node 251, so SRRW locates an accurate
community.

7 Conclusion

In this paper, to solve the seed-dependent problem, we pro-
pose a two-stage community search method based on seed
replacement and joint random walk. First, we preprocess
the attributed graph via the overlapping clustering method
and construct an augmented graph. And then we perform
a joint random walk on augmented and use parallel conduc-
tance value for community search. Results of comprehensive
experiments on bothC and real-world attributed networks
verify the advances and effectiveness of SRRW. Although
joint random walk can assist community search with the
help of attribute information, its essence is to strengthen

nodes with similar attributes through the transfer mechanism
of node-attribute-node. Our model does not use interactive
information between attributes. In the future, we plan to use
this interactive information to strengthen random walk and
locate attributed subgraphs related to user’s preferences.
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