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Abstract 

The one-dimensional quantum breakdown model, which features spatially asymmetric fermionic interactions simulat‑
ing the electrical breakdown phenomenon, exhibits an exponential U(1) symmetry and a variety of dynamical phases 
including many-body localization and quantum chaos with quantum scar states. We investigate the minimal quan‑
tum breakdown model with the minimal number of on-site fermion orbitals required for the interaction and identify 
a large number of local conserved charges in the model. We then reveal a mapping between the minimal quan‑
tum breakdown model in certain charge sectors and a quantum link model which simulates the U(1) lattice gauge 
theory and show that the local conserved charges map to the gauge symmetry generators. A special charge sector 
of the model further maps to the PXP model, which shows quantum many-body scars. This mapping unveils the rich 
dynamics in different Krylov subspaces characterized by different gauge configurations in the quantum breakdown 
model.

1  Introduction
The study of nonequilibrium quantum dynamics in 
many-body systems has been a longstanding pursuit 
in contemporary condensed matter physics. The uni-
tary time evolution of a generic nonintegrable quantum 
many-body system would approach the thermal equilib-
rium, a phenomenon closely associated with the eigen-
state thermalization hypothesis (ETH) [1–4]. In recent 
years, extensive studies have been exploring quantum 
systems that violate the ETH. Notably, the many-body 
localization provides an interesting possibility of ETH 
violation by introducing disorders [5–11]. More recently, 
the ETH violation due to quantum many-body scar 
states and Hilbert space fragmentation has also greatly 
attracted both theoretical and experimental investiga-
tions [12–21].

Lattice gauge theory provides an alternative approach 
to ETH violation systems, leading to a wide class of 
dynamical phenomena associated with the configurations 
of gauge fields. In particular, the gauge degrees of free-
dom may induce disorder-free localization in quantum 
systems [22–30]. Besides, the lattice gauge theory can 
also hold quantum many-body scar states embedded in 
thermal eigenstates [31–37].

Recently, an intriguing quantum many-body system, 
called the quantum breakdown model, was proposed to 
describe the dielectric breakdown process from a micro-
scopic perspective [38–41]. The one-dimensional (1D) 
fermionic quantum breakdown model features a spatially 
asymmetric breakdown interaction that annihilates a 
fermion at one site and simultaneously creates more fer-
mions at the neighboring site on the right [38]. With an 
increasing number of fermion orbitals (flavors) at each 
site, the quantum breakdown model undergoes a crosso-
ver from the many-body localization phase to the quan-
tum chaotic phase with scar states.

In this paper, we investigate the minimal quantum 
breakdown model, which necessitates the smallest 
number of fermion orbitals that are compatible with 
the spatially asymmetric breakdown interactions. 
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Under this circumstance, we can identify an extensive 
number of local conserved quantities that contribute 
to the fragmentation of the total Hilbert space. Nota-
bly, we find that such a minimal quantum breakdown 
model in certain charge sectors can be mapped to a 
model of lattice gauge theory, known as the quantum 
link model [42–45]. The latter can be experimen-
tally simulated in various quantum devices [46–59]. 
Through this mapping, the local conserved quantities 
in the quantum breakdown model play the role of the 
gauge symmetry generators in the lattice gauge theory. 
As a result, Krylov subspaces with distinct gauge con-
figurations give rise to various subspace dynamics, 
ranging from free fermions on hypercubic lattices with 
boundary defects to strongly interacting sectors with 
quantum many-body scars. Our results reveal that 
the lattice gauge theory not only offers a theoretical 
perspective to understand the dynamics in the quan-
tum breakdown model but also provides a practical 
approach to simulating this model in advanced quan-
tum experiments.

The rest of this paper is organized as follows. In Sect. 2, 
we introduce the Hamiltonian of the quantum break-
down model and identify its symmetry and conserved 
quantities. Then in Sect. 3, we map the minimal quantum 
breakdown model to U(1) lattice gauge theory. Based 
on this mapping, we discuss various quantum dynami-
cal behaviors in certain representative gauge sectors in 
Sect. 4. Our work is then concluded in Sect. 5.

2 � Quantum breakdown model
2.1 � Model Hamiltonian
The breakdown process of a dielectric gas subjected to 
a sufficiently strong electric field can be phenomeno-
logically described as follows. Because of the strong 
electric field, the neutral atom can be ionized into one 
electron and one ion. Then, the free electron is imme-
diately accelerated by the strong electric field. On the 
contrary, the produced ion is accelerated in the oppo-
site direction, but experiences much slower dynamics 
because of its much heavier mass. Therefore, we ignore 
the ion dynamics and focus only on the fast motions of 
electrons. Subsequently, the fast electrons collide with 
other atoms, triggering the progressive generation of 
additional electrons and ions. As a result, more and 
more electrons are generated and accelerated by the 
electric field, leading to a Townsend particle avalanche 
of electrons [60]

By ignoring the ions, this breakdown process can be 
effectively described by a microscopic Hamiltonian called 
the quantum breakdown model [38]. We consider a 1D 

system with M sites, each site having N fermion orbitals 
(flavors). The generic Hamiltonian is given by

With ĉ†m,i and ĉm,i being the creation and annihilation 
operators of the ith fermionic mode at the mth site, the 
interacting part ĤI represents the spatially asymmetric 
breakdown interaction

Here, h.c. is the Hermitian conjugate, and q is a 
nonnegative integer. The values of the interaction 
strength J

i1i2···i2q+1

m,l  are complex numbers that are 
arranged antisymmetrically with respect to the indices 
i1, · · · , i2q+1 . This asymmetric interaction indicates that 
the annihilation of one fermion leads to the creation of 
2q + 1 fermions at the adjacent site. Therefore, Eq.  (2)  
defines a class of quantum breakdown models with dif-
ferent q values. The asymmetrical interaction is defined 
to maintain the fermion parity. For the nontrivial ĤI to be 
valid, the number of fermion orbitals per site must satisfy

The second part Ĥµ is the on-site potential, which is 
given by

Here, µm represents the potential at the mth site. 
Also, n̂m is the fermion number operator at the mth site.

The quantum breakdown model displays a wide vari-
ety of dynamical phases, including many-body locali-
zation, Hilbert space fragmentation, and quantum 
chaos [38–41]. As shown in Ref. [38], the q = 1 quan-
tum breakdown model has almost all eigenstates solv-
able when N = 3 , while it exhibits quantum chaos with 
many-body scar states when N is large. Interestingly, 
a dynamical breakdown transition is controlled by the 
ratio between the interaction strength and the on-site 
potential. A considerably large interaction is required 
to overcome the energy barrier induced by the on-site 
potential, leading to the proliferation of electrons.

In this paper, we study the minimal quantum break-
down models which are defined by the requirement

In contrast to the quantum chaotic phase established 
in the large N regime, we will show that the N = 2q + 1 

(1)Ĥ = ĤI + Ĥµ.

(2)

ĤI =

M−1

m=1

N

l=1

N

i1<···<i2q+1

J
i1i2 ···i2q+1

m,l

2q+1

k=1

ĉ†m+1,ik
ĉm,l + h.c. .

(3)N ≥ 2q + 1 .

(4)Ĥµ =

M
∑

m=1

µmn̂m, n̂m =

N
∑

i=1

ĉ†m,iĉm,i.

(5)N = 2q + 1 .
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case has a large number of conserved quantities that 
make this model almost exactly solvable.

2.2 � Symmetry and conserved quantity
To obtain the conserved quantities of the minimal 
quantum breakdown model, we need to analyze its 
symmetry. In this section, we focus on the global sym-
metries of this model. We first consider the following 
spatially dependent unitary transformation:

Then, the invariance of the breakdown Hamiltonian 
requires that

Moreover, as we will show below, the boundary con-
ditions have a significant effect on this equation, as the 
periodic boundary condition (PBC) necessitates an extra 
restriction between the first site and the last site, which is 
not present under the open boundary condition (OBC).

We first discuss the symmetry of the PBC. In this case, 
the phase relations of V̂m that keep the Hamiltonian 
invariant are given by Eq. (7) for m = 1, 2, . . . , (M − 1) . 
Assuming ϕM = ϕ where ϕ is a site-independent con-
stant angle, these relations immediately lead to a close 
solution ϕm = (2q + 1)M−mϕ . Furthermore, the PBC 
further imposes a constraint ϕM = (2q + 1)ϕ1 mod 2π , 
which requires ϕ to satisfy the following condition: 
ϕ = (2q + 1)Mϕ mod 2π . This condition implies that 
the angle ϕ can only take discrete values

Therefore, the quantum breakdown model under the 
PBC has a discrete Z(2q+1)M−1 symmetry, a global sym-
metry depending on the system size [61–63].

For the OBC, the phase relations in Eq.  (7) give rise 
to a solution ϕm = (2q + 1)M−mϕ with ϕ ∈ [0, 2π) tak-
ing continuous values. Therefore, the quantum break-
down model with OBC has a spatially modulated global 
U(1) symmetry called the exponential symmetry [38, 
40, 61–66]. This exponential symmetry is generated by 
an exponential U(1) charge

The conserved charge Q̂ implies that the fermions at 
the mth site have an effective charge qm = (2q + 1)M−m . 
Intuitively, the asymmetric breakdown interactions 

(6)V̂mĉm,iV̂
†
m = eiϕmĉm,i, V̂m = e−iϕmn̂m .

(7)ϕm = (2q + 1)ϕm+1 mod 2π .

(8)

ϕ =
2πp

(2q + 1)M − 1
, (p = 0, 1, . . . , (2q + 1)M − 2)

(9)Q̂ =

M
∑

m=1

(2q + 1)M−mn̂m.

annihilate one fermion at the mth site and create 2q + 1 
fermions at the adjoint site, splitting the effective 
charge into 2q + 1 pieces. This conserved charge makes 
it possible to use exact diagonalization to study the 
energy spectrum and quantum dynamics within each 
charge sector [38].

2.3 � Extensive conserved quantities in the minimal 
quantum breakdown model

While the symmetry analysis in Sect.  2.2 applies to 
the quantum breakdown model with N ≥ 2q + 1 , the 
minimal quantum breakdown model with N = 2q + 1 
(Eq.  (5)) has a richer and more interesting structure 
which we will focus on in the rest of the paper. As we 
shall show below, an extensive number of local con-
served quantities exist in the N = 2q + 1 quantum 
breakdown model. These conserved quantities result in 
exponentially many disconnected Krylov subspaces, a 
hallmark of Hilbert space fragmentation. For simplicity, 
we impose OBC here, for which case we do not need to 
worry about the relation between the first site and the 
last site. The analysis for symmetries under PBC and 
the corresponding dynamical properties are however 
similar.

To extract the conserved quantities, we express the 
minimal quantum breakdown model in a simpler form. 
Specifically, we employ a local U(2q + 1) unitary trans-
formation among the 2q + 1 fermion flavors on the mth 
site as

where U (m) is an element in the U(2q + 1) group. On 
the one hand, the uniform on-site potential Ĥµ in 
Eq.  (4) is invariant under this transformation, since 
n̂m =

∑2q+1

i=1
ĉ†m,iĉm,i =

∑2q+1

i=1
f̂ †m,i f̂m,i . On the other hand,  

since there are only 2q + 1 fermion modes per site, we 
have ĉm,1ĉm,2 · · · ĉm,2q+1 = det[U (m)]f̂m,1 f̂m,2 · · · f̂m,2q+1 and  
ĉ†m,1ĉ

†
m,2 · · · ĉ

†
m,2q+1 = det[U (m)]∗ f̂ †m,1 f̂

†
m,2 · · · f̂

†
m,2q+1 ,  namely,  

cm,1ĉm,2 · · · ĉm,2q+1 and its Hermitian conjugate transform 
as a singlet in the on-site flavor space. Then, the breakdown 
interaction ĤI transforms as

Since the coefficients J12···(2q+1)

m,l  is a vector with com-
ponent l under the U(2q + 1) rotation, we can always 
choose the unitary transformation U (m) such that [38]

(10)ĉm,i =
∑

j

U
(m)
i,j f̂m,j ,

(11)

ĤI =

M−1
�

m=1

2q+1
�

l,l′=1

J
12···(2q+1)

m,l [detU (m+1)]∗U
(m)

l,l′





2q+1
�

k=1

f̂ †m+1,k



f̂m,l′ + h.c.
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The real number Jm is the norm of the vector 
(J

12···(2q+1)

m,1 , J
12···(2q+1)

m,2 , · · · , J
12···(2q+1)

m,2q+1 )T , which is given by

Then, the minimal quantum breakdown model takes a 
much simpler form:

After the basis transformation, only fermions on the 
first orbital can move between different sites. A fermion 
moving in the right direction generates additional 2q fer-
mions at the right adjacent site (Fig. 1b). Once these 2q 
fermions are created, they become immobile, incapable 
of further moving rightward. The only possible dynamics 
for these 2q fermions is their simultaneous annihilation 
when a fermion on the first orbital moves to the left site, 
namely, the Hermitian conjugate of their creation pro-
cess. We note that such a simplification of Hamiltonian 
similar to Eq. (14) via local unitary transformations is not 
applicable to generic quantum breakdown models with 
N > 2q + 1.

The simplified form of the minimal quantum break-
down model in Eq.  (14) allows us to reveal many more 
hidden conserved charges. To see this, we attach an effec-
tive charge, denoted as qm,i , to the ith orbital f-fermion 
on the mth site. Consequently, it is straightforward to see 

(12)
2q+1
∑

l=1

J
12···(2q+1)

m,l [detU (m+1)]∗U
(m)

l,l′ = Jmδl′,1.

(13)Jm =

√

√

√

√

2q+1
∑

l=1

∣

∣

∣J
12···(2q+1)

m,l

∣

∣

∣

2

.

(14)

Ĥ = ĤI + Ĥµ,

ĤI =

M−1
�

m=1



Jm





2q+1
�

i=1

f̂ †m+1,i



f̂m,1 + h.c.



,

Ĥµ =

M
�

m=1

µmn̂m.

that the following modulated charge Q̂({qm,i}) commutes 
with the Hamiltonian Ĥ in Eq. (14) provided that qm,i sat-
isfy the following condition:

The above charge Q̂({qm,i}) in Eq.  (15) reduces to 
the conserved charge Q̂ for c-fermions in Eq.  (9) if one 
chooses qm,i = (2q + 1)M−m . Clearly, the arbitrariness 
of qm,i in Eq.  (15) gives rise to many more conserved 
quantities.

To further extract the conserved quantities encoded 
in Eq.  (15), we can reformulate the charge constraint 
as 

∑2q+1

i=1
qm+1,i/qm,1 = 1 . In particular, we choose the 

ratios qm+1,i/qm,1 to be given by the following parameters:

Here, γ and βi with i = 2, 3, . . . , 2q represent the spe-
cific 2q free parameters (which can be any complex num-
bers). Consequently, the conserved quantity in Eq.  (15) 
transforms into:

(15)Q̂({qm,i}) =

M
∑

m=1

2q+1
∑

i=1

qm,if
†
m,ifm,i , qm,1 =

2q+1
∑

i=1

qm+1,i .

(16)

qm+1,1/qm,1 = γ ,

qm+1,2/qm,1 = (1− γ )/(2q)+ β2,

qm+1,3/qm,1 = (1− γ )/(2q)+ β3 − β2,

· · ·

qm+1,i/qm,1 = (1− γ )/(2q)+ βi − βi−1,

· · ·

qm+1,2q/qm,1 = (1− γ )/(2q)+ β2q − β2q−1,

qm+1,2q+1/qm,1 = (1− γ )/(2q)− β2q .

(17)

Q̂({qm,i}) =

2q+1
∑

i=2

q1,i f̂
†
1,i f̂1,i + q1,1

M
∑

m=1

γm−1 f̂ †m,1
f̂m,1

+ q1,1

M
∑

m=2

γm−2 1− γ

2q

2q+1
∑

i=2

f̂ †m,i f̂m,i

+ q1,1

M
∑

m=2

γm−2

2q
∑

i=2

βi(f̂
†
m,i f̂m,i − f̂ †m,i+1

f̂m,i+1).

Fig. 1  a The q = 2 quantum breakdown model. b The quantum breakdown model after the basis rotation. A solid circle ( • ) denotes an occupied 
orbital, while a hollow circle ( ◦ ) indicates an unoccupied orbital
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q1,i for i = 1, · · · , 2q + 1 represent the effective charges 
for fermions at the first site. The conservation of the total 
charge is independent of the choices of the free param-
eters γ and βi ; thus, the coefficient of each power of these 
free parameters can be identified as an independent con-
served quantity. All of these coefficients give a large num-
ber of local conserved quantities. Notably, these local 
conserved quantities can be categorized into three dis-
tinct sets as follows.

The first set of conserved quantities is localized on the 
first site and is denoted as:

This set signifies that the fermions on 2q orbitals of 
the first site are entirely decoupled from the rest of the 
system. These 2q conserved quantities at the first site 
directly stem from taking the OBC.

The second set comprises on-site conserved quantities as:

where the site index m = 2, . . . ,M and orbital index 
i = 2, . . . , 2q . These on-site conserved quantities indi-
cate that the f̂m,i>1 fermions at the mth site are subject 
to simultaneous annihilation and creation, revealing the 
conservation of the population imbalance between f-fer-
mion orbitals with orbital indices i > 1 . This behavior 
aligns directly with the breakdown interaction in Eq. (14).

The third set of conserved quantities is also local, but 
intriguingly not on-site, which is given by:

where m = 1, . . . ,M . These conserved quantities 
describe the interactions between the first fermion f̂m,1 
at each site and the other fermions. We impose the coef-
ficients ηm = 1− δm,M and η̃m = 1− δm,1 such that these 
conserved quantities are compatible with the OBC.

As a result, we obtain an extensive number of local con-
served operators for the minimal quantum breakdown 
Hamiltonian in Eq.  (14). These operators in Eqs.  (18) to 
(20) can further add or multiply to generate additional 
conserved quantities, serving as generators of the underly-
ing commutant algebra [21]. For example, the total fermion 
number N̂1 =

∑M
m=1 f̂

†
m,1 f̂m,1 on the first orbital of all sites 

is conserved, which is equivalent to N̂1 =
∑M

m=1 Q̂c,m.
As implied by the conserved quantities Q̂a,i , the fermions 

created by f̂ †1,i with i > 1 remain frozen in their dynamics. 
However, the remaining two groups of conserved quan-
tities, Q̂b,m,i and Q̂c,m , play a crucial role in shaping the 
connected Hilbert subspaces (i.e., Krylov subspaces) and, 

(18)Q̂a,i = f̂ †
1,i f̂1,i, i = 2, · · · , 2q + 1.

(19)Q̂b,m,i = f̂ †m,i f̂m,i − f̂ †m,i+1
f̂m,i+1,

(20)Q̂c,m = f̂ †m,1
f̂m,1 +

1

2q

2q+1
∑

i=2

(

ηmf̂
†
m+1,i f̂m+1,i − η̃mf̂

†
m,i f̂m,i

)

,

thereby, constraining the quantum dynamics of the mini-
mal quantum breakdown model with N = 2q + 1.

The breakdown interactions in Eq.  (14) simultane-
ously annihilate or create all fermions with orbital index 
i > 1 . Consequently, the subspace that exhibits non-
trivial dynamics at the mth site must exclusively com-
prise states with an identical number of fermions with 
orbital index i > 1 . Conversely, a site with an uneven 
distribution of these fermion modes becomes dynami-
cally frozen. These two distinct types of states can be 
distinguished by the eigenvalues of the second set of 
conserved charges Q̂b,m,i . In a subspace where any Q̂b,m,i 
has a nonzero eigenvalue, the fermions at the mth site 
with orbital index i > 1 will remain static. As a result, 
this site serves as a blocking site [38], effectively dividing 
the system into two dynamically isolated regions. This 
dynamical constraint precisely exemplifies the Hilbert 
space fragmentation in the N = 2q + 1 quantum break-
down model.

Assume that there are two blocking sites at m1 and 
m2 and no other blocking site in between. The non-
trivial dynamics then exist in the region m1 < m < m2 , 
in which any Q̂b,m,i with m1 + 1 ≤ m ≤ m2 − 1 and 
2 ≤ i ≤ 2q + 1 would have a zero eigenvalue for the 
states in this subspace. Within such a subspace, the 
quantum dynamics is further influenced by the con-
served charges Q̂c,m . In the subsequent section, we will 
demonstrate that the minimal quantum breakdown 
model in certain subspaces is equivalent to a U(1) lattice 
gauge model. In the language of lattice gauge theory, the 
conserved quantities Q̂c,m play the role of gauge symme-
try generators.

3 � Mapping to the lattice gauge theory
Without loss of generality, we make a slight change of nota-
tion in the following discussion. Here, we assume m1 = 1 
and m2 = M + 1 are two blocking sites, between which the 
region is connected without any other blocking sites. As 
explained in the above section, the states |ψ� in this dynam-
ical subspace are restricted by

To further simplify the minimal quantum breakdown 
model in Eq. (14), we define a set of operators as

(21)
Q̂b,m,i|ψ� = 0, 2 ≤ m ≤ M, i = 2, · · · , 2q + 1.

(22)

F̂ †
m = f̂ †m,2 f̂

†
m,3 · · · f̂

†
m,2q f̂

†
m,2q+1,

F̂m = f̂m,2q+1 f̂m,2q · · · f̂m,3 f̂m,2,

N̂m =
1

2q

2q+1
∑

i=2

f̂ †m,i f̂m,i.
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F̂m and F̂ †
m are the operators for collectively annihilating 

and creating 2q fermions at the mth site. Then, the quan-
tum breakdown model in Eq.(14) can be re-expressed as

Since the breakdown interaction preserves the fer-
mion parity, the two operators, F̂m and F̂ †

m , behave like 
bosonic operators. They satisfy the following commuta-
tion relations:

Upon imposing the constraint in Eq. (21) on the Hil-
bert space, only two configurations for the 2q immobile 
f-fermion modes (with orbital indices 2 ≤ i ≤ 2q + 1 ) 
at each site are accessible: the vacuum state |↓�m ≡ |0� 
and the fully occupied state |↑�m ≡ F̂ †

m|0�  (Fig.  2a). 
Consequently, it is straightforward to show that 
[F̂ †

m, F̂m]|↓�m = −|↓�m and [F̂ †
m, F̂m]|↑�m = |↑�m . There-

fore, the commutator [F̂ †
m, F̂m] can be expressed as 

[F̂ †
m, F̂m]c = 2N̂m − 1 , where the subscript c denotes 

the subspace spanned by |↑�m and |↓�m . Furthermore, 
[F̂m, 2N̂m − 1]c = 2F̂m and [F̂ †

m, 2N̂m − 1]c = −2F̂ †
m . As a 

result, the operators F̂m , F̂ †
m , and 2N̂m − 1 constrained 

in this subspace follow the same algebra as the Pauli 
matrices σ̂±,z

m,m+1 , with the correspondence

(23)Ĥ =

M−1
∑

m=1

(Jm f̂ †m+1,1F̂
†
m+1 f̂ m,1 + h.c.)+

M
∑

m=1

µm (f̂ †m,1 f̂ m,1 + 2qN̂m).

(24)

�

F̂m, f̂n,1

�

=
�

F̂ †
m, f̂

†
n,1

�

= 0,

�

F̂m, F̂n

�

=
�

F̂ †
m, F̂

†
n

�

= 0,

�

F̂ †
n , F̂m

�

= δmn





2q+1
�

i=2

f̂ †m,i f̂m,i −

2q+1
�

i=2

(1− f̂ †m,i f̂m,i)



.

(25)
F̂m+1 → σ̂−

m,m+1
, F̂

†
m+1

→ σ̂+
m,m+1

, 2N̂m+1 − 1 → σ̂ z

m,m+1 .

We emphasize that such an identification between 
fermionic operators and spin operators is exclusively 

applicable within the constrained Hilbert space where 
Eq. (21) is satisfied.

After mapping to spin operators, we can express the 
minimal quantum breakdown model in the subspace of 
Eq. (21) into the following form:

Here, we ignore the decoupled fermions on the first 
site with orbital indices 2 ≤ i ≤ 2q + 1 and omit some 
constant terms. The Hamiltonian, as shown in Fig.  2, 
resembles the quantum link model, which characterizes 
the motion of fermions along the lattice sites while simul-
taneously interacting with the spins on the lattice links 
[42–45]. This is a lattice version of 1+1D quantum elec-
trodynamics. Correspondingly, the local conserved quan-
tities Q̂c,m in Eq. (20) are transformed into

The quantum link model bridges the minimal quantum 
breakdown model with the 1D lattice gauge theory. To 
see this, we introduce the Hamiltonian of the U(1) lattice 
gauge theory [45, 46]. Here, we focus on the open bound-
ary conditions, and the quantum link formulation of the 
U(1) lattice gauge theory is

(26)

Ĥ =

M−1
∑

m=1

(Jmf̂
†
m+1,1σ̂

+
m,m+1 f̂m,1 + h.c.)

+

M
∑

m=1

µm f̂ †m,1 f̂m,1 +

M−1
∑

m=1

qµm σ̂ z
m,m+1.

(27)Ĝm = f̂
†
m,1

f̂m,1 +
1

2
[ηm(σ̂

z

m,m+1 + 1)− η̃m(σ̂
z

m−1,m + 1)].

Fig. 2  a The correspondence between fermions and link spins established in Eq. (25). b The sketch of interactions in the minimal quantum 
breakdown model in Eq. (26). c A typical configuration in the minimal quantum breakdown model in Eq. (26)
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In this context, �̂m and �̂†
m denote the fermionic 

annihilation and creation operators on the lattice sites. 
Meanwhile, Êm,m+1 represents the electric field opera-
tor on the lattice links, and Ûm,m+1 = eiÂm,m+1 corre-
sponds to a parallel transport operator induced by the 
U(1) link gauge field Âm,m+1 . They adhere to the rela-
tion [Êm,m+1, Ûm,m+1] = Ûm,m+1 . This relationship arises 
from the fact that the electric field operator Êm,m+1 on 
the link is the canonical momentum of the link gauge 
field Âm,m+1.

The first term in Eq.  (28) signifies the couplings 
between the fermions (matter fields) at the lattice sites 
and the gauge fields at the lattice links. The second term 
represents the fermion mass, while the final term char-
acterizes the energy of electric fields. Notably, the U(1) 
gauge symmetry of this lattice model under open bound-
ary conditions is generated by [45, 46]:

These gauge generators satisfy [ĤLGT, Ĝm] = 0 . In 
the lattice gauge theory for staggered fermions, the 
physical states in the gauge-invariant subspace satisfy 
(Ĝm − 1−(−1)m

2
)|ψ� = 0 , which is a lattice manifestation 

of Gauss law ▽ · E = ρ [45–47].
The infinite local Hilbert space dimension associated 

with the gauge fields on the links poses a challenge in 
simulating the U(1) lattice gauge theory in experiments. 
A truncated local Hilbert space with small Ê2

m,m+1 eigen-
values is often adopted, which is more experimentally 
accessible and is justified for large coupling strength 
g in ĤLGT . This truncation leads to the quantum link 
model, achieved by the  substitutions: Ûm,m+1 → Ŝ

+
m,m+1

 , 
Û †
m,m+1 → Ŝ−m,m+1 , and Êm,m+1 → Ŝ

z

m,m+1
 , where Sµm,m+1 

are spin-S operators on the link. Now, the gauge fields on 
the links are effectively substituted by a spin S. Conse-
quently, the spin-S quantum link model can be expressed 
as [45, 46] :

The precise form of the renormalized constants t ′ and 
g ′ is irrelevant in our discussion. In the case of the spin 

(28)

ĤLGT = −t

M−1
∑

m=1

(�̂†
mÛm,m+1�̂m+1 + h.c.)

+ µ

M
∑

m=1

(−1)m�̂†
m�̂m + g

M−1
∑

m=1

Ê2
m,m+1.

(29)Ĝm = �̂†
m�̂m + η̃mÊm−1,m − ηmÊm,m+1.

(30)

ĤS = −t ′
M−1
∑

m=1

(�̂†
mŜ

+
m,m+1�̂m+1 + h.c.)

+ µ

M
∑

m=1

(−1)m�̂†
m�̂m + g ′

M−1
∑

m=1

(Ŝzm,m+1)
2
.

S = 1
2
 quantum link model, the energy term of elec-

tric fields is a constant energy offset that can hence be 
dropped. When we map the �-fermions to the f-fer-
mions, the model in Eq.  (30) shares the same interac-
tion terms as in Eq. (26) by the following substitutions: 
Ŝ±m,m+1 → σ̂∓

m,m+1 and 2Ŝzm,m+1 → −σ̂ z
m,m+1 . It is worth 

noting that we have chosen a different basis for the link 
spins in Eq. (26) to establish a connection between the 
spin-up state in the quantum link model and the occu-
pied state F̂ †

m|0� in the minimal quantum breakdown 
model.

By employing the above substitutions and setting the 
parameters Jm = −t ′ and µm = (−1)mµ , the minimal 
quantum breakdown model in Eq. (26) can be mapped 
into the S = 1

2
 version of the quantum link model in 

Eq. (30). However, this mapping is not exact. The dis-
tinction arises from the staggered chemical potential in 
the minimal quantum breakdown model, which results 
in a staggered magnetic field for link spins in Eq.  (26). 
The staggered magnetic field for link spins is different 
from the energy term of electric fields g ′(Ŝzm,m+1)

2 pre-
sented in Eq.(30). An interesting future direction is to 
investigate the effect of this effective magnetic field on 
the quantum dynamics of the underlying many-body 
system. Nevertheless, we emphasize that the minimal 
quantum breakdown model shares the same gauge sym-
metry structure as the U(1) lattice gauge theory, which 
can be seen in Eqs. (20), (27), and (29).

In general, quantum simulations of the lattice gauge 
theory make great efforts to enforce the gauge condi-
tion (Ĝm − 1−(−1)m

2
)|ψ� = 0 in experiments. However, 

the connection between lattice gauge theory and the 
quantum breakdown model we revealed here suggests 
that the other gauge sectors may also unveil intriguing 
physical phenomena. In the next section, we focus on 
the Hamiltonian Eq.  (26) and delve into several typi-
cal gauge sectors, to illustrate the rich dynamical phe-
nomena exhibited by the minimal quantum breakdown 
model.

4 � Dynamically connected subspaces
In the N = 2q + 1 minimal quantum breakdown model, 
the existence of local conserved quantities effectively 
partitions the entire Hilbert space into an exponential 
number of disconnected Krylov subspaces. Even after 
resolving the conserved quantities Q̂a,i and Q̂b,m,i , it is 
still possible to make further fragmentations within 
the Hilbert subspace constrained by Q̂b,m,i|ψ� = 0 . As a 
result, the conserved quantities Q̂c,m play an indispen-
sable role in determining the dynamically connected 
subspaces. To make it clear, we employ the minimal 
quantum breakdown model in the form of Eq.  (26) to 



Page 8 of 14Hu and Lian ﻿AAPPS Bulletin           (2024) 34:24 

illustrate the dynamical structures in the original quan-
tum breakdown model.

4.1 � Blocking gauge configuration
In addition to the aforementioned blocking sites with at 
least one Q̂b,m,i satisfying Q̂b,m,i|ψ� �= 0 , there also exist 
two types of blocking configurations in the subspaces 
with all Q̂b,m,i|ψ� = 0 . For simplicity, we take the form 
of the minimal quantum breakdown model shown in 
Eq.  (26). Such blocking configurations are determined 
by the local gauge generators Ĝm (i.e., Q̂c,m ) in Eq.  (27), 
which can have eigenvalues −1, 0, 1, 2 (if m  = 1 or M). As 
shown in Fig.  3, when the eigenvalue of Ĝm at the mth 
site equals 2, the mth fermionic site and two surrounding 
spin sites admit the following configuration ↓ • ↑ ; simi-
larly, when the eigenvalue of Ĝm at the mth site equals 
−1 , we obtain a configuration ↑ ◦ ↓.1 These two configu-
rations are dynamically frozen. Other fermions cannot 
jump into this site and change the spin configuration 
on the nearby links. Therefore, the gauge configurations 
with the eigenvalue of bulk Ĝm being 2 or −1 further sub-
divide the lattice into spatially disconnected parts.

Furthermore, these two blocking configurations can 
generate more complicated blocking structures. As 
shown in Fig.  3c and d, the blocking configurations 
↓ • ↑ and ↑ ◦ ↓ can be further extended by adding more 
parallel spins on the two sides. These extended block-
ing configurations form a domain-wall structure of the 
link spins, while the fermionic sites within the blocking 
region are either fully occupied or empty.

The existence of many blocking configurations further 
reduces the dimension of connected Hilbert subspaces. 

In the following, we only need to focus on the situ-
ations where the eigenvalues of all the bulk Ĝm are 0 
or 1. In other words, we are free to remove the block-
ing region because of their frozen dynamics. Then, the 
dynamically connected region consists of the following 
configurations2:

Here, �Ĝm� represents the expectation value of Ĝm 
over a product state, which is also an eigenstate due to 
the diagonal structure of Ĝm . Moreover, the combined 
conserved quantity Ĝ =

∑

m Ĝm corresponds to the 
total number of fermions in the quantum link model. 
This quantity equals to the number of fermions N̂1 on 
the first orbitals in the quantum breakdown model. 
Consequently, we can investigate the dynamically con-
nected Krylov subspaces labeled with different fermion 
numbers, or fermion filling factors, on the first orbitals. 
In the following discussion about the subspace dynam-
ics, we restrict ourselves into the Krylov subspaces 
below the half-filling, since the Krylov subspaces above 
half-filling can be readily generated via a particle-hole 
transformation.

4.2 � Free‑fermion sector
The simplest situation is the case with only one fer-
mion, namely, the eigenvalue of Ĝ =

∑

m Ĝm is equal to 
1. Under this circumstance, the connected Krylov sub-
space is generated by a reference state like Fig. 4a. If we 
label the state by the position of the fermion as |m� , such 

(31)
�Ĝm� = 0 : ↓ ◦ ↓, ↑ ◦ ↑, ↑ • ↓;

�Ĝm� = 1 : ↓ • ↓, ↑ • ↑, ↓ ◦ ↑ .

Fig. 3  Different blocking configurations in the minimal quantum breakdown model in Eq. (26)

2  A slight modification is necessary for the available eigenvalues of Ĝm at the 
boundary sites because of the absence of link spins outside of the system. 
For m = 1 , the available configurations are ◦ ↑ and • ↓ with �Ĝ1� = 1. For 
m = M , the available configurations are ↓ ◦ and ↑ • with �ĜM� = 0.

1  Here we use • and ◦ to represent the occupied and unoccupied fermionic 
sites; ↑ and ↓ show the direction of link spins.
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a state in the original quantum breakdown model can be 
expressed as

The reduced Hamiltonian in this Krylov subspace admits 
the following form:

where the onsite potential is given by Vm = µm +
∑m

i=2 2qµi . 
This is thus effectively a single-particle tight-binding model [38].

Notably, by tuning the parameters Jm and µm , this model 
can exhibit different behaviors. For example, if we take a 
uniform Jm = J and set µm = 0 , this subspace describes a 
tight-binding model whose eigenstates are Bloch waves:

Consequently, the eigenvalues are given by Ek = 2J cos( kπ
M+1

).

(32)|m� = f̂ †m,1

m
�

j=2





2q+1
�

i=2

f̂ †j,i



|0� = f̂ †m,1

m
�

j=2

F̂ †
j |0�.

(33)

Hfree =

M−1
∑

m=1

(Jm|m+ 1��m| + h.c.)+

M
∑

m=1

Vm|m��m|,

(34)|ψk � =

√

2

M + 1

M
∑

m=1

sin

(

kmπ

M + 1

)

|m�, k = 1, . . . ,M.

Another interesting setup is to take a constant on-site 
potential µm = µ . In this case, Vm = (2q(m− 1)+ 1)µ 
becomes a linear potential, resulting in the Wannier-
Stark localization of the free fermion. Furthermore, if Jm 
and Vm are taken from some random distributions, the 
system will display the Anderson localization. The locali-
zation phenomenon in this subspace indicates that the 
original quantum breakdown model displays many-body 
localization in certain charge sectors.

4.3 � Boundary interaction
We now analyze Krylov subspaces that involve more 
than one fermion. In the subspaces with two fermions, 
two sites are specified with their eigenvalue of Ĝm being 
1. A representative configuration is shown in Fig.  5. In 
this scenario, both particles move freely within their indi-
vidual dynamical zones, with the exception of a contact 
interaction occurring near the boundary that separates 
them.

For example, the dynamical region of the first fermion 
in Fig. 5a contains the leftmost six sites, while that of the 
second fermion comprises the rightmost six sites. Start-
ing from the reference state in Fig. 5a, if the second parti-
cle moves to the right, the first particle can migrate to the 

Fig. 4  Typical configurations in a Krylov subspace with one fermion. The integers above show the eigenvalues of local conserved Ĝm

Fig. 5  Typical configurations in a Krylov subspace with two fermions. The integers above show the eigenvalues of local conserved Ĝm
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initial site of the second particle (Fig. 5c) . However, due 
to the constraint imposed by the spin configurations, the 
first particle cannot move further in the right direction. 
On the other hand, if the second particle remains at its 
initial location, the first particle cannot occupy the same 
site due to the Pauli principle. Consequently, these two 
particles exhibit an effective interaction near the bound-
ary between their dynamical regions [38]. This boundary 
interaction results in challenges for analytical solutions in 
this Krylov subspace.

The connectivity graph of this Krylov subspace is 
shown in Fig.  6. This graph takes the form of a square 
lattice, with the absence of a corner site. In the case of 
Jm = J  and µm = 0 , if the distance between two fermi-
ons in the reference state (Fig. 5a) is sufficiently large, we 
can ignore the boundary defect and treat the dynamics of 
this Krylov subspace as a free particle on a 2D square lat-
tice. This is reasonable because the probability of finding 
a particle at the boundary decreases as the length of its 
dynamical zone increases.

The picture based on the subspace connectivity can be 
generalized to situations involving generically n fermi-
ons. A representative connectivity graph for the subspace 
with n = 3 fermions is shown in Fig. 7. When the fermion 
density in the system is sufficiently small, the average 
distance between two adjacent particles in the reference 
state like Fig. 5a becomes significantly large. As a result, 
the particles have a neglected probability of simultane-
ously appearing at the boundary between their dynamical 
regions. In this context, such a boundary interaction may 
be considered weak and, therefore, can be neglected. Con-
sequently, the effective dynamics can be viewed as a free 
particle moving on a n-dimensional hypercubic lattice.

4.4 � The intermediate cases
Consider increasing the fermion density in the refer-
ence state. While ensuring that the density remains 
below half-filling, an increase in fermion density leads 
to a decrease in the average distance between two adja-
cent particles. Roughly speaking, the decrease in particle 
separation leads to strong contact interactions between 
neighboring particles. Consequently, the Krylov subspace 
becomes strongly interacting, and the dynamics dramati-
cally deviate from those of a nearly free particle moving 
on a hypercubic lattice.

It is very difficult to develop an analytical description 
for Krylov subspaces with high densities. Therefore, we 
perform numerical investigations on these Krylov sub-
spaces here. For simplicity, we focus on the situations 
where Jm = J = 1 and µm = 0 . Figure  8 shows the sub-
system entanglement entropy of the eigenstates. With 
an eigenstate |ψ� , we define ρA = TrĀ[|ψ��ψ |] as the 
reduced density matrix of the subsystem A, where Ā is 
the complementary set of A. Then, the subsystem entan-
glement entropy is obtained by SA = −Tr[ρA ln ρA] . The 
numerical findings indicate that Krylov subspaces with 
many fermions exhibit a nonchaotic feature, as evidenced 
by many low-entangled eigenstates located in the cen-
tral region of the spectrum. This property is linked to the 
boundary interactions between adjacent fermions in this 
kinetically constrained model.

4.5 � PXP model and quantum many‑body scar
An interesting Krylov subspace with a high density of 
fermions is illustrated in Fig. 9. This corresponds to the 
half-filling case, where the reference state has fermions at 
odd sites. Within the Krylov subspace generated by this 
reference state, we can introduce a new gauge generator:

Fig. 6  The connectivity of the Krylov subspace shown in Fig. 5. The 
nodes are product states in the Krylov subspace and the edges are 
the nontrivial interactions induced by the Hamiltonian. The locations 
of configurations in Fig. 5 are labeled by the corresponding letters

Fig. 7  The connectivity of the Krylov subspace with three fermions. 
The reference state |• ↓ ◦ ↓ ◦ ↓ • ↓ ◦ ↓ ◦ ↓ • ↓ ◦ ↓ ◦ ↓ ◦� is shown 
below the graph
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Fig. 8  The subsystem entanglement entropy of eigenstates with many fermions. With the Hamiltonian in Eq.(26), we set Jm = J = 1 and µm = 0 . 
In each plot, ν = N1/M denotes the filling factor of fermions, where N1 is the fermion number and M is the number of fermion sites. a N1 = 5 
and M = 25 . The gauge configuration for Ĝm in Eq. (27) is set to 1000010000100001000010000. The entanglement entropy is evaluated 
for subsystem A which includes the leftmost 13 fermion sites and 12 link spins. b N1 = 6 and M = 24 . The gauge configuration for Ĝm is set 
to 100010001000100010001000. The entanglement entropy is evaluated for subsystem A containing the leftmost 12 fermion sites and 12 link 
spins. c N1 = 8 and M = 24 . The gauge configuration for Ĝm is set to 100100100100100100100100. The entanglement entropy is evaluated 
for subsystem A which includes the leftmost 12 fermion sites and 12 link spins. d N1 = 11 and M = 22 . The gauge configuration for Ĝm is set 
to 1010101010101010101010, similar to Fig. 9. The entanglement entropy is evaluated for subsystem A that includes the leftmost 11 fermion sites 
and 11 link spins

Fig. 9  Typical configurations of the minimal quantum breakdown model in Eq. (26) in the half-filling Krylov subspace given by Eq. (36), which maps 
to the PXP model. The integers above show the eigenvalues of local conserved Ĝm
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Then, all the states in this subspace satisfy

This precisely corresponds to the physical gauge sector dis-
cussed in lattice gauge theory for staggered fermions [45–47].

Remarkably, despite the strong interactions within this sub-
space, the dynamics starting from the reference state reveal 
persistent revivals, a distinctive feature of quantum many-
body scars [34–37, 56]. Notably, the Hamiltonian in this sub-
space of the quantum link model can be precisely mapped 
to the PXP model [56, 67], a system simulated with Rydberg 
atoms [12–14]. As shown in Fig. 9, if we map our spins on 
the links in Eq. (26) into Pauli matrices τ̂ x,y,zm  through [56]

(35)˜Gm = Ĝm −
1− (−1)m

2
.

(36)˜Gm|ψ� = 0.

(37)

τ̂ zm ↔ (−1)mσ̂ z
m,m+1,

τ̂ xm ↔ f̂ †m+1,1
σ̂+
m,m+1

f̂m,1 + f̂ †m,1
σ̂−
m,m+1

f̂m+1,1,

τ̂
y
m ↔ −i(−1)m(f̂ †m+1,1

σ̂+
m,m+1

f̂m,1 − f̂ †m,1
σ̂−
m,m+1

f̂m+1,1).

With Jm = J  and µm = 0 , the model Eq.  (26) in the 
gauge sector of Eq. (36) maps to the PXP Hamiltonian for 
Rydberg atoms:

This mapping can be understood intuitively. 
With the identification σ̂ z

m,m+1 ↔ (−1)mτ̂ zm , the 
bulk gauge symmetry generators Eq.  (35) become 
˜Gm = f̂ †m,1 f̂m,1 +

1
2
[(−1)m(τ̂ zm + τ̂ zm−1 + 1)− 1] , where 

1 < m < L . With |ψ� in the constrained Hilbert space 
being a basis vector, the gauge constraint Eq. (36) leads to 
�ψ |τ̂ zm + τ̂ zm−1|ψ� = (−1)m[1− 2�ψ |f̂ †m,1 f̂m,1|ψ�] − 1 < 2 , 
which corresponds to the Rydberg blockade that two 
neighboring atoms cannot be excited simultaneously to 
Rydberg states. Consequently, we anticipate observing 
many-body scar dynamics when evolving a Z2 configu-
ration in Fig. 9a.

In Fig. 10a, we show the overlap between the Z2 config-
uration and the energy eigenstates in the subspace under 
the OBC. Our numerical findings distinctly reveal the  

(38)ĤPXP =
J

4

∑

m

(1− τ̂ zm−1)τ̂
x
m(1− τ̂ zm+1) .

Fig. 10  Quantum many-body scars in the half-filling Krylov subspace. a Overlap of the Z2 configuration |ψZ2 � like Fig. 9a with the energy 
eigenstates in this subspace. b The fidelity dynamics starting from |ψZ2 � . The parameters are Jm = J = 1,µm = 0 , and the number of fermionic sites 
is L = 22 . We take the open boundary condition in the numerical simulation
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presence of scar tower structures. Additionally, the  
fidelity F(t) = |�ψZ2

|e−iHt |ψZ2
�|2 during the time evolu-

tion exhibits clear and notable revivals, as shown in Fig. 10b. 
These outcomes collectively support the existence of quan-
tum many-body scar states within the quantum link model, 
i.e., the minimal quantum breakdown model.

5 � Discussions
In this paper, we study the minimal quantum break-
down model with N = 2q + 1 and investigate its under-
standing from the perspective of lattice gauge theory. 
An extensive number (proportional to the system size) 
of locally conserved quantities in the model leads to 
the emergence of Hilbert space fragmentation, which 
is closely tied to numerous dynamically blocking sites. 
The mapping between the minimal quantum breakdown 
model and the U(1) lattice gauge theory offers a pow-
erful framework for employing gauge configurations 
to describe the various dynamics within the connected 
Krylov subspaces of the original quantum breakdown 
model. These intrinsic connections among the minimal 
quantum breakdown model, quantum link model, and 
lattice gauge theory may motivate proposals for experi-
mentally implementing the generic quantum break-
down model and more quantum models with generic 
modulated symmetries.
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