
Advances in Computational Intelligence (2022) 2:9
https://doi.org/10.1007/s43674-021-00026-4

ORIG INAL ART ICLE

A support vector approach based on penalty function method

Songfeng Zheng1

Received: 24 March 2021 / Revised: 4 October 2021 / Accepted: 12 October 2021 / Published online: 17 December 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Support vector machine (SVM) models are usually trained by solving the dual of a quadratic programming, which is time
consuming. Using the idea of penalty function method from optimization theory, this paper combines the objective function
and the constraints in the dual, obtaining an unconstrained optimization problem, which could be solved by a generalized
Newton method, yielding an approximate solution to the original model. Extensive experiments on pattern classification were
conducted, and compared to the quadratic programming-based models, the proposed approach is much more computationally
efficient (tens to hundreds of times faster) and yields similar performance in terms of receiver operating characteristic curve.
Furthermore, the proposed method and quadratic programming-based models extract almost the same set of support vectors.

Keywords Support vectors · penalty function · quadratic programming · Newton algorithm.

1 Introduction

For more than two decades, support vector machine (SVM)
classifier (Cortes and Vapnik 1995) and support vector
data description (SVDD) (Tax and Duin 1999, 2004) have
attracted much attention in research and have been success-
fully applied to various scenarios. In the training phase, the
formulations of SVM and SVDD lead to a quadratic pro-
gramming (Cortes and Vapnik 1995; Tax and Duin 1999,
2004). Although the decomposition techniques (Osuna et al.
1997a, b) or sequential minimization methods (Platt 1998)
could be employed to solve the quadratic programming,
the training of SVM/SVDD has time complexity about
O(n3), where n is the training set size. Therefore, train-
ing an SVM/SVDDmodel is time consuming, especially for
large training set. As such, given their wide applications, it
is highly desirable to develop a time-efficient yet accurate
enough training algorithm for SVM/SVDD. Furthermore,
since the support vectors contain important information for
SVM/SVDDmodels, we also want to obtain the support vec-
tor information from the fast algorithm.

Instead of relying on a special quadratic programming
solver for SVM and SVDD, we apply the idea of quadratic
penalty function method from optimization literature

B Songfeng Zheng
SongfengZheng@MissouriState.edu

1 Department of Mathematics, Missouri State University,
Springfield, MO 65897, USA

(Ruszczyński 2006), converting the constrained quadratic
programming to an unconstrained optimization problem.
Then, a generalized Newton method, which is known to con-
verge fast, is applied to solve the obtained problem, such that
an approximated SVM or SVDD model could be obtained.
The proposed algorithms for SVM and SVDD are easy to
implement, without requiring particular optimization tool-
box other than a standard linear system solver.

We tested the proposed algorithms on several pattern
classification problems, and detailed performance compari-
son demonstrates that the proposed Newton algorithm-based
SVM (N-SVM) and SVDD (N-SVDD) often yield similar
performances to those of the quadratic programming based
SVM (QP-SVM) and SVDD (QP-SVDD), in terms of area
under the receiver operating characteristic (ROC) curve and
the support vectors extracted. However, N-SVM and N-
SVDD are much more computationally efficient (often tens
to hundreds of times faster) in training than their quadratic
programming-based counterparts.

In literature, to avoid the expensive quadratic program-
ming in training SVM-type models, gradient-based opti-
mization methods were considered. For example, in Lee and
Mangasarian (2001) and Zheng (2016), a smooth approxima-
tion of the loss functions for SVM and SVDD was applied
so that gradient descent algorithm could be applied to the
approximated primal objective function, resulting computa-
tionally efficient algorithms.Newton’smethodwas applied to
minimize the primal objective function in SVM with L2 and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s43674-021-00026-4&domain=pdf
http://orcid.org/0000-0003-0546-8529

9 Page 2 of 13 Advances in Computational Intelligence (2022) 2 :9

Huber loss function in Chapelle (2007). Stochastic gradient
descent was directly used in Shalev-Schwartz et al. (2011)
andWang et al. (2012).However, thesemethods directly opti-
mize the primal objective function (or its modified versions)
of SVM or SVDD, hence could not find the support vectors.
On the contrary, the proposed ideaworks on the dual problem
over the Lagrangian multipliers α, so that the support vectors
could be identified, which are important to save predicting
time for nonlinear classifiers and estimating the generaliza-
tion error of SVM (Opper and Winther 2000; Vapnik and
Chapelle 2000).

The rest of this paper is organized as follows: Sect. 1.1
introduces the notations and mathematical tools used in this
paper; Sect. 2 briefly reviews the formulations of SVM and
SVDDmodels; Sect. 3 applies the quadratic penalty function
method to formulate the quadratic programming as an uncon-
strained optimization problem, and a generalized Newton
algorithm is introduced to solve the obtained problem; Sect.
4 compares the performancemeasures in terms of ROC curve
analysis and training time of the proposedNewton algorithms
to those of QP-SVM/QP-SVDD on four real-world datasets,
and we also compare the support vectors extracted by the two
methods; Sect. 5 summarizes this paper and discusses some
future research directions.

1.1 Notations

All scalars are represented by lower case symbols. All vec-
tors will be denoted by bold lower case symbols, and all are
column vectors unless transposed to a row vector by a prime
superscript ′. All matrices will be denoted by bold upper case
symbols. For vectors a and b inRn , a ≥ bmeans ai ≥ bi for
each i = 1, . . . , n. For vector x ∈ R

n , ‖x‖ stands for the 2-

norm of x, that is, ‖x‖ =
√
x21 + · · · + x2n . The plus function

x+ is defined as (x+)i = max{0, xi }, for i = 1, . . . , n. The
subgradient of x+ is denoted by x∗, which is a step function
defined as (x∗)i = 1 if xi > 0, (x∗)i = 0 if xi < 0, and
(x∗)i ∈ [0, 1] if xi = 0, for i = 1, . . . , n. If xi = 0, we
typically take (x∗)i = 0.5. A column vector of ones (zeros)
in R

n will be denoted by 1n (0n), and the identity matrix of
n-th order will be denoted by In .

If f is a real-valued function defined on R
n , the gradient

of f at x is denoted by ∇ f (x) which is a column vector
in R

n , and the Hessian of f at x is denoted by ∇2 f (x),
which is an n × n matrix. For a piecewise quadratic function
f (x) = 1

2‖(Ax − b)+‖2, where A ∈ R
m×n , the gradient

vector is∇ f (x) = A′(Ax−b)+, which is not differentiable,
thus the ordinary Hessian of f does not exist. However, we
can define its generalizedHessian (Hiriart-Urruty et al. 1984)
which is the n × n symmetric positive semi-definite matrix

∂2 f (x) = A′diag(Ax − b)∗A,

where diag(Ax−b)∗ denotes anm×m diagonal matrix with
diagonal elements (Aix − bi)∗, for i = 1, . . . ,m, with Ai

being the i-th row of matrix A.

2 Support vector machine and support
vector data description

In this section, we briefly review the formulations of support
vector machine and support vector data description.

2.1 Support vector machine

For two-class classification problem, assume that the given
training dataset is {(x1, y1), (x2, y2), . . . , (xn, yn)}with xi ∈
R

p as the feature vector and yi ∈ {−1, 1} as the class label.
The idea of support vector machine (SVM) is to first map the
feature vector into some high-dimensional reproducing ker-
nel Hilbert spaceH by a mapping φ(x), and then construct a
linear classifier inH with the formw′φ(x)+b. SVM is con-
structed so that the margin of the classifier is large, which is
measured by 1/‖w‖. To allow for possible mistakes, we also
introduce a set of slack variables ξi ≥ 0, which represents
the penalty to the classifier for making a mistake at (xi , yi)
for i = 1, . . . , n.

The SVM model can be fitted by solving the following
optimization problem{
minw,ξ ,b

1
2‖w‖2 + C

n
∑n

i=1 ξi

s.t. yi (w′φ(xi) + b) ≥ 1 − ξi , ξi ≥ 0 for i = 1, . . . , n,

(1)

where ξ = (ξ1, . . . , ξn)
′, and C > 0 controls the tradeoff

between the margin of the classifier and the total penalty.
The Lagrangian dual of problem (1) is{
minα

1
2

∑n
i=1

∑n
j=1 αiα j yi y j K (xi , x j) − ∑n

i=1 αi

s.t.
∑n

i=1 αi yi = 0, 0 ≤ αi ≤ C/n for i = 1, . . . , n,

(2)

where K (xi , x j) = φ(xi)′φ(x j) is the kernel function, and
α = (α1, . . . , αn)

′ with αi being the Lagrangian multiplier
for the i-th constraint in Eq. (1). The training examples with
nonzero αi are called support vectors.

The coefficient vector of the classifier in space H is cal-
culated as

w =
n∑

i=1

αi yiφ(xi),

and the intercept b could be calculated from the support vec-
tors. The obtained classifier is

ŷ = sign

(
n∑

i=1

αi yi K (xi , x) + b

)
,

123

Advances in Computational Intelligence (2022) 2 :9 Page 3 of 13 9

where ŷ is the predicted class label for a new feature vector
x.

2.2 Support vector data description

In some practical problems, compared to negative examples,
positive examples are relatively easier to obtain and more
reliable. As such, instead of fitting a two-class classifier, we
can alternatively describe the distribution of positive exam-
ples. Toward this end, Tax and Duin (1999, 2004) proposed
a support vector data description (SVDD) method, which in
the training stage, fits a tight hypersphere in the nonlinear
high-dimensional feature space to include most of the train-
ing positive examples.

Let the given training dataset be {xi , i = 1, . . . , n} with
xi ∈ R

p. We assume there is a nonlinear transformation
φ to transform the feature vector x to φ(x), which is in
a high-dimensional space H. In this space H, SVDD tries
to construct a hypersphere with center c ∈ H and radius
R > 0 such that the hypersphere contains most of the data
and the volume is as small as possible. In other words, the
desired hypersphere has the minimum R2, and at the same
time ‖φ(xi) − c‖2 ≤ R2, for i = 1, . . . , n. In addition, as in
the SVM formulation, we introduce a set of slack variables
ξi ≥ 0, since the training sample might contain outliers. In
mathematical form, the problem could be summarized as

min
R,c,ξ

R2 + C

n

n∑
i=1

ξi , (3)

such that

‖φ(xi) − c‖2 ≤ R2 + ξi and ξi ≥ 0, for i = 1, . . . , n,

(4)

where ξ = (ξ1, . . . , ξn)
′ is the vector of slack variables, and

the parameter C > 0 controls the tradeoff between the two
terms in (3).

The Lagrangian dual of the above optimization problem
is
{
minα

∑n
i=1

∑n
j=1 αiα j K (xi , x j) − ∑n

i=1 αi K (xi , xi)

s.t.
∑n

i=1 αi = 1, 0 ≤ αi ≤ C
n for i = 1, . . . , n,

(5)

where α = (α1, . . . , αn)
′ with αi being the Lagrangian mul-

tiplier for the i-th constraint in Eq. (4), and K (xi , x j) is the
kernel function. Once problem (5) is solved, the center of the
hypersphere is represented as

c =
n∑

i=1

αiφ(xi), (6)

and the radius R can be computed from the set of support
vectors, i.e., the data points with αi 	= 0.

If the distance from a new example x to the center c is
less than the radius R, it is classified as a positive example;
otherwise, it is classified as a negative example. Thus, the
class label for x is

ŷ = sign

⎛
⎝R2 −

∥∥∥∥∥φ(x) −
n∑

i=1

αiφ(xi)

∥∥∥∥∥
2
⎞
⎠ .

We note that in support vector clustering (Ben-Hur et al.
2001; Lee and Lee 2005, 2006) algorithms, the same opti-
mization problem as SVDD is first solved and then cluster
labels are assigned.

As implemented in popular toolboxes (Chang and Lin
2011; Joachims 1999), the quadratic programming in Eq.
(2) and Eq. (5) can be solved by the decomposition methods
(Osuna et al. 1997a, b) or sequential minimal optimization
(Platt 1998). However, these algorithms are computation-
ally expensive with time complexity about O(n3) where n is
the size of training set. Moreover, the set of support vectors
extracted by the quadratic programming is an indicator of
the complexity of the obtained model, and is important to
estimate the generalization error (Opper and Winther 2000;
Vapnik and Chapelle 2000). As such, given the wide appli-
cations of SVM/SVDD, other than the expensive quadratic
programming, we expect a fast training algorithm which
can achieve similar accuracy as the quadratic programming
method, and at the same time, it is desired to keep the infor-
mation of support vectors. The current paper will give an
attempt in this direction.

3 The proposed approach

This section first briefly reviews the penalty functionmethod,
based onwhich an approximated formulation to the quadratic
programming in Eqs. (2) and (5) is developed, and a gener-
alized Newton algorithm is proposed for SVM and SVDD.

3.1 Penalty functionmethod for optimization
problems

In optimization practice, unconstrained problems are often
considered to be easier to solve than constrained ones. The
idea of penalty function method is to approximate a con-
strained optimization problem by an unconstrained problem
or one with simpler constraints, so that an approximate solu-
tion can be obtained in an easier way (Ruszczyński 2006,

123

9 Page 4 of 13 Advances in Computational Intelligence (2022) 2 :9

chap. 6). For the nonlinear optimization problem

⎧
⎪⎨
⎪⎩

minu f (u)

s.t. gi (u) ≤ 0, for i = 1, . . . , k;
hi (u) = 0, for i = 1, . . . , l;

(7)

the following function is called its quadratic penalty function
(Ruszczyński 2006, chap. 6)

P2(u) = 1

2

k∑
i=1

(gi (u)+)2 + 1

2

l∑
i=1

(hi (u))2 .

Clearly, u satisfies the constraints in problem (7), if and only
if P2(u) = 0.

Consider the unconstrained optimization problem

min
u

�ρ(u) = f (u) + ρP2(u), (8)

where ρ > 0. Let the solution to Eq. (8) be uρ , then it could
be proved that uρ → u∗ as ρ → ∞, where u∗ is the solution
to problem (7). The intuition is that, for ρ sufficiently large,
in order to make �ρ(u) small, P2(u) should be very close to
0 and at the same time, f (u) should also be as small as possi-
ble. In other words, at uρ , the constraints are approximately
satisfied and the original objective function is small. Thus,
we can imagine that as ρ grows, uρ would get closer and
closer to u∗. Please see (Ruszczyński 2006,chap. 6) for rig-
orous proofs to related theoretical results and demonstrative
examples.

3.2 Penalty functionmethod for support vector
machine

Let K be the kernel matrix, that is, Ki j = K (xi , x j) for
i = 1, 2, . . . , n and j = 1, 2, . . . , n. Let H be n × n matrix
withHi j = yi y jKi j . Then, the dual problem for SVM in Eq.
(2) could be written compactly in matrix form as

{
minα

1
2α

′Hα − 1′
nα

s.t. y′α = 0 and 0n ≤ α ≤ C
n 1n,

(9)

where y = (y1, y2, . . . , yn)′. By the penalty function
method, problem (9) could be solved approximately via min-
imizing the following function with respect to α,

Fρ(α) = 1

2
α′Hα − 1′

nα

+ ρ

2

[
(y′α)2 + ‖(−α)+‖2 +

∥∥∥∥
(

α − C

n
1n

)

+

∥∥∥∥
2
]

= 1

2
α′Hρα − 1′

nα

+ ρ

2

[
‖(−α)+‖2 +

∥∥∥∥
(

α − C

n
1n

)

+

∥∥∥∥
2
]

, (10)

where Hρ = H + ρyy′.
For any vector a ∈ R

n , there is a′yy′a = (a′y)2 ≥ 0, that
is, the matrix yy′ is positive semi-definite. Furthermore,

a′Ha =
n∑

i=1

n∑
j=1

aiHi j a j =
n∑

i=1

n∑
j=1

ai yiKi j y j a j

= (a. ∗ y)′K(a. ∗ y) ≥ 0, (11)

where a. ∗ y is the vector obtained by component-wise mul-
tiplying a and y, and the inequality in Eq. (11) follows from
the positive semi-definiteness of kernel matrix K (Cortes
and Vapnik 1995). Equation (11) shows that H is a posi-
tive semi-definite matrix. Hence, as the sum of two positive
semi-definite matrices, Hρ is also positive semi-definite.

The gradient vector of Fρ(α) is

∇Fρ(α) = Hρα − 1n − ρ(−α)+ + ρ

(
α − C

n
1n

)

+
, (12)

and the generalized Hessian of Fρ(α) is

∂2Fρ(α) = Hρ + ρdiag(−α)∗ + ρdiag

(
α − C

n
1n

)

∗
.

(13)

Because diag(−α)∗ and diag
(
α − C

n 1n
)
∗ are diagonalmatri-

ces with nonnegative diagonal elements, they are positive
semi-definite. SinceHρ is positive semi-definite, the general-
ized Hessian ∂2Fρ(α) is a positive semi-definite matrix. This
indicates that function Fρ(α) is convex and consequently, it
has a minimum point.

To minimize Fρ(α), for its simplicity, we choose to
use Newton’s method (Boyd and Vandenberghe 2004). In
each iteration, Newton algorithm searches for the optimal
point in the direction of−(∇2Fρ(α))−1∇Fρ(α). The regular
Hessian of Fρ(α) does not exist because the plus func-
tion in ∇Fρ(α) is not differentiable. Therefore, we use the
generalized Hessian of Fρ(α) in the Newton algorithm,
since the generalized Hessian has similar properties as the
regular Hessian (Hiriart-Urruty et al. 1984). Thus, in the pro-
posed algorithm, we update the solution in the direction of
−(∂2Fρ(α)+δIn)−1∇Fρ(α), and we call the resulting algo-
rithm as generalized Newton algorithm. Here, δ is a small
positive number and the term δIn is added to avoid possible
singularity of ∂2Fρ(α). The convergence of the generalized
Newton algorithm was studied in Mangasarian (2002).

123

Advances in Computational Intelligence (2022) 2 :9 Page 5 of 13 9

Algorithm 1 summarizes the proposed generalized New-
ton algorithm for support vector machine (N-SVM).

Algorithm 1: Generalized Newton Algorithm for SVM

0 Initialization: choose a starting point α0 ∈ R
n , set the penalty

parameter ρ, the perturbation parameter δ, the tolerance level ε,
the maximum iteration number M . Set the iteration number t = 0.

1 Apply Eqs. (12) and (13) to calculate the gradient and the general-
ized Hessian of Fρ with current αt .

2 Update α according to αt+1 = αt + γtdt , where dt =
− (

∂2Fρ(αt) + δIn
)−1 ∇Fρ(αt) is the search direction, and γt is

step size.
3 Stop if ‖αt+1 − αt‖ < ε or t = M ; otherwise, set t = t + 1 and

go back to step 1.
4 Return αt+1 as the minimum point of Fρ .

In the second step, the step-size γt could be chosen as

γt = argmin
γ>0

Fρ(αt + γdt). (14)

Theminimization problem in Eq. (14) can be solved by back-
tracking line search algorithms (Boyd and Vandenberghe
2004, chap. 9). We choose to use Armijo rule (Armijo 1966)
for its simplicity, which is given in Algorithm 2 for com-
pleteness.

Algorithm 2: Armijo Rule to Determine a Step-size

0 Given the objective function f (u), the current estimation uc, the
current gradient vector ∇ f (uc), and the search direction d.

1 Initialize γ = 1.
2 Calculate Δ = f (uc + γd) − f (uc).
3 IfΔ ≤ γ

4 ∇ f (uc)′d, return the current γ as the step size; otherwise,
set γ = γ /2, and go back to step 2.

In each iteration of Algorithm 1, we need to calculate a
matrix-vector multiplication to determine the search direc-
tion in step 2. Since the involved matrix is of size n × n
and the vector is in R

n , the matrix-vector multiplication has
time complexity O(n2). In each iteration of Algorithm 1,
we also need to determine the step-size through Algorithm
2, in which we need to evaluate the function value via Eq.
(10), and the most expensive calculation is α′Hρα, which is
again of time complexity O(n2) since Hρ is of size n × n
and the vector α is inRn . Hence, in each iteration of N-SVM,
the time complexity is about O(n2), and consequently, the
total time complexity of N-SVM is about O(Mn2), where
M is the total iteration numbers needed for the algorithm
to converge. For large training set, this is significantly more
efficient than the quadratic programming-based SVMwhich
has time complexity at the level of O(n3).

3.3 Penalty functionmethod for support vector data
description

Let k be the n × 1 vector formed by the diagonal elements
of the kernel matrix K. Similar to our treatment in Sect. 3.2

for SVM, the dual problem for SVDD in Eq. (5) could be
written compactly in the form of matrix as

{
minα α′Kα − k′α
s.t. 1′

nα = 1 and 0n ≤ α ≤ C
n 1n .

(15)

Same as in Sect. 3.2, applying the penalty function method,
we can approximately solve problem (15) by minimizing
function
Gρ(α) = α′Kα − k′α

+ ρ

2

[
(1′

nα − 1)2 + ‖(−α)+‖2 +
∥∥∥∥
(

α − C

n
1n

)

+

∥∥∥∥
2
]

= 1

2
α′Kρα − k′

ρα

+ ρ

2

[
‖(−α)+‖2 +

∥∥∥∥
(

α − C

n
1n

)

+

∥∥∥∥
2
]

+ ρ

2
, (16)

where kρ = k+ρ1n andKρ = 2K+ρ1n1′
n . Similar to Sect.

3.2, we can prove that Kρ is a positive semi-definite matrix.
The gradient vector of Gρ(α) is

∇Gρ(α) = Kρα − kρ − ρ(−α)+ + ρ

(
α − C

n
1n

)

+
,

and the generalized Hessian of Gρ(α) is

∂2Gρ(α) = Kρ + ρdiag(−α)∗ + ρdiag

(
α − C

n
1n

)

∗
.

Similar to Sect. 3.2, we can verify that ∂2Gρ(α) is a positive
semi-definite matrix, which indicates that Gρ(α) is convex
and has a minimum point.

Similar to Algorithm 1, we can develop an SVDD algo-
rithm based on generalized Newton’s method (N-SVDD),
which we choose not to present because it only slightly dif-
fers fromAlgorithm1. Similar to the analysis presented at the
end of Sect. 3.2, we could obtain the computational complex-
ity of N-SVDD as O(Mn2), where n is the training set size
and M is the total number of iterations needed for N-SVDD
to converge.

3.4 Discussion

The original formulation of SVM and SVDD leads to a
quadratic programming with constraints. By absorbing the
constrains, this paper obtains an approximated unconstrained
optimization problem, and this will bring some advantages
compared to the original quadratic programming. First, the
approximated objective function is a quadratic function with
positive semi-definite Hessian matrix, which guarantees that
there exists a unique minimum point. The solution of the
approximated optimization problemconverges to the original

123

9 Page 6 of 13 Advances in Computational Intelligence (2022) 2 :9

quadratic programming solution. Hence, all the informa-
tion we can get from quadratic programming could also be
approximately obtained from the approximated solution. For
example, the set of support vectors extracted by both pro-
posed method and quadratic programming are verified very
close, see the experimental results in Sect. 4.

Second, the approximated objective function can be min-
imized by a generalized Newton’s method, which is guar-
anteed to converge quickly (Mangasarian 2002). Theoretical
analysis of the quadratic programming-based SVMor SVDD
showed that the computational complexity is about O(n3),
which will be verified by our experimental results in Sects.
4.3 to 4.5. However, our theoretical analysis at the end of
Sect. 3.2 shows that the computational complexity of N-
SVM is about iteration number multiplying O(n2), which
will also be verified by our experimental results. The expen-
sive training cost makes parameter selection for QP-SVM
and QP-SVDD not practical, because to select the model
parameters, we usually need to use cross validation, which
needs to train the model multiple times. On the contrary,
due to their efficient training process, it is possible to select
parameters for N-SVM and N-SVDD by techniques such as
cross validation.

Finally, the Newton’s algorithm is easy to implement. The
quadratic programming-based SVM and SVDD need to use
an external quadratic programming package. For example, in
our implementation, we employed a quadratic programming
solver developed by about 1000 lines of C++ code. However,
from the description of Algorithm 1, we can see that the N-
SVM or N-SVDD only needs basic matrix operations, which
are built-in functions of almost all modern programming lan-
guages. Hence, no specific software package is needed for
N-SVM or N-SVDD. For example, in our implementation,
N-SVM and N-SVDD each used about 50 lines of MATLAB
code. In this sense, we can say that the proposed N-SVM and
N-SVDD are much easier to be implemented, compared to
the QP counterparts.

In summary, compared to the quadratic programming-
based SVM or SVDD, the proposed methods are not only
easy to implement, but also more computationally efficient.
Moreover, they could extract almost the same set of sup-
port vectors as the quadratic programming-based SVM and
SVDD. These advantages motivated us to develop this work.

4 Experimental results and analysis

On four pattern classification problems, we compare the per-
formances of the proposed Newton algorithm-based SVM
and SVDD (N-SVM and N-SVDD) to those of the ordinary
quadratic programming (QP)-based models, i.e., QP-SVM
and QP-SVDD.

4.1 Experiment setup and performancemeasures

All the computer codes were implemented in MATLAB, and
the quadratic programming-based models had the QP solver
from the C++ version of LIBSVM (Chang and Lin 2011).
All the experiments were conducted on a desktop computer
with Interl(R) Xeon(R) CPU @ 2.00 GHz and 8 GB mem-
ory. During all experiments that incorporated measurement
of running time, one corewas used solely for the experiments,
and the number of other processes running on the systemwas
minimized.

We used the Gaussian kernel

K (u, v) = exp

{
−‖u − v‖2

2σ 2

}
,

with σ = 10. We set the penalty parameter in SVM and
SVDD as C = 2n, where n is the training set size. Our
purpose is to compare the performances between N-SVM/N-
SVDD and QP-SVM/QP-SVDD, and this comparison is fair
as long as the parameter settings are the same for the two
algorithms because in this case, they solve exactly the same
optimization problem with the same parameters. In gen-
eral, we could select the optimal parameter setting (C, σ)

by applying cross validation, generalized approximate cross
validation (Wahba et al. 2000), or other criteria mentioned
in Chapelle et al. (2002) and Gold and Sollich (2003). Since
parameter selection is not the focus of this paper, we choose
not to pursue further in this issue. In the generalized Newton
algorithm, we set the maximum iteration number to be 1000
and the parameterρ to be 500, andwe found that the result did
not differ too much as long as ρ > 100. Both the tolerance
parameter ε and the perturbation parameter δ in Algorithm 1
were set to be 10−5. In all the considered algorithms, α was
initialized as 0n .

The receiver operating characteristic (ROC) curve (Fawcett
2006) is employed to illustrate the performance of the classi-
fier. The classifier performs better if the corresponding ROC
curve is higher. To numerically compare the ROC curves
of different methods, we calculate the area under the curve
(AUC) (Fawcett 2006). The bigger the AUC, the better the
overall performance of the corresponding classifier.

Similar to the work in Zheng (2019), we use precision and
recall rates to compare the support vectors found by the two
algorithms. We assume the support vectors extracted by QP-
based models as true support vectors, and denote them as the
set SVQ ; denote the support vectors fromNewton algorithms
as SVN . The precision and recall (Powers 2011) rates are
defined as

precision = |SVQ ∩ SVN |
|SVN | and recall = |SVQ ∩ SVN |

|SVQ | ,

123

Advances in Computational Intelligence (2022) 2 :9 Page 7 of 13 9

where |A| represents the size of a set A. High precisionmeans
that the Newton algorithm finds more correct support vectors
than incorrect ones, while high recall means that Newton
algorithm extracts most of the correct support vectors.

4.2 Face detection

In the first experiment, we select to use a dataset which
consists 5175 face images and 10,000 non-face images.
The dataset is available at http://people.missouristate.edu/
songfengzheng/FaceData.zip. Each image is of size 16×16,
which is normalized so that all pixel values are between 0 and
1. We do not extract any specific features for face detection
(e.g., the features used in Viola and Jones 2001), instead,
we directly use the pixel values as input to all the consid-
ered algorithms. We randomly select 500 face images for
training the SVDD models and further randomly select 500
nonface images for training theSVMmodels, and the remain-
ing images are used for testing purpose.

Fig. 1 gives the ROC curves of the tested algorithmswhich
clearly shows that N-SVM and N-SVDD perform almost
the same as their QP counterparts, in the sense that the
ROC curves are almost indistinguishable if we plot them
in the same figure. Numerically, N-SVM has AUC 0.9907
and QP-SVM has AUC 0.9906; N-SVDD has AUC 0.9241
while QP-SVDD has AUC 0.9353. Thus, both graphical and
numerical measures demonstrate that the Newton algorithms
and QP based algorithms have almost identical classification
performances on the testing set.

We also compare the difference between the final solutions
from different algorithms, we have ‖αQP − αN‖ = 0.0552
for SVDD models and ‖αQP − αN‖ = 0.8206 for SVM,
where αQP is the final solution to Eq. (2) or Eq. (5) and
αN is the final solution of Eq. (10) or Eq. (16), respectively.
These differences are reasonably small, considering the size
of the problems. This means that the solutions from Newton
algorithm and QP based algorithm are quite close.

Training QP-SVM used 106.2333 s, while N-SVM train-
ing algorithm converged with only 46 iterations, consuming
1.0108 s, which is about 105 times faster. QP-SVDD used
15.7478 s in training, while N-SVDD training converged in
16 iterations, using 0.2492 s, which is about 63 times faster
than the QP counterpart. These numbers indicate that the
Newton algorithms are much more time efficient than the
QP-based models in training.

QP-SVM found 402 support vectors, while N-SVM
extracted 403 support vectors, with the precision rate 99.5%
and the recall rate 99.75%. Both QP-SVDD and N-SVDD
found the same 26 support vectors, which means that the
precision rate and the recall rate are both 100%. The very
high precision and recall rates show that Newton algorithms
can correctly find almost all the support vectors with very
few mistakes, and they also indicate that the Newton algo-

rithms and quadratic programming-based algorithms obtain
models with similar complexity.

4.3 Human activity recognition

In the second experiment, we try to recognize human activity
(standing, sitting, laying, walking, walking upstairs, walking
downstairs) based on inertial sensors for ambient assisted
living. The dataset is publicly available from UCI machine
learning repository (https://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+Using+Smartphones). The
training set consists of 4252 data points while the testing
set size is 1492, and each data point has 561 features. We
normalize the data so that each feature is between 0 and 1.

We use each activity as positive label and use all others
as negative label to create six binary classification problems,
which are denoted asWK (walking), WU (walking upstairs),
WD (walking downstairs), SIT (sitting), STAND (standing),
LAY (laying). In training the SVMmodels, to make the pos-
itive and negative examples balance, we further randomly
select 500 negative examples for training purpose.

Table 1 compares the performances of QP-SVM and N-
SVM. We first notice that the final solutions of QP-SVM
(αQP) and those of N-SVM (αN) are close enough, in the
sense that the norms of the difference vectors are small,
considering the problem size. Table 1 shows that for each
problem, the classification performance of QP-SVM and N-
SVMare almost identical, in terms of the area under the ROC
curve (AUC).We choose not to show theROCcurves because
they are almost indistinguishable for each problem. Table
1 also shows that for each problem, N-SVM and QP-SVM
found almost the same number of support vectors, obtaining
models with similar complexity. However, the training time
differs significantly, and N-SVM often converges in 100 iter-
ations.

Table 2 shows the performance comparison between QP-
SVDD and N-SVDD.We observe the same pattern as for the
SVM classifiers, that is, the final solutions are very similar,
the AUC are quite close, with difference below 0.004, both
algorithms find almost the same number of support vectors,
N-SVDD converges in 20 iterations and is much faster than
QP-SVDD in the training phase.

To clearly illustrate the speed advantage of N-SVDD and
N-SVM over their QP counterparts, we calculate the ratio
between the training times of QP-SVM (QP-SVDD) and N-
SVM (N-SVDD) for different problems, and list the results
in Table 3. It is clearly seen that, on this dataset, N-SVDD
is around 100 times faster than QP-SVDD and N-SVM is
40–130 times faster than QP-SVM.

To study the training time complexity of QP-based mod-
els, Table 4 lists ttrain/n3 × 107 for QP-SVM and QP-SVDD
on the human activity data, where ttrain is the training time
and n is the training set size. We see that the ratio ttrain/n3

123

http://people.missouristate.edu/songfengzheng/FaceData.zip
http://people.missouristate.edu/songfengzheng/FaceData.zip
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

9 Page 8 of 13 Advances in Computational Intelligence (2022) 2 :9

Fig. 1 The ROC curves on the
face dataset: a Newton
algorithm-based classifiers; b
quadratic programming-based
classifiers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

N−SVM
N−SVDD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e
 R

a
te

QP−SVM
QP−SVDD

(b)(a)

Table 1 On the human activity
recognition problems, the
comparison between QP-SVM
and N-SVM

Problem WK WU WD SIT STAND LAY

Training set size 1269 1129 1191 1334 1275 1054

Iter # N-SVM 65 49 48 155 105 68

‖αQP − αN‖ 0.3906 0.5279 0.6231 0.3238 0.3229 0.2484

AUC QP-SVM 0.8747 0.7481 0.8650 0.8375 0.8719 0.9765

N-SVM 0.8749 0.7482 0.8649 0.8375 0.8720 0.9765

SV QP-SVM 694 806 723 714 787 691

N-SVM 694 806 722 710 784 688

Time QP-SVM 209.7850 145.7431 173.8629 253.3498 216.3342 122.8166

N-SVM 3.2364 1.2047 1.3188 6.2629 3.7418 1.5510

The listed are the closeness of the solutions evaluated by ‖αQP − αN‖, the area under ROC curve (AUC), the
number of support vectors (# SV), and the training times (in seconds). The training set sizes and the iteration
numbers for N-SVM to converge are also given

Table 2 On the human activity
recognition problems, the
comparison between QP-SVDD
and N-SVDD

Problem WK WU WD SIT STAND LAY

Training set size 769 629 691 834 775 554

Iter # N-SVDD 19 19 18 17 18 15

‖αQP − αN‖ 0.0031 0.0042 0.0058 0.0017 0.0012 0.0011

AUC QP-SVDD 0.5533 0.7004 0.6132 0.7003 0.8411 0.7798

N-SVDD 0.5516 0.6971 0.6114 0.7011 0.8407 0.7794

SV QP-SVDD 4 9 5 9 11 11

N-SVDD 4 8 5 9 11 11

Time QP-SVDD 61.6968 33.4195 45.2624 80.2963 66.2835 23.2798

N-SVDD 0.5560 0.3554 0.3777 0.5986 0.5885 0.2412

See the caption of Table 1 for more information

Table 3 The ratio of training
times of QP-SVDD vs.
N-SVDD and QP-SVM vs.
N-SVM on different problems

Problem WK WU WD SIT STAND LAY

SVDD 110.9691 94.0463 119.8468 134.1491 112.6274 96.5242

SVM 64.8210 120.9797 131.8382 40.4526 57.8160 79.1841

123

Advances in Computational Intelligence (2022) 2 :9 Page 9 of 13 9

Table 4 The time complexity ofQP-SVMandQP-SVDDon thehuman
activity recognition problems

Problem WK WU WD SIT STAND LAY

QP-SVM 1.027 1.013 1.029 1.067 1.044 1.049

QP-SVDD 1.357 1.343 1.372 1.384 1.424 1.369

The listed are the values of ttrain/n3 × 107, where n is the training set
size

Table 5 The time complexity of N-SVM and N-SVDD on the human
activity recognition problems

Problem WK WU WD SIT STAND LAY

N-SVM 3.092 1.929 1.937 2.271 2.192 2.053

N-SVDD 4.948 4.728 4.395 5.062 5.443 5.239

The listed are the values of ttrain/(Mn2)×108, where n is the training set
size and M is the iteration numbers needed for N-SVM and N-SVDD
to converge

for QP-SVM is roughly 1.0 × 10−7, and for QP-SVDD, it
is close to 1.4 × 10−7. These results indicate that the time
complexity of QP-SVM and QP-SVDD is about O(n3).

To verify our theoretical analysis of the time complexity
of Newton algorithm-based SVM and SVDD presented at
the end of Sect. 3.2, Table 5 presents ttrain/(Mn2) × 108

for N-SVM and N-SVDD on the human activity recognition
problems, where M is the iteration numbers needed. We see
that the ratio ttrain/(Mn2) forN-SVMis roughly2×10−8, and
forN-SVDD, it is close to 5×10−8. These results support our
analysis that the time complexity of N-SVM and N-SVDD
is about O(Mn2).

To investigate the overlap of the sets of support vectors
extracted by different methods, we calculate the precision
and recall rates for each problem, given inTable 6. The results
show that all the precision rates are 100%, which means that
N-SVM and N-SVDD do not miss any single support vector
which was found by their QP counterparts, and all but one

Table 6 On the human activity
recognition problems, the
precision (P) and recall (R) rates
for the support vectors extracted
by N-SVM and N-SVDD

Problem WK (%) WU (%) WD (%) SIT (%) STAND (%) LAY (%)

N-SVM P 100 100 100 100 100 100

R 100 100 99.86 99.44 99.62 99.57

N-SVDD P 100 100 100 100 100 100

R 100 88.89 100 100 100 100

Table 7 On the handwritten
digit recognition problems, the
comparison between QP-SVM
and N-SVM

Problem “2” “3” “4” “5” “6”

Training set size 1731 1658 1652 1556 1664

Iter # N-SVM 30 30 35 26 31

‖αQP − αN‖ 0.7199 0.6087 1.0417 0.4089 0.7667

AUC QP-SVM 0.9798 0.9850 0.9863 0.9881 0.9967

N-SVM 0.9801 0.9851 0.9859 0.9881 0.9966

SV QP-SVM 355 330 338 400 255

N-SVM 358 330 341 400 257

Time QP-SVM 578.433 538.172 508.088 429.723 529.014

N-SVM 1.8557 1.7576 1.8653 1.2176 1.7100

See the caption of Table 1 for more information

Table 8 On the handwritten
digit recognition problems, the
comparison between QP-SVDD
and N-SVDD

Problem “2” “3” “4” “5” “6”

Training set size 731 658 652 556 664

Iter # N-SVDD 12 12 13 12 13

‖αQP − αN‖ 0.0130 0.0137 0.0127 0.0135 0.0099

AUC QP-SVDD 0.8244 0.9358 0.9409 0.7769 0.9674

N-SVDD 0.8254 0.9371 0.9427 0.7772 0.9695

SV QP-SVDD 35 26 26 30 22

N-SVDD 38 29 29 31 23

Time QP-SVDD 57.4966 38.1632 37.7701 22.4223 40.5231

N-SVDD 0.3252 0.2248 0.2490 0.1506 0.3042

See the caption of Table 1 for more information

123

9 Page 10 of 13 Advances in Computational Intelligence (2022) 2 :9

Table 9 The ratio of training
times of QP-SVDD vs.
N-SVDD and QP-SVM vs.
N-SVM on the handwritten digit
recognition problems

Problem “2” “3” “4” “5” “6”

SVDD 188.6468 151.3330 135.7874 127.5034 150.4354

SVM 311.7111 306.2012 272.3854 352.9354 309.3564

recall rates are above 99.5%, which indicates that N-SVM
and N-SVDD extract almost all the support vectors found by
the QP-based algorithms.

4.4 Handwritten digit recognition

In this experiment, we use a dataset which consists of nor-
malized handwritten digits (“0” to “9”) of size 16× 16. The
dataset has 7291 training examples and 2007 testing exam-
ples, and is available at https://web.stanford.edu/~hastie/
ElemStatLearn/. Same as the experiment in Sect. 4.2, we
simply use these 256 pixel values as inputs to the algorithms.
We create five binary classification problems, with digits “2”,
“3”, “4”, “5”, and “6” as positive label, respectively; in each
problem, we use all other nine digits as negative label. In
training the SVM models, to make the positive and negative
examples balance, we further randomly select 1000 negative
examples.

Similar to the experiments presented in Sect. 4.3, Tables
7 and 8 compare the performances of QP-SVM vs. N-SVM
andQP-SVDDvs.N-SVDDonhandwritten digit recognition
problems, respectively. We could draw the same conclusion
as in Sect. 4.3 that Newton algorithm-based SVM/SVDD
found almost the same number of support vectors as their
QP-based counterparts, and N-SVM/N-SVDD have almost
identical classificationperformances asQP-SVM/QP-SVDD
in terms of AUC. However, the Newton algorithm-based
models are much faster in the training phase. Also, we see
that N-SVM and N-SVDD converge in 40 iterations. Table
9 presents the ratio between the training times of QP-SVM
(QP-SVDD) and N-SVM (N-SVDD) for different problems.
It is clearly seen that, on this dataset, N-SVDD is more than
120 times faster than QP-SVDD and N-SVM is 200–300
times faster than QP-SVM.

Table 10 lists ttrain/n3 × 107 for QP-SVM and QP-SVDD
on the handwritten digit recognition problems. Same as in
Sect. 4.3, these results indicate that the time complexity of
QP-SVM and QP-SVDD is about O(n3). Table 11 presents
ttrain/(Mn2) × 108 for N-SVM and N-SVDD on the tested
tasks.We see that the ratio ttrain/(Mn2) forN-SVMis roughly
2 × 10−8, and of N-SVDD, it is close to 4.5 × 10−8. These
results verify that the time complexity of N-SVM and N-
SVDD is about O(Mn2), consistent with the theoretical
analysis at the end of Sect. 3.2.

Table 12 shows the precision and recall rates for the
support vectors extracted by N-SVM and N-SVDD, com-

Table 10 The time complexity ofQP-SVMandQP-SVDDon the hand-
written digit recognition problems

Problem “2” “3” “4” “5” “6”

QP-SVM 1.115 1.181 1.127 1.141 1.148

QP-SVDD 1.472 1.340 1.363 1.305 1.384

Please see the caption of Table 4 for more information

Table 11 The time complexity of N-SVM and N-SVDD on the hand-
written digit recognition problems

Problem “2” “3” “4” “5” “6”

N-SVM 2.064 2.131 1.953 1.934 1.992

N-SVDD 5.071 4.327 4.506 4.060 5.307

Please see the caption of Table 5 for more information

Table 12 On the handwritten digit recognition problems, the precision
(P) and recall (R) rates for the support vectors extracted by N-SVM and
N-SVDD

Problem “2” (%) “3” (%) “4” (%) “5” (%) “6” (%)

N-SVM P 99.16 100 99.12 100 99.22

R 100 100 100 100 100

N-SVDD P 92.11 89.66 89.66 96.77 95.65

R 100 100 100 100 100

paring to their QP counterparts. We could get the same
conclusion as in the experiment in Sect. 4.3, that is, N-
SVM/N-SVDDextract almost the same set of support vectors
as QP-SVM/QP-SVDD.

4.5 Music genre classification

To test the algorithms on different modalities of data, we
ran the program on a music dataset (Defferrard et al. 2017)
to recognize different genres of the music. The dataset
was downloaded from https://github.com/mdeff/fma, which
includes 106,574 tracks of 30 s mp3 files, with 161 unbal-
anced genres. Each data point has 518 features which are
extracted using Python library librosa. We select “Rock”,
“Experimental”, and “Electronic” as genres to be classi-
fied, resulting in 33665 data points, with 14,174 for “Rock”,
10,119 for “Experimental”, and 9372 for “Electronic”.

We create three classification problems, each having one
genre as positive label and the other two genres as negative
label. For each problem, we randomly select 2500 positive

123

https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://github.com/mdeff/fma

Advances in Computational Intelligence (2022) 2 :9 Page 11 of 13 9

Table 13 On the music genre
classification problems, the
comparison between QP-SVM
and N-SVM

Problem “Rock” “Experimental” “Electronic”

Training set size 5000 5000 5000

Iter # N-SVM 647 753 333

‖αQP − αN‖ 0.9942 0.9899 1.0417

AUC QP-SVM 0.6329 0.6270 0.6632

N-SVM 0.6680 0.6270 0.6633

SV QP-SVM 4998 4997 4904

N-SVM 4783 4997 4901

Time QP-SVM 11189.2055 12997.3853 11236.1094

N-SVM 396.7772 461.3587 204.0731

See the caption of Table 1 for more information

Table 14 On the music genre
classification problems, the
comparison between QP-SVDD
and N-SVDD

Problem “Rock” “Experimental” “Electronic”

Training set size 2500 2500 2500

Iter # N-SVDD 30 31 34

‖αQP − αN‖ 0.0068 0.0139 0.0076

AUC QP-SVDD 0.6424 0.3182 0.5226

N-SVDD 0.6421 0.3182 0.5226

SV QP-SVDD 37 44 36

N-SVDD 37 44 36

Time QP-SVDD 1900.0605 1920.0495 1906.7367

N-SVDD 7.3111 7.6771 8.3348

See the caption of Table 1 for more information

examples to train the QP-SVDD and N-SVDD models; to
train QP-SVM and N-SVM, we randomly add 2500 negative
examples to the training set, to balance the positive and neg-
ative examples. Due to the limitation of available computing
resource, we did not test problems with size beyond 5000.

Similar to the experiments presented in Sects. 4.3 and 4.4,
Tables 13 and 14 compare the performances of QP-SVM vs.
N-SVM and QP-SVDD vs. N-SVDD on the music genre
classification problems, respectively. We could observe that,
compared to their QP counterparts, N-SVM and N-SVDD
have almost identical classification performances in terms
of AUC, and they could find almost the same number of
support vectors as QP-SVM/QP-SVDD. However, the New-
ton algorithm-based models use significantly less time in the
training phase. Table 15 presents the ratio between the train-
ing times of QP-SVM (QP-SVDD) and N-SVM (N-SVDD)
for different problems, which clearly demonstrates that, on
this dataset, N-SVDD is more than 200 times faster than QP-
SVDD and N-SVM is 20–60 times faster than QP-SVM.

Table 16 lists ttrain/n3 × 107 for QP-SVM and QP-SVDD
on the music genre classification problem, and Table 17
presents ttrain/(Mn2) × 108 for N-SVM and N-SVDD on
the same problem. Same as in Sects. 4.3 and 4.4, these
results indicate that the time complexity of QP-SVM and
QP-SVDD is about O(n3) and the time complexity of N-

Table 15 The ratio of training times of QP-SVDD vs. N-SVDD and
QP-SVM vs. N-SVM on the music genre classification problems

Problem “Rock” “Experimental” “Electronic”

SVDD 259.8861 250.1000 228.7684

SVM 28.2002 28.1720 55.0592

Table 16 The time complexity of QP-SVM and QP-SVDD on the
music genre classification problems

Problem “Rock” “Experimental” “Electronic”

QP-SVM 0.8951 1.0398 0.8989

QP-SVDD 1.2160 1.2288 1.2203

Please see the caption of Table 4 for more information

Table 17 The time complexity of N-SVM and N-SVDD on the music
genre classification problems

Problem “Rock” “Experimental” “Electronic”

N-SVM 2.4530 2.4508 2.4513

N-SVDD 3.8993 3.9624 3.9223

Please see the caption of Table 5 for more information

123

9 Page 12 of 13 Advances in Computational Intelligence (2022) 2 :9

Table 18 On the music genre
classification problems, the
precision (P) and recall (R) rates
for the support vectors extracted
by N-SVM and N-SVDD

Problem “Rock” (%) “Experimental” (%) “Electronic” (%)

N-SVM P 99.98 100.00 100.00

R 95.68 100.00 99.94

N-SVDD P 100.00 100.00 100.00

R 100.00 100.00 100.00

SVM and N-SVDD is about O(Mn2), consistent with the
theoretical analysis in Sect. 3.2. Table 18 shows the pre-
cision and recall rates for the support vectors extracted by
N-SVM and N-SVDD, comparing to their QP counterparts.
As in Sects. 4.3 and 4.4, we could conclude that N-SVM/N-
SVDD extract almost the same set of support vectors as
QP-SVM/QP-SVDD.

In summary, all our experiments show that, compared
to QP-SVM and QP-SVDD, the proposed N-SVM and N-
SVDD have almost identical classification performances, in
terms of ROC analysis. Furthermore, N-SVM and N-SVDD
could get almost the same set of support vectors as their
QP counterparts, indicating that the models obtained by both
methods have similar complexity.However, our experimental
results show that N-SVM andN-SVDD aremuchmore time-
efficient in training. More importantly, we should mention
that in our implementation, the core quadratic programming
code for QP-SVM and QP-SVDD was developed in C++
which is much more computationally efficient than MAT-
LAB, in which N-SVM and N-SVDD were implemented.
Taking this factor into account, the proposed N-SVM and
N-SVDD would be much more time-efficient than QP-SVM
and QP-SVDD, if they were implemented in the same pro-
gramming language and ran on the same platform.

5 Conclusion and future works

The formulations of SVM and SVDD lead to a quadratic
programming which is computationally expensive to solve.
This paper proposes an alternative approach to solve the dual
optimization problem. We first apply the idea of quadratic
penalty function method to incorporate the constraints to
the objective function, resulting in an unconstrained mini-
mization problem. Then, a generalized Newton algorithm is
employed with Armijo search for step length. The resulting
algorithms are referred to as Newton SVM (N-SVM) and
Newton SVDD (N-SVDD), which are easy to implement,
without requiring any additional sophisticated toolbox other
than standard matrix operations.

Extensive experiments were conducted on various pattern
classification problems, and we compared the performance
of the proposed N-SVM/N-SVDD to that of QP-SVM/QP-
SVDD, in terms of ROC curve analysis, support vectors

extracted by the two methods, and the training time. All our
results show that the developed N-SVM and N-SVDD have
similar classification performance to their QP counterparts,
but much more efficient in training. On the tested problems,
N-SVM is tens to hundreds of times faster than QP-SVM,
and N-SVDD is hundreds of times faster than QP-SVDD.
Furthermore, the two methods extract almost identical set
of support vectors, indicating that the obtained models have
similar complexity.

We notice that the idea presented in this paper can be
applied to other variants of support vector models, for exam-
ple, the asymmetric SVM model (Bach et al. 2006), SVM
with different loss functions (Huang et al. 2014), SVDD
with both positive and negative examples (Tax and Duin
2004), support vector clustering (Ben-Hur et al. 2001; Lee
and Lee 2005, 2006), and support vector regression (Smola
and Schölkopf 2002), because all of these models are formu-
lated as solving a quadratic programming.

Acknowledgements The author would like to extend his sincere grati-
tude to the anonymous reviewers for their constructive suggestions and
comments, which have greatly helped improve the quality of this paper.

Funding This work was supported by a Summer Faculty Fellowship
from Missouri State University.

Declarations

Conflict of interest The author certifies that there is no conflicts of
interest or competing interest.

References

Armijo L (1966) Minimization of functions having Lipschitz-
continuous first partial derivatives. Pac J Math 16:1–3

Bach FR, Heckerman D, Horvitz E (2006) Considering cost asymmetry
in learning classifiers. J Mach Learn Res 7:1713–1741

Ben-Hur A, Horn D, Siegelmann HT, Vapnik V (2001) Support vector
clustering. J Mach Learn Res 2:125–137

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge Uni-
versity Press, Cambridge

Chang CC, Lin CJ (2011) LIBSVM: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):1–27

Chapelle O (2007) Training a support vector machine in the primal.
Neural Comput 19:1155–1178

Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing
multiple parameters for support vector machines. Mach Learn
46(1–3):131–159

123

Advances in Computational Intelligence (2022) 2 :9 Page 13 of 13 9

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

Defferrard M, Benzi K, Vandergheynst P, Bresson X (2017) FMA: a
dataset for music analysis. In: Proceedigns of 18th International
Society for Music Information Retrieval Conference (ISMIR)

Gold C, Sollich P (2003) Model selection for support vector machine
classification. Neurocomputing 55(1–2):221–249

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit
Lett 27(8):861–874

Hiriart-Urruty J-B, Strodiot JJ, NguyenVH (1984)GeneralizedHessian
matrix and second-order optimality conditions for problems with
C1,1 data. Appl Math Optim 11(1):43–56

Huang X, Shi L, Suykens JAK (2014) Support vector machine classifier
with pinball loss. IEEE Trans PAMI 36(5):984–997

Lee J, Lee D (2005) An improved cluster labeling method for support
vector clustering. IEEE Trans PAMI 27(3):461–464

Lee J, Lee D (2006) Dynamic characterization of cluster structures for
robust and inductive support vector clustering. IEEE Trans PAMI
28(11):1869–1874

Lee YJ, Mangasarian OL (2001) SSVM: a smooth support vector
machine. Comput Optim Appl 20:5–22

Joachims J (1999) Making large-scale SVM learning practical. In:
Advances in kernel methods—support vector learning.MIT-Press,
Cambridge

Mangasarian OL (2002) A finite newton method for classification.
Optim Methods Softw 17:913–929

Opper M, Winther O (2000) Gaussian process and SVM: mean field
and leave-one-out. In: Advances in large margin classifiers. MIT
Press, Cambridge, pp 261– 280

Osuna E, Freund R, Girosi F, (1997a) An improved training algorithm
for support vector machines. In: Proc. of IEEE workshop neural
networks for signal processing, pp 276 – 285

Osuna E, Freund R, Girosi F (1997b) Training support vector machines:
an application to face detection. In: Proc, IEEE CVPR

Platt J (1998) Fast training of support vector machines using sequential
minimal optimization. In: Advances in kernel methods—support
vector learning. MIT-Press, Cambridge

Powers DMW (2011) Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness & correlation. J Mach Learn
Technol 2(1):37–63

Ruszczyński A (2006) Nonlinear optimization. Princeton University
Press, Princeton

Shalev-Schwartz S, SingerY,SrebroN,CotterA (2011)Pegasos: Primal
estimated sub-gradient solver for SVM. Math Program 127(1):3–
30

Smola AJ, Schölkopf B (2002) A tutorial on support vector regression.
Stat Comput 14(3):199–222

TaxDMJ,DuinRPW(1999) Support vector domain description. Pattern
Recognit Lett 20(11–13):1191–1199

Tax DMJ, Duin RPW (2004) Support vector data description. Mach
Learn 54(1):45–66

Vapnik V,Chapelle O (2000) Bounds on error expectation for SVM. In:
Advances in large margin classifiers. MIT Press, Cambridge, pp
311–326

Viola P, JonesM (2001) Rapid Object detection using a boosted cascade
of simple features. In: Proc. of IEEE CVPR

Wahba G, Lin Y, Zhang H (2000) Generalized approximate cross val-
idation for support vector machines, or another way to look at
margin-like quantities. In: Advances in large margin classifiers.
MIT Press, Cambridge

Wang Z, Crammer K, Vucetic S (2012) Breaking the curse of kernel-
ization: budgeted stochastic gradient descent for large-scale SVM
training. J Mach Learn Res 13(1):3103–3131

ZhengS (2016) Smoothly approximated support vector domain descrip-
tion. Pattern Recogn 49(1):55–64

Zheng S (2019) A fast iterative Algorithm for support vector data
description. Int J Mach Learn Cybern 10(5):1173–1187

123

	A support vector approach based on penalty function method
	Abstract
	1 Introduction
	1.1 Notations

	2 Support vector machine and support vector data description
	2.1 Support vector machine
	2.2 Support vector data description

	3 The proposed approach
	3.1 Penalty function method for optimization problems
	3.2 Penalty function method for support vector machine
	3.3 Penalty function method for support vector data description
	3.4 Discussion

	4 Experimental results and analysis
	4.1 Experiment setup and performance measures
	4.2 Face detection
	4.3 Human activity recognition
	4.4 Handwritten digit recognition
	4.5 Music genre classification

	5 Conclusion and future works
	Acknowledgements
	References

