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Abstract 

Exceptional points are the branch-point singularities of non-Hermitian Hamiltonians and have rich consequences 
in open-system dynamics. While the exceptional points and their critical phenomena are widely studied in the non-
Hermitian settings without quantum jumps, they also emerge in open quantum systems depicted by the Lindblad 
master equations, wherein they are identified as the degeneracies in the Liouvillian eigenspectrum. These Liouvillian 
exceptional points often have distinct properties compared to their counterparts in non-Hermitian Hamiltonians, 
leading to fundamental modifications of the steady states or the steady-state-approaching dynamics. Since the Liou-
villian exceptional points widely exist in quantum systems such as the atomic vapors, superconducting qubits, 
and ultracold ions and atoms, they have received increasing amount of attention of late. Here, we present a brief 
review on an important aspect of the dynamic consequence of Liouvillian exceptional points, namely the chiral state 
transfer induced by the parametric encircling the Liouvillian exceptional points. Our review focuses on the theoretical 
description and experimental observation of the phenomena in atomic systems that are experimentally accessible. 
We also discuss the ongoing effort to unveil the collective dynamic phenomena close to the Liouvillian exceptional 
points, as a consequence of the many-body effects therein. Formally, these phenomena are the quantum-many-body 
counterparts to those in classical open systems with nonlinearity, but hold intriguing new potentials for quantum 
applications.

1 Introduction
In a typical non-Hermitian system, the dynamics is 
effectively driven by a non-Hermitian Hamiltonian  [1]. 
As a common feature of a wide class of non-Hermitian 
matrices, multiple eigenvectors and eigenvalues of a non-
Hermitian Hamiltonian can simultaneously coalesce 
at certain critical points in the parameter space. These 
critical points, known as the exceptional points (EPs), 
correspond to the so-called branch-point singularities 

in the eigenspectrum, where the Hamiltonian cannot 
be diagonalized  [2–4]. As such, the EPs are fundamen-
tally different from conventional degeneracies in Hermi-
tian systems. In recent years, the EPs have been widely 
discussed in the context of non-Hermitian models with 
the parity-time symmetry  [5–13], where they appear as 
the demarcation between a spectral region with entirely 
real eigenvalues (dubbed the parity-time unbroken 
regime), and one without (dubbed the parity-time bro-
ken regime). Being the transition point between these 
spectrally and dynamically distinct regions, the EPs have 
been extensively studied in the context of parity-time 
symmetric models in connection with phenomena such 
as power oscillations  [14–16], directional transport  [17, 
18], and lasing  [19–22]. However, EPs also exist in sys-
tems without the parity-time symmetry and are there-
fore more general  [1, 10]. Thanks to the singular nature 
of EPs, a system exhibits many interesting behaviors 
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in their vicinity, including universal criticality  [23–26], 
non-reciprocal dynamics  [27–38], enhanced entangle-
ment generation [39, 40], and strong sensitivity to exter-
nal perturbations  [41–43]. These properties have been 
confirmed in a wide range of classical and quantum 
mechanical systems, including optics and photonics [29, 
30], optomechanics  [44, 45] acoustics  [46–48], atomic 
gases  [33, 49], and superconducting qubits  [40, 50, 51]. 
Understanding EPs and the related phenomena create 
opportunities for developing useful applications in terms 
of sensing and topological transport.

In the quantum regime, EPs, and non-Hermitian phys-
ics in general, are mostly discussed in the context of 
conditional dynamics of an open quantum system. Spe-
cifically, the full quantum dynamics of an open system 
is governed by the Lindblad master equation under the 
Markov approximation  [52]. In the quantum trajectory 
picture, the density matrix evolution can be unraveled 
as an ensemble of quantum trajectories  [53]. The quan-
tum state in each trajectory undergoes evolution driven 
by an effective non-Hermitian Hamiltonian, but is inter-
rupted by stochastic quantum jumps. It follows that, 
when considering the transient dynamics or by selecting 

trajectories without quantum jumps (hence conditioned), 
the dynamics is governed purely by the non-Hermitian 
Hamiltonian [1]. While such a scheme can be experimen-
tally implemented through post selection, the practice 
is limited to single-particle systems, or non-interacting 
ones where quantum statistics is not essential.

On the other hand, the Lindblad master equation, 
complete with full quantum jump processes, describes 
the evolution of the density matrix under the Liouvil-
lian superoperator. Since the Liouvillian itself can be 
represented as a non-Hermitian matrix acting on a 
vectorized density matrix, the EPs can also arise in 
the Liouvillian spectrum  [54–57], leading to unique 
dynamics in the full quantum dynamics of the mas-
ter equation. Along this line of thinking, the Liouvil-
lian EPs are defined and studied in recent theoretical 
and experimental works  [50, 51,  54, 56–60]. In Fig.  1, 
we illustrate two recent experiments where LEPs were 
engineered in superconducting qubits and trapped 
ions, respectively. It is found that the Liouvillian EPs 
have distinct impact on the open-system dynam-
ics, compared to their counterparts in non-Hermitian 
Hamiltonians. More importantly, since the application 

Fig. 1 a Schematics of LEP engineering in the superconducting qubit experiment [51]. b The corresponding Liouvillian exceptional 
structure in the parameter space of Ref. [51]. c Level scheme for generating LEP in the trapped ion experiment [59]. b The corresponding LEP 
in the parameter space of [59]. Here, (a and b) are adapted from Ref. [51], copyright © 2022 by the American Physical Society. And (c and d) are 
adapted from Ref. [59], copyright © by the American Physical Society
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of the quantum master equation is not limited to non-
interacting systems or transient dynamics, the Liou-
villian EPs can become relevant in open systems with 
many-body correlations  [61–64]. Thus, understand-
ing Liouvillian EPs in a generic open quantum system 
exemplifies the advancing frontier of non-Hermitian 
physics, where the wealth of non-Hermitian phenom-
ena is no longer restrained to the classical or semi-clas-
sical regime, but lends meaningful insights to quantum 
many-body processes.

In the following, we provide a brief review on the study 
of Liouvillian EPs, focusing on the experimentally rel-
evant atomic systems. We first review conventional EPs 
in non-Hermitian Hamiltonians, using a simple two-level 
system as an example. Then, by adding different quan-
tum jump operators, we discuss how the density-matrix 
dynamics admits a non-Hermitian description as well 
as the emergence of Liouvillian EPs in the framework of 
Lindblad master equations. As the main content of the 
review, we give some concrete examples, all experimen-
tally related, to the role of Liouvillian EPs in open-system 
dynamics, and show how non-Hermitian physics emerge 
within the framework of master equations [33, 50, 51, 58, 
65]. Finally, we discuss a recent experiment on the collec-
tive topological state transfer near a Liouvillian EP, where 
both non-Hermiticity and many-body effects play a key 
role.

2  Hamiltonian EP and Liouvillian EP
To illustrate the connection and difference between the 
EPs in non-Hermitian Hamiltonians and those of the 
Liouvillians, we first consider an exemplary two-level 
model. The Hamiltonian in the corresonding spin basis 
can be written as

where J and Ŵ are positive coefficients. The Ham-
iltonian possesses the parity-time symmetry, with 
(PT )H(PT )−1 = H , where the parity operator P = σx , 
and the time-reversal operator T corresponds to com-
plex conjugation. The eigenvalues of the Hamiltonian are 
straightforward to calculate

Here, the eigenvalues are real for J ≥ Ŵ/2  and imagi-
nary for J < Ŵ/2 . Clearly, J = Ŵ/2 corresponds to the 
aforementioned EP, separating the parity-time unbroken 

(1)H = Jσx − i
Ŵ

2
σz ,

(2)E± = ± J2 −
Ŵ2

4
.

and broken regimes. To understand the criticality of the 
EP, we examine the eigenvectors for J ≥ Ŵ/2 , with

Notably, the eigenvectors coalesce at the EP J = Ŵ/2 , 
where the non-Hermitian matrix cannot be diagonal-
ized. The ill-conditioned matrix leads to many intrigu-
ing observable phenomena, and have stimulated much 
research interest.

Likewise, exceptional structures also exist in the 
Liouvillian eigenspectrum. Based on Hamiltonian (1), 
we consider the following Lindblad master equation 
(we set �=1)

where H = Jσx , and the quantum-jump operator 
L =

√
Ŵσ− . Note that when we drop the recycling term 

LρL† , the remaining equation of motion describes the 
evolution of the density matrix by a non-Hermitian effec-
tive Hamiltonian Heff = H − iŴ

2
L†L , which reproduces 

Hamiltonian (1). As we discuss in the following section, 
neglecting the recycling term is referred to as the no-
jump condition, also known as the semi-classical limit or 
the post-selection condition. Though with limitations, it 
offers a convenient and practical route, connecting the 
dynamics of quantum open systems with those under a 
non-Hermitian effective Hamiltonian.

More relevant to the discussion here, we vectorize 
the density matrix

and write the Liouvillian superoperator in a non-Hermi-
tian matrix form

Importantly, now that the Liouvillian is represented 
by a non-Hermitian matrix, it can host exceptional 
structures. The exceptional points in the Liouvillian 
eigenspectrum are referred to as the Liouvillian excep-
tional points (LEPs), in contrast to the Hamiltonian 
exceptional points (HEPs). Specifically, the Liouvillian 
eigenspectrum � is calculated through Lρ� = �ρ� , with 

(3)|ψ±� =
√
2

2J

(

−iŴ
2
±

√

J2 − 1
4
Ŵ2

J

)

.

(4)ρ̇ = Lρ = −i[H , ρ] + LρL† −
1

2
L†Lρ −

1

2
ρL†L,

(5)ρ =
�

ρ11 ρ12
ρ21 ρ22

�

→







ρ11
ρ12
ρ21
ρ22






,

(6)L =









0 iJ −iJ Ŵ

iJ −Ŵ
2

0 −iJ

−iJ 0 −Ŵ
2

iJ

0 −iJ iJ −Ŵ









.
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the corresponding Liouvillian eigenstates ρ� . For the 
Liouvillian in (6), we then have

While the eigenvalue �1 = 0 corresponds to the steady-
state solution, �3,4 coalesce at Ŵ = 8J  and �2,3 coalesce 
at J = 0 , representing second-order LEPs. These LEPs 
lie away from the steady-state solution, suggesting that 
their impact is in the intermediate time scales, before 
the system relaxes to the steady state at long times. Note 
that, equivalent to the treatment above, one may also 
write down the corresponding optical Bloch equations, 
and extract information of the LEPs from the coefficient 
matrix [55].

More generally, the connection and distinction 
between the LEP and HEP have been systematically dis-
cussed in Refs.  [56, 57]. Although LEPs and HEPs have 
essentially different properties, an open system can have 
exceptional structures that are the direct correspondence 
to a HEP of the non-Hermitian Hamiltonian under the 
no-jump condition. This is the case with the Liouvillian 
above. The Liouvillian eigenspectrum features an excep-
tional point, but shifted in parameters compared to those 
of the HEP of the non-Hermitian Hamiltonian.

Furthermore, when a detuning term δ
2
σz is added to the 

Hermitian Hamiltonian H, the matrix form of the Liou-
villian operator becomes

The corresponding Liouvillian eigenspectrum shows 
exceptional lines on the δ–J plane, ending at two third-
order exceptional points as illustrated in Fig. 2. As such, 

(7)
�1 = 0, �2 = −

Ŵ

2
, �3,4 =

1

4

(

−3Ŵ ±
√

Ŵ2 − 64J2
)

.

(8)L =









0 iJ −iJ Ŵ

iJ −Ŵ
2
− iδ 0 −iJ

−iJ 0 −Ŵ
2
+ iδ iJ

0 −iJ iJ −Ŵ









.

the HEP of the non-Hermitian Hamiltonian develops 
into an exceptional structure in the Liouvillian eigenspec-
trum, consisting of exceptional lines and higher-order 
exceptional points.

3  Dynamic consequence of EPs
One outstanding feature of the EPs is the sensitivity of 
eigenvalues to external perturbations. For instance, by 
adding a weak perturbative term ǫσx to Hamiltonian (1), 
the eigenvalues at the EP become

splitting by a small amount ∼ ǫ
1
2 . More generally, at a 

higher-order EP, where more than two eigenvectors and 
eigenvalues coalesce, the splitting is of the order ǫ

1
n . Such 

a sensitivity is the basis for discussions of EP-enhanced 
sensing, which have been extensively reported and 
reviewed in recent years [10, 11, 41–43].

Here, we focus on a general dynamic consequence, 
which derives from the complex spectral topology in the 
parameter space near an EP. Take, for instance, a param-
eterized non-Hermitian model based on Eq. (1)

where J (t) = Ŵ/2+ r cos(ωt) , �(t) = r sin(ωt) , and t is 
understood as a parameter but would eventually param-
eterize the time dependence of the variables. The eigen-
values are

which, in the parameter space of (J ,�) , lead to the Rie-
mann sheets illustrated in Fig.  3. Here, an EP exists at 
(J = Ŵ/2,� = 0) , which represents the endpoint of the 
branch cut along � = 0 with J ≤ 0 . As such, the EP is 

(9)E± = ±
√

ǫ(2J + ǫ),

(10)H(t) = J (t)σx − [�(t)+ i
Ŵ

2
]σz ,

(11)E± = ±
√

r2 + Ŵreiωt ,

Fig. 2 The Liouvillian exceptional structure of Eq. (8) on the δ–J plane. The green lines are the second-order Liouvillian exceptional lines, the yellow 
stars indicate the third-order LEP. The red point is the second-order HEP of the corresponding non-Hermitian Hamiltonian under the no-jump 
condition. We take Ŵ = 1 as the unit of energy for our calculations
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usually referred to as the branch-cut singularity of the 
non-Hermitian matrix.

Such a geometry has interesting dynamic conse-
quences. Consider the evolution of an eigenstate 
under H(t) where t now represents time. Intuitively, 
when the rate of time variation is slow compared 
to the real energy gap along the path (roughly with 
2π
ω
min(|E+ − E−|) ≫ 1 ), the time-evolved state should 

adiabatically follow the instantaneous right eigenstate 
of H(t)

We track such a process with the trajectory E(t) on 
the Riemann sheet, with

where |χi(t)� is the left eigenstate of the instantaneous 
Hamiltonian, defined as H †(t)|χi(t)� = E∗

i (t)|χi(t)� . 
Importantly, when the trajectory crosses the branch cut, 
the band indices (±) of the right eigenstate switch, due to 
the sign change in the front of the square root in Eq. (12). 
Correspondingly, assuming the system is initialized in an 
eigenstate, under one full cycle of the parameter change, 
it undergoes an eigenstate switching under the adiabatic 
condition. This is illustrated in Fig. 3a, where the param-
eters change in a counterclockwise direction along the 
trajectory.

However, the adiabatic condition does not always 
hold. As illustrated in Fig.  3b, when the parameters 
change in a clockwise direction, the system comes 
back to the original eigenstate, due to a non-adiabatic 
jump that switches the eigenstate one more time along 
the path. Interestingly, such a non-adiabatic jump 
occurs even if the condition 2π

ω
min(|E+ − E−|) ≫ 1 is 

satisfied. Such a phenomenon derives from the non-
Hermiticity of the system. Specifically, expanding the 

(12)

|ψ±� ∝
(

−[�(t)+ iŴ
2
] ±

√

J (t)2 + (�(t)+ iŴ
2
)2

J (t)

)

.

(13)E(t) =
∑

i=± |�χi(t)|ψ(t)�|2Ei(t)
∑

i=± |�χi(t)|ψ(t)�|2
,

time-evolved state onto the basis of the instantaneous 
right eigenstates [31]

the coefficients satisfy

The last term on the right-hand side describes the non-
adiabatic transition between different eigenstates. The 
term can have significant impact when an unoccupied 
eigenstate has an eigenvalue with a positive imaginary 
component (or simply a less negative imaginary compo-
nent), leading to an exponentially increased likelihood 
of a non-adiabatic jump into the said state. As a result, 
depending on the initial state and the encircling direc-
tion, the system undergoes an eigenstate switch only 
along one direction of the parameter change. This is 
referred to as the chiral state transfer in the literature [10, 
11]. While the process of the parameter change is known 
as the EP encircling, the path of the parameter change 
does not have to encircle the EP: the chiral state trans-
fer can occur when the path lies close to the exceptional 
structure. Exceptions can arise under special circum-
stances, where the chiral state transfer can occur on tra-
jectories far way from any EPs [32, 33].

4  Implementing non‑Hermitician Hamiltonian 
in quantum systems

The chiral state transfer under the Hamiltonian EP encir-
cling has been experimentally demonstrated in a variety 
of physical systems [33–38, 50, 51]. A recent experiment 
further establishes the phenomenon in an ultracold gas of 
fermions [33]. While in all cases, the dynamics are driven 
by a non-Hermitian effective Hamiltonian, in quantum 
systems, the no-jump condition leading to the non-Her-
miticity is typically imposed through post selection.

(14)|ψ(t)� =
∑

n=±
cn(t)|ψn(t)�,

(15)

i�
∂

∂t
cn =

[

En(t)− i�

〈

χn

∣

∣

∣

∣

∂

∂t

∣

∣

∣

∣

ψn

〉]

cn − i�

〈

χn

∣

∣

∣

∣

∂

∂t

∣

∣

∣

∣

ψ−n

〉

c−n.

Fig. 3 Trajectories along the Riemann surface corresponding to the non-Hermitian model (10). The Riemann surface is colored red (blue), 
indicating the gain (loss) of the eigenvalues. Parameters change in (a) counterclockwise and (b) clockwise directions end up with different states 
after one cycle. For numerical calculations, we take the parameters Ŵ = 1 , r = 0.1 , and T = 100
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Take the cold-atom experiment for example. Ultra-
cold 173 Yb atoms are prepared in the |mF = 3/2� and 
|mF = 5/2� states of the ground-state 1S0 ( F = 5/2 ) 
manifold. The two states are coupled through a two-
photon Raman process, and the state |mF = 3/2 is fur-
ther laser coupled to an electronically excited state in 
the 3P1 ( F = 7/2 ) manifold. This introduces a controlled 
atom loss to the system, due to the finite linewidth of the 
excited state. The level scheme is illustrated in Fig.  4a. 
Neglecting for now the spontaneous emission back to the 
{|mF = 3/2�, |mF = 5/2�} subspace, one assumes that the 
atoms undergo the spontaneous emission process are lost 
from the system. Under such a condition, the dynamics 
of the remaining atoms are governed by a non-Hermitian 
effective Hamiltonian

where � and δ are respectively the Rabi frequency 
and detuning of the Raman process, and Ŵ is the laser-
induced loss rate. For the convenience of discussion, we 
label |1� = |mF = 5/2� and |2� = |mF = 3/2�  and define 
the Pauli operators such that σz = |1��1| − |2��2| . We also 
label the excited state used for the laser-induced loss as 
|3� , as illustrated in Fig. 4b.

From the perspective of quantum open systems, the 
non-Hermitian effective Hamiltonian above can be 
derived by imposing a no-jump condition on the quan-
tum master equation

where H = δ
2
σz −�σx , and L1 =

√
Ŵ|4��2| describes 

the laser-induced loss from state |2� to a bystander state 
|4� . The no-jump condition corresponds to neglect-
ing the recycling term L1ρL†1 , which applies when one 
focuses only on the subspace {|1�, |2�} . Equivalently, from 

(16)Heff =
δ

2
σz −�σx − i

Ŵ

4
(1− σz),

(17)ρ̇ = −i[H , ρ] + L1ρL
†
1 −

1

2
L
†
1L1ρ −

1

2
ρL†1L1,

all possible time-evolved states, one selects out only 
those with no support on |4� . In practice, this is natural 
if one assumes that atoms in |4� are no longer trapped 
while only those remain trapped are detected. Since the 
atoms that remain in the {|1�, |2�} subspace necessarily 
have not gone through the quantum jump (spontaneous 
emission) to state |4� , the non-Hermitian description is 
therefore always valid within the subspace. The expo-
nential decrease in the modulus square of the wave func-
tion directly corresponds to the exponential decay of 
the total atom number within the subspace. It is worth 
pointing out that such a natural implementation of post 
selection (by detection) only applies when the atoms are 
non-interacting. Even as the recycling term mixes density 
matrices from sectors with different atom numbers, the 
overall density matrix in each sector is similar in struc-
ture, featuring a direct product of those of individual 
atoms. This is not the case in the presence of interactions, 
under which density matrices in different atom-number 
sectors are coupled through the interplay of dissipation 
and interaction.

Under the condition above, the master equation 
reduces to the non-Hermitian description (16), which, 
having the same structure as Hamiltonian (10), forms the 
basis of the observed EP encircling in Ref. [33]. Therein, 
as the system’s parameters vary along a closed path, the 
internal atomic states flip but only one way around. The 
parameters are chosen such that all the trapped atoms 
encircle a common EP in a similar fashion, leading to a 
collective chiral state flip.

In another more commonly discussed scenario, the 
jump operator is replaced by L′1 =

√
Ŵ|1��2| , meaning 

the spontaneous emission from state |2� to |1� . Such a 
decay channel can be engineered in the current setup, for 
instance, by coupling |2� to an excited state which decays 
back to state |1� . One can still recover the non-Hermitian 
description by following the no-jump condition. But as 

Fig. 4 a The level scheme in Ref. [33], where states in the 1S0 and 3P1 manifolds of ultracold 173 Yb atoms are used. b Level scheme for a simplified 
four-level model
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the final state of the spontaneous emission remains in 
the {|1�, |2�} subspace, in practice, the no-jump condi-
tion becomes more difficult to satisfy for an ensemble 
of atoms. Specifically, the timescale within which the 
non-Hermitian Hamiltonian reins decreases exponen-
tially with the total atom number, as any single jump 
would leave the corresponding atom in a mixed state and 
beyond the non-Hermitian description. The accumu-
lation of these events would effectively heat up the sys-
tem, and eventually make the non-Hermitian description 
invalid even on an approximate level. This is why such a 
scheme is typically adopted for single- or few-qubit sys-
tems, but difficult to implement in atom gases.

5  Encircling the LEP
However, the reality is more complicated than the simple 
picture above. While the non-Hermiticity is introduced 
through the laser-assisted atom loss, the quantum jump 
operator L1 is not the only spontaneous emission process 
that can happen. When the atoms are in the excited 3P1 
state, there is a finite probability for it to decay back to 
the original state ( |2� in our convention). After adiabatic 
elimination of the excited state, the process gives rise to 
an additional jump operator L2 =

√
γ |2��2| , which cor-

responds to the dephasing between states |1� and |2� , due 
to the spontaneous emission from the excited state back 
to |2�.

The dephasing process further restricts the applicabil-
ity of the non-Hermitian Hamiltonian. As discussed in 
the previous section, under L1 , it is sufficient to imple-
ment a no-jump condition by detecting (post selecting) 
atoms that remain in the trap (and hence in the {|1�, |2�} 
subspace). With the addition of L2 , atoms that remain in 

the trap do not necessarily satisfy the no-jump condi-
tion. In fact, the condition requires the complete absence 
of spontaneous emission from |3� to |2� , which limits the 
validity of the non-Hermitian Hamiltonian to transient 
dynamics. And, similar to the case with the jump opera-
tor L′1 , the timescale of this transient dynamics decreases 
exponentially with increasing atom number.

Nevertheless, the exceptional points do have con-
sequences in the open-system dynamics. This can be 
revealed by analyzing the Liouvillian eigenspectrum and 
studying the LEP encircling. Specifically, we write the 
Liouvillian superoperator in a non-Hermitian matrix 
form

where we enforce the no-jump condition for operator 
L1 . Physically, this corresponds to detecting atoms that 
remain in the trap, in the presence of dephasing dictated 
by L2 . Similar to the example in Sect.  2, the Liouvillian 
eigenspectrum � is calculated through Lρ� = �ρ� . But 
a steady-state solution with � = 0 is no longer present, 
due to the post selection process which does not reserve 
the trace of the density matrix. We show the Liouvillian 
eigenspectrum in Fig.  5, where we identify the high-
lying sheet as the quasi-steady-state solution. The quasi-
steady state (with their Re� < 0 ) would become steady 
state (with � = 0 ) when the strength of L1 is continuously 
turned off. More importantly, an exceptional structure is 
identified in the eigenspectrum below the quasi-steady 
state, see for instance Fig. 5a. More concretely, with the 

(18)L =









0 iJ −iJ 0

iJ −iδ − Ŵ+γ
2

0 −iJ

−iJ 0 iδ − Ŵ+γ
2

iJ

0 −iJ iJ −Ŵ









,

Fig. 5 a Liouvillian eigenspectra and exceptional structure on the δ − J plane of (18). The green lines are the second-order Liouvillian 
exceptional lines and the yellow stars indicate the third-order LEP. b, c Trajectories against the Liouvillian eigenspectra of (18) in the adiabatic limit 
for (b) clockwise and (c) counterclockwise rotations. d, e Trajectories against the Liouvillian eigenspectra for an intermediate encircling time. The 
encircling path is as follows: δ(t) = 0.5 sin (±2π t/T + 2π/3) , and J(t) = 0.5+ 0.5 cos (±2π t/T + 2π/3) . The eigenspectra are colored red (blue), 
indicating the quasi-steady (excited) nature of the corresponding Liouvillian eigenstates. We take T = 150 for (a and b) and T = 10000 for (c and d). 
Other parameters are Ŵ = 1/20 , γ = 1/100
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addition of L2 , the HEP of the original non-Hermitian 
Hamiltonian develops into an exceptional structure in 
the Liouvillian eigenspectrum, featuring exceptional lines 
ending at higher-order LEPs, with a structure similar to 
that in Fig. 2.

The encircling dynamics of similar LEPs was first 
experimentally studied in superconducting qubits  [50, 
51], where chiral behaviors were reported to persist for 
adiabatic encircling. However, a relevant question is, 
since there are no exceptional structures in the steady-
state subspace of these systems, the long-time dynamics 
should still be dominated by the steady state, and not by 
the exceptional structure.

The question is resolved in Ref. [60], where chiral state 
transfer in the presence of LEP is studied in the context 
of the cold-atom experiment. First, since adiabaticity cor-
responds to the requirement that the rate of parameter 
change be much smaller than the instantaneous Liouvil-
lian gap, the system would remain in the (quasi)-steady 
state of the Liouvillian. It follows that, since the LEP 
structure lies in the excited eigenstates of the Liouvillian, 
it has no bearing on the adiabatic dynamics. Indeed, as 
demonstrated in Ref. [60], in the long-time limit, the sys-
tem always returns to the initial state, regardless of the 
encircling direction. This is illustrated in Fig. 5a, b.

By contrast, a chiral state transfer is observed in the 
intermediate regime, in the density-matrix evolution 
driven by the Liouvillian superoperator. This is illustrated 
in Fig. 5c, d. Qualitatively, such a chiral state transfer can 
be understood as the manifestation of the LEP encir-
cling, which is exactly relevant at intermediate times. We 
note that, the observed LEP encircling in superconduct-
ing qubits also occur at intermediate time scales [50, 51, 
60]. Similarly, a recent demonstration of the LEP-facili-
tated quantum heat engine is also based on the dynamic 
impact of LEP at intermediate timescales [58].

6  Steady‑state LEP
Exceptional structures can also emerge in the steady-
state subspace of a quantum open system. In this case, 
the EP-related chiral state transfer occurs in the long-
time limit, even as the system adiabatically follows the 
steady state. The bifurcation of the steady-state solutions 
at the LEP corresponds to multi-stability, which is com-
monly observed in non-linear systems or quantum many-
body systems under the mean-field approximation  [65, 
66].

For instance, consider the following optical Bloch 
equations

(19)ρ̇22 = −�Imρ21 − γρ22,

which describe the dynamics of a driven-dissipative 
Rydberg gas of N atoms. As illustrated in Fig.  6a, the 
states |1� and |2� correspond to the ground and Rydberg 
states, respectively. The density-dependent detuning 
�− (N − 1)Vρ22 originates from the Rydberg inter-
actions under the mean-field approximation  [67–71], 
while � and � are the Rabi frequency and detuning of the 
Rydberg coupling laser.

The steady-state solutions of the optical Bloch equa-
tions are obtained by setting ρ̇ = 0 and solving the result-
ing algebraic equations. With the non-linear detuning, 
the system admits either one or three steady-state solu-
tions, depending on the parameters. As shown in Fig. 6b, 
in the regime with three solutions, there are an unstable 
solution and two stable ones. The two stable states are 
both many-body steady states featuring high and low 
Rydberg excitations, respectively. This is the well-known 
bistability which gives rise to the hysteresis in the light 
transmission of Rydberg gases in the electromagnetically 
induced transparency (EIT) measurements.

Crucially, new insights can be obtained from the cor-
responding Liouvillian eigenspectrum of the optical 
Bloch equations. As shown in Fig. 6c, d, the boundary of 
the bistable region marks the coalescence of the unsta-
ble and stable steady-state solutions. They can hence be 
identified as the second-order Liouvillian exceptional 
lines, which terminate at a third-order exceptional point 
where all three steady-state solutions merge. Here, only 
the eigenstates of the Liouvillian superoperator coalesce, 
while their eigenvalues remain zero due to the steady-
state nature. This is different from the EPs (HEP or LEP) 
in linear systems where both eigenstates and eigenvalues 
coalesce. Furthermore, since the exceptional structure in 
the steady states arises from non-linearity, they do not 
reside on the Riemann surfaces, as in the case of con-
ventional EPs. Nevertheless, the overall topology of the 
exceptional structure is similar, leading to similar dynam-
ics features as discussed below. In the literature, such 
exceptional structures consisting of EP lines and higher-
order EPs are also called exceptional nexus [72, 73].

Unlike the previously discussed LEPs in the excited 
states, the exceptional structure in the steady-state sub-
space has significant impact on the long-time dynam-
ics. An outstanding example is the chiral state transfer, 
as recently demonstrated in a thermal Rydberg gas [65]. 
When the parameters are slowly modulated around the 
exceptional structure in a closed loop, the final state 
either switches or remains unchanged, depending on the 
modulation direction. As illustrated in Fig.  6c, d, along 

(20)

ρ̇21 = i[�− (N − 1)Vρ22]ρ21 −
γ

2
ρ21 + i�

(

ρ22 −
1

2

)

,
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one direction, the system adiabatically follows the steady 
state, whereas along the other direction, a jump is una-
voidable as the trajectory crosses the exceptional line. 
Based on numerical simulations, a set of sufficient condi-
tions for the chiral state transfer is summarized  [65]: (i) 
the initial stable steady state should be prepared in the 
bistable region; (ii) the two nearest (with respect to the 
initial position) intersection points between the trajec-
tory and the exceptional lines should be on either side of 
the third-order LEP. Under these conditions, the chiral 
state transfer can still be observed, even as the trajectory 
crosses the exceptional lines multiple times. Further-
more, since the chiral state transfer only occurs when the 
trajectories are traversed sufficiently slowly, the excep-
tional landscape in the steady state becomes important. 
The chirality disappears for sufficiently fast parameter 
changes [65]. An interesting feature of the system is that 
both the exceptional structure and the chiral state trans-
fer are subject to the tuning of many-body parameters. In 
thermal Rydberg atoms, these parameters include addi-
tional microwave fields that couple different Rydberg 
states, or the temperature which affects the density of the 
thermal gas. These possibilities pave the way for interest-
ing schemes of quantum control.

Note that similar exceptional structures have been 
reported in non-linear non-Hermitian systems  [72, 74, 
75]. The exceptional structure therein derives from the 
classical non-linearity, with the simultaneous coalescence 
of eigenstates and eigenvalues. It is therefore fundamen-
tally different from the Liouvillian exceptional structure 
in the steady-state manifold. Nevertheless, chiral state 
transfer can also be observed based on the non-linear 
HEPs [66].

7  Summary
Exceptional structures and the corresponding excep-
tional dynamics occur in a wide range of settings. 
While they have attracted significant interest in classi-
cal non-Hermitian models, recent studies have revealed 
their relevance and impact in quantum open systems, 
where exceptional structures emerge in the Liouvillian 
eigenspectrum and affect the steady-state approach-
ing dynamics. Our brief review focuses on the chiral 
state transfer, a particular dynamic consequence, near 
the Liouvillian EPs. Based on these studies, it would 
be interesting to explore other exceptional features 
such as the EP-enhanced sensitivity and criticality near 
the Liouvillian EPs in quantum open settings. This is 

Fig. 6 a Rydberg level scheme. b Steady-state solutions of nR = ρ22 from the optical Bloch equations under � = 2 . c, d Trajectories 
on the landscape of the steady-state Rydberg population. The green lines are the second-order Liouvillian exceptional lines 
and the yellow star is the third-order LEP. The red (blue) region indicates the stable (unstable) steady state. The encircling path is as follows: 
�(t) = 3.85+ 1.477 sin (±2π t/T + φ0) , �(t) = −5.6+ 1.477 cos (±2π t/T + φ0) , and φ0 = − arctan (9/4) . Here T = 50000 , and other parameters 
are: γ = 1 , and (N − 1)V = −11
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particularly intriguing in physical platforms such the 
driven-dissipative Rydberg gases, where the develop-
ment of novel quantum control and sensing schemes 
would also benefit the on-going explorations therein 
for quantum information and computation. It is also 
interesting to study the generation and dynamic conse-
quences of higher-order LEPs, wherein the complicated 
exceptional landscape can lead to richer encircling 
possibilities but have rarely been explored in quantum 
open systems. Finally, given the recent interest in the 
non-Abelian braid topology in non-Hermitian multi-
band systems  [76, 77], it is tempting to investigate 
and exploit similar features in quantum open systems, 
based on our understanding of the LEPs.
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