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Abstract

The renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a
λφ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat
2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical
interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We
demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant
operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to
entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our
study suggests that entanglement entropy is renormalizable and is a physical quantity.
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1 Introduction
An interesting attempt to understand the Bekenstein-
Hawking formula of black hole entropy SBH = A/4G, with
A the black hole horizon area and G the gravitational con-
stant, is to relate it to the entanglement entropy (SE) across
the black hole horizon [1–5]. SE quantifies the entangle-
ment between the degrees of freedom inside and outside
the black hole. But first attempts to compute SE from free
fields yielded the desired A dependence whereas the pref-
actor is divergent [2–4]. Susskind and Uglum suggested
that the divergence just renormalizes the bare gravita-
tional constant G to the renormalized one, GR, such that
SBH = SE = A/4GR [6, 7]. This suggestion was checked by
explicit computations in the massive black hole limit for
free fields while treating gravity classical [7]. Whether this
result is modified by the finite black hole mass or terms
beyond Einstein gravity or when gravity is quantized are
interesting questions for further exploration [8–16].
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In a condense matter system, SE can still be defined as
the entanglement of degrees of freedom across the inter-
face of area A between two regions [17, 18]. But then how
important is gravity to the determination of SE? Is SE still
renormalizable without gravity in the theory? If not, why
is gravity so special and why is it so important even for
a condensed matter system? If yes, how is SE renormal-
ized? A popular treatment in the computation of SE is
just imposing a UV cut-off without renormalizing it. In
this treatment, SE/A is set by the cut-off scale and when
the UV cut-off increases, SE also increases since there are
more degrees of freedom that can entangle. However, this
does not always lead to a positive SE [13–15, 19], which is
required by definition. Different ways to fix the problem
usually lead to different results. Therefore, it is impor-
tant to ask a more fundamental question, is SE a physical
quantity? If yes, how do we renormalize it?
In this work, we try to address this issue by renormal-

izing SE in the simplest example. We set up the problem
using the “replica trick” which provides a geometrical
interpretation of SE [8] which we will review in the fol-
lowing section. Then, for a 3+1 dimensional scalar field
theory with quartic interaction (a λφ4 theory), we com-
pute the entanglement entropy for two regions separated
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by a flat infinite two-dimensional plane to order λ. The
corresponding geometry of the Euclidean spacetime in
replica trick is Cε × R2, where Cε is a two-dimensional
cone with a deficit angle ε. And then SE is the linear
response of the effective action to a vanishing deficit angle.
Hence, the problem of SE computation is nothing but a
field theory problem in a curve spacetime. This spacetime
does not have the Poincare symmetry (or translational
and rotational symmetries in Euclidean space) of the flat
space time. Hence, to renormalize the theory, we write
down all the renormalizable terms with mass dimensions
≤ 4 and with symmetries satisfied by the Cε × R2 space.
We derived the required scalar propagator in this the-
ory and show that all divergent diagrams at O(ελ) can
all be renormalized and so is SE at this order. Finally, we
do the same exercise to the black hole case by replac-
ing the curve spacetime background by gravity and find
that there is a one-to-one correspondence between the
non-gravitational theory and the black hole case mathe-
matically. While this result suggests that our formulation
is sensible from the point of view of general relativity, the
deficit angle in a condensed matter system in flat space
remains an illusive concept worth further exploration.

2 Review of the replica trick
Suppose our system occupies an infinitely large and flat
3 + 1 dimensional spacetime, with the three-dimensional
space divided into two regionsV and V̄ by a time indepen-
dent, flat 2-dimensional plane. Then, the entanglement
entropy, SE , of a quantum theory between the two sub-
regions is defined by the von Neumann entropy of the
reduced density matrix ρV = trV̄ [ ρ] by tracing out the
degrees of freedom in region V̄ :

SE = −tr[ ρV ln ρV ]= − ∂

∂n
ln tr

[
ρn
V
]
∣
∣
∣
∣
n→1

, (1)

where tr[ ρV ]=1 is used. This expression is called
the replica trick because it involves n copies of ρV .
Equation (1) coincides with the Renyi entropy Sn =
1

1−n ln trρ
n
V in the n → 1 limit.

An elegant path integral formulation to compute the
entanglement entropy using the replica trick was intro-
duced in [8]. In this setup, one recalls that ρij ∝〈
i
∣
∣e−H/T ∣

∣ j
〉
for a thermal equilibrium system with Hamil-

tonian H and temperature T. Z = tr[ ρ] is the partition
function calculated in finite temperature field theory with
the range of Euclidean time τ =[ 0, 1/T] and with appro-
priate boundary conditions: φ(τ = 0, x) = ±φ(τ =
1/T , x) with the +(−) sign if φ is a boson(fermion) field.
Then, tr

[
ρ2] ∝ tr

[
e−2H/T ]

can be computed by dou-
bling the period in τ such that boundary conditions are
imposed at τ = 0 and 2/T . Similarly, tr

[
ρ2
V
]
is com-

puted by doubling the period in τ for region V while
keeping a single period in region V̄ . This can be shown

as a 2-sheeted Riemann surface as in Fig. 1a, where we
have the period τ =[ 0, 2/T] in region V and periods
τ =[ 1/2T , 3/2T] and τ =[ 3/2T , 5/2T ∼ −1/2T] in
region V̄ . In this figure, only τ (the vertical direction) and
the direction perpendicular to the interface (the horizon-
tal direction) are shown while the 2-dimensional interface
in the perpendicular direction is not shown. If we cir-
cle around point O by contour 1, then it will connect to
contour 2 with the total angle for a closed loop to be 4π .
This analysis can be generalized to tr

[
ρn
V
]
for an arbi-

trary integer n for arbitrary sizes of V, V̄ , and 1/T . As a
result, tr[ ρn

V ] becomes the partition function Zn on the n-
sheeted Riemann surface normalized by Zn

1 which follows
from imposing the normalization tr[ ρV ]=1:

tr
[
ρn
A
] = Zn

Zn
1
. (2)

Then, Eq. (1) yields

SE =
(

− ∂

∂n
+ 1

)
lnZn

∣
∣
∣
∣
n→1

. (3)

In this work, we concentrate on the simplest case with
the sizes of V, V̄ , and 1/T all become infinite (T = 0)
and the interface between V and V̄ is a flat infinite plane.
In this limit, the n-sheeted Riemann surface in Fig. 1a
can be redrawn to Fig. 1b which has the Cε × R2 topol-
ogy. The Euclidean time and the direction perpendicular
to the interface form the 2-dimensional cone Cε with the

Fig. 1 tr
[
ρ2
V

]
can be computed by the 2-sheeted Riemann surface

shown in a. The period of τ in region V is twice of that in region V̄
(see the text). A close loop around point O goes through contours 1
and 2 with a total angle 4π . For a system of infinite spacetime
volume, a can be drawn as b with a 2-dimensional cone of angle 4π
and 2 co-dimensions. The line connecting to the tip of the cone in b
denotes the 2-dimensional brane which is the interface. The replica
trick requires generalizing this picture to tr

[
ρn
V

]
with n → 1
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deficit angle ε of the cone satisfying n = 1 − ε/2π . R2 is
the space parallel to the 2-dimensional interface but trans-
verse to the cone. The line connecting to the tip of the
cone in Fig. 1b denotes the 2-dimensional brane which is
the interface.
Now Eq. (3) becomes

SE =
(
2π

∂

∂ε
+ 1

)
lnZ(ε)

∣∣
∣
∣
ε→0

, (4)

with SE probing the linear response of the partition func-
tion to the deficit angle.
Thermal entropy is a special case of entanglement

entropy with vanishing V̄ . As shown in Fig. 1a, without V̄ ,
the spacetime topology becomes S1 × R3 in flat Euclidean
space. n controls the size of S1 which is β = n/T . Then,
Eq. (3) yields the standard equation for thermal entropy

S =
(

−β
∂

∂β
+ 1

)
lnZ. (5)

The situation changes when it comes to the thermal
entropy of a black hole. The Euclidean spacetime geom-
etry just outside the black hole horizon is R2 × S2. The
period of the polar angle in R2 is proportional to β . When
β is not equal to the inverse Hawking temperature of the
black hole βH , R2 becomes a cone of deficit angle ε =
2π(βH − β)/βH . Then, Eq. (5) becomes

SBH =
(
2π

∂

∂ε
+ 1

)
lnZ(ε)

∣
∣
∣
∣
ε→0

, (6)

which is very similar to Eq. (4).

3 Renormalized entanglement entropy in the λφ4

theory
To compute the entanglement entropy SE using Eq. (3), we
need to construct the theory in theCε ×R2 space shown in
Fig. 1b. The interface is shown as a two-dimensional brane
(R2) which has a 2-dimensional cone Cε outside the brane.
The space is locally flat outside of the brane. There could
be fields only live on the brane.
A λφ4 theory in this space has the Lagrangian

L = 1
2
(∂φ)2 + 1

2
m2φ2 + λ

4
φ4

+ 1
2
Zφ(∂φ)2 + 1

2
Zmφ2 + 1

4
Zλφ

4 + Z4

+ εδ(2)(x‖)
(
Z2 + Z0φ

2) + O
(
ε2

)
.

(7)

The first two lines are the usual Lagrangian in flat space
with the full Poincare symmetry. m and λ are renormal-
ized quantities. Terms in the second line are conterterms.
Z4 is the counterterm that renormalizes the cosmological
constant. Terms in the third line breaks the Poincare sym-
metry due to the 2d brane. The Z2 term is the 2d brane
tension while the Z0 is the brane coupling to the scalar.
The third line should vanish when ε → 0. Hence, under

Taylor expansion, their couplings are proportional to ε

for small ε. (The first derivative of ε has been assumed
to exist when we apply the replica trick.) This system is
nothing but a quantum field theory in a curved space-
time background. We expect that once all the relevant
operators (i.e., operators up to dimension 4 for a weakly
coupled system) with the symmetries of the problem are
included, then the theory should be renormalizable.While
the renormalizability is known to all orders in λ at O(ε0),
we will demonstrate that this is also the case atO(ελ).
The Green’s functionGn(x, x′) for the free scalar field on

a n-sheeted Riemann surface satisfies
(−∂2 + m2)Gn

(
x, x′) = δ4

(
x − x′) . (8)

The conical singularity breaks translational symmetry
such thatGn(x, x′) depends on both x and x′ instead of x−
x′ alone. As shown in Refs. [20, 21] and in the Appendix,
the Green function has the solution

Gn(x, x′) =
∫ d2p⊥

(2π)2

∫
qdq

eip⊥(x⊥−x′⊥)

q2 + p2⊥ + m2

[

J0(qr)J0(qr′)

+2
∞∑

l=1
J l
n
(qr)J l

n
(qr′) cos l

n
(θ − θ ′)

]

(9)

where polar coordinates (r, θ) and (r′, θ ′) are used to
describe points on longitudinal plane with respect to the
conical singularity.
Under the ε expansion, we have

G1+ε(x, x′) = G(x − x′) + εf (x, x′) + O
(
ε2

)
, (10)

where we have rewritten the Green’s function in flat space
G1(x, x′) as G(x − x′) since translational symmetry is
satisfied for G1(x, x′).
There are two classes of diagrams atO(ε). The first one

is with one O(ε) coupling insertion and with all the other
couplings and propagators of O(ε0). The second one is
with one f (x, x′) propagator but with all the other propa-
gators and couplings ofO(ε0), which implies if the f (x, x′)
propagator is removed, then the rest of the diagram is
translational invariant. Therefore, a generic diagram of the
second class can be expressed as

∫
dxdx′f (x, x′)F(x − x′). (11)

With this condition, we show in the Appendix that the
O(ε) propagator in the Fourier space can be effectively
written as:

f (p) → A⊥
12

δ2(p‖)
p2⊥ + m2 , (12)

where A⊥ is the area of the interface. This expression has
a mass dimension minus six because Gn(x, x′) has a mass
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Fig. 2 Two-point functions at O(ελ). The left diagram has an O(ε) propagator circling the conical singularity (or the 2d brane) denoted by the dot.
The right diagram has one insertion of the Z0 coupling

dimension two. Now we see all the couplings and propa-
gators atO(ε) are proportional to A⊥, so every diagram at
O(ε) is proportional to A⊥ as well.
The O(ε) propagator of Eq. (12) has two powers of

momentum less than the O(ε0) propagator. Hence, the
standard power counting analysis shows that at O(ε),
only the two-point functions and zero-point functions
are divergent and need to be renormalized. The two-
point functions could diverge logarithmically while the
zero-point function could diverge quadratically atO(ε).
We will start from the renormalization of two-point

functions at O(ελ) shown in Fig. 2. The sum of the two
diagrams is proportional to

− 1
12

∫ d2p
(2π)2

1
p2 + m2 + Z0

∫ d4p
(2π)4

1
(
p2 + m2)2

. (13)

Then, using ddp = dppd−1�d, �4 = 2π2 and �2 = 2π ,
the two-point function can be renormalized by setting
Z0 = π/3 such that the divergence between the two dia-
grams cancel and (13) equals 1/(48π). Here, we do not
demand the first diagram being renormalized by the tree
diagram with one insertion of Z0 because in general Z0 is
of order λ0, not λ.
Now it comes to the zero-point function (the logarithm

of the partition function) at O(ε), which is exactly the
entanglement entropy using the replica trick. Figure 3a
denotes the contribution from the inverse determinant
of the free theory. It can be computed by taking the m2

derivative then integratem2 back:

S(3a)
E = 1

12
A⊥

∫ ∞

m2
dμ2

∫ d2p⊥
(2π)2

1
p2⊥ + μ2 + A⊥S0 (14)

S0 is the contribution when m → ∞. So S0 is m indepen-
dent.
We use the renormalization condition that the tree level

mass is the physical mass already, such that the loop cor-
rections to the mass are all canceled by counterterms.
Therefore, the one loop correction in Fig. 3b is exactly
canceled by the insertion of the mass counterterm Zm in
Fig. 3c:

S(3b)+(3c)
E = 0. (15)

The Z2 and Z0 terms yield

S(3d)
E = −A⊥Z2, (16)

S(3e)
E = −A⊥Z0

∫ d4p
(2π)4

1
p2 + m2 . (17)

And the one loop correction to (3e) vanishes

S(3f)+(3g)
E = 0. (18)

If we take the mass derivative to Eqs.(14) and (17), the
same combination as Eq. (13) arises and yields

S(3a)+(3e)
E = −A⊥

(
m2

48π
+ C

)
, (19)

where C is m independent. C could diverge like 
2, with

 the ultraviolet momentum cut-off.

Fig. 3 Zero-point functions up to O(ελ). Propagators circling around
the dot are the O(ε) propagators. The gray blobs denote insertions of
Z0 or Z2, while the shaded blobs denote insertions of Zm
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Putting everything together, we have

SE
A⊥

= − m2

48π
− Z̄2 + O

(
λ2

)
, (20)

where Z̄2 = Z2 +C. The divergence in C can be absorbed
by Z2 such that Z̄2 is finite. Therefore, we have demon-
strated that, up to O(λ), with couplings Z0 and Z2 living
in the two-dimensional brane formed by the interface, SE
could be properly renormalized to be a finite quantity.
Here, we have only discussed the SE of the ground

state of a scalar field theory with an infinitely large flat
interface to O(λ). But the conclusion that entanglement
entropy is renormalizable could be general. One can gen-
eralize our derivation to all orders in λ using the standard
techniques and try to work on different interfaces and the-
ories. However, one can already see in our simple example
that while Z0 can be determined by the renormalization
of the two-point function, fixing Z2 (or Z̄2 of Eq. (20))
requires knowing its dependence on the deficit angle in a
condensed matter system which lives in a flat space. This
is conceptually illusive. We will have more discussions on
this in the next section.

4 The correspondence in the black hole case
It is instructive to reproduce the computation showing
the equivalence between the black hole thermal entropy
and entanglement entropy which mathematically has a
one-to-one correspondence to our case in the previous
section.
The Euclidean action of a quantum scalar field in classi-

cal gravity is

S =
∫

d4x√gL, (21)

and

L = Lφ − R
16πG

+ α

4π
φ2R + O

(
R2) . (22)

Lφ is the first two lines of Eq. (7) written in the general
covariant form. R is the Ricci scalar. The dimension four
O(R2) terms include R2, R2

μν , and R2
μνρσ .

For an infinitely massive black hole, the Hawking tem-
perature is zero and the horizon is a flat infinite plane.
The space outside the horizon can be described by the
Rindler space which is locally flat except at the origin [6, 7,
14]. Therefore, when one computes the black hole entropy
using Eq. (6), or the black hole entanglement entropy
across the horizon using Eq. (4), the spacetime geometry
is Cε × R2 in both cases—the same as the SE computation
in flat space in the previous section. Furthermore, we have
R = 4πεδ(2)(x‖)which makes Eq. (22) have the same form
as Eq. (7). These lead to SBH = SE for the black hole.

We can set α = Z0 to renormalize the two-point func-
tion in Fig. 2. As for the terms ofO

(
R2), although they are

dimension 4, they do not contribute until O(ε2) so they
do not contribute to SE or SBH .1
Following the same procedure as in the previous section,

we have
SBH
A⊥

= 1
4G

− C − m2

48π
+ O

(
λ2

) = 1
4GR

+ O
(
λ2

)
, (23)

where the 1/4G term is the Bekenstein-Hawking entropy
which is O(1/�), but interestingly it can be derived with
just classical gravity. The −C − m2/48π contribution is
from quantum corrections to the black hole entropy start-
ing atO(�0). The mass independent term C could diverge
like 
2. But its divergence is absorbed by 1/G and the
combination on the right hand side is matched to the
renormalized quantity 1/4GR. (Here, GR is related to the
zero-point function of φ with one power of R dependence.
This quantity is proportional to SE in this problem.) [6, 7].
Finally, we have

SBH = SE = A⊥
4GR

. (24)

Hence, both SBH and SE are shown, up to O(λ), to be the
same for an infinitely massive black hole. And the entropy
per horizon area is set by the Planck scale.
Most of the discussion in this section can be found in

[6, 7, 14], except the part that α can be fixed by the two-
point function renormalization in Fig. 2. We find that
each term in our condensed matter case has a counter
part in the gravitational theory. This suggests that our
formulation is sensible from the point of view of general
relativity. Although the deficit angle is easy to imagine in
a gravitational theory, it requires the “off-shell action” to
describe a black hole away from its Hawking temperature
to generate the deficit angle [22]. This suggests that in the
condensed matter system, the determination of the inter-
face term Z2 will require properties from the “off-shell
action” that is not included in its usual “on-shell action”
which can possibly be determined by scattering in flat 3+1
dimensions.

5 Conclusion and discussion
Our study suggests that entanglement entropy is renor-
malizable and is a physical quantity. We have demon-
strated the renormalizability of the entanglement entropy
of the λφ4 at order λ when the 3+1 dimensional the-
ory is separated into two regions by an infinitely flat
2-dimensional interface. Using the replica trick, the com-
putation of the entanglement entropy across the interface
can be carried out by putting the theory on a curved
spacetime background. We have shown by an explicit

1TheO(R2) can still contribute atO(ε) when the curvature atO(ε0) is not
zero as considered in Ref. [20].
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computation at O(λ) that once all the relevant opera-
tors are included in the action, the theory and hence the
entanglement entropy, can be renormalized.
We also reviewed the computation of black hole entropy

and entanglement entropy across the horizon for an
infinitely massive black hole and found that our non-
gravitational calculation has a one-to-one correspondence
to the black hole case. This suggests that our formulation
is sensible from the point of view of general relativity.
To renormalize the SE in a non-gravitational system,

one uses the coupling Z2 which live in the interface to
absorb the infinities from loop diagrams. If we wish to
make a prediction to SE , then Z2 needs to be fixed by
other observables. However, this coupling exists in the
“off-shell action.” It is not clear what would be a good
way to fix it. However, even without knowing Z2, one
can still make predictions to combinations of entangle-
ment entropies, e.g. mutual entropy [23–25], whose Z2
dependence cancels.
There are some obvious directions for future work. One

could generalize the renormalizability proof to all orders
in λ, or generalize it to other theories, for examples, the
standard model of particle physics. In the latter case, there
are actually no relevant couplings atO(ε) other than what
we have already written down in Eq. (7) and our O(ε)

propagator result in Eq. (12) can be easily generalized to
propagators for other fields.

Appendix: The derivation of Eq. (12)
The Laplacian operator in the Cε × R2 space is

�n =∂2⊥ + ∂2r + 1
r
∂r + 1

n2r2
∂2θ , (25)

where θ =[ 0, 2π) and n = 1 − ε. Its eigenfunction

φn(p, x) =√
2π J| ln |(p‖r)eilθ eip⊥x⊥ (26)

satisfies

(−�n + m2) φn(p, x) = (
p2 + m2) φn(p, x). (27)

Then, the Green’s function Gn(x, x′) can be constructed
via

Gn(x, x′) =
∫ d4p

(2π)4
d4p′

(2π)4
φn(p, x)G̃n(p, p′)φ∗

n(p
′, x′),

G̃n(p, p′) = (2π)4δ(p, p′)
p2 + m2 , (28)

which yields Eq. (9) and the integral over pθ , the conju-
gate momentum of θ , is understood as the sum over all
integer l.

In Eq. (11), a general function of x− x′ can be written in
a similar way as Eq. (28) but in flat (n = 1) space:

F(x − x′) =
∫ d4k

(2π)4
e−ik(x−x′)F̃(k)

=
∫ d4k

(2π)4
φ∗
1 (k, x)F̃(k)φ1(k, x′). (29)

Then, we have
∫

d4xd4x′F(x − x′)Gn(x, x′)

=
∫ d4p

(2π)4
d4k

(2π)4
F(k)

p2 + m2

∫
d4xd4x′

× φn(p, x)φ∗
n(p, x′)φ∗

1 (k, x)φ1(k, x′). (30)

We only need theO(ε) contribution of this integral, which
is

I =
∫

d4xd4x′F(x − x′)f (x, x′)

= −
∫ d4pd4x

(2π)4
F(p)

p2 + m2 ∂n→1|φn(p, x)|2, (31)

where we have used
∫

d4xφ∗(p, x)φ(p′, x) =(2π)4δ4(p − p′). (32)

Using Eq. (26), the x integral in Eq. (31) is
∫

d4x∂n→1|φn(p, x)|2

= A⊥(2π)2∂n→1

∫
drrJ2| ln |(p‖r)

= A⊥(2π)2∂n→1
δ(0)
p‖

. (33)

The last expression vanishes unless p‖ = 0. Since A⊥
and p‖ are the only scales in this expression, dimensional
analysis suggests that it is proportional to A⊥δ(p2‖). The
proportional constant, |l|, can be fixed by considering the
integral

∫ pdp
p2 + m2 ∂n→1

[∫
rdrJ2| ln |(pr)

]

= ∂n→1

∫
rdrI| ln |(mr)K| ln |(mr)

= 1
m2 ∂n→1

[
− |l|
2n

+ const.
]

= |l|
2m2 . (34)

Now we are ready to rewrite Eq. (31) as

I = −
∫ d4p

(2π)4
F(p)

p2 + m2 |l|A⊥δ
(
p2‖

)

= −
∫ d2p⊥dp‖p‖

(2π)4

∞∑

−∞

F(p)
p2 + m2 |l|A⊥δ

(
p2‖

)

= 1
12

∫ d2p⊥
(2π)4

F(p⊥, p‖ = 0)
p2⊥ + m2 , (35)
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where we have used the Riemann zeta function ζ(s) =∑∞
n=1 n−s and ζ(−1) = −1/12 via analytic continuation.

The final result is summarized in Eq. (12).
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