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Abstract
This systematic review focuses on control strategies and machine learning techniques used in prosthetic knees for restoring
mobility of individuals with trans-femoral amputations. Review and classification of control strategies that determine how
these prosthetic knees interact with the user and gait strategy inspired algorithms for phase identification, locomotion mode,
and motion intention recognition were studied. Relevant studies were identified using electronic databases such as PubMed,
EMBASE, SCOPUS, and the Cochrane Controlled Trials Register (Rehabilitation and Related Therapies) up to April 2021.
Abstracts were screened and inclusion and exclusion criteria were applied. Out of 278 potentially relevant studies, 65 articles
were included. The specific variables on control approach, control modes, gait control, hardware level, machine learning
algorithm, and measured signals mechanism were extracted and added to summary table. The results indicate that advanced
methods for adaptingpositionor torquedepiction and automatic detectionof terrains or gaitmodes aremore commonlyutilized,
but they are largely limited to laboratory environments. It is concluded that a correct combination of control strategies and
machine learning techniques will enable the improvement of prosthetic performance and enhance the standard of amputee’s
lives.

Keywords Algorithm · Control strategies · Gait · Machine learning · Prosthetic knee

1 Introduction

The human knee is the largest and perhaps the most complex
joint in the body. The knee plays a significant role during gait.
It supports body weight and deceleration during the stance
phase (Nordin and Frankel 2001). It acts like a spring which
is evident from the linear relationship of moment–angle dur-
ing stance phase. The positive impedance characteristics of
the knee assist it during stance phase (Cherry et al. 2006).
It has been observed that gait characteristics vary between
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able-bodied subjects and trans-femoral (TF) amputees due
to stability of the prosthetic knee (Silver-Thorn and Glaister
2009; Mohanty et al. 2020a, b). Knee buckling during stance
results due to instability and leads to gait deviations with
increased energy consumption (Silver-Thorn and Glaister
2009;Romo2000). Patient’s abilities and functional goals are
considered to determine suitable prosthetic knee for smooth
and reliable gait for each individual (Romo 2000; Michael
1999), and therefore, gait analysis has been used to provide a
valid tool to correlate with experimental results (Mohanty
et al. 2020a; b). Prosthetic knee is stabilized by inherent
mechanical stability of the mechanism itself and the vol-
untary stability by hip extensors of TF amputee (Radcliffe
1977, 1994; Oberg 1983). However, a smooth transition from
stance to swing phase is more difficult function to replicate
(Radcliffe 1977; De Vries 1995; Andrysek et al. 2004).

Based on control, lower limb prostheses can be cate-
gorized into passive, semi-active, or variable damping and
powered or intelligent (Geng et al. 2010). Passive pros-
theses require positive power at the knee and ankle joints
and present with asymmetrical gait with increased energy
consumption (Eilenberg et al. 2010). In addition, it is not
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Fig. 1 Generalized control framework for lower limb prosthesis (Tucker et al. 2015)

possible for the individual with an amputation to generate
positive power at the knee and ankle joints of a passive pros-
thesis due to the fact that there is no direct control over
these prosthetic parts. Semi-active or auto-adaptive (Saw-
ers and Hafner 2013) prostheses modulate damping levels
to improve the knee stability and cadence responsiveness
but cannot produce positive power (Martinez-Villalpando
and Herr 2009). Active or intelligent prostheses are cou-
pled to human gait through electronic systems capable of
user’s intent recognition and can produce necessary positive
power, and, therefore, restore locomotion and other activi-
ties of daily living more efficiently and naturally (Liu et al.
2014, Torrealba et al. 2010). Robotic technology is applied
predominantly for troubleshooting of current active pros-
thetic controllers (Hargrove et al. 2013a; b). They recognize
user’s motion intentions and proceed to aid in movements
with least perceptual disturbances. Thus, an ingenious and
communal prosthetic controller must begin with knowledge
of the human controller (Tucker et al. 2015). Figure 1 shows
a generalized working framework for lower limb prosthesis
and Fig. 2 shows the general architecture for control systems
with gait phase identification.

In spite of significant developments in active and semi-
active knee devices, potential issues like development of
control strategies, portable power supplies, lightweight actu-
ators, and high-efficiency transmissions, etc. need improve-
ments (Romo 2000). An overview of control strategies
in lower limb prosthesis has been provided by several
review articles (Fluit et al. 2020; Berry 2006). Authors have
focused on control strategies with focus on ankle prosthe-
ses (Jiménez-Fabián and Verlinden 2012), actuator design

issues (Pieringer et al. 2017;Windrich et al. 2016), and corre-
sponding control strategies (Lara-Barrios et al. 2018; Ferreira
et al. 2015), yet a clear and in-depth overview is lacking.
Previous studies have failed to separate the control meth-
ods from hardware and implementation details. The various
control approaches of prosthetic knee devices to enhance the
locomotion of subjects with trans-femoral amputations are
thoroughly addressed in this review. In contrast to the exist-
ing literature reviews, a stronger attention is placed on the
control methods.

Machine Learning (ML) has been reported in the litera-
ture as the study of how computer algorithms (i.e., machines)
can “learn” complex relationships or patterns from empir-
ical data (Wang and Summers 2012) and, hence, produce
(mathematical) models linking an even large number of
covariates to some target variable of interest (Obermeyer and
Emanuel 2016). Application of amachine learning technique
and method to prosthetic knee systems has been explored
which works with the help of input of different sensors and
apply sophisticated algorithms to give a better gait pattern
to an amputee. Currently, machine learning algorithms are
designed to recognize or to predict a locomotion mode to
automatically adapt the behavior of prosthetic knees. In spite
of this, a clear review of commonly used machine learn-
ing approaches and control algorithms for recognition and
prediction of prosthetic knee functions is not found in the
literature to authors’ knowledge.

Ankle and foot prostheses are not taken into considera-
tion for this review. The main research question that needs
to be addressed in this review was to explore and study of
what approaches are being used in the literature to control
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Fig. 2 General architecture for
control systems with gait phase
identification (Varol et al. 2008)

prosthetic knee devices for directly assisting gait in subjects
with trans-femoral amputation? This contribution provides a
review of main control strategies and machine learning tech-
niques proposed for prosthetic knees in restoring mobility
of individuals with trans-femoral amputations. It includes
an overview and comparison of essential technical details
with special attention being paid to the algorithms employed
for motion intent recognition, different walking adaptation,
gait phase identification, and generation of walking patterns
for better understanding through a clear presentation. The
paper is arranged as follows. Most common control strate-
gies applied in powered lower limb prosthetic devices are
discussed in Sect. 3. In Sect. 4, a brief comparison of the
presented literature review is presented. The conclusions are
presented in Sect. 5.

2 Methods

This section is organized as literature search, study selec-
tion, data extraction, data synthesis, and analysis to show the
procedure involved in systematic review.

A. Literature search
This systematic review is reported following the Pre-
ferredReporting Items for Systematic reviews andMeta-
Analyses (PRISMA) guidelines. This review focuses on
Machine Learning Techniques and Control Strategies
used in prosthetic knees. Relevant articles were col-
lected by searching databases like PubMed, SCOPUS,

EMBASE, and the Cochrane Controlled Trials Register
(Rehabilitation and Related Therapies) up to April 2021.
The keywords such as amputation, trans-femoral, pros-
thetic knee, machine learning, control algorithms, and
control strategies were used for literature search. All
results were checked for any duplication. Moreover, the
reference lists of all searched studies were screened with
to reveal any additional eligible studies.

B. Study selection
The following topics were chosen for review:

1. Control strategies of prosthetic knee devices.
2. Applications of machine learning techniques and

control algorithms of prosthetic knee mechanism.
Inclusion criteria set for selection of articles are as
follows:

a. Control strategies intended for active and semi-
active knees.

b. Algorithms for motion intent recognition, different
walking adaptation, gait phase identification, and
generation of walking patterns (to determine the
required joint kinematics for performance of activi-
ties).

c. Control algorithms for knee and hip devices.
d. Experimental and numerical results for understand-

ing the behavior of the algorithms (an approach to
algorithm design and analysis).
Papers were excluded for application of endo-
prosthesis and in case of non-fulfillment of inclusion
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criteria. Any published systematic reviews andmeta-
analyses were excluded.
Two investigators (R.K.M. and S.S.) independent
from one another, screened the title first, followed by
abstracts identified in the database searches. R.K.M.
was responsible for reviewing abstracts identified
in PubMed, EMBASE, and S.S. reviewed abstracts
from SCOPUS and the Cochrane Controlled Tri-
als Register databases (Rehabilitation and Related
Therapies). These two investigators then applied
the inclusion and exclusion criteria to the abstracts.
Abstracts which did not meet the inclusion cri-
teria were excluded and the reason for exclusion
was recorded. Duplicate articles were removed. The
remaining full-length articles were then retrieved
and reviewed by these two reviewers to further deter-
mine whether the study met inclusion or exclusion
criteria. A senior investigator (R.C.M.) verified and
made the final decision.

C. Data extraction
Articles were assessed for their relevance to the imple-
mentation of control strategies and machine learning
algorithms in prosthetic knees. The evaluation of papers
was based on:

a. description of hypotheses and objectives, including
study designs,

b. sufficient description of control strategies and machine
learning approaches to extract essential technical details;
and

c. report of results with enough details to correlate with
conclusions.
The variables like control approach, control modes, gait
control, hardware level,machine learning algorithm, and
measured signalsmechanismof prosthetic knee centered
on restoration of mobility in amputees were drawn out
from the included studies. This was done by several
authors (R.K.M. and R.C.M.), independent from each
other. All items were validated by all authors.

D. Data synthesis and analysis
Specific variables on control strategies and machine
learning techniques were extracted and added to the
summary table. These extracted features were used for
the analysis. Summary table was used to group stud-
ies according to themes. During screening, grouping
of articles was performed based on desired parameters.
The results of this study were derived from a system-
atic review approach where all accessible articles were
comprehensively analyzed and conclusions were made
for best quantitative prediction.

3 Results

Flowchart showing results from the literature search is rep-
resented in Fig. 3. The search yielded abstracts from 278
published works. A total of 65 studies were included in this
systematic review after applying inclusion and exclusion cri-
teria.
A. Control strategies

The control strategies of prosthetic knee devices can be
subdivided into three parts: high-,middle-, and low-level
control. High-level control is accountable for recogniz-
ing the user’s intent of locomotion and supported signals
from the user, environment, and the device. Mid-level
controller receives these signals and translates the user’s
intentions to a desired output state for the device. The
directive from mid-level controller is delegated to the
low-level, which represents the device-specific control
loop that accomplishes the specified motion (Tucker
et al. 2015). This is called the concept of the hierarchical
behavior controller (Fukuda and Hasegawa 2004).
The control approaches can be divided into four cat-
egories: echo control, finite-state impedance control,
electromyography-based control, and Central Pattern
Generator-based control.
An echo control (Joshi et al. 2010; Grimes et al. 1977;
Wu et al. 2011) synchronizes joint position of prosthesis
based on the motions of the intact limb, but the imple-
mentation of response is not instantaneous.
A finite-state impedance control (Eilenberg et al. 2010;
Sup and Goldfarb 2008; Sup et al. 2009a, b; Liu
et al. 2014; Lambrecht and Kazerooni 2009; Martinez-
Villalpando andHerr 2009; Lawson et al. 2013; Sup et al.
2009) is the commonest and is based on generation of
different joint torques around knee and ankle which are
applied in each finite state of the locomotion. Calcula-
tion of impedance model of each joint was done using a
virtual non-linear spring and damper.
An electromyography-based control (Huang et al. 2009;
Wu et al. 2011) uses EMG signals to compute the control
inputs for the controller. An implicit agonist–antagonist
linear muscle model is utilized to compute torque appli-
cation at prosthetic knees. Thus, there is a proportional
relationship betweenmeasuredmuscle signal and torque
generation for control of prosthesis.
A central pattern generator (Torrealba et al. 2012;
Torrealba et al. 2010; Guo et al. 2010; Duysens and
Forner-Cordero 2019) uses biologic neural grid. They
are modulated by basic sensory signals which are being
modeled and extensively studied. These controls can
produce synchronized periodic patterns of activities.
These systems have the advantages of smooth trajec-
tory modulation, low estimated cost, and easy feedback
integration.
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Fig. 3 PRISMA flowchart of the included studies

B. Machine learning techniques and control algorithms
Machine learning uses various algorithms to realize
gait harmony, movement analysis, and stumble con-
trol. Some commonly used techniques are: control
logic, Intent detection algorithm, Genetic algorithm,
mathematical logic-based classifier, Expectation max-
imization algorithm, and Impedance control algorithm.

Control algorithm (Awad and Abouhussein 2016; Tucker
et al. 2015) is employed in which the controller supervises
the joint position trajectory, however the output of those algo-
rithms isn’t always guaranteed.

Intent detection algorithm (Varol and Goldfarb 2007;
Zhang and Huang 2013; Bhakta et al. 2020) is worn out two
ways: unsupervised and supervisedmachine learning. Super-
vised learning uses the method of predicting a model on a
trained range of inputs learning function to map the known

output, which discovers the pattern of latest sets of informa-
tion. The algorithm of unsupervised learning finds an answer
to unknown or unlabelled data which does not require any
reasonable supervision from humans.

Genetic algorithm (Martinez-Villalpando and Herr 2009;
Zhang et al. 2019;Amador et al. 2012)may be a search-based
optimization technique supported the principles of Genetics
and survival of the fittest. It is frequently accustomed, find
optimal or near-optimal solutions to difficult problems. The
solutions are obtained from the big datasets which sensors
have accumulated over a time span in response to situation-
based demand from prosthesis.

Fuzzy logic (Alzaydi et al. 2011; Hong-liu et al. 2008) is
an approach to variable processing that permits for multi-
ple values to be processed through the identical variable. It
strives to unravel problems with an open, non-specific range
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of knowledge to produce possible groups of precise conclu-
sions. It works on the logic of grouping amputees, and hence,
the input file is classed according to logic created within the
algorithm.

Expectationmaximization algorithm (Fessler 1994;Nandi
2008; Varol et al. 2008; Varol et al. 2009) is employed in an
energetic knee where the body of data is somewhat congre-
gated. It maximizes the probable data space function which
is not measured instead of maximizing the function of the
unfinished or measured data with improved efficiency and
accuracy.

Impedance control algorithm (Varol and Goldfarb 2007;
Herr and Wilkenfeld 2003; Duysens and Forner-Cordero
2019) is the most commonly used control strategy (El-Sayed
et al. 2014) within which the torque generated is tailored to
the produced knee angle. It ensures that the knee joint pro-
duces sufficient torque that is worthy for every phase of gait
(Martinez-Villalpando and Herr 2009). Table 1 summarizes
the control strategies and machine learning techniques used
in prosthetic knee control.

4 Discussion

The aim of this review paper was to overview the control
strategies and machine learning techniques for prosthetic
knee applications for restoring and improving gait perfor-
mance. An attempt was made to enlighten on the basic
concepts used in knee control including control approaches
and modes, hardware platforms, machine learning algo-
rithms, measured signals, and type of prosthesis.

Advancements in electronics and continuous research
work have led to the development of cutting-edge to intel-
ligent knee prostheses to improve the quality of life of
amputees. Themost common control strategies used by these
kinds of prostheses are finite-state ones which are also noted
as soft control. There are a group of pre-declared rules com-
bined with information about specific criterion associated
to natural and prosthetic gait available in a system direc-
tory. Control signals are sent to the prosthetic actuator for
the necessary output action. Sensors placed at different tac-
tical points on the body surface provide input signals which
are processed through a processor. The processor compares
these input values with the information in the directory,
and attempts to recognize the current instant and activity
of involvement during gait cycle. Each of these instants is
correlated with a state, which is again linked with a pre-
declared rule. This finally transforms into a control action
through a prosthetic actuator. However, these controls are
more complex, less robust, and lack real-time implementa-
tion of desired functions (Zlatnik et al. 2002). CPGs have
been intended to spot users’ purpose during gait cycle and
generate an algorithm that replicates bipedal locomotion

(Gupta and Anand 2005). In particular, researchers have
always been fascinated by electro-myographic signals. It is
documented that the information transferred by these sig-
nals is useful to identify user intention and subsequently
controls prosthesis.However, practical execution of this tech-
nology possesses some challenges like obtaining precise and
desired signals, processing, and identifying the distinction
between muscular activity and muscle fatigue (Park and
Meek 1993). The kinematic and kinetic signals taken from
several positions around the knee on amputated and sound
limb of unilateral patients are used as soft signals for con-
trol of prosthesis. Continuity of works (Herr and Wilkenfeld
2003; Bar et al. 1983; Aeyels et al. 1992) in this direction
has been able to replace a natural anatomic knee with a
bionic one. This allows the amputee to achieve a suitable gait
and human operation of it. Robotic systems are in operation
with notions like CPGs, for producing joint tracking and har-
monizing them to breed the various gait modes (Brambilla
et al. 2006; Muthuswamy 2005; Billard and Ijspeert 2000).
Currently, the cybernetic era of prostheses can apply bio-
stimulated conceptions to get knee joint trajectory, walking
modes, and overall performance in smooth and reliable way.

There have been various studies regarding control algo-
rithm in prosthetic knee. There have been practical imple-
mentations of various machine learning techniques for auto-
matic inception of control rules on human motions (Jonic
et al. 1999) and exploration of inherent propulsion of human
locomotion (Popovic et al. 2004). Most commonly used
machine learning algorithms used in prosthetic knees include
SVMand neural network-based control algorithm (ANN and
CNN). There exists higher classification accuracy in SVM as
it can be combined with other pattern classification methods
to target different objectives (Labarrière et al. 2020). The
ANN features significantly lower classification error than
LDA (p < 0.05) (Woodward et al. 2016). CNN is often used
to avoid manual feature selection and reported with accuracy
above 89%. This has been reported that an adaptive algorithm
performs significantly better than a non-adaptive algorithm
and possesses an encouraging solution to achieve long-term
locomotion mode classification (Liu et al. 2017). Kalanovic
et al. (2000) proposes a feedback error learning (FEL) neu-
ral network approach for control structure of a powered
prosthesis. This approach identifies the inverse dynamics
of straight-forward single joint movements of an arbitrary
trans-femoral prosthesis, whichmay bewont to track an arbi-
trary trajectory or a particular walking pattern. However, to
achieve the convergence of neural network weights, learning
ratemust be adjusted, because it is extremely sensitive and no
knownmethod aside from trial and errorwhichwill guarantee
the weights to converge to the simplest value. Another study
(Herr andWilkenfeld 2003) proposes a user-adaptive control
for a variable-damping electronic knee. This approach uti-
lizes data from sensors located on knee axis to adapt damping
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values of knee for matching the amputee’s gait. The results
show that the proposed open-loop controller performs better
to match with biological gait compared to the mechanical
passive knee. A study combining the four-bar link mecha-
nism that usually employed in passive kneeswithMRdamper
is presented in Xie et al. (2010). The modeling and control
proposed are a parametric approach, and thus contains many
parameters to be defined. The results showed that the intel-
ligent control proposed during this study is ready to follow
the gait tracking of the healthy side of amputee leg in spite of
particular delay. MR damper has been widely utilized in var-
ious applications. In robotics field, the study investigated by
Garcia et al. (2011) proposed a mixture of MR damper and
series elastic actuation for locomotion control for all-terrain
robot. There are two control schemes utilized in this study,
i.e., direct joint force control employing a PID control to
come up with current command to the amplifier module and
a cascade controller within the amplifier module. The results
show that the proposed combined actuator and control can
achieve a natural looking motion and can also reduce 20%
of power in braking knee mechanism.

A variable stiffness control as proposed by Wentink et al.
(2013) has been investigated in amodeling studyof prosthetic
knees to revive knee buckling during stance. Rotational stiff-
ness is controlled to forestall excessive knee flexion, which is
vital to supply a traditional gait. Torque generation in stance
phase around the knee ensures normal gait trajectory and
avoids risk of falling in amputees. EMG-based modeling
approaches have been investigated that used joint kinemat-
ics and EMG data as input to the model (Lloyd and Besier
2003; Kwon et al. 2012; Schauer 2017). Swing phase control
structure as proposed by Ekkachai and Nilkhamhang (2016)
consists of a neural network predictive control with particle
swarm optimization, and also a non-parametric feed forward
neural network swing phasemodel. It utilizes knee angle data
and voltage commands as the input to the controller. The per-
formance of this controller was measured by normalized root
mean squared error with validated data from an experiment.
The results show that this controller performs better than the
user-adaptive control found in Herr and Wilkenfeld (2003).
Moreover, huge differences in outcome parameters of these
reviewed studies investigating similar control strategies and
machine learning techniques did not allow a meta-analysis
to be performed.

5 Conclusion

This literature review has focused on control strategies and
machine learning techniques applied to knee prostheses.
Advancements in electronics, fluid mechanics, and mechan-
ical knowledge provide the real-time functioning of active
or powered prosthesis to attain a natural gait. The control

approaches cannot be generalized, and may vary depending
on variation of characteristics of disabilities, available pros-
thetic devices, organization of executed control schemes, and
necessity of prosthesis to identify the gait episode or the
user’s intent. Machine learning approach has been used to
automatically optimize the high-dimension control param-
eters of the advanced knee prosthesis. Multiple algorithms
have been proposed and used to control prosthetic knees for
specific tasks and best suits the needs of amputees. The cor-
rect combination of control strategies and machine learning
techniques will enable the improvement of prosthetic perfor-
mance and enhance the quality of life of amputees. Future
work on quantitative indicators of execution of the sug-
gested algorithms, error measurements in joint trajectories,
and functional outcome measure under realistic conditions
are warranted with a comprehensive perspective to focus and
resolve challenges of current prosthetic knees.
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