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Abstract
The increasing data volumes impose unprecedented challenges to traditional data mining in data preprocessing, learning,
and analyzing, it has attracted much attention in designing efficient compressing, indexing and searching methods recently.
Inspired by locally sensitive hashing (LSH), divide-and-conquer strategy, and double-voting mechanism, we proposed an
iterative instance selection algorithm, which needs to run p rounds iteratively to reduce or eliminate the unwanted bias of the
optimal solution by double-voting. In each iteration, the proposed algorithm partitions the big dataset into several subsets and
distributes them to different computing nodes. In each node, the instances in local data subset are transformed into Hamming
space by l hash function in parallel, and each instance is assigned to one of the l hash tables by the corresponding hash code,
the instances with the same hash code are put into the same bucket. And then, a proportion of instances are randomly selected
from each hash bucket in each hash table, and a subset is obtained. Thus, totally l subsets are obtained, which are used for
voting to select the locally optimal instance subset. The process is repeated p times to obtain p subsets. Finally, the globally
optimal instance subset is obtained by voting with the p subsets. The proposed algorithm is implemented with two open
source big data platforms, Hadoop and Spark, and experimentally compared with three state-of-the-art methods on testing
accuracy, compression ratio, and running time. The experimental results demonstrate that the proposed algorithm provides
excellent performance and outperforms three baseline methods.

Keywords Big data · Instance selection · Locally sensitive hashing · Voting mechanism · Open source platforms

1 Introduction

With the rapid development of wireless sensing, data stor-
age and internet network technologies, quintillion bytes of
data are generated every day from social networks, business
transactions, sensors, and many other domains. Big data era
has arrived, big data has brought great challenges to tradi-
tional data mining. As a way of data preprocessing, instance
selection is an effective method for big data. Historically, the
instance selection algorithm Condensed Nearest Neighbor
(CNN)Hart (1967) was proposed to improve the efficiency
of K-NN algorithm. Since CNN was proposed, researchers
have proposed many instance selection algorithms, which
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can be roughly divided into two categories: incremental and
decremental Wilson and Martinez (2000).

The incremental algorithm starts with an empty set and
iteratively selects important instances from the training set
until the stop condition is met. Zhai et al. (2021) extended
CNN to uncertain scenarios and proposed a fuzzy CNN algo-
rithm. de Haro-García et al. (2019) presented a method that
uses boosting to obtain a subset of instances that is able
to improve the classification accuracy of the whole dataset
with a significant reduction. The instances are incrementally
added by selecting those that maximize the accuracy of the
subset using the weighting of instances from the construction
of ensembles of classifiers. Malhat et al. (2020) proposed
two instance selection algorithms by balancing classifica-
tion accuracy, reduction rate, and time complexity. The first
algorithm selects most relevant instances using a global
density and relevance function, the second algorithm main-
tains the effectiveness of the first algorithm while improving
the reduction rate. Evolutionary algorithms based instance
selection faces great challenges on search efficiency and com-
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putational cost. To handle this issue, Cheng et al. (2021)
proposed a multi-objective evolutionary algorithm for large-
scale instance selection, where a length reduction strategy
is adopted to recursively shorten the length of each indi-
vidual in the population which improves the computational
efficiency of the proposed algorithm greatly. García-Pedrajas
et al. (2021) combined feature selection and instance selec-
tion together, and proposed an approach named SI(FS)2

that simultaneously select important instances and features.
SI(FS)2 achieves better storage reduction and testing error
than previous approaches, and it is scalable to datasets
with millions of features. Based on locality-sensitive hash-
ing, Arnaiz-González et al. (2016) proposed an instance
selection algorithm with linear complexity for big data. Ma
et al. (2020) found that most existing instance and feature
selection methods overlook the input-output correlation. To
address this issue, they presented a framework for multil-
abel learning from a topic view. The proposed framework
can perform effective instance and feature selection in the
latent topic space, as the relation between the input and out-
put spaces is well captured in this space. Fu andRobles-Kelly
(2009) investigated the problem of instance selection in mul-
tiple instance learning and proposed an instance selection
framework for multiple instance learning, which is based on
an alternative optimisation framework by iteratively repeat-
ing the steps of instance selection/updating and classifier
learning. Carbonera and Abel (2020) proposed an attraction-
based approach for instance selection, which adopts the
notion of attraction for selecting the most representative
instances of each class. The advantage of the approach is
that it allows the user to define how many representative
instances should be selected. Yuan et al. (2018) proposed
an instance selection algorithm, which adopts two kinds of
instance-selection criteria from two different views to select
informative instances for multiple instance learning.

In recent years, due to the popularity of deep learn-
ing (LeCun et al. 2015; Goodfellow et al. 2017; Pouyanfar
et al. 2019; Zhai et al. 2021, 2019, 2020), researchers have
proposed many instance selection methods based on deep
learning, especially in thefieldof computer vision, such as the
active selection of informative images from image datasets
or important frames from videos. Ding et al. (2021) propose
a representative prototype selection algorithm embedding
deep multi-instance representation learning. In the proposed
approach, a self-expressive dictionary learning model based
on sparse and low rank constraint is designed to select the rep-
resentative prototypes from each subspace of instances. The
key point of video summarization is to select the key frames
to represent the effective contents of a video sequence. To
this end, Huang and Wang (2020) proposed a novel frame-
work for key-frames selection by introducing a self-attention
model. Wang et al. (2019) presented an active sample min-
ing framework based on a novel switchable selection criteria.

The proposed framework can determine whether an unla-
beled sample should be manually annotated via an expert or
automatically pseudolabeled via a novel self-learning pro-
cess. By carefully discriminating locally available training
samples based on their relative importance, Jiang et al. (2017)
proposed twometrics for prioritizing candidate training sam-
ples as functions of their test trial outcome: correctness and
confidence.

The decremental method starts from the original train-
ing set and iteratively deletes unimportant instances from
the training set until the stop condition is satisfied. Reduced
Nearest Neighbor (RNN) Gates (1972), Minimal Consis-
tent Set (MCS) Dasarathy (1994) and Decremental Reduc-
tion Optimization Procedure (DROP) Wilson and Martinez
(2000) are three well-known early decremental algorithms.
Cavalcanti and Soares (2020) presented an instance selec-
tion algorithm named ranking-based instance selection (RIS)
that assigns a score to each instance depending on its relations
with all other instances in the training set. Based on the defini-
tion of score, two concepts, safe region with higher score and
indecision region with lower score are introduced, which is
used in a selection process to remove instances fromboth safe
and indecision regions that are considered irrelevant to rep-
resent their clusters in the feature space. Their experimental
results show that RIS obtains promising accuracy and reduc-
tion rates. For the selection ofmedical image samples, Huang
et al. (2021) introduced a divide-and-conquer based instance
selection framework that aims to improve the performance of
each specific instance selection algorithm. Two well-known
decremental algorithms, i.e., DROP3 and IB3 Wilson and
Martinez (2000), are used as the baseline, and various small
and large scale medical datasets are used in the experiments.
Aslani and Seipel (2020) adopted locality-sensitive hashing
(LSH) to develop an instance selection method, which rests
on rapidly finding similar and redundant training samples
and excluding them from the original dataset. The proposed
method has two advantages: (1) it has linear time complex-
ity that makes it suitable for handling big datasets. (2) it can
significantly reduce the number of instances and execution
time. Ireneusz and Piotr (2019) proposed a cluster-based data
reduction approach by selecting informative instances from
clusters of majority to handle binary imbalanced data classi-
fication problems. Jensen et al. Jensen et al. (2019) proposed
an effective instance selection method using the fuzzy-rough
lower approximation. By utilizing the lower approximation
information, instances that have a high similarity with more
representative instances of a class can be removed. Orliński
and Jankowski (2020) proposed an improved DROP algo-
rithm, which uses random region hashing forests and jungle
to keep the computational complexity as low as possible. The
proposed algorithm reduces the computational time com-
plexity from O(m3) to O(m logm), m is the number of
instances.
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Hashing techniques has become popular due to its promis-
ing performance in both efficiency and accuracy for indexing
high-dimensional data, especially for searching similar data
points. Hashing methods can be divided into two categories:
data-independent anddata-dependent. Four excellent surveys
on hashing methods can be found in Wang et al. (2016), Chi
and Zhu (2017), Wang et al. (2018), Cao et al. (2018). In
data-independent hashing approaches, the locality sensitive
hashing (LSH) Indyk and Motwani (1998) is the most com-
monly known data-independent method, its basic idea is to
use a set of hash functions that map similar objects into the
same hash bucket with a probability higher than non-similar
objects. Inspired by the idea of LSH and divide-and-conquer
strategy, we proposed an instance selection algorithm for big
data. Since a and b are random variables in a hash function
ha,b(x), randomness is inevitably introduced when generat-
ing a family of hash functions. In addition, random partition
also has randomness. The randomness has a negative effect
on the quality of the selected instances, but prior works do
not consider the randomness effect on the quality of selected
instances. To this end, we propose a double-voting mech-
anism to handle this issue. The main contributions of this
article include the following three folds:

(1) Based on locality sensitive hashing (LSH), divide-
and-conquer strategy, and double-voting mechanism, we
proposed an instance selection algorithm for big data.

(2) We apply double-voting mechanism to reduce or
eliminate unwanted bias introduced by the randomness of
selecting hashing functions in LSH and local optimality of
the instance subset selected in parallel at each node.

(3) We implemented the proposed algorithm using two
big data open source platforms: MapReduce and Spark. We
conducted experiments to demonstrate the effectiveness of
the proposed algorithmby comparing the proposed algorithm
with three state-of-the-art algorithms on three aspects: testing
accuracy, compression ratio, and running time.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review the preliminaries used in this paper. In
Sect. 3, we describe the details of the proposed algorithm. In
Sect. 4, the experiments are carried out to verify the effec-
tiveness of the proposed algorithm by comparing it with three
state-of-the-art algorithms on three aspects: testing accuracy,
compression ratio, and running time.At last, we conclude our
work in the Sect. 5.

2 Preliminaries

In this section, we briefly review the preliminaries related to
our work, including locality sensitive hashing, Hadoop, and
Spark.

2.1 Locality sensitive hashing

Locality sensitive hashing (Indyk and Motwani 1998;
Shakhnarovich et al. 2006; Datar et al. 2004; Slaney and
Casey 2008; Wang et al. 2013) is a popular data-independent
hash method, which is widely used in many fields, such
as big data indexing (Bahmani et al. 2012), visual object
retrieval (Joly andBuisson2008), approximate nearest neigh-
bor search (Lu et al. 2018), etc. Let D = {xi |xi ∈ R

d , 1 ≤
i ≤ n}, and ‖ · ‖2 represents the l2 norm. Let H = {h :
R
d → Z

k} be a set of hash functions. Formally, h can be
expressed as:

h(·) = (h1(·), h2(·), . . . , hk(·))

where the function hi (·)(1 ≤ i ≤ k) are the elements of
a locality sensitive hashing function set H = {h : R

d →
Z}. A hashing function set H = {h : R

d → Z} is called
(R, cR; P1, P2)-sensitive for l2, if for any p,q ∈ R

d , we
have

P (h(p) = h(q)) ≥ P1,when ‖ p − q ‖2≤ R (1)

and

P (h(p) = h(q)) ≤ P2,when ‖ p − q ‖2≥ cR (2)

where R is the distance threshold, c is the approximation
ratio, and c > 1, and P1 > P2. Intuitively, the formulas (1)
and (2) mean that nearby objects within distance R have a
greater chance of being hashed to the same value than objects
that the distance greater than cR Shakhnarovich et al. (2006).

Typically, the functions h ∈ H are defined as:

ha,b(x) =
⌊
a · x + b

w

⌋
(3)

where a ∈ R
d is a random vector with elements chosen

independently from a Gaussian distribution and b is a real
number chosen uniformly from the closed interval [0, w], and
thew is a user-defined parameter that controls the possibility
of collision of two data points.

Let u =‖ p − q ‖2, and p(u) denote the probability
that p,q collide for a hash function ha,b(·), f (t) denotes
the absolute value of the probability density function of the
Gaussian distribution. The calculation of p(u) is given by
Eq. (4) Shakhnarovich et al. (2006).

p(u) = P
(
ha,b(p) = ha,b(q)

)

=
∫ w

0

1

u
f

(
t

u

) (
1 − t

w

)
dt (4)
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Fig. 1 The big data manipulation processes by Hadoop

Fig. 2 The big data
manipulation processes by
Spark

Obviously, for a fixed parameterw, the probability of col-
lision of two data points p and q decreases monotonically
with u =‖ p − q ‖2.

2.2 Hadoop

Hadoop1 is a framework that allows for the distributed pro-
cessing of large datasets across clusters of computers using
simple programming models. It deals with big data in a
divide-and-conquer strategy. Hadoop uses HDFS (Hadoop
Distributed File System) to organize and store big data, and
employs MapReduce to handle big data, and fulfill the user’s
application logic. MapReduce processes big data in three
stages which are map, shuffle, and reduce (see Fig. 1). The
easy usage of Hadoop is because that it encapsulates the fol-
lowing processing details:

(1) Automatically partitions of computing tasks and deploy-
ments of computing sub-tasks;

(2) Automatically distributed storage of the processed big
data;

(3) The synchronization of processing data and computing
tasks;

(4) Aggregation and shuffle of the processed data;
(5) Communication between computing nodes;
(6) Load balance and performance optimization;
(7) Node failure detection and recovery.

2.3 Spark

Spark2 is a unified analytics engine for large-scale data pro-
cessing. It provides high-level APIs in Java, Scala, Python
and R, and an optimized engine that supports general execu-
tion graphs. It introduces resident distributed dataset (RDD)

1 https://hadoop.apache.org/
2 http://spark.apache.org/

to avoid excessive network and disk I/O overhead during
computation. RDD is an abstract data structure that stores a
large dataset in distributed memory on a cluster of servers.
More specifically, RDD divides a large dataset into several
data blocks, which are distributed across the nodes of the
cluster, either in the memory of the nodes or in the disk of
the nodes. Each data block has a ID, which is used to manage
the data block by the metadata of ID. Logically, these data
blocks are divided into splits. RDDmanipulates the splits by
operators, and the result of the operation is a new RDD (see
Fig. 2).

Spark provides a set of operators for RDD. The operators
can be roughly divided into the following two categories:

(1) Transformation operators: they are used to transform one
RDD into another RDD;

(2) Action operators: they trigger the Spark jobs to be exe-
cuted and saves the resulted RDD.

In addition, to deal with the problem of heavy loads due to
start and schedule of jobs, Spark optimizes task scheduling
based on directed acyclic graphs (DAG). As a result, there is
no need to store intermediate results for each phase onHDFS,
thus greatly improving the efficiency of task scheduling.

3 The proposed algorithm

Ahash table is composedof bucketswith eachbucket indexed
by a hash code. The conventional hashing algorithms attempt
to avoid mapping two data points into the same bucket. Dif-
ferent from the conventional hashing algorithms, we aim at
maximizing the probability of collision of similar instances
and at the same time minimize the probability of collision
of dissimilar instances. In other words, we attempt to map
the similar instances into same hash bucket, and map the
dissimilar instances into different hash buckets. Because the
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Fig. 3 The technical route of the proposed algorithm

instances in the same hash bucket are similar, we can ran-
domly select a proportion of the instances from each hash
bucket, this is the basic idea of the proposed algorithm.
Obviously, this method can introduce unwanted bias to the
solution (i.e., the selected instance subset) due to the random-
ness of hash functions and random selection mechanism. To
this end, we use voting mechanism bymultiple hash tables to
reduce the bias. For big datasets, this instance selection pro-
cess is performed in parallel on multiple computing nodes.
Thus, the instance subset selected at each computing node
is locally optimal, i.e., it is local optimal corresponding to
local instance subset. To obtain the globally optimal instance
subset or globally suboptimal instance subset, we use the sec-
ond voting mechanism. The technical route of the proposed
algorithm is shown in the Fig. 3.

It can be seen from Fig. 3 that the proposed algorithm
includes 6 steps:

(1) Partitionbig dataset. Partition the big dataset D is divided
into m subsets, D1, D2, . . . , Dm , and the m subsets are
distributed to m computing nodes.

(2) Construct hash functions and perform hash transforms.
At each of the m nodes, l hash functions are constructed

using Eq. (3), and l hash tables are obtained using the
constructed l hash functions, and the instances in the
local subset are inserted into each hash bucket of the l
hash tables.

(3) Select instances by proportion. Instances are selected
proportionally from each hash bucket of l hash tables,
and l instance subsets,D(1)

i , D(2)
i , . . . , D(l)

i , are obtained.
(4) Select instances by voting. At each node of m nodes,

a locally optimal instance subset corresponding to the
local subset Di is selected by voting using the l subsets,
D(1)
i , D(2)

i , . . . , D(l)
i , and obtain Si , 1 ≤ i ≤ m.

(5) Merge m subsets. In reduce node, the m locally opti-
mal instance subsets, S1, S2, . . . , Sl , selected in m map
nodes are merged, and obtain an instance subset S(i) cor-
responding to big dataset D.

(6) Repeat the above process p times to get p subsets,
S(1), S(2), . . . , S(p). Finally, an optimal or suboptimal
subset S is obtained by double-voting.

At each of the m map computing nodes, LSH transform
works as follows:

(1) Construct hash functions. l d-dimensional hash func-
tions, h1,h2, . . . ,hl , are constructed independently and
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randomly. Specifically, for each hi (1 ≤ i ≤ l), we have
to construct its q components hi j (1 ≤ j ≤ q), which
are q 1-dimensional hash functions, the q is the length
of hash code. The construction process consists of three
steps: Firstly, determine the width w of the hash bucket.
Secondly, generate a d-dimensional random vector ai
with a Gaussian distribution, and generate a random
variable bi that follows uniform distribution in the inter-
val [0, w]. Finally, obtain a 1-dimensional hash function

hi j (x) =
⌊
ai ·x+bi

w

⌋
.

(2) Construct hash tables. Each hash function is used to con-
struct a hash table, as a result, l hash tables are obtained.

(3) Perform hash transform. Transform all instances x ∈ D
into Hamming space, and assign all data points to each
of the l hash tables by the corresponding l hash codes.

The pseudocode of the proposed algorithm denoted by
LSHDV is given in Algorithm 1.

4 Experimental results and analysis

To verify the effectiveness of the proposed algorithm, we
experimentally compared the proposed algorithm with three
closely related methods on six datasets using two open-
source big data platforms, MapReduce and Spark. In our
experiments, the training set/test set mechanism is adopted,
we randomly partition each data set into training set and
testing set, 70% of instances are used for training, and
30% of instances are used for testing. The proposed algo-
rithm implemented byMapReduce and Spark are denoted by
LSHDV-MR and LSHDV-SP respectively. The three closely
related methods are LSH, CNN, and VE based (voting
entropy) instance selection algorithms for big data (Arnaiz-
González et al. 2016; Hart 1967; Seung et al. 1992). The
three methods implemented with MapReduce and Spark
are denoted by LSH-MR, CNN-MR, VE-MR, and LSH-SP,
CNN-SP, VE-SP respectively. The six datasets include two
artificial datasets and 4 UCI datasets (Dua and Graf 2019).
The two artificial datasets follows Gaussian distribution, and
their parameters are given in Tables 1 and 2 respectively.
The basic information of the six datasets is given in Table 3.
In Table 3, � Instances, � Attributes, and � Classes represent
the number of instances, the number of attributes, and the
number of classes, respectively.

4.1 Determination of the hyper-parameters

The proposed algorithm LSHDV include seven parame-
ters: three parameters for LSH and four parameters for the
proposed algorithm. The three parameters in LSH are the
quantization width w, the number of hash tables l, and the

Algorithm 1: LSHDV Algorithm
Input: Data set D, parameters l, p, w, λ1, λ2.
Output: Instance subset S.

1 for (k = 1; k ≤ p; k = k + 1) do
2 // Partition data set;
3 Partition data set D into m subsets, D1, D2, . . . , Dm , and

distribute them to m computing nodes;
4 for (i = 1; i ≤ m; i = i + 1) do
5 // Construct the hash functions;
6 for ( j = 1; j ≤ l; j = j + 1) do
7 for (s = 1; s ≤ q; s = s + 1) do
8 Generate a random vector a(s)

j with Gaussian
distribution;

9 Generate a random variable b(s)
j with uniform

distribution in [0, w];

10 Let h js(x) =
⌊
a(s)
j ·x+b(s)

j
w

⌋
;

11 end
12 Generate a hash function

h j (x) = (h j1(x), . . . , h jq (x));
13 // Perform hash transform;
14 for (∀x ∈ Di ) do
15 Perform hash transform h j (x), and put x into

different hash bucket;
16 end
17 // Select instances;
18 for (t = 1; t ≤ l j ; t = t + 1) do
19 Select instances in proportion from the t th hash

bucket, and obtain subset D( j)
i ;

20 end
21 // Local voting;
22 Let Si = ∅; vote(x) = 0;

23 if
(
x ∈ D( j)

i

)
then

24 vote(x) = vote(x) + 1;
25 end
26 if (vote(x) ≥ λ1) then
27 S j = S j ∪ {x};
28 end
29 end
30 end
31 // Merge selected subsets;

32 S(k) = ⋃m
i=1 Si ;

33 // Global voting;
34 for (k = 1; k ≤ p; k = k + 1) do
35 Let S = ∅; vote(x) = 0;
36 if

(
x ∈ S(k)

)
then

37 vote(x) = vote(x) + 1;
38 end
39 if (vote(x) ≥ λ2) then
40 S = S ∪ {x};
41 end
42 end
43 end
44 Output S.

number of projections k (i.e., the length of hash code), we
use the method in Shakhnarovich et al. (2006) to determine
the three parameters, the optimization of the three parame-
ters in LSH can be found in Slaney et al. (2012). The four
parameters in the proposed algorithm are the parameter δ
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Table 1 The mean vectors and
covariance matrices of the first
artificial dataset Gaussian1

i ¯i 6i

1 (1.0, 1.0)T
[
0.6 −0.2

−0.2 0.6

]

2 (2.5, 2.5)T
[
0.2 −0.1

−0.1 0.2

]

Table 2 The mean vectors and covariance matrices of the second arti-
ficial dataset Gaussian2

i ¯i 6i

1 (0.0, 0.0, 0.0)T

⎡
⎣1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎤
⎦

2 (0.0, 1.0, 0.0)T

⎡
⎣1.0 0.0 1.0
0.0 2.0 2.0
1.0 2.0 5.0

⎤
⎦

3 (−1.0, 0.0, 1.0)T

⎡
⎣2.0 0.0 0.0
0.0 6.0 0.0
0.0 0.0 1.0

⎤
⎦

3 (0.0, 0.5, 1.0)T

⎡
⎣2.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 3.0

⎤
⎦

Table 3 The basic information of the six datasets

Datasets � Instances � Attributes � Classes

Gaussian1 1000000 2 2

Gaussian2 1000000 3 4

Shuttle 58000 9 7

Poker 1000000 10 10

CovType 581012 54 7

Skin 245057 3 2

that determines the proportion of instances to be selected
from each hash bucket, the local voting threshold λ1, the
global voting threshold λ2, and the parameter p, the number
of times the algorithm is repeated. It is easy to determine the
values of the four parameters, δ, λ1, λ2, and p.

4.2 The experiments compared with the three
relatedmethods

We experimentally compared LSHDV with LSH, CNN, and
VE based methods on two open-source big data platforms,
MapReduce and Spark on three aspects: testing accuracy,
compression ratio, and running time, the classifier used in our
experiments is extreme learningmachineHuang et al. (2006),
the experimental results comparedwith three relatedmethods
with big data platform MapReduce are given in Tables 4, 5,
6, and the experimental results compared with three related
methods with big data platform Spark are given in Tables 7,
8, 9, respectively. In Tables 4, 5, 7, and 8, the bold values are

Table 4 The experimental results compared with three related methods
with MapReduce on test accuracy

Datasets LSH-MR CNN-MR VE-MR LSHDV-MR

Gaussian1 0.979 0.971 0.980 0.993

Gaussian2 0.499 0.450 0.515 0.538

CovType 0.920 0.913 0.933 0.930

Poker 0.853 0.878 0.904 0.911

Shuttle 0.987 0.983 0.981 0.989

Skin 0.962 0.906 0.970 0.983

Table 5 The experimental results compared with three related methods
with MapReduce on compression ratio

Datasets LSH-MR CNN-MR VE-MR LSHDV-MR

Gaussian1 9.33 3.53 11.25 12.44

Gaussian2 5.52 2.77 11.55 12.31

CovType 2.23 1.05 7.24 6.98

Poker 8.64 6.53 10.64 11.54

Shuttle 1.53 1.05 2.87 3.19

Skin 3.88 1.00 5.21 5.49

Table 6 The experimental results compared with three related methods
with MapReduce on running time (s)

Datasets LSH-MR CNN-MR VE-MR LSHDV-MR

Gaussian1 66045 73709 723662 60114

Gaussian2 136023 87112 1302360 51771

CovType 62336 579003 936665 65531

Poker 421098 632171 3884616 300114

Shuttle 213094 342111 367825 96771

Skin 239113 591030 660351 208514

Table 7 The experimental results compared with three related methods
with Spark on test accuracy

Datasets LSH-SP CNN-SP VE-SP LSHDV-SP

Gaussian1 0.980 0.973 0.987 0.994

Gaussian2 0.499 0.459 0.511 0.548

CovType 0.923 0.915 0.930 0.928

Poker 0.851 0.874 0.902 0.909

Shuttle 0.988 0.985 0.990 0.993

Skin 0.960 0.905 0.974 0.979

the corresponding maximum, and in Tables 6 and 9, the bold
values are the corresponding minimum.

The experimental results listed in Tables 4, 5, 6 and
Tables 7, 8, 9 demonstrate that the proposed algorithm
LSHDV is superior to the other three algorithms in test accu-
racy and compression ratio except for CovType data set. The
reason that LSHDV is superior to the other three algorithms
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Table 8 The experimental results compared with three related methods
with Spark on compression ratio

Datasets LSH-SP CNN-SP VE-SP LSHDV-SP

Gaussian1 9.30 3.55 11.19 12.21

Gaussian2 5.49 2.73 11.74 12.00

CovType 2.28 1.04 6.77 6.69

Poker 8.68 6.49 11.44 11.50

Shuttle 1.57 1.03 2.80 3.33

Skin 3.90 1.07 5.24 5.50

Table 9 The experimental results compared with three related methods
with Spark on running time (s)

Datasets LSH-SP CNN-SP VE-SP LSHDV-SP

Gaussian1 34121 41280 67288 32528

Gaussian2 97563 30114 147015 24889

CovType 50109 157426 184774 53159

Poker 269344 357483 422381 211602

Shuttle 100494 110610 231865 47355

Skin 108442 317734 431078 135145

in test accuracy is that it adopts double-voting mechanism,
one is local voting, the other is global voting. The combina-
tion of local and global voting can significantly improve the
quality of the selected instances and improve the test accu-
racy of the classifier. The reason that LSHDV is superior to
the other three algorithms in compression ratio is due to the
convenient parameter control mechanism. The compression
ratio of the proposed algorithm LSHDV is affected by three
parameters: (1) δ, the proportion of instances selected from
each hash bucket at each calculation node, (2) the local voting
threshold parameter λ1, and (3) the global voting threshold
parameter λ1. It is easy to select appropriate values of the
three parameters using good prior knowledge. In addition,
the high computational efficiency of locally sensitive hash-
ing also provides support for the good performance of the
proposed algorithm. On the CovType data set, the perfor-
mance of the proposed algorithm LSHDV is inferior to other
algorithms, we think that’s because the size of the data set is
small and it is difficult to give full play to the advantages of
the big data platform and the algorithm LSHDV itself.

From the experimental results listed in Tables 4, 5, 6 and
Table 7, 8, 9, it can be seen that there is no significant dif-
ference in test accuracy and compression ratio between the
two implementations with the two big data open source plat-
forms, MapReduce and Spark. It is easy to understand why
there is no significant difference in test accuracy and com-
pression ratio, because the algorithms select instances by the
same mechanisms, but the two implementation mechanisms
are different. However, there are significant differences in

Fig. 4 Visualization of running time comparisons of LSHDV-MR and
LSHDV-SP

running time between the four algorithms implemented on
the two big data platforms. Taking LSHDV-MR and LSHDV-
SP as examples, Fig. 4 shows the significant difference in the
running time of the algorithm LSHDV implemented by the
two big data platforms, MapReduce and Spark.

Why are there such a big difference in running time? We
think the reasons are as follows:

(1) The reason comes from algorithm itself. Compared with
the other three methods, the algorithm proposed in this
paper has no heuristic calculation, which selects some
representatives from similar instances, the drift of data
distribution is negligible. After the hash transformation,
the data points are transformed from the original space to
the Hamming space. In Hamming space, no extra com-
putation cost is needed to determine whether two data
points are similar. This is the main reason for the high
efficiency of the algorithm in this paper.

(2) Reasons from big data platform. This is because Spark
is an in-memory computation-based platform, where the
intermediate results of computation are buffered inmem-
ory, and the intermediate results are cached into external
memory only when the cache’s capacity reaches a cer-
tain threshold (e.g., 0.8), which results in I/O operations.
MapReduce, on the other hand, is a batch processing
platform where the intermediate results are cached into
externalmemory, resulting in a large number of I/O oper-
ations.

In the following, we present a theoretical analysis from
the perspective of computational time complexity. The run-
ning time of the proposed algorithm LSHDV with the two
platforms includes four parts: Tr which is the time of reading
data files, Ts which is the time of sorting intermediate data,
Tt which is the time of transferring intermediate data, and Tw

which is the time of writing files. Tr and Tw are same for the
two big data platforms, MapReduce and Spark. On MapRe-
duce, sorting the intermediate data is indispensable. Sorting
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realizes the merge of intermediate data, which can ensure
that a map task corresponds to an ordered intermediate file.
When the data files are transferred from the map node to the
reduce node, the network load and transmission are largely
reduced. Suppose there are m map tasks in MapReduce, and
each map task is responsible for processing q pieces of data.
Because MapReduce uses quick-sort algorithm to sort inter-
mediate data, the sort time of MapReduce for intermediate
files is Ts−mr = m log q. On Spark, because there is no sort
process for intermediate data, the sort time for intermediate
files is Ts−spark = 0. Obviously, Ts−mr > Ts−spark.

Because the MapReduce sorts and merges intermedi-
ate data, the scale of the data decreases as it transforms
from the map node to the reduce node. When MapRe-
duce and Spark process the same data set, the intermediate
data on the MapReduce platform will be smaller than the
intermediate data on Spark. Namely, Nt-mr-number of files <

Nt-spark-number of files.
When MapReduce processes a large data set, it first reads

the data files to be processed from HDFS into the map node.
The data set is processed by the map node and the interme-
diate files generated are stored in HDFS. Then, the reduce
node pulls the intermediate files fromHDFS according to the
key values. Spark is a big data platform based on in-memory
computing, the intermediate results of the data set calcu-
lated by Spark will be directly stored in memory. When the
memory cannot provide enough capacity for the intermedi-
ate results, they will be overwritten to HDFS, which greatly
reduces network I/O and disk I/O. Therefore, the transfer
time of the intermediate files based on MapReduce is much
greater than the transfer time based on Spark, i.e., we have
Tt−q−mr >> Tt−q−spark.

Since, Tt = Nt−numberoffiles×Tt−q . It is easy to obtain that
Tt−mr >> Tt−spark is hold for large scale data sets.

5 Conclusion

Inspired by the idea of locality sensitive hashing, divide-
and-conquer strategy, and double-voting mechanism, we
proposed an instance selection algorithm for big data. The
proposed algorithm has three advantages: (1) The idea of the
proposed algorithm is simple, but it is very effective and effi-
cient; (2) The selected instance set is not only of high quality
but also of high compression ratio; (3) For different data sets,
it is easy for the proposed algorithm to choose appropriate
hyperparameters, and the algorithm has strong autonomous
controllability. In the future works, (1) we will study how to
use data mining method to learn the hash function more suit-
able for different data sets according to the characteristics
of data sets themselves; (2) we will conduct researches of
applications of the proposed algorithm, investigating how to
apply the proposed algorithm LSHDV to select key frames

from video and how to select important samples from image
big data ImageNet.
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